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Abstract

In this text we assess the amount of overlap in genetics of rheuma-
toid arthritis (RA) and cardiovascular disease (CVD). We use sum-
mary statistic data from genome-wide association studies for RA and
acute myocardial infarction (AMI), using AMI to represent CVDs in
general. Genetic overlap is measured as a correlation coefficient on
the genetic part of the two traits, obtained through the implementa-
tion of linkage disequilibrium score regression. No significant genetic
correlation was found between RA and AMI, indicating that little to
no genetic overlap exists between the two traits, agreeing with a lone
previous result. While power was not an issue in this study, a greater
sample size for RA could hopefully shrink standard errors and give
more precise estimates. Additionally, using only AMI as a proxy for
CVDs in general might be naive and different results may be found
for other CVD-phenotypes.
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1 Introduction

1.1 Background

Rheumatoid arthritis (RA) is an autoimmune chronic disorder. Prevalence
varies between countries but is estimated at around 1% in Sweden for the gen-
eral population with a greater incidence in women than in men [1]. The etiology
of RA is not fully understood but current consensus is that both environmental
and genetic factors play a part in the development of the disease. Several risk
factors have been established, of which smoking is considered the most influen-
tial environmental risk factor and certain genes in the human leukocyte antigen
region have been demonstrated to collectively confer the greatest genetic risk [2].

Disorders of autoimmune type are characterized by the individual’s immune
system wrongly targeting functioning body parts, which in RA primarily man-
ifests itself in the joints of the body. If left untreated, RA will lead to joint
deterioration and physical disability. Neither direct prevention nor cure exists
but treatment of the pain and symptoms is possible through medication and
physical therapy. Beyond the burden of the disease itself, patients suffering from
RA are exposed to a higher risk for various other diseases, which as a result,
leads to an increased mortality rate for individuals diagnosed with RA. Such
comorbidities include lymphomas, lung diseases and cardiovascular diseases [3].

Cardiovascular diseases (CVDs) cover a broad set of disorders character-
ized by primarily involving blood vessels and the heart. Such disorders include
coronary artery disease, acute coronary syndrome, myocardial infarction (heart
attack) and stroke among others. While genetic risk factors are currently poorly
understood, many environmental risk factors such as diet, tobacco intake and
physical activity are well known and established for CVDs in general [4, 5].
Despite this, CVDs are still the leading cause of death in humans globally,
accounting for around 40% of deaths in Europe under the year of 2017 [6].

As stated above, individuals with RA suffer a greater risk for developing
CVDs which prompted a recent article in which it was demonstrated that an
increased risk could be found in siblings of patients too. This increased risk in
turn implies an underlying shared susceptibility between RA and CVD. Whether
this shared susceptibility is due to genetic similarities, environmental factors or
both remains a question [7].

In this paper we look into this shared susceptibility by investigating the
genetic overlap between RA and CVD through statistical examination of genetic
data. We aim to study the overlap of RA and CVD by comparing results from
genome-wide association studies (GWASs) for RA with GWAS results for acute
myocardial infarction (AMI), using it as a proxy for CVDs in general. A previous
study aiming to look at the genetic correlation of a broad range of traits found
no significant correlation when comparing RA with the CVD of coronary artery
disease [8]. We hope that this study can improve upon this estimate by using
a more well defined type of CVD and by also studying the genetic overlap over
different sub-types of RA.

The first part of this text gives a methodological background into assessing
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the genetic overlap between two phenotypes through genome-wide data. We
give a brief introduction to some of the more crucial concepts and continue with
a thorough reading of the mathematical and statistical framework of linkage dis-
equilibrium score regression. The second half of this text is then concerned with
the implementation of linkage disequilibrium score regression, attempting to es-
timate the genetic overlap of RA and CVD through GWAS summary statistic
data on RA and AMI.

Several minor lemmas, their proofs and a few concepts of which background
knowledge is not mandatory to follow with in the details of this study have been
placed in the opening section of the Appendix (Section A). Additionally, several
acronyms are employed to simplify the reading of this study. Details on these
acronyms can be found in the concluding glossary, placed towards the end of
the Appendix but are also covered in the text as they are introduced.

1.2 Genome-wide association studies

The human genome can be represented as a linear sequence of nucleotides,
commonly referred to as the human DNA sequence. While the majority of
this DNA sequence is identical between human individuals, there are significant
amounts of variation present among the three billion DNA base-pairs that it
consists of. The most common type of genetic variation is in the form of single
nucleotide polymorphisms (abbreviated SNPs; pronounced ”snips”). A SNP is
a base-pair change of a single nucleotide in the DNA sequence between different
individuals, appearing in at least 1% of the population and they are by far the
most abundant form of genetic variation in the human genome [9]. A visual
illustration of a SNP is given in Figure 1.

The underlying hypothesis of the GWAS is that human traits (phenotypes)
of interest vary as a function of the alleles (nucleotides) at these genetic variants
of SNPs. An example of this would be an individual with a copy of an A allele at
a given SNP being at higher risk for a type of cancer than a different individual
with a copy of a T allele at the same SNP. The GWAS combs through the
genome, testing a wide set of SNPs for association with trait of interest by
regressing observed phenotypes against observed genotyped alleles for a set of
individuals. It then outputs test statistics of each SNPs individual association
with trait.

The GWAS was first developed in the early 2000’s as a way to identify ge-
nomic regions (known as loci) in the form of SNPs, associated with given pheno-
types of interest. Its main use was to identify loci that show strong association
(either positively or negatively) with the phenotype of interest, as a way to
aid researchers in better understanding the etiology and risk factors of complex
traits [10]. It has since grown beyond that use, as researchers have developed
ways to further study the genetics of phenotypes by using the GWAS output
as genetic data. The core strengths of using GWAS data as opposed to geno-
typed data on an individual-level is twofold: firstly, a performed GWAS reduces
data dimensionality immensely by compressing the previously (N × (M + 1))
dimensional data into (2 ×M), where N denotes sampled individuals and M
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Figure 1: Visual illustration of a SNP in a DNA-sequence. When com-
paring the given DNA sequence between the six individuals, a SNP is re-
vealed at the yellow position due to the difference in nucleotides between
them. Source: https://www.genome.gov/genetics-glossary/Single-Nucleotide-
Polymorphisms, taken on 6/12-2019.

denotes the number of SNPs genotyped, at the loss of very little information
helping with reduction in computational complexity. Secondly, the sharing of
individual-level genotyped data is difficult as privacy concerns are a big issue.
However, the GWAS mitigates this problem by masking each person consid-
ered through summary statistics. This has led to the wide sharing of GWAS
data between researchers and the establishment of several databases aimed at
collecting large sets of meta-analyzed GWAS summary statistic data [11,12].

In practice, the GWAS is performed as follows: a sample of N individu-
als are taken from the population with respect to the phenotype of interest.
Both categorical phenotypes (disease status, educational attainment, existence
of a particular anti-body) and continuous phenotypes (heart rate, BMI, height)
are valid for GWASs. Genotyping these individuals for their observed alleles
at M targeted SNPs leads to the individual-level genotyped data, dimension
(N × (M + 1)) where the first column contains the recorded phenotype. These
observed alleles are then tested for association with the phenotype through an
appropriate regression model, i.e. by regressing the first column of observed
phenotype on the observed genotyped alleles for each of the M remaining
columns independently. Association significance is tested for through asymp-
totic Wald-tests, producing test statistics in the form of z-scores zj for each
SNP, j = 1, ...,M . Note that we may transform these to chi-squared statistics
χ2
j by squaring the z-score estimates, i.e z2j = χ2

j for the same test hypothesis.
The resulting GWAS output is then in the form of test statistics of each of
the M SNPs individual associations with the phenotype of interest [9]. A visual
representation of the output of a GWAS can be seen in Figure 3 (page 22) where
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the results from our GWAS of RA-status is presented in a so called Manhattan
plot.

There is however one core issue with this approach. The number M of
genotyped SNPs is often large, ranging from several hundred thousands up to
millions, with the actual number depending on the genotyping chip utilized on
the sample. As each SNP is tested individually against phenotype for associ-
ation, the GWAS performs an enormous amount of tests, meaning that using
the common significance level of α = 0.05 will lead to an alarming amount of
false positives. Several approaches exist to mitigate this problem of multiple
testing in a GWAS but the, in the literature, standard solution is to use an
adjusted p-value of p = 5 ·10−8 as the threshold for significant SNP-association.
This threshold is commonly referred to as the genome-wide significance level
and is based on a Bonferroni correction of the significance level for α = 0.05
when running a million tests [13]. While Bonferroni corrections are notoriously
conservative, this type of threshold is simplistic in nature and has come to be
established as an in-field standard to facilitate replication and consensus among
researchers without requiring tedious and intricate computations or computer
intensive algorithms.

1.3 Linkage disequilibrium

A key factor in why the GWAS can be performed efficiently is due to linkage dis-
equilibrium (LD). LD refers to the non-random association of alleles at different
loci in the genome and can be seen as a kind of correlation structure between
the alleles at these different regions [10, 14]. Due to this correlation structure,
we can reduce the number of genotyped SNPs needed to get an accurate repre-
sentation of the variation in the human genome, as the information contained
in several SNPs is already represented through their correlation with targeted
markers [10]. Mathematically we define LD between two genomic regions as
follows.

Definition 1. Consider two biallelic loci on the genome with the first loci having
alleles A and a and the second having alleles B and b. The population frequencies
are denoted by πA and πB with πa = 1 − πA and πb = 1 − πB. Letting πAB

denote the population frequency of the inherited AB haplotype, we get a measure
of the amount of LD between the two loci as

D = πAB − πAπB . (1)

The measure D can be both positive and negative, the sign depending on
the (arbitrary) labeling of the alleles. To this end we note that the magnitude
of D is independent of the alleles considered, i.e.

D = πAB − πAπB = πab − πaπb
−D = πAb − πAπb = πaB − πaπb
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The magnitude of D in turn depends on the population frequencies of the alleles.
For instance, if πA = πB = πa = πb = 0.5, the maximum of D is obtained at
D = 0.25 which happens when πAB = 0.5. If D = 0 we say that the two genomic
regions are in linkage equilibrium [14].

The LD measure of D is not always optimal due to its dependence on the
population frequencies of the alleles it is referring to. As a result, various dif-
ferent measures and estimates of LD exist in the literature although most of
them are simply variations of Definition 1 [14]. A common such measure that
we will make frequent reference to in our discussion of linkage disequilibrium
score regression (Section 2) is the squared correlation coefficient of r2.

Definition 2. Consider two biallelic loci on the genome with the first loci having
alleles A and a and the second having alleles B and b. The population frequencies
are denoted by πA and πB with πa = 1− πA and πb = πB. Let D be as given in
Definition 1, then

r2 =
D2

πA(1− πA)πB(1− πB)
. (2)

As r2 is the squared correlation coefficient of alleles at two different loci we
note that it inherits all of its nice properties, including being normalized to the
range of [0, 1] [14]. It follows that for genomic regions in linkage equilibrium, we
get r2 = 0. Furthermore, if two sites are correlated in such a way that r2 = 1,
we say the two regions are in complete disequilibrium.

1.4 Genetic overlap and heritability

Studying the genetic overlap of phenotypic traits can lead to newfound knowl-
edge and a greater understanding of the genetic etiology, susceptibility and risk
of phenotype development in a population. Plenty of different methods exist for
studying genetic association, overlap and correlation but to our knowledge, no
single standard approach exists in the literature. In Section B of the Appendix
we give a brief introduction to some of the available methods, reviewing their
statistical framework and covering some of their strengths and problems.

A common quantity to many of these methods that we will make frequent
reference to, is the genetic correlation coefficient, rg. The quantity rg is given
as a correlation coefficient on the genetic part of the phenotypic trait and is a
key feature in methods based on parametric models.

Definition 3. Let Gi denote the genetic part of any phenotypic trait. The
genetic correlation coefficient rg is then defined as

rg =
Cov(G1, G2)√
V ar(G1)V ar(G2)

=
ρg√
h21h

2
2

. (3)

Here we denote the genetic covariance of two given traits by ρg. We refer to
the terms V ar(Gi) as the phenotypic variation attributable to genetics, which
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in turn, is commonly referred to as the heritability of a phenotype and denoted
by h2i for i = 1, 2. A more rigorous definition of the heritability along with a
further discussion on modeling phenotypic variation is given in the Appendix,
Section A.1.

