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Abstract

The world strives to satisfy sustainability conditions, such as hu-
man rights and environmental protection, among others, nowadays.
Hence, investors would find it interesting to know whether investing in
ethical portfolios will worsen the investment opportunities, compared
to investing in portfolios constructed by both sustainable and unsus-
tainable assets. One can choose to analyze this topic based on classi-
cal optimal portfolio analysis, such as studying whether the difference
between the minimum-variance frontier of sustainable assets and the
minimum-variance frontier of those assets and some additional unsus-
tainable assets is statistically significant by applying mean-variance
spanning tests. In this thesis, we used monthly and weekly returns,
respectively, of 21 stocks in the OMX Stockholm 30 (OMXS30) index
over the period 2008-2019, and we performed four screenings to ob-
tain different numbers of stocks that are considered more sustainable.
Mean-variance spanning tests were then applied to study whether the
differences between the minimum-variance frontier of all the 21 stocks
and each of the minimum-variance frontiers of the assets obtained af-
ter screening are statistically significant or not. The results of the
spanning tests showed statistically nonsignificant differences between
the minimum-variance frontiers. Hence, our study suggests that an
investor would not obtain better investment opportunities when she,
in addition to the considered more sustainable assets in the OMXS30
index, adds the stocks that are considered more unsustainable into the
investment portfolio.
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1 Introduction

Over the past few years, the demand for sustainability has been increasing
in various fields in the world, and one of them is the financial field. Many
investors are therefore using socially responsible criteria to make investment
decisions. One usually refers to three main areas when social responsibility
is mentioned, and these are the following: environmental (E), social (S), and
governance (G). Hence, ESG is used for short when talking about socially
responsible investments [15, 33]. The environmental factor focuses on envi-
ronmental protection, while the social part focuses on, e.g., human rights,
and the governance factor concentrates on corporate governance [25]. In
order to know if an investment might be considered sustainable, one can an-
alyze a company’s risk of encountering ESG issues, which can be measured
by different kinds of ESG scores. One can, for example, receive ESG scores
from Sustainalytics and MSCI, among others, which are leading ESG rating
providers [15, 30].

Except for making a difference to the society and environment when one
invests according to ESG criteria, investors might also wonder whether one
will gain or lose money from it. Hence, it might, therefore, be interesting
to study if the returns are statistically significantly different for socially
responsible funds and conventional funds, or if the efficient frontier of assets
with low ESG scores is statistically significantly different from the efficient
frontier of assets with both low and high ESG scores [15].

Previous researches on this subject have mostly compared socially re-
sponsible indexes with conventional indexes. Bauer, Koedijk, and Otter
[3] studied ethical and conventional funds from the German, UK and US
markets over the period 1990-2001, and they did not find support that the
returns of the ethical and conventional funds are statistically significantly
different after controlling for some common factors. Another paper by Or-
tas, Burritt, and Moneva [26] studied the Dow Jones Sustainability Asia
Pacific Index (DJSI-AP) and the Dow Jones Global Total Stock Market
Index (DJ-G), and the result showed that the risk-adjusted returns of the
DJSI-AP are not statistically different from the risk-adjusted returns of the
DJ-G. A study, based on a sample of socially responsible mutual funds and
conventional funds during the period 2000-2001, by Nofsinger and Varma
[24] showed that socially responsible mutual funds outperform conventional
funds in crisis periods, but the results show the opposite during non-crisis
periods. Henke [14] studied several funds in the US and Eurozone, respec-
tively, and saw that socially responsible funds outperform conventional funds
during the period 2001-2014. Furthermore, Herzel, Nicolosi, and Stărică
[15] used the mean-variance spanning test based on the Wald test to study
whether the minimum-variance frontier of socially responsible assets and the
minimum-variance frontier of those assets and some additional conventional
assets are statistically significantly different. The screening procedure was
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performed in their study to obtain socially responsible assets. They saw
that the efficient frontiers of the screened assets and that of the whole in-
vestment universe are statistically different when short selling is not allowed
and when the screening procedure was based on ESG scores that focus on
the environmental factor.

In this thesis, the aim is to understand the asymptotic and exact mean-
variance spanning tests based on the likelihood ratio test introduced by
Huberman and Kandel [16], and the spanning tests based on the Wald test
and Lagrange multiplier test, respectively, purposed by Kan and Zhou [17],
and apply them to real data. The data we use consists of the returns from
21 stocks that are included in the OMXS30 index over the period 2008-
2019. We will study whether the differences between the efficient frontiers
of considered more sustainable assets and the efficient frontier of all 21 assets
are statistically significant.

2 Optimal portfolio theory and sustainability

In this section, we mainly follow Capinski and Zastawniak [8] to introduce
portfolio theory and several types of optimal portfolios used in the develop-
ment of theoretical findings of the thesis.

2.1 Optimal portfolio theory

An investor can choose to invest in one or more securities, either in risky as-
sets (e.g., stocks) or risk-free assets such as bank deposits or bonds, among
others, or a combination of both. A risky asset might have a higher ex-
pected return, but there are chances of loss when one invests in such assets.
However, one might want to take some risk at a reasonable level to have a
chance of getting higher expected returns by investing in a risky asset. Fur-
thermore, one has probably heard of the saying ”do not put all eggs in one
basket” before, and hence investors usually choose to invest in more than
one asset. Nevertheless, investing in different assets does not imply that
there would be no losses [32]. The proportion of investing in a specific asset
is also known as the weight of that asset in portfolio analysis. The pair of
each such weights for every asset we invest in is called a portfolio, and each
possible portfolio based on the same assets might have different expected
returns and risks. Investors would, therefore, like to opt for a portfolio with
the highest expected return and lowest risk. Risks in portfolio theory are
commonly measured with standard deviation because it can measure volatil-
ity in returns. Hence, many investors might try to find the optimal portfolio
by mean-variance analysis.
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2.1.1 Minimum-variance portfolio

The minimum-variance portfolio (MVP), is the portfolio with the lowest
variance out of all feasible portfolios. Let us first set up some notations, and
then show how the MVP can be obtained. We consider a portfolio consisting
of N risky assets, which can be expressed with the weights collected into
the following vector

w = (w1,w2, ...,wN)⊺,
where wi denotes the weight of the ith risky asset, and the sum of the N
weights should be equal to 1. We can write this condition in matrix form as

w⊺1N = 1, (1)

where 1N is a vector of size N containing only ones. Let us also denote the
expected returns of the N risky assets in vector form as

µ = (µ1, µ2, ..., µN)⊺,

and let the following matrix denote the covariance matrix of the returns (of
the N assets)

V =
⎛
⎜⎜⎜
⎝

V11 V12 ⋯ V1N
V21 V22 ⋯ V2N
⋮ ⋮ ⋱ ⋮

VN1 VN2 ⋯ VNN

⎞
⎟⎟⎟
⎠
,

so, Vij denotes the covariance between the returns of the ith and jth assets
for i = 1,2, ...,N and j = 1,2, ...,N . The matrix V is symmetric (V = V ⊺) and
positive semi-definite. Assume that the determinant of the covariance matrix
V is not equal to zero, so that its inverse matrix, V −1, exists. Moreover,
under the assumption of non-singularity, we get that V is positive definite.

In order to find the MVP, we have to compute the minimum of the
variance of a portfolio, w⊺V w, subject to the constraint w⊺1N = 1 (where
all weights sum up to 1). This minimization problem can be expressed as

min
w
w⊺V w,

s.t w⊺1N = 1.

To solve this, one can use the Lagrange multipliers method. Let λ be a
Lagrange multiplier, then we can set up the following Lagrange function

F (w,λ) = w⊺V w − λ(w⊺1N − 1).

Taking the gradient of F (w,λ) with respect to w, and setting that expression
equal to a zero-vector of size N gives the following system of linear equations

2V w − λ1N = 0N ,

3



and solving for w gives

w = λ
2
V −11N . (2)

By plugging in Equation (2) into Equation (1), we obtain that

λ

2
(V −11N)⊺1N = λ

2
1⊺N (V −1)⊺ 1N = λ

2
1⊺NV

−11N = 1,

and solving for the Lagrange multiplier λ gives

λ = 2 (1⊺NV
−11N)−1 .

The weights of the MVP are then obtained by plugging in the formula for
λ into Equation (2), and hence we get that

wMVP = V −11N
1⊺NV

−11N
.

2.1.2 Tangency portfolio

Assume that we have a portfolio that is constructed by N risky assets and
one risk-free asset, and let µP and σP be the expected return and standard
deviation, respectively, of a feasible portfolio P constructed by the N risky
assets. Let also the vectors w and µ consist of the weights and expected
returns of each risky asset, as in the previous section. Let also V be the
covariance matrix of the risky assets as before. Assume furthermore that
the expected return of the risk-free asset is denoted by Rf , and that its
standard deviation is equal to zero. When a risk-free asset exists, investors
would be interested in the tangency portfolio (TP), which is the portfolio P
on the efficient frontier that is tangent by the steepest possible straight line,
referred to as a capital market line, that starts at the point (0,Rf). The
slope of this line is called the Sharpe ratio and can be obtained by using the
following formula

µP −Rf
σP

= w
⊺µ −Rf√
w⊺V w

.

An example of a TP and the steepest capital market line is shown in red
and purple, respectively, in Figure 1 (a). Furthermore, an efficient frontier
consists of all possible portfolios on the minimum-variance frontier that has
a higher expected return than that of the MVP (see Figure 1 (b)). The
minimum-variance frontier is the set of all feasible portfolios that gives the
lowest risk for every attainable expected return.
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Figure 1: The blue dots represent the MVP, and the red dots represent the
TP in both plots. The straight purple line in the left figure (a) shows a
capital market line where the expected return of the risk-free asset is equal
to zero (or in the absence of the risky asset, Rf = 0). Furthermore, the
black curved line represents the minimum-variance frontier in the left plot
(a). In the right figure (b), we can see the minimum-variance frontier, and
the orange part of the minimum-variance frontier represents the efficient
frontier.

(a) (b)

To get the weights of the TP, we need to find the maximum of the Sharpe
ratio subject to the constraint w⊺1N = 1. In other words, we want to solve
for this maximization problem

max
w

w⊺µ −Rf√
w⊺V w

,

s.t. w⊺1N = 1.