2 Linkage disequilibrium score regression

Studying genetic overlap between phenotypes can lead to a better understand-
ing of the etiology of complex traits. Non-zero genetic correlation can be an
indicator of pleiotropy, i.e. of genetic variants affecting both traits but it can
also be used to study heterogeneity within phenotypes. As an example, we
might believe that a trait is genetically different between men and women or
in young and old individuals. Here the null-hypothesis would instead be of a
complete genetic overlap as opposed to a non existent one.

The goal of this paper is to assess what genetic overlap exists between in-
dividuals with RA and individuals with CVD based on summary statistic data
obtained from GWASs. To our knowledge, neither rigorous definition nor es-
tablished quantifying measure exists within the literature which has led to the
development of several approaches to test for, or directly estimate, the genetic
overlap between two different phenotypes. Available methods differ in underly-
ing philosophy to assessing overlap, required form of genetic data as well as in
their assumptions on the underlying genetic architecture of a phenotype. Some
of these include testing for overlap through a genetic component [15], compar-
ing direction of SNP associations between traits [16], or simply to estimate a
correlation coefficient through a fitted model [17,18].

In this section we cover how to use GWAS summary statistic data to esti-
mate rg (Equation 3) using a novel method called linkage disequilibrium score
regression [18]. We give a background to the method in Section 2.1 discussing
the development of the model as a way to control for bias in a GWAS and its
subsequent extension to estimation of genetic variance components. In Section
2.2 we define the underlying model and prove the main results (Equations 5 and
6). We cover how to efficiently use these results to estimate trait heritabilities
h2 and genetic covariances ρg in Section 2.3. A brief review of other available
methods for assessing genetic overlap is given in the Appendix, Section B.

2.1 Background

The basis of linkage disequilibrium score regression (hereafter LDSR) is of a
linear relationship between GWAS test statistics of SNP association with trait
and a quantity called the LD score. It estimates both trait heritability h2 and
genetic covariance ρg by regression of test statistics of SNP associations onto
LD scores. Now the LD score lj of a SNP j is given as an aggregated sum of
the amount of genetic variation tagged by this SNP over the genome i.e. the
amount of LD that SNP j is in. Formally it is defined as follows.
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Definition 4. Consider a set of Ml variants on the human genome. The LD
score of a variant j is given by

lj =

Ml∑
k=1

r2jk, (4)

where r2jk is the r2 measure of LD defined in Definition 2 for genetic variants j
and k.

Note that we here write Ml to distinguish this quantity from the M SNPs
that was genotyped for our GWAS. We often wish to compute LD scores using
an external set such that Ml ≥M to increase the precision in our estimates.

The method of LDSR was initially developed as a way to measure the amount
of confounding in a GWAS due to population stratification, i.e. due to things
such as cryptic relatedness and population substructures [19]. The goal was to
improve upon the established genomic inflation factor [20] (see Section A.3 in
the Appendix) but the method was subsequently extended to include estimation
of trait heritability and genetic covariance for sets of GWAS summary statistic
data [18,19]. The key result of the original paper was that, the expectation of a
given test statistic from a GWAS, in the form of a χ2-statistic, could be written
as

E[χ2
j ] = 1 +

Nh2

Ml
lj , j = 1, ...,M, (5)

where N is the number of individuals in the GWAS sample, h2 is the trait
heritability, lj is the LD score of SNP j and Ml is the number of SNPs considered
in the computation of the LD scores [19]. There is thus a linear relationship
between GWAS test statistics and LD scores in such a way that regressing
χ2 statistics onto LD scores would allow us to obtain an estimate of the trait
heritability h2 by rescaling the obtained estimate of the slope coefficient.

This model was later extended into cross-trait LDSR in which a similar
relationship was derived but with respect to the term ρg of genetic covariance
instead of the trait heritability. The authors of the original papers [18, 19]
demonstrated that for two sets of GWAS summary statistic data containing
z-scores of SNP association with trait (formally defined in Section 2.2), the
expectation of the product of z-scores can be written as

E[z1jz2j ] =
ρsNs√
N1N2

+

√
N1N2ρg
Ml

lj , j = 1, ...,M, (6)

where Ni is the number of individuals in the GWAS sample for trait i, Ns is the
number of individuals contained in the sample set for both GWASs, ρs is the
correlation, in phenotype, of the Ns overlapping individuals, lj is the LD score
of SNP j with Ml being the number of SNPs considered in the computation of
the LD scores [18]. We prove this result in Section 2.2 and show that Equation
5 follows as a corollary.

A similar regression model to that discussed above is then appropriate for
the estimation of genetic covariance. As quantities N1, N2 and Ml are generally
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known we may obtain ρ̂g through a rescaling of the estimated slope coefficient
obtained by the regression of product of z-scores onto LD scores. These esti-
mates can then be used in tandem to estimate the genetic correlation coefficient
rg as it was given in Definition 3.

2.2 Underlying model

In this section we define the underlying model for the results in Equations 5
and 6 and prove that these equations hold. These results, including the proof,
are based on derivations done in the supplementary material of [18].

The model equation for phenotypic trait i is given by

Yi = X(i)βi + εi, i = 1, 2. (7)

Here, Yi is a vector of phenotypic trait values with dimension (Ni × 1), βi
is a vector of standardized SNP effect sizes dimension (Ml × 1) and εi are
residuals representing environmental effects and further noise. The matrix X(i)

is a standardized genotype matrix, dimension (Ni ×Ml) containing elements

X
(i)
mj of observed alleles at SNP j for individual m in the i’th sample, mean-

centered and variance standardized to have expectation zero and variance one.
Note that the number Ml is here allowed to be greater than the number M of
SNPs genotypes in our GWAS.

Furthermore, we take all terms on the right hand side of Equation 7 as
random and mutually independent both with each other as well as between
traits, i.e. constituting a random effects model. The two exceptions are of β1
and β2 along with ε1 and ε2. For these we assume that (β1, β2) has mean zero
and variance-covariance matrix given by

V ar(β1, β2) =
1

Ml

[
h21I1 ρgI1
ρgI1 h22I1

]
,

and that (ε1, ε2) has mean zero and variance-covariance matrix

V ar(ε1, ε2) =

[
(1− h21)I2 ρeI2
ρeI2 (1− h22)I2

]
.

Here, I1 is an (Ml×Ml) identity matrix whereas I2 has dimension (N1×N2).
As we make no assumptions on the relationship between study sample sizes N1

and N2 we allow for I2 to not be square. As such we define I2 as a matrix with
1’s on the main diagonal and 0’s in all other positions, i.e. the ij’th element is
equal to 1 if i = j and 0 otherwise.

Furthermore, we let Ns denote the number of individuals that belong to
both studies (i.e. the number of identical rows between genotype matrices X(i)

and let ρs = ρe + ρg. We define LD scores for variant j as

lj =

Ml∑
k=1

r2jk =

Ml∑
k=1

(
E[X

(1)
mjX

(1)
mk]
)2

=

Ml∑
k=1

(
E[X

(2)
mjX

(2)
mk]
)2
,
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where X
(i)
mj denotes the mj’th element of the genotype matrix for sample i, and

r2jk is the measure of LD defined in Definition 2 with indices denoting the loci
in question.

This model is based on an assumption of an underlying polygenic architec-
ture for the traits of interest, i.e. the assumption that many SNPs together make
up the bulk of the genetic effect on trait as opposed to a few strongly associated
SNPs accounting for the majority of genetic variation.

With the model in place we can prove the key result of LDSR.

Proposition 5. Under the model detailed in the above text, it holds that for
each of the z-scores of SNP association with trait

E[z1jz2j ] =
ρsNs√
N1N2

+

√
N1N2ρg
Ml

lj , j = 1, ...,M, (6, revisited)

where zij is the j’th GWAS test statistic, as a z-score, from study i.

Proof. The z-score for a given SNP j from study i, is given by

zij =
(
X

(i)
j

)T
Yi/
√
Ni,

where X
(i)
j denotes the j’th column of X(i). Note that when we have M < Ml,

only a subset of columns are used to create z-scores as j ranges from 1, ...,M .
Conditioning again on the genotype matrices X(1), X(2) we get

E[z1jz2j ] = E[E[z1jz2j |X(1), X(2)]].

Working with the inner expectation we get the following

E[z1jz2j |X(1), X(2)] = E


(
X

(1)
j

)T
Y1

√
N1


(
X

(2)
j

)T
Y2

√
N2


T ∣∣∣∣X(1), X(2)


=

1√
N1N2

(
X

(1)
j

)T
E
[
Y1Y

T
2

∣∣X(1), X(2)
]
X

(2)
j

=
1√
N1N2

(
X

(1)
j

)T
E
[
(X(1)β1 + ε1)(X(2)β2 + ε2)T

∣∣X(1), X(2)
]
X

(2)
j

=
1√
N1N2

(
X

(1)
j

)T (
X(1)E[β1β

T
2 ]
(
X(2)

)T
+X(1)E[β1ε

T
2 ] + E[ε1β

T
2 ]
(
X(2)

)T
+ E[ε1ε

T
2 ]

)
X

(2)
j

=
1√
N1N2

(
X

(1)
j

)T (
X(1) ρg

Ml
I1

(
X(2)

)T
+ ρeI2

)
X

(2)
j

=
ρg

Ml

√
N1N2

(
X

(1)
j

)T
X(1)

(
X(2)

)T
X

(2)
j +

ρe√
N1N2

(
X

(1)
j

)T
I2X

(2)
j . (8)

Consider first the random terms of the second part of the equation. Suppose,
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without loss of generality, that N1 < N2. We then have that

E

[(
X

(1)
j

)T
I2X

(2)
j

]
=

N1∑
m=1

E
[
X

(1)
mjX

(2)
mj

]
=
∑
m∈Q

E[X2
mj ] +

∑
m6∈Q

E[X
(1)
mj ]E[X

(2)
mj ]

=
∑
i∈Q

1 = Ns, (9)

where we on the second line partition the sum over the individuals i that belong
to the set Q where Q is the set of individuals which belong to both studies.
Since individual genotypes are mean-centered and variance-standardized this
becomes the number of elements in Q which by definition is Ns.

For the remaining term we again assume that N1 < N2. Then

E

[(
X

(1)
j

)T
X(1)

(
X(2)

)T
X

(2)
j

]
=

Ml∑
k=1

(
N1∑
m=1

N2∑
n=1

E
[
X

(1)
mjX

(1)
mkX

(2)
nj X

(2)
nk

])

=

Ml∑
k=1

 ∑
(m,n)∈Q

E
[
X2

mjX
2
mk

]
+

∑
(m,n)6∈Q

E
[
X

(1)
mjX

(1)
mk

]
E
[
X

(2)
nj X

(2)
nk

]
=

Ml∑
k=1

 ∑
(m,n)∈Q

(
V ar(XmjXmk) + E [XmjXmk]

2
)

+ (N1N2 −Ns) r
2
jk


=

Ml∑
k=1

(
Ns

(
1 + r2jk

)
+N1N2r

2
jk −Nsr

2
jk

)
= MlNs +N1N2lj , (10)

where we again partition the sum over Q, the set of individuals contained in
both studies. Combining Equations 9 and 10 with the full results in Equation
8 gives

E[z1jz2j ] =
ρg

Ml

√
N1N2

(MlNs +N1N2lj) +
ρe√
N1N2

Ns

=
Ns√
N1N2

(ρg + ρe) +

√
N1N2ρg
Ml

lj

=
ρsNs√
N1N2

+

√
N1N2ρg
Ml

lj , (11)

which completes the proof.

Corollary 5.1. If the two GWASs are the same, i.e. if z1j = z2j for all j, then
Proposition 5 becomes

E[χ2
j ] = 1 +

Nh2

Ml
lj , (5, revisited)

where χ2
j is the GWAS test statistic of the j’th SNPs association with trait in

the form of a chi-squared statistic.
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Proof. If the two studies are the same then N1 = N2 = N and since ρg is the
genetic covariance we get ρg = Cov(G1, G1) = V ar(G) = h2. Furthermore,
since N1 = N2 = N the number of overlapping individuals Ns must be N .
Since the two study samples are the same their observed phenotypes must be
the same in both studies, meaning that ρs = 1. Lastly, since z1j is the z-score
test statistic of SNP association for SNP j it holds that z21j = χ2

j is the χ2 test
statistic of SNP association for SNP j.

2.3 Estimating heritability and genetic covariance

As previously stated, obtaining estimates of heritability and genetic covariance
is done by fitting a linear regression model. In matrix form, the model equation
can be expressed as a simple linear regression model of

Y = Xb+ ε,

where Y is an (M×1) vector of GWAS statistics for SNP associations with trait,
X is a design matrix dimension (M × 2) with elements (1, lj) on row j, ε is a
vector of independent and identically distributed residuals with εj ∼ N(0, σ2) for
j = 1, ...,M and b contains our coefficients here defined as b = (α, β)T [21]. The
contents of our response Y depends on whether we are attempting to estimate
heritability (yj = χ2

j ) or genetic covariance (yj = z1jz2j), i.e. whether we are
using Equation 5 or Equation 6 but results are similar regardless.

Fitting the model and estimating the coefficients returns estimates of the
regression slope coefficient β as

β̂ =


Nĥ2

Ml
, if yj = χ2

j

√
N1N2ρ̂g
Ml

, if yj = z1jz2j

from which we then may solve for ĥ2 and ρ̂g by rescaling of β̂ accordingly.
The validity of the regression model equation depends on several factors and
assumptions which all influence the performance and efficiency of β̂.

In this subsection we comment on which assumptions of ordinary least
squares regression is violated in LDSR and how we may correct and adjust for
these to produce an efficient regression estimator. We discuss how weighted least
squares can be utilized to account for heteroskedasticity in data and correlation
among response variables. Furthermore, we discuss the concept of liability- and
observed-scale estimates and how we may correct the scale of our estimates to
make them comparable between studies while simultaneously adjusting for bias
introduced by oversampling of cases.

2.3.1 Weighted least squares regression

One of the key assumptions in standard ordinary least squares regression is the
assumption of constant variance (homoskedasticity), i.e. that the residuals εj
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are all identically distributed with the same, constant variance σ2. In LDSR,
we regress GWAS test statistics of a SNPs association with phenotypic trait
on LD score. Generally, SNPs with high LD scores will tend to have higher
variance than SNPs with low LD scores, meaning that the assumption of ho-
moskedasticity is likely to be violated [18,19].

A second important assumption, also on the residuals εj , is that of inde-
pendence, i.e. that Cov(εi, εj) = 0 for all i 6= j. However, due to the inherent
correlation structure in SNPs caused by LD, SNPs are generally not independent
of each other and thus the GWAS test statistics that we use as response vari-
ables tend to be correlated with each other. This correlation is further passed
on to the residuals meaning that the assumption of independence among them
are also violated [18,19].

The standard way of dealing with these two problems simultaneously is
through the use of generalized least squares [22]. Generalized least squares
assumes the same linear model as given in Section 2.3 but relaxes the assump-
tions on the residuals. Instead of assuming that residuals are independent and
identically normally distributed, we assume

E[ε] = 0, V ar(ε) = Ω,

where Ω is, in this case, an (M ×M) variance-covariance matrix [22]. In the
setting of LDSR, we would generally like to take Ω to be the variance-covariance
matrix of either the χ2 statistics or multiplied z-scores, depending on our current
target, but this matrix is intractable and we must resort to using a simpler
approach [19].

The suggested approach is to use weighted least squares regression [21].
Weighted least squares regression is a specific case of generalized least squares
where the variance-covariance matrix of ε is further assumed to be diagonal.
This means that the assumptions on the residuals can be written as

E[ε] = 0, V ar(ε) = Ω =


1/w1 0 . . . 0

0 1/w2 . . . 0
...

...
. . .

...
0 0 . . . 1/wM

 ,
which corresponds to assuming a regression model where residuals are indepen-
dent but allowing for non-constant variances [21].

We pick weights wj to be wj = 1/σ2
j where σ2

j is the variance of our response
given the explanatory variables of LD scores [18, 19]. For yj = z1jz2j one
can show that, under the assumption that the z-scores are jointly multivariate
normal, the conditional variance σ2

j is given by

σ2
j = V ar(z1jz2j |lj)

=

(
1 +

N1h
2
1

Ml
lj

)(
1 +

N2h
2
2

Ml
lj

)
+

(
ρsNs√
N1N2

+

√
N1N2ρg
Ml

lj

)2

. (12)
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We do not prove this here but instead refer the reader to the supplementary
material of [18] for further discussion and more details on the proof. Now if
z1j = z2j then we immediately get the conditional variance for the χ2 statistics
as a corollary of Equation 12:

σ2
j = V ar(χ2

j |lj) = 2

(
1 +

Nh2

Ml
lj

)2

. (13)

While weighted least squares generalizes ordinary least squares to allow for
heteroskedasticity in data, it retains the assumption of independent residuals.
The suggested approach to account for the non-independence of residuals in
LDSR is a heuristic approach that uses a secondary weight to correct for their
correlation [18, 19]. To this end we introduce the notation of lj(S) as the LD
score over a set S, formally defined as

lj(S) =
∑
k∈S

r2jk. (14)

To account for dependence in residuals we take as set S the set of all SNPs
included in our regression i.e. S = {SNP1, SNP2, ..., SNPM}. This means that
the more a SNP is correlated with the other remaining SNPs in the set, the more
its weight is reduced. However note that this is only an approximate solution
to the issue of non-independence.

The full weights used in the weighted least squares regression of LDSR can
then be written as

1/wj = lj(S)σ2
j =

{
lj(S)V ar(z1jz2j |lj) if yj = z1jz2j

lj(S)V ar(χ2
j |lj) if yj = χ2

j

where S is the set of our GWAS SNPs, i.e. S = {SNP1, SNP2, ..., SNPM} and
variances are as given in Equations 12 and 13.

2.3.2 Case-control adjustments

The LDSR methodology described above is valid for continuous phenotypes and
does not immediately extend to binary phenotypes from case-control data. It
does not naturally account for things such as underlying population prevalences
of the phenotype or the oversampling of cases which occurs with rare pheno-
types. Estimates produced through the original model on binary traits are said
to be on the observed-scale and denoted by h2obs and ρg,obs respectively. The
scale of this estimate depends on three things: the binary scale of the pheno-
type, the population prevalence of the phenotype and the ascertainment of cases
in the sampling of the phenotype. These factors make the estimates produced
difficult to compare with those based on continuous phenotypes, binary pheno-
types under different population prevalences and the same phenotype sampled
in a different ratio [23].
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Accounting for all three of these issues gives us estimates that are not plagued
by scale and thus comparable with estimates for any other traits. Such scale-
corrected estimates are said to be on the liability-scale. The usual workaround is
to assume that binary coded phenotypes are generated through an underlying
liability threshold model [23–25]. Such an assumption allows us to shift the
binary phenotypes into a continuous setting through what is essentially a probit-
transform.

The liability threshold model assumes that all individuals carry an unseen
continuous liability to disease ψ which, upon exceeding a given threshold τ ,
gives an individual case-status. In general we say that the observed status (in
the way of the binary case-control dichotomy) of individual yj is given by

yj = 1(ψj > τ),

where 1 denotes the indicator function, ψj is the liability to trait of individual
j and τ is the liability threshold [23–25]. Now if we assume that ψj is normally
distributed, we can pick τ such that the liability threshold corresponds to the
population prevalence of the phenotype. If we let K denote the true population
prevalence of the phenotype, then specifying such a threshold τ is equivalent to
taking τ = Φ−1(1−K) where Φ−1 is the inverse of the standard normal cdf [18].

Under the assumption of a liability threshold model as described above,
one can show that transforming observed scale estimates h2obs and ρg,obs to the
desired liability scale is done through

ρg,obs = ρg ·
φ(τ1)φ(τ2)

√
P1(1− P1)P2(1− P2)

K1(1−K1)K2(1−K2)
, (15)

where Pi is the sample prevalence for study i, i.e. the ratio of cases to individuals
in the sample, Ki is the population prevalence for the trait in study i, φ denotes
the probability density function of a standard normal and τi = Φ−1(1 − Ki)
with Φ−1 being the inverse of the cumulative density function for a standard
normal. We do not cover the proof of this result but instead refer the reader
to [23] or the supplementary material of [18] for further details.

A similar result holds for the liability scale heritability by taking study 1
equal to study 2 which gives

h2obs = h2
φ(τ)2P (1− P )

K2(1−K)2
, (16)

where again P is sample prevalence, K is population prevalence and φ(τ) is as
given above [18].

As a result of Equations 15 and 16 we note that the genetic correlation
coefficient rg is independent of observed and liability scale, i.e. that

rg,obs =
ρg,obs√

h21,obsh
2
2,obs

=
ρg√
h21h

2
2

= rg, (17)

A formal proof of this is given in Section A.2 in the Appendix.
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Table 1: Summary of the quality control steps taken for the genome-wide data
of cases and controls with respect to RA-diagnosis. Further details on how
the quality control steps were performed and which reasoning was used for the
criteria set can be found in Section A of the Appendix.

Quality control step Criteria No. Excluded
Sex discrepancy Discordance between re-

ported and imputed
2 individuals

Individual genotyping rate Missingness > 5% 13 individuals
SNP genotyping rate Missingness > 5% 12 218 SNPs
Minor allele frequency Frequency < 1% 138 713 SNPs
Hardy-Weinberg equilibrium p > 10−10 for controls,

p > 10−6 for cases
1893 SNPs

Genomic relatedness Relatedness > 0.1 310 individuals
Population outliers 6 standard deviations

from origin on every
principal component

316 individuals

3 Data and results from GWAS analysis

3.1 RA - data

Individual data was taken from the Swedish Epidemiological investigation of
rheumatoid arthritis (EIRA) study, which contained a total of 7180 individuals
out of which 4193 were cases and 2987 were controls. The study group in
EIRA contains individuals in the age range of 18 − 70 located in the middle
and southern regions of Sweden. Cases were defined as individuals diagnosed
with RA according to the 1987 American College of Rheumatology criteria [26].
Controls were randomly selected and matched on age, sex and residential area
[27].

All 7180 individuals were genotyped for common genetic variants in the form
of SNPs through the Illumina Infinium GSA chip for a total of 693 413 SNPs.

This makes up the full initial data set for the GWAS on RA-status. However,
errors in data may arise for several reasons, including inadequate quality at
genotyping, incorrectly handled samples, low quality of DNA or various other
technical artifacts. Failing to account for things such as sample imperfections
or mix-ups, confounding due to population structure and close relatedness may
lead to spurious associations and biased results. As such, rigorous quality control
of the genome-wide data must be carried out, at both individual- and SNP-level
[28,29]. A detailed description of the quality control procedure employed for this
data can be found in the Appendix, Section C. Here, we instead summarize the
steps carried out and what observations were excluded in Table 1. All quality
control steps were performed with the PLINK-software using the currently most
recent version (v1.90, beta 6.10) [30].
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The resulting data set used for the association analysis thus contains 6539
individuals divided into sets of 3766 cases and 2773 controls genotyped for a
total of 540 319 SNPs.

3.2 RA - association analysis

Association analysis was performed in the way detailed in Section 1.2 on the set
of individuals and SNPs that passed the quality control procedure covered in
Table 1 and Section C of the Appendix. The full GWAS was performed with the
PLINK software using the currently most recent version (v1.90, beta 6.10) [30].

We performed the analysis over three subsets of data. For the first set we
filtered out cases that had tested negative for anti-citrullinated protein antibod-
ies (ACPA), a type of antibody present in many, but not all, cases of RA [31].
This led to a subset of 4898 individuals, where 1608 ACPA-negative cases were
removed and a further 33 individuals were removed due to missing phenotypes.

In the second set we instead kept only seronegative cases, i.e. patients di-
agnosed with RA that tested negative for both ACPA and rheumatoid factor,
a second antibody often present in cases of RA [31]. This subset contained
3478 individuals where 3044 cases were removed due to being seropositive and
a further 17 individuals were removed due to missing phenotypes.

In the last set we performed no filtering. However the working set was
still slimmed down to 6067 individuals where 428 were removed due to missing
covariates and 44 due to missing phenotypes. Note that all three subsets contain
the same set of controls and that filtering was done only on further classification
of RA-status in cases.

In the performed GWAS, we adjust for covariates sex, age and population
substructure. Here, population substructure is controlled for by adding as co-
variates, the principal components obtained in the final quality control step
described in C.8. For each of the three RA-sets, we perform the GWAS a total
of eleven times, using a different number of principal components in each round,
the first containing no components and the last containing all ten.

To assess which GWAS performs the best, we measure the amount of bias
introduced due to general population stratification, i.e. due to relatedness and
population stratification, selecting the model with the lowest amount introduced
into the association analysis. We do this by estimating the genomic inflation

factor, λ
(i)
gc for all combinations of number of principal components included as

covariates (i = 0, 1, ..., 10), making our choice based on the obtained estimates.
This is repeated for all three RA-sets.