One can solve this problem by first setting up the Lagrange function as
follows

G(w,λ) = w
⊺µ −Rf√
w⊺V w

− λ (w⊺1N − 1) ,

where λ denotes a Lagrange multiplier. Then we find the gradient of G(w,λ)
with respect to w, and set it equal to a zero-vector of size N

∇wG(w,λ) =

√
w⊺V wµ − (w

⊺µ−Rf )V w
√

w⊺V w

w⊺V w
− λ1N = 0N ,

which can be written by

µP −Rf
σ2P

V w = µ − λσP 1N , (3)

5



where we used that w⊺V w = σ2P and w⊺µ = µP . Multiplying Equation (3)
by w⊺ on the left gives

µP −Rf
σ2P

w⊺V w = w⊺µ − λσPw⊺1N ,

which is equivalent to
µP −Rf = µP − λσP ,

and solving for λ gives that λ = Rf /σP . By plugging in λ = Rf /σP into
Equation (3), we obtain

µP −Rf
σ2P

V w = µ −Rf1N .

Let us multiply both sides with the inverse of the covariance matrix, V −1,
on the left. Then,

µP −Rf
σ2P

w = V −1(µ −Rf1N). (4)

To solve for w, we can first multiply both sides by 1⊺N on the left, and
the reason why we do not divide both sides by (µP −Rf)/σ2P to obtain the
weights is that the expression (µP −Rf)/σ2P depends on w. Hence, we obtain

µP −Rf
σ2P

= 1⊺NV
−1(µ −Rf1N),

and by plugging in this expression into Equation (4) and then solving for w
gives that the weights of the TP are given by

wTP = V −1(µ −Rf1N)
1⊺NV

−1(µ −Rf1N) .

2.1.3 Two-fund theorem

Let us assume as before that the covariance matrix of N risky assets is
denoted as V and that the determinant of this covariance matrix is not
equal to zero, i.e., ∣V ∣ ≠ 0. Assume also that the two vectors µ and 1N of
size N , consisting of the expected returns of the N risky assets and only
ones respectively, are linearly independent. Then, one can obtain a vector
of weights w for the N assets, which describes a portfolio that lies on the
minimum-variance frontier with a specified expected return of the portfolio,
say µP , by solving the following optimization problem

min
w
w⊺V w

s.t. w⊺µ = µP
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s.t. w⊺1N = 1.

One can do it by first setting up the Lagrange function with λ and δ as the
Lagrange multipliers

L(w,λ, δ) = w⊺V w − λ(w⊺µ − µP ) − δ(w⊺1N − 1),

and then find the gradient of L(w,λ, δ) with respect to vector w, λ, and δ.
We then set the gradient equal to a zero-vector which leads to

2V w − λµ − δ1N = 0N , (5)

w⊺µ − µP = 0, (6)

w⊺1N − 1 = 0. (7)

We can rewrite Equation (5) as

2w = λV −1µ + δV −11N , (8)

and by multiplying this expression by µ⊺ and 1⊺N on the left, respectively,
gives

λµ⊺V −1µ + δµ⊺V −11N = 2µ⊺w = 2µP , (9)

λ1⊺NV
−1µ + δ1⊺NV −11N = 2 ⋅ 1⊺Nw = 2, (10)

where µ⊺w = w⊺µ = µP and 1⊺Nw = w⊺1N = 1 because of Equation (6) and
(7), and the property of multiplying two vectors of the same size. We can
express the equation system (9) and (10) in matrix form as

2(µP
1

) = (µ
⊺V −1µ µ⊺V −11N

1⊺NV
−1µ 1⊺NV

−11N
)(λ

δ
) ,

and we can solve for the Lagrange multipliers using the following expression

(λ
δ
) = 2(µ

⊺V −1µ µ⊺V −11N
1⊺NV

−1µ 1⊺NV
−11N

)
−1

(µP
1

) .

Let us for simplicity write the inverse matrix as

(µ
⊺V −1µ µ⊺V −11N

1⊺NV
−1µ 1⊺NV

−11N
)
−1

= (M11 M12

M21 M22
) .

Then we obtain that λ = 2(µPM11 +M12), and δ = 2(µPM21 +M22). By
plugging in these into Equation (8), and dividing both sides by 2, we get
that the weights of the portfolio on the minimum-variance frontier with the
expected return µP is given by

w = (µPM11 +M12)V −1µ + (µPM21 +M22)V −11N

= µP (M11V
−1µ +M21V

−11N) +M21V
−1µ +M22V

−11N ,

7



which can be written on this form

w = µPa + b,

where a =M11V
−1µ +M21V

−11N and b =M21V
−1µ +M22V

−11N .
The two-fund theorem is then defined as the following. Let w1 and w2

be two vectors of size N containing the weights of two different portfolios,
constructed by the N risky assets, that lie on the minimum-variance frontier.
Let also the expected return of the two portfolios be denoted by µ1 and µ2,
respectively, where µ1 ≠ µ2. One can then obtain the weights of a third
portfolio, w3, on the minimum-variance frontier with the expected return
µ3 by using the weights and expected returns of the two known portfolios
(i.e., w1, w2, µ1 and µ2) with the following formula

w3 = γw1 + (1 − γ)w2, (11)

where γ is a constant given by γ = (µ3 − µ2)/(µ1 − µ2). The proof can be
seen in Appendix A.1.1.

2.2 Sustainability

Sustainability, sometimes also referred to as socially responsible or ESG
(environmental, social, and governance), seen from the business perspective
mainly focuses on the following three dimensions [15, 25]:

• Environmental (E): The environmental factor focuses on how well
companies are trying to protect the environment, i.e., this criterion
concentrates on companies’ ways of dealing with several kinds of issues
that may affect the environment, such as climate change, pollution,
and waste, among others.

• Social (S): The social criteria takes social aspects in companies such
as human rights, labor rights, working conditions, and diversity, among
others, into account.

• Governance (G): This dimension concentrates on corporate gov-
ernance, and some aspects in this matter might include companies’
taxes, executive compensations (e.g., salaries, and insurance, among
others), and other responsibilities of company management, such as
being aware of anti-corruption laws and staying away from bribery
and corruption.

These three dimensions above will, therefore, contribute to measurements
of sustainability. Investors with morality would preferably choose to invest
in companies that take the three important factors above into account. It
is common to measure a company’s risk of facing ESG issues related to a
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specific dimension, and how well the company can manage them by using
some kind of ESG scores that focus on the desired factor such as the environ-
ment risk score, social risk score, and governance risk score. Furthermore,
one might, for example, want to make an overall judgment of a company’s
risk of facing and dealing with all three ESG dimensions instead of a par-
ticular dimension when one is studying sustainability. This is what total
ESG scores and total ESG risk ratings do, to measure sustainability when
all three dimensions are taken into account. Hence, we will use the total
ESG scores and total ESG risk ratings, respectively, as the measurements
for sustainability in the thesis.

The total ESG scores and total ESG risk ratings we used were fetched
from Yahoo Finance, and they are powered by Sustainalytics, a global leader
in ESG research and ratings. Sustainalytics measures a company’s total
ESG risk rating by using a two-dimensional framework to assess what kind
of industry-specific material ESG issues a company faces, and how well the
company is managing those problems. Moreover, the Sustainalytics’ total
ESG risk rating is measured with the total ESG score, a score between 0
and 100. The score is then divided into five categories to describe the risk
rating, where a score between 0-10 implies negligible risk, 10-20 means low
risk, 20-30 medium risk, 30-40 high risk, and 40-100 severe risk. Hence, a
higher value implies more unmanaged ESG risks [31]. We ended up with
a dataset containing the total ESG scores and the total ESG risk ratings
for 21 out of the 30 stocks in the OMXS30 index after some data cleaning.
These scores and ratings were updated in January 2020.

The distribution of the total ESG risk ratings for the 21 assets can be
seen in Figure 2 (a). We can, for example, see that most of the companies
seem to have low to medium risk of facing ESG related issues, and none
of the companies seem to be at severe risk. Furthermore, we can see from
Figure 2 (b) that there are two assets with a total ESG score of 20, which
means that the corresponding companies for these two assets might have a
low or medium risk of facing ESG problems. However, from the same plot,
we know that there are ten assets that have a total ESG score over 20 and
below 30, and we can see from Figure 2 (a) that there are eleven stocks in
total that have a total ESG risk rating of medium. Hence, one of the two
assets with a total ESG score of 20 has a low risk of facing ESG issues, and
the other has a medium risk.

2.3 Screening

To obtain assets, where all the corresponding firms satisfy the ESG-criteria
fairly well, one can exclude the firms where most of the ESG-criteria are not
met. This procedure is called a screening [15].
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Figure 2: The left plot (a) shows the number of assets out of 21 (in the
OMXS30 index) that falls in each of the possible total ESG risk rating
categories, and the right plot (b) visualizes the distribution of the total
ESG scores for those assets.

(a) Total ESG risk rating (b) Total ESG score

3 Mean-variance spanning test

The two papers by Huberman and Kandel [16], and Kan and Zhou [17],
respectively, are the main references for the following subsections about
mean-variance spanning tests. We will also follow the notations and steps
closely from Kan and Zhou [17] in these subsections.

3.1 Spanning test based on regression

Huberman and Kandel [16] purposed and described a method called the
mean-variance spanning test, which tests if the difference between the minimum-
variance frontier of some assets and the minimum-variance frontier of those
assets and some additional assets is statistically significant [15].

Let us assume that we have K number of risky assets and that we would
like to know whether the set of these assets spans the set consisting of these
K assets and N other risky assets. Note that the set of the K risky assets
is said to span the set of the K +N risky assets if the minimum-variance
frontier of the K risky assets and the minimum-variance frontier of the K+N
assets are identical. One usually calls the K risky assets as the benchmark
assets, and the N risky assets are referred to as the test assets.

If there, for example, exists a risk-free asset, then investors that focus
on the mean-variance analysis of portfolios will be interested in the TP of
the risky assets. Furthermore, the interest of the investors is then to know
if the TP obtained by using the set of K benchmarks assets is significantly
equivalent to the TP obtained by using K+N risky assets (the K benchmark
assets and additionally N test assets).