The genomic inflation factor λgc measures amount of confounding and bias
introduced by population substructure, cryptic relatedness and other sample
population confounding in the way that more bias leads to a larger estimate of
λgc [32]. As such, we expect it to vary with the number of principal compo-
nents included as covariates as these should control for population structure.
We thus make our choice of best performing GWAS to contain the number of
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Figure 2: Genomic inflation factor λ̂gc as a function of number of principal
components on population stratification used as covariates in the association
analysis on the full data set. The dashed line is the minimum of the curve at 6

components with an estimated genomic inflation λ̂
(6)
gc = 1.03.

principal components which minimizes λ̂
(i)
gc for i = 0, 1, ..., 10. We do not give

a mathematical detailing of the genomic inflation factor here but instead refer
the reader to the Appendix, Section A.3 for a more thorough discussion.

For the full set we find that the estimated genomic inflation factor λ̂
(i)
gc

reaches its minimum for 6 components at λ̂
(6)
gc = 1.03. The full curve of the

estimated genomic inflation factor as a function of number of included principal
components can be found in Figure 2. For the ACPA-positive set we reach a

minimum at the inclusion of the first component (λ̂
(1)
gc = 1.038) and for the

seronegative at the fifth component (λ̂
(5)
gc = 1.014). Their genomic inflation

curves can be found in the Appendix, Section D, Figure A1.

3.2.1 Results from the GWAS on RA

Traditionally, the results from a GWAS are presented through Manhattan plots,
in which the significance level of SNPs are plotted against their positions on
the genome. Figure 3 contains the Manhattan-plot for the full data set, in
which SNP p-values are plotted at − log10(p)-level against their position over the
chromosomes. Manhattan-plots for ACPA-positive individuals and seronegative
individuals are found in the Appendix in Figures A2 and A3 (page 48). Results
from the GWASs are in line with previous studies on SNP association with
RA-status [33,34].

We find a total of 559 SNPs that reach the genome-wide significance level of
p = 5 · 10−8 in the full data set. Out of these, the majority (551 SNPs) reside
in a tight region on chromosome 6 which we recognize as the human leukocyte
antigen (HLA) locus. This region is the most well known genetic risk factor for
RA [2,34]. As the HLA complex is responsible for the regulation of the human
immune system, it is not a surprise that the majority of our most strongly
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Figure 3: Manhattan-plot for the associations of the full set of RA data. The
x-axis contains all autosomal SNPs studied, ordered after chromosome and chro-
mosome position. The y-axis covers the p-values of SNP association with trait
at − log base 10 scale. The dashed line represents the genome-wide significance
level of p = 5 · 10−8 which is the common standard for recognizing a SNP
association as significant in a GWAS.

associated SNPs should reside there as RA is an autoimmune disease, strongly
linked to mechanisms of the immune system.

Furthermore, we note a small amount of significantly associated SNPs on
chromosome 1, which corresponds to SNPs on the PTPN22 gene, another es-
tablished genetic risk factor for RA [34,35].

Similar results are obtained for the subset containing only the ACPA-positive
cases (Figure A2, page 48). While the significantly associated regions are simi-
lar, the number of genome-wide significant SNPs are much larger at nearly 1200
SNPs. Despite this large increase, the number of significant SNPs at chromo-
some 1 are still the same.

For the seronegative set we found no SNPs that reached the genome-wide
significance level (Figure A3, page 48). While it may seem surprising that
no associations were found we note that this result replicates the findings of
reference [33]. In their paper, based on a smaller set from the same EIRA-
study, no genome-wide significant SNPs for ACPA-positive RA were replicated
in the set for seronegative RA.

3.3 CVD - data

For RA, the genotyped data utilized for the GWAS was available from a previous
study from our institution. However for cardiovascular disease (CVD), no in-
house data was available. As such we opted to use publicly available GWAS
summary statistic data. The vast amount of available public GWAS summary
statistic data coupled with the fact that CVD is an umbrella term for a broad
range of diseases, led to a long list of available data sets to consider. We made
our choice from the available data by considering factors of study sample sizes,
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the main ancestry of the genotyped individuals (see Section C.8 on confounding
due to ancestrally different populations) and what type of underlying CVD-
phenotype had been considered in the study.

Our phenotype of choice for this particular study was acute myocardial in-
farction (AMI, commonly known as heart attack). There are two main reasons
behind this choice: firstly, as the basis for this study was an article in which
RA patients demonstrated an increased risk for the event-based CVD of acute
coronary syndrome [7], we wanted this event-based nature to be reflected in our
CVD-phenotype. Secondly, we consider myocardial infarction to be a relatively
”pure” phenotype in that there is relatively minor amounts of confounding due
to things such as case misclassification or underlying sub-phenotypes. Thirdly,
we know AMI to be a heritable disease, i.e. it has a trait heritability h2 that
ought to be non-zero. Looking at the genetic correlation between traits where
one is not heritable may lead to spurious and nonsense correlations as we divide
by an estimated heritability that would be near zero plus-minus noise.

Our GWAS summary statistic data was based on individual-level genotyped
data from the UK Biobank [36]. The genotyped population consisted of ap-
proximately 500 000 individuals in the age range of 40 − 69, sampled between
2006−2010 in the United Kingdom. Cases were defined as individuals who had
been diagnosed with AMIs by a physician and the remaining individuals in the
sample were taken as controls. We chose to work with the UK Biobank set as it
is a well established resource, containing a large group of genotyped individuals
based on a northern European population.

All individuals were genotyped for common variants in the form of SNPs
through the UK Biobank Axiom Array [37]. Further imputation was then per-
formed to increase the number of available SNPs and subsequent quality control
was applied to the data, controlling for outliers and badly performing DNA sam-
ples. We do not cover neither the imputation nor quality control procedures here
and instead refer the interested reader to [36].

The resulting data set used for the association analysis, after quality con-
trol, imputation and removing individuals with missing pheontypes, consisted
of 361 194 individuals divided into groups of 6412 cases and 354 782 controls
genotyped for approximately 13 million SNPs.

3.4 CVD - association analysis

The obtained data consists of GWAS summary statistic data, i.e. the results
from the corresponding association analysis of SNP allele frequency on the phe-
notypic trait of acute myocardial infarction. The association analysis was per-
formed as detailed in Section 1.2 and the covariates used were age, (age)2, in-
ferred sex, age · inferred sex, (age)2 · inferred sex and the first 20 principal com-
ponents from a principal component analysis of the individuals ancestries [38].

We performed further SNP-level quality control on the GWAS output data
to make sure that the SNPs analyzed for the AMI-data were held to the same
standard as those for the RA-data. To this end, we filtered on SNP call rate,
minor allele frequency and Hardy-Weinberg equilibrium, removing any SNPs
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Figure 4: Manhattan-plot for the associations of the data on acute myocar-
dial infarction. The x-axis contains all autosomal SNPs studied, ordered after
chromosome and chromosome position. The y-axis covers the p-values of SNP
association with trait at − log base 10 scale. The dashed line represents the
genome-wide significance level of p = 5 ·10−8 which is the common standard for
recognizing a SNP association as significant in a GWAS.

with either a SNP call rate below 0.95, observed minor allele frequency below
0.01 or deviating from Hardy-Weinberg equilibrium at a significance level of
p = 10−6. Further details on this type of filtering is covered in the Appendix,
Sections C.3, C.4 and C.5.

This leaves us with a full GWAS summary statistic data set of approximately
9 million SNPs based on a set of 361 194 individuals. The estimated genomic
inflation factor for the AMI-GWAS is λ̂gc = 1.066.

3.4.1 Results from the GWAS on CVD

The results from the GWAS on AMI is presented in Figure 4 as a Manhattan-
plot. Out of the 9 million SNPs measured, 317 SNPs reached significance at the
genome-wide level, i.e. had p-values below p = 5 · 10−8.

In contrast to the results from the GWAS on RA (Figure 3) we see genome-
wide significant associations at a larger genomic spread than for the association
analysis of RA in which the significant associations were concentrated on two
parts of the genome. Here we instead see seven loci in which genome-wide
significance is reached with an even greater amount exhibiting strong, albeit
non-significant, association with the trait of AMI.

While there is a clear strong association for several regions at chromosome
6, there seems to be little effect in the HLA-region which demonstrated the
strongest association with RA. Of the SNPs at genome-wide significance level
for RA, none were found to be genome-wide significant for acute myocardial
infarction. Among these, the strongest association was at around p = 10−3 at
which we found five SNPs. In Figure 5 we give a Manhattan-style plot of the
SNP associations with AMI for the SNPs that reached genome-wide significance
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Figure 5: Manhattan-plot of SNP association with myocardial infarction for the
UK Biobank sample on a small genomic region on chromosome 6. The y-axis is
the base 10 −log(p) transform of the p-values of SNP association. The x-axis
is the SNPs position on the genome, given here as base-pair position in the
scale of 107 centiMorgans. The points are the SNPs that reached genome-wide
significance in the full RA set (Figure 3, page 22) here instead illustrating their
association with AMI.

level at chromosome 6 for the full RA-set.
We further note a minor peak at chromosome 1 consisting of ten SNPs above

the genome-wide significance level. Comparing these to the eight SNPs that
reached a similar significance for RA we again find no overlapping SNPs, where
for AMI, the most strongly associated SNPs have p-values around p = 10−5.

Comparing the results in Figure 4 with the results from the association
analysis of the set of ACPA-positive cases (Figure A2, page 48) we found similar
results regarding overlap. In the Appendix (Section D, Figure A4, page 49), we
give the corresponding version of Figure 5, of SNP associations with AMI for
the genome-wide significant SNPs from the GWAS on the ACPA subset. We
note that these results closely resemble those in Figure 5.

Despite this immediate lack of overlap in genome-wide SNPs, it is still highly
possible that an underlying genetic overlap exists. For two Mendelian traits
(i.e. traits due to single genes) we would expect little to no genetic overlap
when observing similar results. However, RA has been shown to be inherently
polygenic in its genetic architecture, i.e. that a big part of the genetic effect is
made up of a large amount of weak genetic effects [39]. As such, it is not unlikely
that a greater overlap exists in a large group of individually non-significant SNPs
that together account for a big part of the genetic effect on disease status. It is
thus too early to draw conclusions about the existing genetic overlap of the two
phenotypes and we will need further analysis to establish satisfying results.
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4 Statistical analysis

All statistical implementation was done through the LDSC (LD Score) software
using the currently most recent version (v.1.0.1, https://github.com/bulik/ldsc)
[19]. LDSC is a command-line tool developed by the authors of the original pa-
pers on LDSR [18,19]. It uses code written in Python to allow for the estimation
of LD scores lj from individual-level genome-wide data and estimation of heri-
tability h2 and genetic covariance ρg for sets of GWAS summary statistic data by
implementing LDSR. We used LDSC to produce estimates of trait heritability
and genetic covariance for all combinations of our four sets of GWAS summary
statistic data.

LD scores were not estimated from our own GWAS data but from an external
reference panel. As we discussed in Section 1.3, the number of SNPs genotyped
in a GWAS is normally only a fraction of the true amount of genetic variants
on the human genome. Using only a subset of SNPs in estimation of a variants
LD score can ultimately lead to downwards biased estimates [19].

For this study we used, as reference panel for LD score estimation, the Eu-
ropean ancestry sample from the 1000 Genomes Project [40, 41]. We do not go
into detail on the specifics of the sample as this has been done extensively else-
where [41] but note that it is a well established and widely used data resource.
Furthermore, its performance in LDSR has been covered in detail elsewhere
and it has been shown to perform well as a reference panel for LD scores, with
the authors of the original papers on LDSR noting that the European ances-
try sample was an adequate match for genetic studies on northern European
populations [19].

LD scores are computed by estimating the LD that a given SNP is in with
all other SNPs in the reference panel where LD is measured through the r2

measure given in Definition 2. In estimating r2 we use an adjusted estimator.
The standard estimator of r2 is approximately unbiased but contributes, in LD
score estimation, an error of order O(M/N) where M and N are the number of
SNPs and individuals respectively in the reference panel. As M is often several
magnitudes larger than N this error may not be negligible. We thus hope to
mitigate this error by using an adjusted estimator defined as

r̂2adj = r̃2 − 1− r̃2

N − 2
, (18)

where r̃2 is the standard estimator of r2 for two arbitrary genomic loci. We
discuss estimation of r2 and its various properties in further detail in the Ap-
pendix, Section A.4, where we prove that r̂2adj performs better than r̃2 for the
purpose of LD score estimation.

Lastly, estimates of trait heritability h2 and genetic covariance ρg were ob-
tained on the liability scale by correcting for binary phenotypes and oversam-
pling of cases through the use of Equations 15 and 16 per the discussion in
Section 2.3.2. Population prevalences K of the four phenotypes were obtained
through a combination of external information and within sample estimates.
We used a previously estimated prevalence of RA in Sweden as K = 0.0077
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Table 2: Estimates of heritability on the liability scale for four different pheno-
types. The number in the parenthesis of the second column is the standard error
of the estimate. The interval of the third column was computed as ĥ2±1.96 ·se.
All estimates were produced through the LDSC software (v.1.0.1) with LDSR
intercepts constrained to 1.

Phenotype ĥ2 Interval
RA 0.1967 (0.0962) (0.0082, 0.3853)
ACPA+ RA 0.4108 (0.2433) (-0.0661, 0.8877)
SERO- RA 0.0958 (0.0786) (-0.0583, 0.2499)
AMI 0.1598 (0.019) (0.1226, 0.197)

corresponding to a population prevalence of 0.77% [1]. For the prevalences of
ACPA-positive RA and seronegative RA we used crude estimates based on the

population prevalence of RA as KACPA =
2KRA

3
and KSERO = 0.3 KRA where

the scaling coefficients were based on their respective sample prevalences P . For
AMI we used a population prevalence of KAMI = 0.0178 based on an article on
the epidemiology of CVDs in the United Kingdom [42]. We note that this value
is close to the sample prevalence of PAMI = 0.018 which would be reasonable
for a population sample of that size.

As crude estimates were used for three of the four phenotypes we checked the
heritability estimates for sensitivity to errors in population prevalence estimates.
Figure A5 (page 50) in Section D of the Appendix contains the results for a grid
of prevalences. We note that estimates are generally robust to minor errors in
prevalences where only the estimates of ACPA-positive heritability show large
variation. However, the prevalence of ACPA-positive RA is bounded upwards
by the prevalence of general RA in the way of KACPA ≤ KRA, meaning that
nonsense estimates of h2 would be impossible even for absurd errors in estimated
population prevalences.

5 Results

5.1 Heritability

Results in the form of heritability estimates for the four phenotypes are given
in Table 2. The estimates were produced according to the discussion in Section
4.

All heritability estimates were obtained by constraining the LDSR regression
intercept to 1 which has been shown to improve estimates by decreasing their
standard errors [18]. This type of constraining corresponds to the assumption
that little to no confounding due to population stratification, i.e. due to cryptic
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relatedness or population substructures, is contained in the GWAS. We argue
that all sets have gone through rigorous and adequate quality control with re-
spect to both population substructures and genomic relatedness which would
make such an assumption valid. As a further argument to the validity of this
assumption we note that fitting the regression without constraining the inter-
cept, all four regressions returned estimates near one with the greatest deviation
obtained as α̂ = 1.0046.

Heritability of the three types of RA seem to be in line with previous find-
ings. We note that the magnitude of the estimates seem to concord with what
was found through the Manhattan-plots, where ACPA-positive RA exhibits the
strongest genetic effect and seronegative RA exhibits the weakest (3, 4, A2 and
A3; pages 22, 24 and 48 respectively). However, the estimate of h2ACPA comes
with a lack of precision as evidenced by the alarmingly high standard error and
further care should be taken with the estimate for seronegative RA as the sam-
ple size NSERO− was low and the estimate may as such be at low power. We
note a modest heritability for AMI with a very small standard error which is
what we had previously expected. Estimating genetic overlap using Definition
3 assumes that the phenotypes considered at the very least depend on a small
genetic effect, as lack of genetic dependence would lead to low estimates of trait
heritability which in turn will complicate the computation of rg and may give

spurious results. At ĥ2AMI = 0.16 we should be well equipped to detect a genetic
overlap if it exists.

The true underlying heritability of RA varies between studies and popula-
tions but is often pinned somewhere around 50% [43, 44]. This puts our point-
estimate of h2RA = 0.2 at a very long distance from the previously established
estimates. However, this gap in estimates does not invalidate our results. In fact,
it is well established that heritability estimates from genotyped data generally
tend to underestimate the true underlying heritability of a phenotype [18,45,46].
Several explanations of this has been suggested which has spurred a search for
this missing heritability [45]. In turn, this has led to the dubbing of heritabil-
ity estimates produced by genotyped data of SNPs as SNP-based heritabilities
h2SNP of which the relationship

ĥ2SNP ≤ h2,

has been established [46].
Furthermore, the heritability estimates presented in references [43, 44] are

from family-based studies of heritability. Such studies have been shown to over-
estimate the heritability as their estimates may be inflated due to shared en-
vironmental effects, non-additive genetic variation and epigenetic factors which
are not accounted for in our measures (see Section A.1) [46]. As such, we may
extend the relationship on heritabilities given above as

ĥ2SNP ≤ h2 ≤ ĥ2Fam

As a result, comparing estimates of SNP-based heritability as in our study,
with estimates from family-based studies can be somewhat misleading. Con-
trasting instead with SNP-based estimates gives more promising comparisons.
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Table 3: Estimates of heritability on the liability scale for four different phe-
notypes with the HLA-region excluded. The number in the parenthesis of the
second column is the standard error of the estimate. The interval of the third
column was computed as ĥ2−HLA±1.96·se. All estimates were produced through
the LDSC software (v.1.0.1 ) with LDSR intercepts constrained to 1.

Phenotype ĥ2
−HLA Interval

RA 0.0891 (0.0374) (0.0158, 0.1624)
ACPA+ RA 0.1116 (0.0448) (0.0238, 0.1994)
SERO- RA 0.0651 (0.0694) (-0.071, 0.2011)
AMI 0.1568 (0.0195) (0.1186, 0.195)

As an example, a previous study attempting to look at a broad range of pheno-
types through LDSR estimated the heritability of RA to 0.161 with a standard
error of 0.0215 in a sample of approximately 100 000 individuals [47] which is
more in line with our findings [8].

5.1.1 Heritability without the HLA-region

We have previously mentioned the human leukocyte antigen (HLA) region on
chromosome 6 as a major established risk factor for RA [2]. To investigate this
dependence we re-ran all the regression models for the four phenotypes but with
the HLA-region excluded to see its influence on estimates of h2 for RA subtypes
and AMI, comparing these results with the findings from the GWASs discussed
in Sections 3.2.1 and 3.4.1. Results are presented in Table 3.

Estimates are again in line with what was expected based on previous
Manhattan-plots (Figures 3, 4, A2 and A3; pages 22, 24 and 48 respectively).
ACPA-positive RA shows the strongest dependence on the HLA-region, having
its estimate reduced by nearly 75% with a modest reduction in standard RA and
a minor decrease for seronegative RA. This is concordant with the results found
in the Manhattan-plots mentioned above. The smallest change in heritability is
observed for AMI which is near identical to its previous estimate, showcasing a
very weak relationship between the alleles at the HLA loci and AMI. Note that
this was previously hinted at in Figure 5 (page 25), where none of the top SNPs
for RA, in the HLA-region, reached genome-wide significance for AMI.

Interesting to note is the much smaller standard error obtained for the
ACPA+ phenotype, now on a magnitude comparable to the other types of RA.
In LDSC, the ordinary regression estimate of the standard errors can be biased
downward [19] and standard errors are instead estimated through a block jack-
knife procedure [48]. It is reasonable to assume that the large standard error
exhibited in Table 2 occurs due to the strong dependence on the HLA-region
noticed here and that estimates exhibit a greater fluctuation when blocks of
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Table 4: Estimates of genetic covariance and genetic correlation between the
phenotype of acute myocardial infarction (AMI) and the three types of RA
given in the first column. Numbers in the parenthesis of the second and third
columns are standard errors of the estimates. Intervals in the third column are
computed as r̂g ± 1.96 · se. All estimates were produced through the LDSC
software (v.1.0.1) with LDSR intercepts constrained to 0.

Phenotype ρ̂g r̂g Interval for r̂g p
RA -0.0135 (0.0149) -0.0762 (0.0798) (-0.2327, 0.0802) 0.34
ACPA+ RA -0.0111 (0.0167) -0.0435 (0.0627) (-0.1664, 0.0794) 0.488
SERO- RA -0.0243 (0.0203) -0.1967 (0.1772) (-0.544, 0.1506) 0.267

the HLA-region are removed. As a further argument to this we note a similar,
albeit minor, attenuation in the standard errors for ordinary RA but almost no
change for AMI or seronegative RA. This explanation would be in line with our
previous findings of a strong relationship between SNPs at the HLA loci and
both ACPA+ RA as well as ordinary RA.

5.2 Genetic correlation

Results in the form of estimated genetic covariances ρ̂g and genetic correlations
r̂g between AMI and the three types of RA are presented in Table 4. The
estimates were produced according to the discussion in Section 4.

The genetic covariance estimates ρg were all obtained by constraining the
regression intercept to 0. This type of constraining has been shown to reduce
the standard errors of the subsequent estimates when valid [19]. Constraining
the intercept to 0 is equivalent to the assumption that no individuals were
genotyped for both GWASs. While we can not with full certainty establish that
this is the case we find it unreasonable to assume otherwise and consider the
error introduced into the model to be negligible at best.

We find no significant genetic correlation between any of the three RA sub-
types and the phenotype of AMI. The estimated genetic correlation coefficient
r̂g is indicative of a potentially minor negative correlation existing between RA
and AMI but if it exists we are not adequately powered to significantly detect it.
As such, we fail to reject the null hypothesis of no genetic overlap between RA
and AMI. This result replicates the findings of a previously published article in
which the genetic correlation between RA and the CVD-phenotype of coronary
artery disease was examined through LDSR. The study used a sample of nearly
100 000 cases and controls for RA [47] and an almost twice as large set of indi-
viduals for coronary artery disease [49] obtaining an estimate of r̂g = −0.063 at
a p-value of p = 0.4377 which agrees with our estimate for AMI [8].

The goal of this study was to assess what kind of genetic overlap exists
between RA and CVD. This question was spurred by a demonstrated shared
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susceptibility for the CVD-phenotype of acute coronary syndrome in individuals
diagnosed with RA and their direct siblings [7]. Such a shared susceptibility may
be due to many factors, either genetic, environmental or through an interplay of
both. Our results indicate that little to no pleiotropic risk factors exist for RA
and AMI, i.e. that there are no genes which directly influence the risk of both
RA and AMI. However, such a finding does not invalidate the role of genetics in
the shared susceptibility and it may still be the case that siblings are genetically
predisposed to a third phenotype that in turn influence the risk of both AMI and
RA in a non-genetic fashion. An example of this would be through a genetic
predisposition to smoking, which in turn would lead to an increased risk for
both RA and AMI as tobacco intake is a large environmental risk factor for
both diseases [2, 5].

Additionally, our results regarding the lack of pleiotropic risk factors is only
valid for the phenotypes of RA and AMI studied here. It is still unclear whether
there are CVD-phenotypes in which an overlap with RA exists or if these results
are indicative of a general lack of genetic correlation. Studying the overlap of
RA and CVDs for a wider range of phenotypes would be a topic for a future
study.

5.3 Heterogeneity between RA-subtypes

For exploratory purposes, we attempted to investigate the genetic heterogeneity
among the three types of RA by assessing the genetic correlation between them.

As expected, we found a strong genetic correlation between RA and ACPA-
positive RA. Visual inspection of their Manhattan-plots (Figures 3 and A2,
pages 22 and 48 respectively) hint about an overlap. Further inspection of
the 559 SNPs that reached genome-wide significance in RA revealed that only
3 failed to be replicated in the ACPA-set with those 3 all being borderline
significant. Genetic correlation was estimated at r̂g = 0.8699 and was found to
be significant with a p-value in the range of 10−7.

For the analysis of overlap of RA subtypes with seronegative RA, results
were less meaningful. Correlation coefficient estimates were generally imprecise
with large standard errors and point-estimates that reach out of bounds of the
defined interval of [−1, 1]. As such, no meaningful conclusions could be drawn
regarding the heterogeneity of seronegative RA and other RA subtypes in this
study.