If risk-free assets are absent, on the other hand, then investors are rather
interested to know whether the two minimum-variance frontiers are identical.
If this is the case, let RTot,t = (R⊺

t , r
⊺

t )⊺ denote an (K +N)× 1-vector of the

10



total returns of the K + N assets at time t, where Rt is a K × 1-vector
consisting of the returns of the K benchmark assets at time t, and rt is an
N × 1-vector of the returns of the N test assets at time t. The expected
returns of the K +N assets are given by µ = E[RTot,t] = (µ⊺Rt

, µ⊺rt)⊺, where
µRt and µrt denote a K × 1-vector and an N × 1-vector of the expected
returns of the benchmark assets and the test assets respectively. Let us
furthermore define the covariance matrix of the returns of the K +N assets
as the following block matrix

V = V ar(RTot,t) = (V11 V12
V21 V22

) ,

where we assume that the covariance matrix V is nonsingular, and V11, V12,
V21, and V22 denote a K ×K-matrix, a K ×N -matrix, an N ×K-matrix and
an N ×N -matrix respectively.

Let α and εt denote two N × 1-vectors, where the first-mentioned is a
vector of intercepts, and the latter is a vector of disturbances at time t.
Let furthermore β be an N ×K-matrix consisting of regression coefficients.
Assume that the expectation of vector εt is a vector of size N consisting of
only zeros, E[εt] = 0N . Moreover, assume that the expectation of εtR

⊺

t is
equal to an N ×K-matrix consisting of zeros, E[εtR⊺

t ] = 0N×K . Huberman
and Kandel [16] then considered the following linear regression model

rt = α + βRt + εt. (12)

Here, rt, Rt, and εt are random vectors, and it is assumed that εt is not
correlated with Rt.

Proposition 1. The vector α and the matrix β can be obtained by using
the following formulas

α = µrt − βµRt ,

and
β = V21V −1

11 .

Proof. The first expression can be shown by first taking the expectation of
Equation (12)

E[rt] = E[α + βRt + εt] = α + βE[Rt] + 0N = α + βµRt .

Using that E[rt] = µrt , and solving for α in the expression above will give
us that α = µrt − βµRt . To prove that β = V21V

−1
11 , we can multiply the

vector R⊺

t on both sides (on the right) of Equation (12), and then take the
expectation of that expression

E[rtR⊺

t ] = E[αR⊺

t + βRtR⊺

t + εtR⊺

t ]
= αE[R⊺

t ] + βE[RtR⊺

t ] + 0N×K

= (µrt − βµRt)µ⊺Rt
+ βE[RtR⊺

t ]
= µrtµ⊺Rt

+ βV11,

11



where we have used that E[εtR⊺

t ] = 0N×K in the second equality, and the
expression α = µrt − βµRt in the third equality. The last equality holds
because E[RtR⊺

t ] − µRtµ
⊺

Rt
= V11. Solving for β yields

β = (E[rtR⊺

t ] − µrtµ⊺Rt
)V −1

11 = V21V −1
11 .

Note that E[rtR⊺

t ] − µrtµ⊺Rt
is an N ×K-matrix containing covariances be-

tween the elements in the vectors rt and Rt. Hence,

E[rtR⊺

t ] − µrtµ⊺Rt
= V21.

The spanning test will verify the null-hypothesis of spanning, which can
be expressed as

H0 ∶ α = 0N and 1N − β1K = 0N , (13)

against the alternative-hypothesis

H1 ∶ α ≠ 0N or 1N − β1K ≠ 0N ,

where 1N and 1K denote an N × 1-vector and a K × 1-vector consisting of
ones respectively.

By testing α = 0N , we test whether the TP has zero weights in the N
test assets, and we test whether the MVP has zero weights in the N test
assets by testing 1N − β1K = 0N . To motivate this, let us assume that we
have two portfolios located on the minimum-variance frontier of the K +N
risky assets and that the expected return of the MVP is not equal to zero,

i.e., µ⊺V −11K+N

1⊺K+NV
−11K+N

≠ 0, where 1⊺K+NV
−11K+N ≠ 0 since V is positive definite,

hence it implies that 1⊺K+NV
−1µ ≠ 0. The weights of the two portfolios are

given by the following expressions (see Section 2.1.1 and Section 2.1.2)

w1 =
V −1µ

1⊺K+NV
−1µ

,

and

w2 =
V −11K+N

1⊺K+NV
−11K+N

.

The first portfolio is the TP when the expected return of the risk-free asset
is zero (or in the absence of risk-free assets), and the other portfolio is the
MVP. Let us use the formula for the inverse of a partitioned matrix on the
nonsingular matrix V , and let Ω = V22 − V21V −1

11 V12 for simplicity, then we
obtain that

V −1 = (
V −1
11 + V −1

11 V12(V22 − V21V −1
11 V12)−1V21V −1

11 −V −1
11 V12(V22 − V21V −1

11 V12)−1

− (V22 − V21V −1
11 V12)

−1
V21V

−1
11 (V22 − V21V −1

11 V12)
−1 )

= ...

= (V
−1
11 + β⊺Ω−1β −β⊺Ω−1

−Ω−1β Ω−1 ) .

12



The derivation of the inverse covariance matrix can be found in Appendix
A.1.2.

Proposition 2. Let Q = (0N×K , IN), where IN is an N ×N -identity matrix.
Then the expressions of the weights of the N test assets in the two portfolios
(TP and MVP) can be written as

Qw1 =
Ω−1α

1⊺K+NV
−1µ

, and Qw2 =
Ω−1(1N − β1K)
1⊺K+NV

−11K+N
, (14)

which depend on α and 1N − β1K respectively.

Proof. Recall that µ = (µ⊺Rt
, µ⊺rt)⊺ and α = µrt −βµRt . Hence, the weights of

the N test assets in the TP can be expressed as

Qw1 =
QV −1µ

1⊺K+NV
−1µ

= (0N×K IN)(V
−1
11 + β⊺Ω−1β −β⊺Ω−1

−Ω−1β Ω−1 ) µ

1⊺K+NV
−1µ

= (−Ω−1β,Ω−1)µ
1⊺K+NV

−1µ

= (−Ω−1β,Ω−1)(µRt

µrt
) 1

1⊺K+NV
−1µ

= −Ω−1βµRt +Ω−1µrt
1⊺K+NV

−1µ

= Ω−1(µrt − βµRt)
1⊺K+NV

−1µ

= Ω−1α

1⊺K+NV
−1µ

,

which depends on α. Similarly, by first noting that the vector 1K+N can be
rewritten as 1K+N = (1⊺K ,1⊺N)⊺, then we can express the weights of the N
test assets in the MVP as the following

Qw2 =
QV −11K+N

1⊺K+NV
−11K+N

= (−Ω−1β,Ω−1)1K+N

1⊺K+NV
−11K+N

=
(−Ω−1β,Ω−1)(1TK ,1⊺N)⊺

1⊺K+NV
−11K+N

= −Ω−1β1K +Ω−11N
1⊺K+NV

−11K+N

= Ω−1(1N − β1K)
1⊺K+NV

−11K+N
,

13



which depends on 1N − β1K .

Hence, we can see from Equation (14) that testing α = 0N implies testing
whether the TP of the K +N assets has zero weights in the N test assets,
and testing 1N − β1K = 0N implies testing whether the MVP of the K +N
risky assets will have zero weights in the N test assets. From the two-fund
theorem, we know that one can obtain each possible portfolio that lies on
the minimum-variance frontier if we have the weights and expected return of
two portfolios on the same minimum-variance frontier (see Equation (11)).
Hence, if both the TP and the MVP on the minimum-variance frontier of
the K+N assets have zero weights in the N test assets, then the formula for
the two-fund theorem in Equation (11) shows that the weights of the N test
assets in each portfolio on the same minimum-variance frontier will also be
zero. In other words, the minimum-variance frontier of the K+N assets will
be the same as the minimum-variance frontier of the K benchmark assets.

3.1.1 Spanning test based on multivariate regression

Recall the regression model described in Equation (12), where we have data
of returns of the K +N assets over T time points, or periods. Let us assume
that α and β are constant over time. We can then estimate them by using
a multivariate regression model expressed as

Y =XB +E,

where Y denotes a T ×N -matrix of the returns of the N test assets, rt, over
a time series where t = 1,2, ..., T . The matrix X is a T × (K + 1)-matrix
consisting of ones in the first column, and the returns of the K benchmark
assets, Rt for t = 1,2, ..., T , in the other columns. In other words, the tth
row in X is given by [1,R⊺

t ], where Rt is a vector of size K consisting
of the returns of the K benchmark assets at the time point, or period t.
Furthermore, B = [α,β]⊺ is a (K + 1)×N -matrix, and E is a T ×N -matrix,
where the tth row is given by a vector of the disturbances at the time point
or period t, ε⊺t , for t = 1,2, ..., T . To clarify, we can write these matrices as

Y =
⎛
⎜⎜⎜
⎝

r⊺1
r⊺2
⋮
r⊺T

⎞
⎟⎟⎟
⎠
, X =

⎛
⎜⎜⎜
⎝

1 R⊺

1

1 R⊺

2

⋮ ⋮
1 R⊺

T

⎞
⎟⎟⎟
⎠
, B = (α

⊺

β⊺
) , E =

⎛
⎜⎜⎜
⎝

ε⊺1
ε⊺2
⋮
ε⊺T

⎞
⎟⎟⎟
⎠
,

where rt for t = 1,2, ..., T , is a vector of size N (consisting of the returns of the
test asset) as in Section 3.1, α is a vector consisting of N intercepts, and β⊺

is a K×N -matrix. Moreover, we should also assume that T ≥ N+K+1. This
assumption implies that there exists an inverse of the matrix X⊺X, see The-
orem 3.1.4 in Muirhead [22]. Additionally, we assume that the disturbances,
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εt for t = 1,2, ..., T , conditioned on the returns of the K benchmark assets
Rt for t = 1,2, ..., T , are independent and identically distributed (i.i.d.), and
follow a multivariate normal distribution with a mean-vector of size N con-
taining solely zeros and a covariance matrix denoted as Σ, which can be
written as N(0N ,Σ). Hence, E will be N(0T×N , IT ⊗Σ)-distributed under
the normality assumption of the disturbances conditioned on the returns of
the K risky assets 1, where ⊗ denotes the Kronecker product, and 0T×N is a
T ×N matrix of zeros [22]. Furthermore, the unconstrained maximum likeli-
hood estimators of the matrices B and Σ are obtained by using the following
expressions (see Appendix A.1.3 for the derivation of the formulas)

B̂ ≡ [α̂, β̂]⊺ = (X⊺X)−1X⊺Y,

Σ̂ = 1

T
(Y −XB̂)⊺(Y −XB̂).

Under the assumption that the disturbances εt are i.i.d. N(0N ,Σ)-distributed,
the maximum likelihood estimator of B conditionally on the returns of the
benchmark assets will be normally distributed with the mean-matrix B and
covariance matrix (X⊺X)−1 ⊗ Σ according to Muirhead [22]. This can be
denoted as

B̂∣X ∼ N[B, (X⊺X)−1 ⊗Σ],

and the vectorization of B̂⊺ conditionally on X will then be normally dis-
tributed with the vectorization of B⊺ as the mean-vector and (X⊺X)−1 ⊗Σ
as the covariance matrix,

vec(B̂⊺)∣X ∼ N [vec(B⊺), (X⊺X)−1 ⊗Σ] .

Furthermore, T Σ̂ will follow an N -dimensional central Wishart distribution
with T −K − 1 degrees of freedom and covariance matrix Σ under the nor-
mality assumption, which can be denoted as

T Σ̂ ∼WN (T −K − 1,Σ) .

Let us define Θ = [α,1N −β1K]⊺, then we can rewrite the null-hypothesis in
Equation (13) as

H0 ∶ Θ = 02×N , (15)

where 02×N is a 2 ×N -matrix with only zeros. The matrix Θ can also be
written in the following form Θ = AB +C, where

A = (1 0⊺K
0 −1⊺K

) and C = (0⊺N
1⊺N

) .

1The unconditional distribution of E will also have this distribution, N(0T×N , IT ⊗Σ),
since the conditional distribution of E does not depend on X.
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To obtain the maximum likelihood estimator of Θ, one can use the formula
Θ̂ ≡ [α̂,1N − β̂1K]⊺ = AB̂ + C, where the vectorization of Θ̂⊺ is normally
distributed as follows

vec(Θ̂⊺)∣X ∼ N [vec(Θ⊺), (Ĝ/T )⊗Σ]

with

Ĝ = TA(X⊺X)−1A⊺ = (1 + µ̂⊺Rt
V̂ −1
11 µ̂Rt µ̂⊺Rt

V̂ −1
11 1K

µ̂⊺Rt
V̂ −1
11 1K 1⊺K V̂

−1
11 1K

) ,

where µ̂Rt = (1/T )∑Tt=1Rt and V̂11 = (1/T )∑Tt=1(Rt − µ̂Rt)(Rt − µ̂Rt)⊺.
Remember that conditional on X, the matrix E is assumed to follow

a N(0T×N , IT ⊗ Σ)-distribution, so Y is assumed to be N(XB, IT ⊗ Σ)-
distributed. From Muirhead [22], one can then find that the likelihood
function of Y conditionally on X is given by

L(B,Σ) = (2π)−NT /2∣Σ∣−T /2 exp{Trace [−1

2
(Y −XB)Σ−1(Y −XB)⊺] }.

Let B̃ and Σ̃ denote the constrained maximum likelihood estimators of B
and the covariance matrix Σ, respectively, i.e., the maximum likelihood es-
timators of B and Σ when H0 is true. Then, the asymptotic likelihood ratio
test to verify H0 is given by

LR = −2{ log [L(B̃, Σ̃)] − log [L(B̂, Σ̂)] } = −T log(∣Σ̂∣
∣Σ̃∣

) a∼ χ2
2N .

In other words, the likelihood ratio test statistic will asymptotically follow
a χ2-distribution with 2N degrees of freedom. By continue following Kan
and Zhou [17], we let U = ∣Σ̂∣/∣Σ̃∣. Moreover, they mentioned that it is
possible to compute the likelihood ratio test statistic without calculating
the constrained maximum likelihood estimator Σ̃. We should first note that

Σ̃ − Σ̂ = Θ̂⊺Ĝ−1Θ̂

according to Seber [29]. By using this expression and some determinant
properties, we can rewrite 1/U as the following

1

U
= ∣Σ̃∣

∣Σ̂∣
= ∣Σ̂−1Σ̃∣ = ∣Σ̂−1(Σ̃ − Σ̂ + Σ̂)∣ = ∣Σ̂−1(Σ̂ + Θ̂⊺Ĝ−1Θ̂)∣,

which is equivalent to

1

U
= ∣IN + Σ̂−1Θ̂⊺Ĝ−1Θ̂∣ = ∣I2 + ĤĜ−1∣,

where the second equality holds according to the equation (B.1.16) of [28],
and

Ĥ = Θ̂Σ̂−1Θ̂⊺ = ( α̂⊺Σ̂−1α̂ α̂⊺Σ̂−1(1N − β̂1K)
α̂⊺Σ̂−1(1N − β̂1K) (1N − β̂1K)⊺Σ̂−1(1N − β̂1K)) .
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Let us denote λ1 and λ2 as the two eigenvalues2 of the matrix ĤĜ−1, where
we assume that λ1 ≥ λ2 ≥ 0. Then we can obtain 1/U by using the following
formula

1

U
= (1 + λ1)(1 + λ2),

and the desired likelihood ratio test can then be expressed as

LR = T log ( 1

U
) = T [log(1 + λ1) + log(1 + λ2)] = T

2

∑
i=1

log(1 + λi) a∼ χ2
2N .

Furthermore, Kan and Zhou [17] provided two asymptotic spanning
tests, the Wald test and the Lagrangian multiplier test, which are based
on the Lawley-Hotelling trace and the Pillai’s trace respectively. From An-
derson [2], we know that one can test a null-hypothesis by using the Lawley-
Hotelling trace, which can be obtained by calculating
Trace(ĤĜ−1). Alternatively, one can use the Pillai’s trace by computing
Trace[ĤĜ−1/(I2 + ĤĜ−1)] to test for the null-hypothesis. Both test statis-
tics obtained by multiplying the Lawley-Hotelling trace and Pillai’s trace by
T are asymptotically χ2-distributed. Hence, the asymptotic Wald test to
verify the hypothesis of spanning presented in the paper by Kan and Zhou
[17] can be obtained by the following

W = T (λ1 + λ2) a∼ χ2
2N .

To perform the asymptotic Lagrange multiplier test, we can use the following
expression

LM = T
2

∑
i=1

λi
1 + λi

a∼ χ2
2N .

All three tests (the Likelihood ratio test, the Wald test, and the Lagrange
multiplier test) are asymptotic χ2

2N -distributed. However, the three tests
might give different results when one uses them to perform a hypothesis
test. Berndt and Savin [4] argued that the following inequality holds when
the samples are finite W ≥ LR ≥ LM . Hence, Kan and Zhou [17] stated
that it might be important to study and apply all three tests, and not only
focusing on the likelihood ratio test.

3.1.2 Spanning test for small samples

Asymptotic tests can lead to misleading results if a sample is not large
enough, and might, therefore, be unsuitable to use when one has small sam-
ples. When there is no risk-free asset, Huberman and Kandel [16] proposed

2The eigenvalues, λ1 and λ2, can be seen as measures of the maximum and minimum
differences, respectively, between the potential minimum-variance frontiers in terms of
squared sample Sharpe ratios. More details can be seen in Lemma 1 from the paper by
Kan and Zhou [17].
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the exact distribution of a statistic (which is a monotone transformation of
the likelihood ratio test) when one wants to test H0 against H1. However,
there is a small typo in the paper by Huberman and Kandel [16], which Kan
and Zhou [17] noticed. The exact distribution of the test statistic under H0

when N ≥ 2 can be written as

( 1√
U
− 1)(T −K −N

N
) ∼ F2N,2(T−K−N),

which has an F -distribution with 2N and 2(T −K −N) degrees of freedoms.
In the case with only one test asset, N = 1, the exact distribution of the test
statistic under H0 is given by

( 1

U
− 1)(T −K − 1

2
) ∼ F2,T−K−1.

Furthermore, from Kan and Zhou [17] we can see that the exact dis-
tribution of the Wald test under H0 when one has two or more test assets
is

P (λ1 + λ2 ≤ w) = I w
2+w

(N − 1, T −K −N)

−
B (1

2 ,
T−K
2

)
B (N

2 ,
T−K−N+1

2
)
(1 +w)−(

T−K−N
2

)I
(

w
2+w
)
2 (N − 1

2
,
T −K −N

2
) ,

where B(a, b) is a beta function with a and b as the parameters, and Ix(a, b)
is the regularized incomplete beta function, which is the incomplete beta
function B(x;a, b) divided by the beta function B(a, b).

Kan and Zhou [17] also showed that the exact distribution of the La-
grange multiplier test under H0 when one has two or more test assets and
for 0 ≤ v ≤ 2 is the following

P ( λ1
1 + λ1

+ λ2
1 + λ2

≤ v) = I v
2
(N − 1, T −K −N + 1)

−
∫
v2/4
max(0,v−1)

u
N−3
2 (1 − v + u)T−K−N

2 du

2B(N − 1, T −K −N + 1) .

3.1.3 Spanning test when the normality assumption is violated
and in the presence of heteroscedasticity

Kan and Zhou [17] mentioned that the asymptotic mean-variance spanning
tests described previously will not be asymptotically χ2

2N -distributed un-
der H0 if the residuals are conditionally heteroscedastic. Furthermore, the
distributions of the exact tests will not follow the distributions shown in
the previous section in this case. They continued by letting the readers
know how one can deal with this issue. The suggested solution is to use the
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approach in the paper by Ferson, Foerster, and Keim [11], which is based
on the generalized methods of moments (GMM) presented in a paper by
Hansen [12].

Following the paper by Kan and Zhou [17], we should let xt = (1,R⊺

t )⊺,
then the disturbances can be expressed as εt = rt − B⊺xt for t = 1,2, ..., T .
Let furthermore, gt = xt ⊗ εt. We should then use the following moment
conditions in order to obtain the GMM estimator of matrix B,

E[gt] = E[xt ⊗ εt] = 0(K+1)N .