We note that there are several issues with the seronegative data in this
study. Firstly, as stated previously, the seronegative set is at low power due to
a relatively low amount of individuals. Secondly, the already low heritability of
seronegative RA coupled with potential measurement errors means that com-
puting the genetic correlation by dividing with the root of the heritability may
lead to spurious results. Thirdly, there is a lack of polygenic effect in seronega-
tive RA which breaks the model assumption in LDSR (see Section 2.2). Lastly,
there may be an error in our constraining of the intercept for estimating the
genetic covariance ρg as our pre-set value of the intercept differs largely from
the model estimate when no constraints are imposed.
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6 Discussion

6.1 Study summary

The basis for our study was an article which demonstrated that healthy, direct
siblings of patients with RA was at an elevated risk for the CVD of acute coro-
nary syndrome [7]. It has been previously established that patients with RA
suffer an increased risk for a variety of CVDs [3], including acute coronary syn-
drome, but finding an increased risk in healthy siblings too indicates a common,
shared susceptibility to both phenotypes. Whether the nature of this suscepti-
bility is genetic, environmental, or due to both remains a question, as does if the
susceptibility extends to other CVD-phenotypes or if the results of [7] are valid
only for acute coronary syndrome. In this study our goal was to investigate the
nature of this shared susceptibility by studying the genetic part of the two phe-
notypes and their interplay. We looked at the genetic overlap between RA and
the CVD-phenotype of AMI, using AMI here as a proxy for CVDs in general,
through parametric models that estimate the genetic correlation coefficient, rg,
defined as a correlation coefficient on the genetic part of the two phenotypes (see
Definition 3). We employed GWAS summary statistic data for both RA and
AMI and utilized a novel method called linkage disequilibrium score regression
to obtain estimates of rg for the phenotypes [18].

In studying the heritability of the four phenotypes considered, our find-
ings mostly replicate previously published results regarding RA, AMI and the
RA subtypes. However, what is worth noting are the modest discordances in
heritability estimates between the RA subtypes, as well as the highly differ-
ent GWAS results observable between Figures 3, A2 and A3 (pages 22 and 48
respectively). For instance, ACPA-positive RA exhibits a strong genetic depen-
dence, especially towards SNPs contained in the HLA-region on chromosome 6,
whereas seronegative RA is far less genetically dependent with no genome-wide
significant SNP associations at all, and heritability only due to a polygenic ef-
fect of many variants offering a minor contribution. Our attempts to pinpoint
this genetic discrepancy through assessment of within-disease heterogeneity led
to inconclusive and nonsense estimates of the genetic correlation coefficient.
Whether this genetic difference is due to incorrectly diagnosed RA, a faulty
diagnosis criteria, an environmentally triggered phenotype or simply different
diseases masquerading as RA is impossible to conclude here. However, this in-
conclusiveness is most likely due to small sample sizes, both N of individuals
and M of SNPs, and a better sample could hopefully help elucidate the reason
for this genetic difference.

In our study we found no significant genetic correlation for AMI with RA
or with any of the investigated subtypes of RA (ACPA-positive RA and sero-
logically negative RA). As previously stated, this implies that no pleiotropic
risk factors simultaneously conferring risk for RA and AMI exist between the
phenotypes. However, as mentioned in the previous section, genetics may still
be a key factor in the elevated risk for siblings by working through a proxy third
phenotype not here considered. For instance, a pair of siblings may be geneti-
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cally predisposed towards such a phenotype that environmentally influences the
risk of developing either both RA and AMI or simply AMI alone.

6.2 Study weaknesses

While we believe the study to be valid in general there are several areas in
which the study could be improved. Firstly, individual sample size N could
be improved. For RA, we have data on around 6000 individuals after qual-
ity control, with further diminishing counts for subtypes of ACPA-positive RA
and seronegative RA. Low sample size N leads to a lack of power in detect-
ing genome-wide significant SNP associations in our GWAS, which in turn lead
to a decrease in power for estimation of rg with LDSR. At around 6000 indi-
viduals, we are adequately powered to detect the strongest associations, but it
usually takes samples of nearly ten times this size to detect the less obvious
SNP associations. As such, the observed lack of genome-wide significant SNPs
in seronegative RA (Figure A3, page 48) may be either due to a true lack of
genetic signal or simply due to a lack of power. Meta-analysis with several
sets of genotyped RA data may help mitigate these results but they add further
complexities to the study as they often require using different populations which
may lead to confounding of results due to differences in ancestry.

Secondly, the sample size M of SNPs is an immediate weakness in that low
counts of SNPs can lead to a loss of precision in the LDSR estimates. At the
beginning of our study we had data on approximately 600 000 SNPs which is
already at the lower end compared with recent GWASs in which SNP sample
sizes consistently reach over a million. Further reduction of the number of
SNPs then occurs after quality control and merging with LD scores. As the
SNPs genotyped for our RA data badly matched the SNPs genotyped in the
reference panel [41] used for estimating LD scores, nearly two-thirds of our data
material was lost. This can be adjusted, either by using better matching LD
scores, imputing further SNPs into our data or a combination of both.

Thirdly, there may be confounding due to a mismatch between the popu-
lations considered. In comparing the Swedish population studied for RA with
the UK population genotyped for AMI, we implicitly assume that these two
populations are genetically similar. There is undoubtedly a genetic difference
between these two but we assume this discrepancy to be negligible. Future stud-
ies should investigate this difference and make sure that the differences between
the populations do not lead to significant confounding in our results. Further-
more, we implicitly assume that the reference population for our LD scores [41]
is genetically similar to both our Swedish RA population and our UK AMI pop-
ulation. While this reference population has been considered an adequate match
for general northern European populations [19], we did not investigate whether
there are more appropriate reference panels available for the two populations
considered in our study.

Fourth, the adequacy of the phenotype of AMI in the UK Biobank data
could be questioned. Available information tells us that cases were classified as
individuals who had experienced an AMI, based on a physicians diagnosis (as
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opposed to self-reported). However, we were not able to find out whether the
AMI cases were individuals who had experienced an AMI prior to the time of
inclusion in the study or whether they had experienced AMIs during a followup
period after inclusion. Our study assumes that it is the latter, as the former
constitutes a different phenotype, not of experiencing an AMI but of surviving
it which should lead to a different analysis.

Lastly, a better method for estimation of heritability and genetic corre-
lation could have been utilized. The genomic restricted maximum likelihood
method [17,45,46] has been shown to perform better than LDSR for samples of
similar size by reducing standard errors [12, 18]. Unfortunately, such a method
requires individual-level genome-wide data, which was not available to us for
CVD-phenotypes.

Study improvements of this kind could hopefully increase the precision of
estimates by reducing standard errors further and possibly through inflating
heritability estimates so as to diminish the gap between our obtained estimates
and some of the published family-based estimates. While we stand skeptical to
whether the magnitude of estimates of rg could increase, there is definitely a
possibility that an improved study could detect a significant result, although we
doubt that such a correlation would be anything more than minor.
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A Supplementary theory

A.1 Modeling phenotypic variation

In genetics research of complex phenotypic traits, the trait heritability of h2 is
a key concept. It is formally recognized as a measure of the proportion of total
phenotypic variance attributable to genetic variation [50]. As such it becomes a
key concept in discussing phenotypic variation and genetic correlation between
traits.

For an observed phenotype P we generally model it as

P = G+ E,

where G denotes genotype and E environmental influence, both unobserved. A
general form for the variance of a phenotype can then be given as

σ2
P = σ2

G + σ2
E + 2σG,E + σ2

G·E

The first two terms are of genotype and environmental variance with the two
remaining terms being of covariance between genetics and environment and
interaction between genetic and environmental factors. These two last terms
of σG,E and σ2

G·E are usually ignored as they are highly difficult to measure
and estimate [50]. For certain phenotypes, covariance and interaction may be
relevant but we argue that this is not the case for the phenotypes studied in
this text.

This leads to the definition of the broad-sense heritability as a ratio of genetic
variance and phenotypic variance [50].

Definition A1. We define the broad sense heritability H2 as the phenotypic
variation attributable to genetics. We write this as

H2 =
σ2
G

σ2
P

,

where σ2
P is the phenotypic variation and σ2

G is the genetic variation.

The strength of the broad sense heritability H2 is that it does not require
any strong assumptions on the relationship between σ2

G and σ2
P , neither does it

require assumptions on how various different genetic effects contribute to σ2
G.

However, this flexibility of the broad sense heritability is also a limitation when
it comes to estimation. Usually, two simplifying assumptions are made. Firstly,
we assume that the genetic variation σ2

G can be partitioned as

σ2
G = σ2

A + σ2
D + σ2

I ,

into a sum of additive genetic effects (σ2
A), dominant and recessive effects (σ2

D)
and of interaction effects from between variants (σ2

I ) [50].
The contribution of σ2

A is often assumed to be the largest in the sense of
σ2
A � σ2

D and σ2
A � σ2

I respectively [50]. This assumption leads to a second
definition of heritability.
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Definition A2. Under the assumptions given above, we define the narrow sense
heritability h2 as the phenotypic variation attributable to additive genetic effects.
We write this as

h2 =
σ2
A

σ2
P

. (19)

Note that if the quantities σ2
D and σ2

I are near zero we have h2 ≈ H2, other-
wise it holds that h2 ≤ H2. As heritability can not be observed nor completely
captured, only estimates are available. Most heritability estimates are of the
narrow sense heritability h2, as it is much easier to capture due to the simpli-
fying assumptions. Different approaches exist for quantifying the heritability
of a trait, where family-based sibling and twin studies have been the standard
method for capturing h2 of various phenotypic traits [50]. However for pheno-
types such as rare diseases, it can be difficult to gather a large enough sample
size to have the power to obtain reasonable estimates. As a result of this, many
researchers have used genotyped data in various forms to quantify the heritabil-
ity of rare, complex traits. Various methods to estimate the heritability of a
trait based on genotyped data have been suggested and many of the approaches
covered in Section B of methods for genetic overlap also have extensions for
estimating the trait heritability h2.

A.2 Scale independence of the genetic correlation coeffi-
cient

We commented previously in Section 2.3.2 on how the genetic correlation coef-
ficient rg is free from scale in the observed-liability sense. We prove this here.

Lemma A3. If rg,obs denotes the observed scale genetic correlation coefficient

of rg,obs = ρg,obs/
√
h21,obsh

2
2,obs then

rg,obs = rg, (17, revisited)

i.e. the genetic correlation coefficient is independent of scale.

Proof. We have that

rg,obs =
ρg,obs√

h21,obsh
2
2,obs

= ρg
φ(τ1)φ(τ2)

√
P1(1− P1)P2(1− P2)

K1(1−K1)K2(1−K2)

√
K2

1 (1−K1)2K2
2 (1−K2)2

h21φ(τ1)2P1(1− P1)h22φ(τ2)2P2(1− P2)

=
ρg√
h21h

2
2

(
φ(τ1)φ(τ2)√
φ(τ1)2φ(τ2)2

)(√
P1(1− P1)P2(1− P2)√
P1(1− P1)P2(1− P2)

)(√
K2

1 (1−K1)2K2(1−K2)2

K1(1−K1)K2(1−K2)

)
=

ρg
h21h

2
2

= rg (20)
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A.3 Genomic inflation factor

Normally in a GWAS, we expect to see some inflation of test statistics corre-
sponding to true genetic effect of SNP on phenotypic trait. However, further
undesired inflation may occur due to population stratification or measurement
errors inflicting bias. The, in the literature, standard way of quantifying the
amount of inflation in GWAS test statistics is by λ̂gc, the estimated genomic
inflation factor [32]. Mathematically, we define it as follows [20].

Definition A4. Let χ2
1, ..., χ

2
M be χ2-statistics of SNP effect on phenotypic trait

for M SNPs. The estimated genomic inflation factor λ̂gc is then given by

λ̂gc =
Median{χ2

1, ..., χ
2
M}

χ2
0.5

, (21)

where χ2
0.5 denotes the 0.5 quantile of the χ2 distribution with 1 degree of free-

dom.

In a GWAS with little to no inflation of test statistics, we expect λ̂gc to be
close to 1. However, as stated above, we expect some amount of test statistics
inflation, either due to true SNP effect or bias. Still, as the number of genotyped
SNPs M tends to be large, the observed deviation from 1 in any GWAS ought
to be small. As such, we may use the estimated λ̂gc to assess a kind of goodness-
of-fit for our GWAS.

We note that the authors in [32] are somewhat critical of using λ̂gc as a mea-
sure of the confounding bias introduced into a GWAS by population structures,
claiming that λgc depends upon far more factors than traditionally accounted
for. They point to a dependence upon variables such as sample size, disease
prevalence and heritability to name a few. We agree that this would make λ̂gc
non-optimal in general, and especially difficult to compare for association stud-
ies on differing populations, phenotypic traits or study groups. However, in this
text we use it to compare the goodness of fit within study, trait and population,
keeping most of the factors detailed in [32] fixed. As such, a change in genomic
inflation factor would be solely due to population structure as adjusted for by
principal components, making it a reasonable measure for selecting the best
performing set of GWAS summary statistic data in our particular situation.