Then, we would have to make assumptions of the returns of the K +N risky
assets, RTot,t = (R⊺

t , r
⊺

t )⊺, being stationary, and where the fourth moments
are finite. The GMM estimate of B is then obtained by minimizing the
following formula

ḡT (B)⊺S−1T ḡT (B),
where ST is a consistent estimate of E[gtg⊺t ] in the absence of serial corre-
lation for gt, and ḡT (B) is the sample moments, which is given by

ḡT (B) = 1

T

T

∑
t=1

xt ⊗ εt =
1

T

T

∑
t=1

xt ⊗ (rt −B⊺xt).

Furthermore, Kan and Zhou [17] mentioned that the unconstrained GMM
estimate of B is identical to the maximum likelihood estimate B̂ in Section
3.1.1 in this case. Hence, Θ̂ based on the GMM estimate of B would also
be the same as in Section 3.1.1. The spanning test based on GMM can be
seen as a variant of the Wald test. The test statistic can be obtained by the
formula as follows, which is asymptotically χ2-distributed with 2N degrees
of freedom,

Wa = Tvec(Θ̂⊺)⊺ [(AT ⊗ IN)ST (A⊺

T ⊗ IN)]−1 vec(Θ̂⊺) a∼ χ2
2N .

The matrix AT in the expression above is given by

AT = (1 + â1 −µ̂⊺Rt
V̂ −1
11

b̂1 −1⊺K V̂
−1
11

) ,

where â1 = µ̂⊺Rt
V̂ −1
11 µ̂Rt , b̂1 = µ̂⊺Rt

V̂ −1
11 1K , µ̂Rt = (1/T )∑Tt=1Rt, and

V̂11 = (1/T )∑Tt=1(Rt − µ̂Rt)(Rt − µ̂Rt)⊺. More details about GMM can be
found in Hansen [12].

3.2 Robustness analysis: Design of simulation study

In this section, we describe some simulation procedures used in the thesis to
study the robustness of non-normality of the asymptotic and exact mean-
variance spanning tests. Let E∗ and ε∗t denote a simulated sample of E and
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εt respectively. One can study the robustness of the tests by first simulat-
ing each row in E∗, i.e., ε∗t for t = 1,2, ..., T , from a N(0N ,Σ)-distribution.
Then, one may use the simulated matrix E∗ and a matrix B, such that H0

(or H1) is satisfied, to obtain new monthly and weekly returns of the test
assets, respectively. One can then perform the asymptotic and exact tests
as usual with the new simulated return of the test assets. This procedure
will be repeated until we have performed 10,000 simulations in total, and we
will then compute the actual probabilities of rejecting the null-hypothesis in
(13) when H0 (or H1) is true. Likewise, one can perform this simulation pro-
cedure but where each row in E∗ is drawn from a multivariate t-distribution
instead to obtain the probabilities of rejection. One can then study whether
the probabilities obtained using multivariate normally distributed distur-
bances and multivariate t-distributed disturbances, respectively, differ a lot
or are quite similar. By doing so, one can study the deviation of the perfor-
mance of the spanning tests when the residuals are i.i.d. but not normally
distributed. Furthermore, one might want to analyze the performance of
the tests when the disturbances are independent but possibly not identi-
cally distributed. To do this, one can compute the probabilities of rejecting
the null-hypothesis in (13) when H0 (or H1) is true by performing a similar
simulation procedure as before, but where one applies the residual boot-
strap resampling method to obtain E∗ instead. Lastly, one would probably
also want to study the performance of the spanning tests when the residuals
might show heteroscedastic or autocorrelated patterns. One option to do
this is to use a non-overlapping block bootstrap in order to resample the
matrix E∗. These are some methods that will be used in our thesis, and a
more detailed description of the simulation procedures when E∗ is simulated
from a multivariate normal distribution, multivariate t-distribution, resid-
ual bootstrap, and non-overlapping block bootstrap can be seen in Section
3.2.1, 3.2.2, 3.2.3 and 3.2.4 respectively.

Let us first make it clear how we obtain some parameter matrices, which
will be consistent for almost all the simulation procedures. The first pa-
rameter matrix we need in order to perform most of our simulations is the
covariance matrix Σ. We will draw the matrix Σ from a Wishart distribu-
tion with N degrees of freedom and covariance matrix IN . The B-matrix
we will use in all the simulation procedures is based on the maximum likeli-
hood estimated matrix B̂ obtained using our original dataset with monthly
returns. In other words, we set the B̂-matrix as the B-matrix. Then, we
force the matrix B to satisfy H0 (or a possible H1 case):

• B under H0: Set the first row of the matrix B to zeros (so α⊺ = 0⊺N ),
and then divide each element in the matrix with its corresponding
column sum (hence, 1⊺Kβ

⊺ = 1⊺N ).

• B under H1: The matrix B under some possible cases of H1 will
build on the matrix B under H0. In other words, we will start by
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using the matrix B where we forced it to satisfy H0, and then make
some changes in one or two rows, such that the matrix B will satisfy
one of the following possibilities of H1:

– Case 1: The B matrix under this H1 is very similar to H0, but
all the elements in the first row of B are set to be 0.00001 instead
of zero, and we also add the value 0.00001 to each element in the
second row.

– Case 2: Each element in the first row of B is set to be 0.001
instead of zero, and the value 0.001 is added to each element in
the second row.

– Case 3: The elements in the first row of B are all set to the value
0.1. This value is also added to each element in the second row.

– Case 4: We let all the elements in the first row of B to be
zero (α⊺ = 0⊺N ). Furthermore, we add the value 0.00001 to each
element in the second row, so each column in B are summed up
to 1.00001.

– Case 5: The first row of B consists of solely zeros (α⊺ = 0⊺N ),
while we add the value 0.001 to each element in the second row.
Hence, we have that each element in 1⊺Kβ

⊺ will be equal to 1.001.

– Case 6: The first row of B consists of only zeros as the previous
case (α⊺ = 0⊺N ), but we add the value 0.1 to each element in the
second row instead of 0.001. So, 1⊺Kβ

⊺ is equal to a vector where
each element is equal to 1.1.

– Case 7: All the elements in the first row of B are still zeros
(α⊺ = 0⊺N ), but each element in the second row will be added by
the value 1, which implies that each element in 1⊺Kβ

⊺ is equal to
2.

– Case 8: All the elements in the first row of B are set to 0.00001,
while the other values in the matrix remain the same as under
H0. In other words, we have that 1⊺Kβ

⊺ = 1⊺N .

– Case 9: The elements in the first row of B are all equal to 0.001,
and the remaining values in the matrix are identical to those
under H0.

– Case 10: The elements in the first row of B are all equal to 0.1,
while the other values in the matrix are the same as those under
H0.

Note that we have that both the TPs and the MVPs are different (α ≠ 0N
and 1N − β1K ≠ 0N ) under cases 1 to 3 and that the TPs are the same
while the MVPs differ (α = 0N and 1N − β1K ≠ 0N ) under cases 4 to 7.
Furthermore, we have that the TPs differ while the MVPs are identical
(α ≠ 0N and 1N − β1K = 0N ) under cases 8 to 10.
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3.2.1 Simulate the residuals from a multivariate normal distri-
bution

Recall that the covariance matrix Σ is simulated from a Wishart distribution
and that the matrix B satisfies H0 (or a possible case of H1, depending on
the interest). The simulation procedure to obtain the actual probability of
rejecting the null-hypothesis in (13) at the 5% significance level when H0

(or H1) is true for each spanning test is the following:

1. Simulate a matrix E∗, by simulating each row, ε∗t for t = 1,2, ..., T ,
from the N(0N ,Σ)-distribution.

2. Obtain new returns of the test assets, which we denote as Y ∗, by using
the formula Y ∗ =XB +E∗.

3. Use X and Y ∗ to compute the maximum likelihood estimators of B
and Σ, respectively, i.e., calculate B̂∗ and Σ̂∗ by using the formulas for
B̂ and Σ̂, respectively, in Section 3.1.1, where we set Y ∗ as Y . Then
use B̂∗ and Σ̂∗ to obtain the eigenvalues λ∗1 and λ∗2 . These eigenvalues
are obtained in the same way as the eigenvalues λ1 and λ2 in Section
3.1.1, but where B̂∗ and Σ̂∗ are used instead of B̂ and Σ̂.

4. Perform the asymptotic and exact spanning tests using the eigenvalues
obtained in the previous step (see Section 3.1.1).

5. Repeat steps 1 to 4 until we have made 10,000 simulations.

6. Count the number of times we reject H0 at the 5% significance level for
each spanning test, and then divide each of them by 10,000 to obtain
the actual probabilities of rejecting the null-hypothesis in (13) when
H0 (or H1) is true for the tests.

3.2.2 Simulate the residuals from a multivariate t-distribution

We will also use the covariance matrix Σ simulated from a Wishart distri-
bution and the matrix B satisfying H0 (or a possible case of H1) in this
simulation procedure. The steps of the procedure to get the actual prob-
ability of rejecting the null-hypothesis in (13) at the 5% significance level
when H0 (or H1) is true for each test are described below:

1. Simulate a matrix E∗, by simulating each ε∗t for t = 1,2, ..., T , from a
multivariate t-distribution with five degrees of freedom 3 and covari-
ance matrix Σ.

3Kan and Zhou. [17] used a multivariate t-distribution with five degrees of freedom
when they studied the power of the spanning tests. Hence, we simulate the residuals from
a similar distribution
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2. Obtain new returns of the test assets, Y ∗, by using the formula
Y ∗ =XB +E∗.

3. Compute the maximum likelihood estimators ofB and Σ, i.e., calculate
B̂∗ and Σ̂∗, and use them to obtain the eigenvalues λ∗1 and λ∗2 (see
Section 3.1.1, but where we use Y ∗, B̂∗, and Σ̂∗ instead of Y , B̂, and
Σ̂ respectively).

4. Perform the asymptotic and exact spanning tests using the eigenvalues
obtained in step 3 (see Section 3.1.1).

5. The steps 1 to 4 will be repeated until we have made 10,000 simula-
tions.

6. Count the number of times one can reject H0 at the 5% significance
level for each spanning test. Compute the actual probability of reject-
ing the null-hypothesis in (13) when H0 (or H1) is true for each test
by dividing each count by 10,000.

3.2.3 Residual bootstrap to simulate the residuals

We will use the matrix B, which we have forced to satisfy H0 (or a possible
case of H1) in this bootstrap procedure. The procedure to compute the
actual probabilities of rejecting the null-hypothesis in (13) at the 5% sig-
nificance level when H0 (or H1) is true for the spanning tests are described
below:

1. Use X and Y to fit a multivariate regression model and use the residual
matrix of this model Ê to approximate the error matrix E.

2. Simulate a T × N -matrix E∗, by drawing each row in E∗ from the
matrix Ê with replacement. In other words, we draw T rows from Ê
with replacement.

3. The next step is to obtain new returns of the test assets, Y ∗, by using
the formula Y ∗ =XB +E∗.

4. In this step, we compute the maximum likelihood estimators of B and
Σ, and then the eigenvalues λ∗1 and λ∗2 by using the formulas in Section
3.1.1, but with Y ∗ set as Y .

5. Perform the asymptotic and exact spanning tests using the eigenvalues
obtained in the previous step (see Section 3.1.1).

6. Repeat steps 2 to 5 until we have made 10,000 simulations.
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7. We can calculate the actual probabilities of rejecting the null-hypothesis
in (13) when H0 (or H1) is true for each spanning test by first counting
the number of times we can reject H0 for each test at the 5% signifi-
cance level. Then, we can obtain the desired probabilities by dividing
each count by 10,000.

3.2.4 Non-overlapping block bootstrap to simulate the residuals

In this procedure, we will again use the matrix B, which was forced to satisfy
H0 (or a possible case of H1). To obtain the actual probability of rejecting
the null-hypothesis in (13) at the 5% significance level when H0 (or H1) is
true for each test, where we simulate E∗ by using a non-overlapping block
bootstrap method, we can follow the steps presented below:

1. Use X and Y to fit a multivariate regression model and use the residual
matrix of this model Ê to approximate the error matrix E.

2. Divide the residual matrix Ê into twelve equally large blocks if one
uses monthly returns or eleven equally large blocks if one uses weekly
returns. Hence, the twelve blocks for monthly returns can be expressed
as

Êblock1 =
⎛
⎜
⎝

ε̂⊺1
⋮
ε̂⊺12

⎞
⎟
⎠
, Êblock2 =

⎛
⎜
⎝

ε̂⊺13
⋮
ε̂⊺24

⎞
⎟
⎠
, ⋯, Êblock12 =

⎛
⎜
⎝

ε̂⊺133
⋮

ε̂⊺144

⎞
⎟
⎠
,

and the eleven blocks used for weekly returns as

Êblock1 =
⎛
⎜
⎝

ε̂⊺1
⋮
ε̂⊺57

⎞
⎟
⎠
, Êblock2 =

⎛
⎜
⎝

ε̂⊺58
⋮

ε̂⊺114

⎞
⎟
⎠
, ⋯, Êblock11 =

⎛
⎜
⎝

ε̂⊺571
⋮

ε̂⊺627

⎞
⎟
⎠
.

Applying the non-overlapping block bootstrap procedure on Ê could
probably preserve some patterns of heteroscedasticity or autocorrela-
tion in Ê in the resampling procedure (if there are any). We choose to
divide the blocks into twelve and eleven equally large blocks, respec-
tively, because each block will then consists of twelve and 57 resid-
uals, which are not very small. Too small blocks might not be able
to preserve patterns of possible heteroscedasticity or autocorrelation
(see chapter 2 in [19] for more details about non-overlapping block
bootstrap).

3. Simulate a matrix E∗, by drawing twelve or eleven blocks from the
blocks described in the previous step (depending on if one uses monthly
or weekly returns). We will draw these blocks with replacement.

4. Obtain new returns of the test assets, Y ∗, by using the formula
Y ∗ =XB +E∗.
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5. Compute the maximum likelihood estimators of B and Σ by using the
expressions in Section 3.1.1, where we use Y ∗ as Y instead. By using
these maximum likelihood estimators, we can obtain the eigenvalues
λ∗1 and λ∗2 (see Section 3.1.1).

6. In this step, we perform the asymptotic and exact spanning tests using
the eigenvalues, λ∗1 and λ∗2 , obtained in step 5 (see Section 3.1.1).

7. Repeat steps 3 to 6 until we have run these steps 10,000 times in total.

8. Count the number of times one rejects H0 at the 5% significance level
for each mean-variance spanning test. Divide each value by 10,000 to
get the actual probabilities of rejecting the null-hypothesis in (13) at
the 5% significance level when H0 (or H1) is true for the tests.

4 Data description

The analysis of our study was performed with the statistical software R (ver-
sion 1.1.463), where we used the following packages: tidyverse, tidyquant,
rvest, httr, xml2, MVN, mvShapiroTest, and gmm.

We have used two datasets containing monthly and weekly returns, re-
spectively, of 21 stocks in the OMXS30 index between the years 2008 to 2019.
The OMXS30 index is a market-weighted price index, and it consists of the
30 most actively traded stocks on the OMX Nordic Exchange Stockholm,
and these are all considered large-cap stocks on the Stockholm stock market
[10, 23]. To obtain the two datasets, we loaded a data consisting of closing
prices for each of the 30 stocks between December 2007 to December 2019
into R by using the tq get() command. The closing prices obtained by using
this command are fetched from Yahoo Finance [21]. Furthermore, we also
noted that the prices obtained were daily prices. However, we observed that
all the stocks in the OMXS30 index are not from different companies. In
fact, two of these 30 stocks are from the same company. Hence the OMXS30
index consists of 29 distinct companies. We saw that Atlas Copco AB has
a Class A share and a Class B share, and the difference between them is
a shareholder’s number of voting rights [1]. Furthermore, we collected a
dataset containing the total ESG scores and the total ESG risk ratings for
the companies in the OMXS30 index, and these scores and ratings were
found at Yahoo Finance. We saw that the Atlas Copco AB Class B stock
did not have a reported total ESG score or a total ESG risk rating in our
ESG dataset, and was therefore excluded from our study. The Atlas Copco
AB Class A stock, on the other hand, had a reported total ESG score and
total ESG risk rating at Yahoo Finance and was hence included in the study.
Furthermore, we noted that six more stocks have missing values in the total
ESG score and the total ESG risk rating, and these were therefore also ex-
cluded from the study. In other words, all the assets without a reported total
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ESG score and total ESG risk rating in Yahoo Finance were not included
in our study. Furthermore, we saw that one of the remaining 23 stocks did
not have reported daily closing prices for the whole study period (the first
reported closing price happened after the year 2010), and another stock had
more than 200 missing values of the daily closing prices. Hence, these two
assets were also excluded from the study. Moreover, three out of the re-
maining 21 stocks contained one or two missing values of their daily closing
prices, and we solved this issue by manually adding the correctly closing
prices into the data, where the prices were found at Avanza. We then di-
vided the dataset containing closing prices into two different datasets, one
were we computed monthly closing prices for each of the 21 stocks, and
one with weekly closing prices. From these two datasets, we calculated the
monthly and weekly returns, respectively, for each stock between the years
2008 to 2019.

To analyze whether the efficient frontier of sustainable stocks and the
efficient frontier of all the 21 stocks are statistically significantly different,
we applied the screening procedure and mean-variance spanning tests. We
screened the assets based on the 90th, 75th, and 50th percentile of the
total ESG score respectively. All the stocks with a higher total ESG score
than the 90th percentile were screened, and they were considered as the
test assets in the first scenario, while the remaining stocks were set as the
benchmark assets. We refer this scenario to as 10% screening throughout
the thesis. Furthermore, we screened all the stocks with a total ESG score
that is higher than the 75th and 50th percentile, respectively, and these
stocks were set as our test assets, while the more sustainable assets (those
assets that were not screened) were set as the benchmark assets. We call
these two scenarios as 25% and 50% screening, respectively, in the thesis.
Additionally, we considered another scenario, which we refer to as ”All” in
our tables. In this scenario, we performed screening on all the stocks with a
total ESG risk rating of medium to severe. These stocks were then set as the
test assets, while the stocks with a total ESG risk rating of negligible to low
were considered as the benchmark assets. The asymptotic and exact mean-
variance spanning tests (see Section 3.1.1 and 3.1.2) were then used for each
screening scenario to see if the difference between the efficient frontier of
the benchmark assets and the efficient frontier of the benchmark assets and
the test assets is statistically significant. Using notations from Section 3, we
denote the number of test assets as N , the number of benchmark assets as
K, and the length of the time series as T . The spanning tests verify H0 (the
null-hypothesis of spanning) by testing if the weights of the test assets are
all equal to zero in the MVP and in the TP. Moreover, H0 is tested against
H1 (the alternative-hypothesis of no spanning).

Furthermore, we checked for the robustness for non-normality thus the
spanning tests assume normality in the residuals. Hence, we used a similar
setup as in Kan and Zhou [17], where we drew disturbances from a multi-
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variate t-distribution with five degrees of freedom to simulate new returns
of the test assets. We simulated 10,000 samples in total by using the simula-
tion procedure presented in Section 3.2.2 to obtain the actual probabilities
of rejecting the null-hypothesis in (13) when H0 and H1 is true, respectively,
for each spanning test. Likewise, we used the simulation procedure in Sec-
tion 3.2.1 to obtain the probabilities of rejecting the null-hypothesis in (13)
when H0 and H1 is true, respectively, when the normality assumption holds.
We then compared these probabilities under the normality assumption with
the probabilities obtained using multivariate t-distributed disturbances. We
also performed two resampling methods, the residual bootstrap and the non-
overlapping block bootstrap (see Section 3.2.3 and 3.2.4), on the residuals
to obtain the probabilities of rejecting the null-hypothesis in (13) when H0

and H1 is true, respectively, when the residuals are probably not i.i.d. Then,
we studied the differences between the obtained probabilities based on these
two procedures and the probabilities obtained under the normality assump-
tion. Furthermore, multivariate normality tests were performed using the
quantile-quantile plot (QQ-plot) based on both the chi-squared quantiles
and the squared Mahalanobis distance, the Mardia’s test, and the general-
ized Shapiro-Wilk’s test, where the latter two are purposed by Mardia [20],
and Villaseñor and González-Estrada [34] respectively.