A.4 Bias in estimates of r2

For individual-level genome-wide data, the LD of two genomic regions measured
in r2, where r2 is as given in Definition 2 is generally estimated as

r̃2jk =

(
1

N

N∑
i=1

xijxik

)2

, (22)

where xij ∈ {0, 1} denotes the genotype of individual i at SNP j and analogously
for xik. One can show (as is done in the supplementary material of [19]) that
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the expectation of this estimator is given by

E[r̃2jk] ≈ r2jk +
1− r2jk
N

,

which means that the LD score of SNP j using the standard estimator of r2

confers a bias of

E[l̃j ] = E

Ml∑
j=1

r̃2jk

 ≈ Ml∑
j=1

r2jk +
Ml −

∑Ml

j=1 r
2
jk

N
= lj +

Ml − lj
N

,

As an estimator of the amount of LD between two genomic regions, r̃2 is
approximately unbiased with the error tending to zero as sample sizes grow
larger. However, as an estimator in the LD scores, the error grows significantly
larger, ultimately conferring an upwards error of order O(Ml/N) which might
not be negligible depending on the study sample sizes.

The suggested correction is then an adjusted estimator of

r̂2adj = r̃2 − 1− r̃2

N − 2
. (18, revisited)

Using this estimator, the LD scores instead contribute bias on the order of

O
(

Ml

N(N−2)

)
. We prove this below.

Lemma A5. Estimating LD scores with the r̂2adj estimator given in Equation
18 confers a smaller amount of bias than estimates produced using the standard
r2 estimator of r̃2 given in Equation 22.

Proof. For two genomic regions j and k we have that

E
[
r̂2jk
]

= E
[
r̃2jk
]
−

1− E[r̃2jk]

N − 2

= r2jk +
1− r2jk
N

−
1−

(
r2jk +

1− r2jk
N

)
N − 2

= r2jk +
r2jk − 1

N(N − 2)
.

Now taking the sum over k we get that the error in the LD scores are given by

E
[
l̂j

]
= E

[
Ml∑
k=1

r̂2jk

]
= lj +

lj −Ml

N(N − 2)
= lj +O

(
Ml

N(N − 2)

)
,

which completes the proof.
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B Methods for genetic overlap

In this section we cover a few of the available approaches to assessing genetic
overlap between two phenotypic traits. We do not aim to give an extensive
review of what has been previously published but hope to give a short introduc-
tion to some of the alternatives to the method of linkage disequilibrium score
regression that is covered in Section 2.

All of the methods presented in this section require two sets of genetic data,
either in the form of individual-level genome-wide data or as GWAS summary
statistic data. By individual-level genome-wide data, we mean data consisting of
observed genotypes for each individual with phenotypic measurements on each
person. We can think of this data as a matrix of dimension N × (M + 1) where
each row represents an individual with the first column corresponding to their
observed phenotype and the remaining M columns containing their genotypes
at each of the M genotyped SNPs.

Furthermore, for GWAS summary statistic data we assume that individual-
level genome-wide data has been processed according to what is described in
Section 1.2. We define the output of the GWAS, i.e. what is here referred to
as the GWAS summary statistic data, as containing a test of association (and
direction of association), standard error and p-value of association significance
for each of the M SNPs.

Further methods exist that dissect the genetic part of any phenotype using
other formats of genome-wide data but we do not consider these here.

B.1 Polygenic risk scores

Polygenic risk scores are essentially risk scores based on genetic data that give
an individuals propensity towards developing a phenotype of interest. The name
polygenic comes from the idea that an individuals propensity towards a pheno-
type is due to the collective effect of a large set of both minor and major genetic
effects, as opposed to only a small set of major genetic effects. Computing the
risk scores requires two sets of genetic data: one set of GWAS summary statistic
data on the phenotype of interest, often called the training data, and a set of
individual-level genome-wide data, often called the testing data, for the individ-
uals of which we wish to obtain the risk scores. Based on the GWAS summary
statistic data, a set Q is then created containing all the SNPs which can be seen
as risk-influencing, often taken as all the SNPs that were found to be associated
with the phenotype of interest at a given significance level. From this set Q we
may then compute the polygenic risk score of individual i, denoted here as Si,
by

Si =
∑
j∈Q

xijwj , (23)

where wj is a weight based on the effect of the j’th SNP in Q and xij ∈ {0, 1, 2}
is the number of risk-influencing alleles observed at the j’th SNP in Q for
individual i in the individual-level genome-wide data.
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This quantity allows researchers to estimate a healthy individuals genetic
propensity towards developing a given disease or other phenotypic trait. How-
ever, depending on the population sampled for the individual-level genome-wide
data, we may utilize the polygenic risk scores Si, i = 1, ..., N to test for genetic
overlap between the phenotype in the training GWAS summary statistic data
set and the testing individual-level genome-wide data. In general, if yi denotes
the observed phenotype of individual i with corresponding polygenic risk score
Si, then we may test Si for association with phenotype yi by regressing Si onto
yi. Significant association would then be an indication that the SNPs contained
in Q based on the training GWAS summary statistic data, are associated with
the population phenotype of the testing individual-level genome-wide data.

This is best illustrated by an example. Say we are, as in this study, interested
in the genetic overlap between RA and AMI. Suppose we have GWAS summary
statistic data on the phenotype of AMI, i.e. we have a set of M SNPs, their
individual associations with the phenotype of AMI as effect sizes wj and their
subsequent p-values of significance of association. We may then create the set
Q as the SNPs that surpass a threshold of significance in the GWAS on AMI,
here denoted by pT , as

Q = {SNPj ; pj ≤ pT , j = 1, ...,M},

where pj denotes the p-value of the j’th SNP. Suppose next that the popula-
tion sampled for the testing, individual-level genome-wide data set, consists of
individuals diagnosed with RA (cases) and healthy individuals (controls) as de-
scribed in Section B above. Polygenic risk scores for each of the N individuals
in the testing sample of RA cases and controls may then be computed through
the use of Equation 23. Now testing for genetic overlap simply amounts to test-
ing observed phenotype in the RA-data, for association with the polygenic risk
scores Si. The standard way to do this in practice is by fitting the model of

yi = α+ Siβ + εi, i = 1, ..., N

where yi denotes observed phenotype of individual i, and testing the hypothesis
of β = 0.

Polygenic risk scores were first presented in a seminal paper in which they
were used to study the genetics of schizophrenia. In the paper, the authors
demonstrated an association between the polygenic risk score, based on train-
ing GWAS summary statistic data for schizophrenia, with the phenotype of
bipolar disorder [15]. Today, a wider applicability of the method has seen use,
including in estimation of heritability h2, studying the genetic architecture of
a trait and in prediction of disease development. Further extensions have been
made to the original approach to computing risk scores detailed above, allowing
researchers to further increase the numbers of risk-influencing SNPs contained
in the set Q to allow for even more of the M genotyped SNPs to be included
in the analysis. Such methods include a Bayesian approach to estimating the
SNP weights wj by incorporating linkage disequilibrium [51] and an approach
employing penalized regression aiming to adequately shrink effect size estimates
wj to allow for further SNPs to be incorporated [52].

40



B.2 Genomic restricted maximum likelihood

The method here referred to as genomic restricted maximum likelihood is known
in the literature under various different names such as genome-wide complex
trait analysis or simply linear mixed models. It aims to model SNP effect on
phenotype through a linear mixed model where SNPs are taken as the random
effects. Estimates of genetic correlation rg are then produced as in Definition
3 by fitting a bivariate linear mixed model. Estimates of heritability h2 and
genetic covariance ρg are then obtained as estimates of the variance components
of the model [17,45].

The model does not utilize any GWAS summary statistic data and instead
requires two sets of individual-level genome-wide data. The bivariate linear
mixed model equations can be given as:

Yk = Xkβk + Zkgk + εk, k = 1, 2,

where Yk is an (Nk × 1) vector of phenotypic trait values, βk is an (pk × 1)
vector of fixed effects, gk is a vector of total genetic SNP effects dimension
(M ×1) where gk ∼ N(0, Ah2k) and εk is the residual vector ε ∼ N(0, 1−h2k) for
phenotypic trait k. Lastly, the variables Xk and Zk are both incidence matrices
for fixed and random effects respectively [17].

Here, A is a matrix commonly referred to as the genomic relationship ma-
trix, each of its elements corresponding to correlation coefficients between the
individuals in their respective sets. The elements of A are given as

ajk =
1

M

M∑
i=1

(xij − 2pi)(xik − 2pi)

2pi(1− pi)
, (24)

where xij ∈ {0, 1, 2} denotes the number of copies of the reference allele at SNP
i for individual j and pi is the observed allele frequency of the reference allele
at the i’th SNP [53].

The variance-covariance matrix is given by

V =

[
Z1AZ

T
1 h

2
1 + I(1− h21) Z1AZ

T
2 ρg

Z2AZ
T
1 ρg Z2AZ

T
2 h

2
2 + I(1− h22)

]
The method of genomic restricted maximum likelihood then fits this type of
model and estimates the variance components of h21, h22 and ρg through restricted
maximum likelihood estimation out of which one may then compute the genetic
correlation coefficient rg as it is defined in Definition 3.

Currently, genomic restricted maximum likelihood is implemented in a pop-
ular software tool known as GCTA, or genome-wide complex trait analysis,
which contains tools for estimation of heritability, estimation of genetic corre-
lation, simulating GWAS data and various other tools for genetic analysis of
phenotypic traits [53]. It has since reached wide-spread popularity and been
employed in several seminal papers studying topics such as the interplay of psy-
chiatric diseases [54], the change in cognitive ability from young age to old [55]
and in further improving upon the previously biased downwards SNP-based
heritability estimates of several complex traits [45] to simply name a few.

41



B.3 SNP effect concordance analysis

Commonly abbreviated SECA, SNP effect concordance analysis was initially
developed to allow researchers to test for genetic overlap using only GWAS
summary statistic data. The method aims to test for overlap by checking for
concordance in direction of association for each SNP between the two pheno-
types. The null hypothesis of no genetic overlap is then rejected if the amount of
concordance among the two sets is greater than what is expected by chance [16].

In practice, let θ̂ij denote the estimated effect of SNP i on phenotype j from
the GWAS, i = 1, ...,M and j = 1, 2. We may then sort the data into a 2 × 2
contingency table as

θ̂i1 < 1 θ̂i1 ≥ 1

θ̂i2 < 1 n11 n12
θ̂i2 ≥ 1 n21 n22

where nij denotes the observed counts of the various cells. Testing the null
hypothesis of no genetic overlap is then equivalent to testing for independence
of rows and columns. As such, we may test for an excess of concordance in
direction of SNP associations through either a chi-squared test or a Fisher’s
exact test depending on the magnitudes of the xij counts.

The method is implemented in a web-based application [16] and has since
its development been used to investigate the heterogeneity between subtypes of
migraine [56] and to test for genetic overlap in collagenous colitis and different
inflammatory bowel diseases [57].

C Quality control of RA data

As mentioned in Section 3.1, rigorous quality control must be carried out on
the genome-wide data to avoid potentially spurious findings in the association
analysis. In this section of the Appendix we give a detailed description of all
the steps taken to ascertain quality of the RA-data for the GWAS. We do this
to offer transparency of the process as well as to present our arguments for the
decisions made in our quality control [58].

C.1 Sex discrepancy

We checked individuals for discordance between their reported, and from data
imputed, sex. Such a discordance may occur for several reasons but it may
be an indicator of sample mix-ups or mishandling of data [28]. We do this
by computing observed homozygozity rates for each of the individuals in the
set and comparing these to the expected homozygozity rates based on reported
sex. Typically, we expect males to have a rate of 1 while females are expected
to have a rate below 0.2. Two individuals were found to strongly discord with
the expected rates (females with observed rates above 0.6) in a way that could
not be explained by errors in genotyping rate. As we could not confirm that sex
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had been reported incorrectly for these two individuals we decided to exclude
them.

C.2 Individual genotyping rate

We expect the genotyping rate of SNPs in individuals to be uniform and homoge-
neous with respect to the amount of SNPs captured. As such, a low genotyping
rate would be an indicator of low DNA quality in samples or genotyping com-
plications [28]. This rate is decided within-sample, where the genotyping rate of
the individual with the highest amount of genotyped SNPs is 1. To establish a
high standard we excluded any individuals who exhibited a missingness greater
than 5%, which is a common threshold for missingness in quality control for
association analysis [28]. This lead to the exclusion of 13 individuals who failed
to reach a genotyping rate of 95%.