5 Results of the empirical illustration and simula-
tion study

The results of the asymptotic mean-variance spanning tests where we used
monthly returns and weekly returns are summarized in Table 1 and Table
3 respectively. Furthermore, the results of the exact tests, which were ob-
tained based on monthly returns and weekly returns, can be seen in Table 2
and Table 4 respectively. All the spanning tests that we performed did not
show statistically significant difference between two efficient frontiers when
we applied 10%, 25%, and 50% screening respectively (at least at the 5%
significance level). The results of the six spanning tests when monthly and
weekly returns were used, respectively, and when we screened for all the
unsustainable stocks (stocks with a total ESG risk rating between medium
to severe), showed that we also could not reject H0, that the nine sustain-
able assets span the 21 assets, at all conventional significance levels. This
means that the difference between the minimum-variance frontier of all the
21 assets and each of the minimum-variance frontiers of a smaller number
of assets that are considered more sustainable are statistically insignificant.
Hence, the differences between the efficient frontiers are not statistically
significant as well. An investor that invests in the more sustainable assets
might, therefore, not improve the investment opportunity if she also invests
in the more unsustainable assets.
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Table 1: The tests statistics of the asymptotic spanning tests and their
corresponding p-values based on the monthly returns of the assets. ”LR -
test”, ”W - test”, and ”LM -test” denote the likelihood ratio test, the Wald
test, and the Lagrange multiplier test respectively.

Asymptotic tests

LR - test W - test LM - test

Screening N K T LR p-value W p-value LM p-value

10% 2 19 144 1.183 0.881 1.187 0.880 1.178 0.882

25% 5 16 144 8.008 0.628 8.150 0.614 7.869 0.642

50% 10 11 144 27.723 0.116 29.117 0.085 26.419 0.152

All 12 9 144 30.711 0.162 32.425 0.117 29.116 0.216

Table 2: The test statistics of the three exact spanning tests and their
corresponding p-values obtained by using the monthly returns of the assets,
where ”LR - test”, ”W - test”, and ”LM -test” denote the likelihood ratio
test, the Wald test, and the Lagrange multiplier test respectively.

Exact tests

LR - test W - test LM - test

Screening N K T LR p-value W p-value LM p-value

10% 2 19 144 0.253 0.908 0.008 0.908 0.008 0.908

25% 5 16 144 0.694 0.730 0.057 0.731 0.055 0.729

50% 10 11 144 1.243 0.220 0.202 0.228 0.183 0.212

All 12 9 144 1.153 0.287 0.225 0.296 0.202 0.277
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Table 3: The test statistics and the corresponding p-values of the three
asymptotic spanning tests based on the data with weekly returns, where
”LR - test”, ”W - test”, and ”LM -test” represent the likelihood ratio test,
the Wald test, and the Lagrange multiplier test respectively.

Asymptotic tests

LR - test W - test LM - test

Screening N K T LR p-value W p-value LM p-value

10% 2 19 627 3.872 0.424 3.883 0.422 3.862 0.425

25% 5 16 627 6.596 0.763 6.625 0.760 6.566 0.766

50% 10 11 627 28.533 0.097 28.939 0.089 28.135 0.106

All 12 9 627 31.903 0.129 32.403 0.117 31.413 0.142

Table 4: The test statistics and the corresponding p-values of the three exact
spanning tests based on the data with weekly returns, where ”LR - test”,
”W - test”, and ”LM -test” represent the likelihood ratio test, the Wald
test, and the Lagrange multiplier test respectively.

Exact tests

LR - test W - test LM - test

Screening N K T LR p-value W p-value LM p-value

10% 2 19 627 0.937 0.441 0.006 0.441 0.006 0.440

25% 5 16 627 0.639 0.781 0.011 0.780 0.010 0.782

50% 10 11 627 1.395 0.115 0.046 0.114 0.045 0.115

All 12 9 627 1.301 0.151 0.052 0.150 0.050 0.151
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We saw that H0 can be rejected at the 5% significance level for all six
spanning tests when monthly and weekly returns were used respectively.
Hence, it seems like the asymptotic spanning tests and the exact tests might
give us quite similar results when we use the 5% significance level, even
though we have a fairly small data sample of size 144. However, we see
from Tables 1 and 3 that the asymptotic W test shows that the differences
between the efficient frontiers based on 50% screening using monthly and
weekly returns, respectively, are statistically significant at the 10% signifi-
cance level. Furthermore, the asymptotic LR test using weekly returns does
also reject the hypothesis of spanning at the 10% significance level. The
p-values of the other spanning tests, on the other hand, are all higher than
all conventional significance levels and suggest that we can not reject H0.
Hence, the asymptotic tests and the exact tests might give slightly different
results and one should therefore probably opt to use the exact tests instead
of the asymptotic tests, but it might be interesting to compare the different
spanning tests further. We performed the six spanning tests on assets of
different dimensions and different sample sizes. To do this, we started by
excluding the two assets with the highest total ESG scores, which will be our
test assets. We then chose the first two assets from the remaining 19 assets
as our benchmark assets. Then, we performed the spanning tests with the
data consisting of these two benchmark assets and the two test assets over
three different periods. We continued this procedure by adding more assets
to our test assets and benchmark assets. These analyses were performed on
the data with monthly returns and weekly returns respectively. The results
of the spanning tests where we used monthly returns can be found in Table
5 and the results based on weekly returns are summarized in Table 6.

We can see from Tables 5 and 6 that all the exact spanning tests using
monthly and weekly returns, respectively, do not reject H0 at the 5% signif-
icance level, because all the p-values from the exact tests are much greater
than 0.05, which is the significance level used in this thesis. Furthermore, we
see from the tables that some p-values from the asymptotic W and LR tests
are smaller than 0.05, which means that the difference between the efficient
frontiers is statistically significant at the 5% significance level. Generally,
the three exact tests give similar p-values, while the p-values obtained from
the asymptotic tests can differ from each other and the exact tests. We see
that the p-values obtained by the exact tests are usually higher than the
p-values obtained from the asymptotic tests. For example, from Table 5, we
can see that the p-values of the three exact tests are around 0.2 when N = 10,
K = 2, and T = 50 using monthly returns, which is more than twice as high
as the p-value of the asymptotic LR test, and approximately ten times as
high as the p-value of the asymptotic W test. We can also see from Table
6 that the p-values of the three exact tests are around 0.16 when N = 2,
K = 15, and T = 50 based on weekly returns. This is almost four times as
high as the p-value of the asymptotic LR test, more than five times as high
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as the p-value of the asymptotic W test, and more than twice as high as
the p-value of the asymptotic LM test. Hence, one might obtain misleading
results when one applies the asymptotic spanning tests, especially when T
is not large. Moreover, we can also see that the asymptotic LM test out
of the three asymptotic tests seems to give the closest p-value to the exact
tests from the tables (Tables 5 and 6). One should, therefore, probably opt
to apply the asymptotic LM test if one insists on using an asymptotic test
to verify H0.

Furthermore, we should note that the residuals were assumed to be nor-
mally distributed in the regression model we used to compute the span-
ning tests. The normality assumption was tested by using the generalized
Shapiro-Wilk’s test, Mardia’s test, and graphically illustrated by chi-squared
QQ-plots. The results from the first two tests are summarized in Table 7,
and the QQ-plots are shown in Figures 3 and 4. We saw that the hy-
pothesis of normality could be rejected in all four cases (10%, 25%, 50%
and All screening) using monthly returns as well as in the four cases using
weekly returns from the results of the generalized Shapiro-Wilk’s test, Mar-
dia’s test and the QQ-plots. The QQ-plots in Figures 3 and 4 show that
the squared Mahalanobis distance of the residuals do not fully follow the
straight line, which means that the residuals are not normally distributed.
Therefore, the normality assumption is likely to be violated. We could also
see that the residuals of the monthly returns might be closer to being nor-
mally distributed compared to those from the weekly returns, which makes
it interesting to make further analysis on both monthly and weekly returns
respectively.
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Table 5: The p-values of the asymptotic and exact spanning tests using
monthly returns for different values of T , K, and N .

Asymptotic tests Exact tests

N K T LR W LM LR W LM

2

2
50 0.113 0.091 0.138 0.139 0.136 0.143
100 0.059 0.050 0.069 0.067 0.066 0.069
144 0.164 0.155 0.173 0.174 0.172 0.175

5
50 0.184 0.161 0.209 0.249 0.247 0.251
100 0.145 0.132 0.158 0.172 0.170 0.174
144 0.322 0.314 0.330 0.347 0.346 0.348

10
50 0.744 0.738 0.750 0.826 0.826 0.826
100 0.617 0.611 0.623 0.672 0.671 0.673
144 0.558 0.555 0.562 0.599 0.600 0.598

15
50 0.730 0.723 0.737 0.851 0.850 0.852
100 0.460 0.451 0.468 0.554 0.553 0.554
144 0.798 0.797 0.798 0.832 0.832 0.831

19
50 0.575 0.561 0.588 0.789 0.788 0.790
100 0.932 0.932 0.932 0.954 0.955 0.954
144 0.881 0.880 0.882 0.908 0.908 0.908

5

2
50 0.109 0.058 0.177 0.168 0.157 0.181
100 0.063 0.039 0.094 0.082 0.073 0.092
144 0.230 0.209 0.252 0.257 0.257 0.257

5
50 0.123 0.074 0.184 0.235 0.232 0.238
100 0.079 0.053 0.110 0.116 0.108 0.125
144 0.400 0.382 0.418 0.450 0.454 0.447

10
50 0.593 0.548 0.635 0.800 0.801 0.798
100 0.207 0.178 0.238 0.315 0.316 0.314
144 0.322 0.304 0.340 0.403 0.407 0.399

15
50 0.736 0.712 0.759 0.927 0.929 0.925
100 0.435 0.397 0.473 0.604 0.597 0.613
144 0.651 0.638 0.664 0.744 0.745 0.744

10

2
50 0.083 0.026 0.191 0.212 0.234 0.189
100 0.362 0.275 0.450 0.459 0.449 0.470
144 0.283 0.239 0.329 0.346 0.354 0.337

5
50 0.141 0.055 0.273 0.394 0.412 0.373
100 0.567 0.494 0.634 0.693 0.689 0.697
144 0.316 0.271 0.363 0.409 0.416 0.401

10
50 0.306 0.151 0.483 0.745 0.730 0.759
100 0.194 0.128 0.271 0.381 0.379 0.384
144 0.123 0.090 0.162 0.222 0.227 0.216
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Table 6: The p-values of the asymptotic and exact spanning tests using
weekly returns for different values of T , K, and N .