C.3 SNP genotyping rate

A similar check as the one above for individuals is then performed for SNPs.
Again, we expect the genotyping to perform similarly and low SNP call rates
may be another indicator of complications or errors in the genotyping process.
Failure to account for these may lead to false positives, reducing the ability to
detect true associations in the GWAS [28].

The rate is established in-sample by measuring the number of individuals
in which the allele at the position of the SNP was genotyped. We allow for at
most 5% missingness and as such exclude all SNPs with a call rate below 95%
which is again a common threshold [28]. This type of procedure leads to the
exclusion of 12 218 SNPs.

C.4 Minor allele frequency

The minor allele frequency is the observed allele frequency for the allele in
minority at each of the SNPs. We filtered on these, excluding all SNPs which
had a minor allele frequency < 1% leading to the exclusion of 138 713 SNPs.

Note that this is a big chunk of the data material, accounting for about
20% of the total SNPs. While the amount is large, it is not a surprising find
and the stringent criteria for exclusion is in fact a commonly used threshold for
association studies [28].

A SNP with low minor allele frequency may occur due to measurement error,
i.e. incorrect detection of a SNP. This would be a false positive and removal of
the SNP would be correct. If the SNP is not due to measurement error, we
would have a true rare variant. However, these would be less robust than non-
rare variants and would lack power to detect association in the resulting GWAS
meaning their removal should not strongly affect the outcome of the study.
Furthermore, for this particular data, the material is still quite large for GWAS
purposes meaning that despite the exclusion of SNPs in this step we should still
retain enough power to detect meaningful associations.
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C.5 Hardy-Weinberg equilibrium

Hardy-Weinberg equilibrium (HWE) is an assumption on the distributional re-
lationship between allele and genotype frequencies in a population. Mathemat-
ically we define it as follows. Consider a specific locus on the genome which
has alleles A and a. Suppose the underlying allele frequencies of these are p
and (1− p) for A and a respectively. If a population is under Hardy-Weinberg
equilibrium then it holds that the genotypic frequencies π1, π2 and π3 for AA,
Aa and aa respectively are given by

π1 = p2, π2 = 2p(1− p), π3 = (1− p)2.

For genome-wide data, failure to meet HWE can be an indication of genotyping,
or genotyping-call, error [28].

Testing for HWE is done through a Fisher’s exact test. Generally for large
samples, a chi-squared test is preferred over the exact test but in this setting,
such tests can have inflated type I error rates and we thus opt for the Fisher’s
exact test [59]. Filtering on HWE is done by removing SNPs that reach signif-
icance under testing with H0 : HWE holds. In controls we set a threshold of
10−6 while we allow for a more lenient threshold in cases of 10−10 as is done
in [29]. There’s differing opinions on what significance threshold should be set
when testing for HWE but most agree that we should be less stringent for cases.
This is due to the fact that deviation from HWE may occur due to selection
meaning that removing SNPs due to deviations in cases may remove true signal
and as such, some authors argue that we should allow all deviation present in
cases [28]. However, as the method we utilize for estimating genetic overlap
assumes that we can standardize observed genotypes with respect to HWE, we
choose to remove SNPs that exhibit extreme deviation in cases.

This type of filtering leads to the removal of 1893 SNPs.

C.6 Pruning by linkage disequilibrium

The last steps needed for our quality control is to account for genomic related-
ness of individuals and population substructures. The methods employed here
function best if performed on a set of independent SNPs, i.e. SNPs in linkage
equilibrium with each other (see Section 1.3) [28, 29]. To account for LD we
perform two types of pruning on the SNPs in the data set. Note that this prun-
ing is only for the sake of estimating relatedness and population substructures:
the SNPs pruned here will be returned into the data set for the subsequent
association analysis.

The first pruning is done by completely removing known problematic and
complicated regions of the genome. One such region on each of four chromo-
somes are pruned, including the human leukocyte antigen (HLA) region on
chromosome 6. The areas targeted for the genomic regions are given in Table
A1 and are based on regions pruned in a similar quality control in [60]. In total,
9792 SNPs are removed.
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Table A1: The genomic positions on the chromosomes of the regions targeted
for pruning. Distance measure Mb refers to megabases where a distance of one
megabase corresponds to a sequence length of one million nucleotides. Regions
are based on a similar exclusion performed in reference [60].

Chromosome Region
5 44 Mb - 51.5 Mb
6 25 Mb - 33.5 Mb
8 8 Mb - 12 Mb
11 45 Mb - 57 Mb

To make sure that the remaining SNPs are in approximate linkage equilib-
rium, further pruning must be employed. This pruning procedure looks at a
window of markers of a given size, pruning so that no SNPs in the window are
above a certain cutoff level, measured in LD, and then moving the window a
given step length after a window has been successfully pruned. In our quality
control we used a window containing 1000 markers, moving it a length of 10
markers at each step and pruning SNPs that have r2 > 0.2 where the quantity
r2 is the one defined in Definition 2 in Section 1.3. Over the whole genome,
this procedure removed 327 207 SNPs in total, leaving a set of 213 112 SNPs in
approximate linkage equilibrium for population-based quality control.

C.7 Genomic relatedness

For GWAS purposes, we require sampled individuals to be essentially unrelated.
Failing to account for relatedness may lead to the introduction of bias as within
family genotypes can be over represented. Filtering on genomic relatedness
amounts to estimating the relationship of individuals based on the individual-
level genome-wide data and excluding one individual from each pair reaching
a certain threshold. Here, genomic relatedness is measured as a correlation
coefficient sorted into an N × N symmetric matrix A known as the genomic
relationship matrix, where N is the number of sampled individuals. The matrix
A has elements ajk of the level of genomic relatedness for individuals j and k
given by

ajk =
1

M

M∑
i=1

(xij − 2pi)(xik − 2pi)

2pi(1− pi)
, (25)

where xij ∈ {0, 1, 2} is the number of copies of the reference allele at SNP i for
individual j and pi is the observed allele frequency for the same allele at the i’th
SNP, i = 1, ...,M [53]. Note that this is the same matrix as was modeled in the
method of genomic restricted maximum likelihood (Section B.2, Equation 24).

An estimated relatedness of 1 approximately corresponds to a duplicated
individual or monozygotic twin, estimated relatedness of 0.5 approximately cor-
responds to first-degree relatives and so forth [28]. We set our threshold to 0.1
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which approximately corresponds to pairs of third-degree relatives, leading to
the exclusion of 310 individuals.

C.8 Population substructures

In any research on the genetics of a sampled population, we implicitly assume
that there is an underlying genetic homogeneity within the population. Genetic
heterogeneity between the individuals in a sampled population often occurs
when individuals have evolved from different ancestries. As an example, sam-
pling individuals from both Asian and European populations for a genetic study
may lead to inconclusive or erroneous findings due to the large differences in gen-
eral ancestry between individuals of Asian descent and individuals of European
descent [61]. To account for potential heterogeneity within our study popula-
tion, our RA data has been sampled from a geographically tight population that
we assume to be genetically similar. However, an unknown substructure may
still exist in our population so to ensure that as little confounding as possible
enters our analysis, we check our data for population substructures, filtering on
individuals that differ greatly from the observed average [28].

We use principal components analysis to correct for outliers with respect to
population substructures. Here we consider an individual to be an outlier if they
are more than 6 standard deviations from the origin over all the components.
Filtering is done iteratively by fitting the principal component analysis, remov-
ing all outliers with respect to the above definition, re-fitting the model and
filtering again and so forth. We stop after 5 iterations unless no outliers were
detected earlier. This procedure is based on the default approach of the EIGEN-
STRAT software, developed as a tool to account for population heterogeneity
in genetic studies [62].

The resulting procedure runs for 5 iterations removing a total of 316 indi-
viduals. The resulting principal components from the final performed analysis
are then saved and kept as variables. These components will be used as covari-
ates to control for population substructures in the performed GWAS for our RA
data.

D Supplementary figures

46



Figure A1: Genomic inflation factor λ̂gc as a function of number of princi-
pal components on population stratification used as covariates in the associa-
tion analysis on the data sets containing ACPA-positive cases and seronegative
cases respectively. The dashed line is the minimum of the curve. Minimum for

ACPA-set is reached at λ̂
(1)
gc = 1.038 and for seronegative-set at λ̂

(5)
gc = 1.014,

corresponding to 1 and 5 components respectively.
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Figure A2: Manhattan-plot for the associations of the ACPA-set. The x-axis
contains all autosomal SNPs studied, ordered after chromosome and chromo-
some position. The y-axis covers the p-values of SNP association with trait at
− log base 10 scale. The dashed line represents the genome-wide significance
level of p = 5 · 10−8 which is the common standard for recognizing a SNP
association as significant in a GWAS.

Figure A3: Manhattan-plot for the associations of the seronegative set. The x-
axis contains all autosomal SNPs studied, ordered after chromosome and chro-
mosome position. The y-axis covers the p-values of SNP association with trait
at − log base 10 scale. The dashed line represents the genome-wide significance
level of p = 5 · 10−8 which is the common standard for recognizing a SNP
association as significant in a GWAS.
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Figure A4: Manhattan-plot of SNP association with myocardial infarction for
the UK Biobank sample on a small genomic region on chromosome 6. The y-
axis is the base 10 −log(p) transform of the p-values of SNP association. The
x-axis is the SNPs position on the genome, given here as base-pair position in
the scale of 107 centiMorgans. The points are the SNPs that reached genome-
wide significance in the ACPA set (Figure A2) here instead illustrating their
association with AMI.
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Figure A5: Plots of the resulting liability scale estimates of heritability for
the four phenotypes when the population prevalences K are allowed to vary.
Illustrates the sensitivity in liability scale conversion due to errors in population
prevalence estimates. Formula used for correction to liability scale is given in
Equation 16.
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Glossary

Acute myocardial infarction (AMI): A type of cardiovascular disease. Com-
monly referred to as heart attack.

Anti-citrullinated protein antibodies (ACPA): A type of autoantibody
present in many, but not all, patients with rheumatoid arthritis.

Cardiovascular disease (CVD): Umbrella term for a set of diseases char-
acterized by involving blood vessels and the heart. Acute myocardial
infarction (AMI) is a type of cardiovascular disease.

Epidemiological investigation of rheumatoid arthritis (EIRA): Case-control
study of rheumatoid arthritis in a Swedish population consisting of indi-
viduals in middle and southern Sweden in the age range of 18− 70.

Genome-wide association study (GWAS): Observational study of genetic
variants over the entire human genome, i.e. genome-wide genetic variants.
Aims to locate genetic variants that are associated with a given phenotypic
trait of interest. See Section 1.2 for further details.

Human leukocyte antigen (HLA): A gene complex on chromosome 6 re-
sponsible for the regulation of the immune system in humans. Individuals
with certain polymorphisms in the human leukocyte antigen-region are
known to be more likely to develop certain autoimmune diseases such as
rheumatoid arthritis [2].

LD Score (LDSC): Not to be confused with Definition 4, LDSC here refers to
the software implementing linkage disequilibrium score regression (LDSR)
developed by the authors of the method (https://github.com/bulik/ldsc).

Linkage disequilibrium (LD): Non-random association of alleles at different
loci on the genome. Can be seen as a correlation structure between the
alleles at these different regions. See Section 1.3 for further details.

Linkage disequilibrium score regression (LDSR): Recent multi purpose
method that uses genome-wide association study (GWAS) data to es-
timate heritability h2 for single phenotypes and genetic correlation rg
for pairs of phenotypes by regressing GWAS test statistics on a quantity
known as the linkage disequilibrium score. Can also be used to estimate a
correction factor to account for bias induced by population substructures
in a GWAS. See Section 2 for further details.
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PLINK: Open source software commonly used for analysis and handling of
large scale, genome-wide genetic data [30].

Rheumatoid arthritis (RA): Chronic autoimmune disorder primarily man-
ifesting in the joints of the body. In untreated patients, the disease will
lead to joint deterioration and physical disability.

Serologically negative (SERO-): Here referring to an individual diagnosed
with RA that tested negative for both rheumatoid factor and anti-citrullinated
protein antibodies (ACPA), two antibodies present in many, but not all,
cases of RA [31].

Single nucleotide polymorphism (SNP): Pronounced ”snips”. Common
genetic variant, defined as a base-pair change in a single nucleotide in the
DNA sequence, present in at least 1% of the human population.
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