Asymptotic tests Exact tests

N K T LR W LM LR W LM

2

2
50 0.168 0.147 0.190 0.199 0.200 0.199
100 0.567 0.563 0.571 0.585 0.587 0.583
627 0.625 0.622 0.627 0.636 0.637 0.635

5
50 0.131 0.117 0.145 0.187 0.195 0.178
100 0.729 0.725 0.732 0.753 0.753 0.754
627 0.644 0.641 0.647 0.664 0.664 0.664

10
50 0.134 0.114 0.155 0.247 0.249 0.245
100 0.638 0.633 0.643 0.691 0.690 0.691
627 0.708 0.706 0.711 0.740 0.740 0.740

15
50 0.043 0.031 0.059 0.160 0.160 0.159
100 0.506 0.498 0.514 0.597 0.596 0.598
627 0.629 0.625 0.633 0.682 0.682 0.683

19
50 0.050 0.038 0.064 0.231 0.237 0.225
100 0.329 0.317 0.341 0.452 0.450 0.454
627 0.556 0.550 0.561 0.630 0.629 0.630

5

2
50 0.416 0.346 0.485 0.509 0.500 0.519
100 0.940 0.938 0.942 0.950 0.950 0.949
627 0.934 0.932 0.936 0.941 0.942 0.941

5
50 0.400 0.344 0.456 0.553 0.557 0.548
100 0.903 0.899 0.906 0.926 0.926 0.925
627 0.862 0.857 0.866 0.883 0.884 0.883

10
50 0.203 0.147 0.265 0.450 0.453 0.447
100 0.937 0.934 0.940 0.961 0.961 0.961
627 0.898 0.895 0.901 0.925 0.925 0.924

15
50 0.115 0.078 0.159 0.449 0.468 0.427
100 0.789 0.772 0.805 0.880 0.877 0.883
627 0.884 0.879 0.889 0.924 0.923 0.924

10

2
50 0.222 0.115 0.357 0.414 0.439 0.386
100 0.451 0.366 0.533 0.549 0.539 0.558
627 0.809 0.784 0.832 0.848 0.847 0.849

5
50 0.288 0.167 0.427 0.581 0.601 0.558
100 0.463 0.375 0.547 0.599 0.587 0.612
627 0.795 0.768 0.820 0.851 0.850 0.852

10
50 0.272 0.150 0.415 0.716 0.729 0.699
100 0.399 0.306 0.493 0.607 0.591 0.624
627 0.461 0.404 0.517 0.601 0.596 0.607
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Table 7: Results of the generalized Shapiro-Wilk’s test and Mardia’s test,
which tests for normality. T = 144 indicates that the results are based on
the monthly returns, and T = 627 are based on the weekly returns.

Geneneralized
Shapiro-Wilk’s test Mardia’s test

Screening T p-value

Test

p-value

Test

p-value
Test statistic statistic

statistic for for
skewness kurtosis

10%
144 0.96 < 1 ⋅ 10−6 41.82 < 2 ⋅ 10−8 11.04 0.000
627 0.95 < 3 ⋅ 10−16 39.47 < 6 ⋅ 10−8 23.36 0.000

25%
144 0.96 < 7 ⋅ 10−12 327.26 < 4 ⋅ 10−49 18.78 0.000
627 0.95 < 3 ⋅ 10−16 151.13 < 3 ⋅ 10−16 41.64 0.000

50%
144 0.97 < 3 ⋅ 10−14 668.98 < 8 ⋅ 10−47 13.95 0.000
627 0.94 < 3 ⋅ 10−16 2798.81 0.000 112.21 0.000

All
144 0.98 < 6 ⋅ 10−12 836.34 < 4 ⋅ 10−39 13.50 0.000
627 0.95 < 3 ⋅ 10−16 3559.78 0.000 118.75 0.000

When the normality assumption of the residuals does not hold, one might
want to study the robustness to non-normality for the spanning tests. This
was done by simulating new monthly and weekly returns of the test assets,
respectively, by drawing disturbances from a multivariate t-distribution with
five degrees of freedom (see Section 3.2.2 for more details). We then com-
puted the actual probability of rejecting the null-hypothesis in (13) under
H0 and H1, respectively, at the 5% significance level for each spanning test.
Likewise, we calculated the actual probability of rejecting the null-hypothesis
in (13) under H0 and H1, respectively, at the 5% significance level for each
test when the disturbances were drawn from a multivariate normal distri-
bution (see Section 3.2.1). We then compared the probabilities of rejection
obtained using multivariate t-distributed disturbances with those obtained
using multivariate normally distributed disturbances. The obtained prob-
abilities of rejecting the null-hypothesis in (13) when H0 is true, based on
multivariate normally distributed residuals and multivariate t-distributed
disturbances, respectively, can be found in Table 8, and those when H1 is
true (with different possibilities as H1) are shown in Table 9.
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Figure 3: Chi-squared QQ-plots of the residuals from the regression models
where monthly returns were used.

(a) 10% screening (b) 25% screening

(c) 50% screening. (d) All screening

Figure 4: Chi-squared QQ-plots of the residuals from the regression models
where we used weekly returns.

(a) 10% screening (b) 25% screening

(c) 50% screening. (d) All screening
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When H0 was set to be true, we can see from Table 8 that the actual
probability of rejecting H0 for each test based on multivariate t-distributed
disturbances are similar to the corresponding probability obtained by using
multivariate normally distributed residuals. We also noted that the proba-
bility of rejecting H0 for each of the three exact tests under normality gives
a value of around 0.05, which is the expected probability, thus we used the
5% significance level. Furthermore, the probabilities of rejecting H0 under
H0 using the three exact tests when the disturbances were multivariate t-
distributed gave us similar results. Hence, the probability of getting a type
I error using the exact tests seems to be very similar to the expected value
even if the residuals are i.i.d., but not normally distributed. However, the
asymptotic spanning tests seem to give us a higher probability of reject-
ing H0 than the expected, which can clearly be seen in the probabilities
obtained based on monthly returns, where T is fairly small. Nevertheless,
this can even be seen for some cases when we used weekly returns, where
T = 627. Sometimes we obtain a probability of rejection that is two or
three times higher than the expected based on the asymptotic tests, e.g.,
when we performed 50% screening based on the monthly returns and i.i.d.
normally distributed residuals, we can see that the probability of rejecting
the null-hypothesis in (13) under H0 is 0.116 for the asymptotic LR test,
and 0.165 for the asymptotic W test. However, we also see that the actual
probabilities of rejecting the null-hypothesis in (13) under H0 are generally
closer to the expected value for the three asymptotic tests when we had a
greater value of T , by using weekly returns (T = 627) instead of monthly
returns (T = 144).

Table 8: The probabilities of rejecting the null-hypothesis in (13) when
H0 is true for the spanning tests, and under the assumption of normally
distributed and t-distributed disturbances, respectively, using 10,000 simu-
lations. T = 144 indicates that the results are based on monthly returns and
T = 627 are based on weekly returns.

Multivariate normal distribution Multivariate t-distribution

Asymptotic test Exact test Asymptotic test Exact test

Screening N K T LR W LM LR W LM LR W LM LR W LM

10% 2 19
144 0.085 0.092 0.077 0.047 0.047 0.047 0.087 0.095 0.077 0.051 0.051 0.051
627 0.055 0.057 0.053 0.048 0.048 0.049 0.060 0.061 0.058 0.053 0.053 0.053

25% 5 16
144 0.104 0.125 0.083 0.050 0.051 0.050 0.106 0.126 0.086 0.051 0.051 0.051
627 0.058 0.061 0.055 0.049 0.049 0.049 0.066 0.069 0.063 0.055 0.056 0.055

50% 10 11
144 0.116 0.165 0.075 0.050 0.050 0.051 0.119 0.168 0.076 0.050 0.050 0.050
627 0.064 0.070 0.056 0.051 0.051 0.051 0.064 0.070 0.058 0.054 0.054 0.054

All 12 9
144 0.119 0.175 0.068 0.050 0.051 0.051 0.116 0.179 0.069 0.051 0.051 0.052
627 0.064 0.073 0.055 0.050 0.050 0.050 0.065 0.074 0.058 0.054 0.054 0.054
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Table 9 shows the probabilities of rejecting H0 when H1 was set to be
true, and when the disturbances were multivariate normally distributed and
multivariate t-distributed, respectively, for four different possibilities as H1.
We studied ten different possibilities as H1, which are described in Section
3.2. However, we only showed the results for four of them (cases 3, 6, 7,
and 10) in Table 9. The results of the other cases (cases 1, 2, 4, 5, 8, and
9) can be found in Tables 13 and 14 in Appendix A.3. It might be worth
mentioning that those cases that are the most similar to H0 (cases 1, 4,
and 8) gave us actual probabilities of rejecting H0 that were very similar
to those found in Table 8 (when we performed the simulations under H0).
Under cases 1, 4, and 8, the actual probability of rejecting H0 for each test
when the disturbances are multivariate t-distributed are almost identical to
those obtained using multivariate normally distributed disturbances. Fur-
thermore, cases 2, 5, and 9 gave us similar probabilities of rejection to those
obtained under cases 1, 4, and 8 respectively (with an exception for cases
2 and 9 when 50% screening was performed based on monthly and weekly
returns, respectively, and an explanation to this can be due to the chosen
parameters B and Σ, and the sample size used). The probability of rejec-
tion for each spanning test under cases 2, 5, and 9, respectively, when the
disturbances are multivariate t-distributed are generally very similar to the
corresponding probabilities when the disturbances are multivariate normally
distributed (note that the probabilities obtained based on 50% screening are
higher when the disturbances are normally distributed compared to when
they are multivariate t-distributed).

From Table 9, we see that the probabilities of rejecting H0 under case
6 as H1 when the residuals follow a multivariate normally distribution are
very similar to the corresponding probabilities obtained using multivariate
t-distributed disturbances. However, we noted that the probability of reject-
ing H0 under cases 3, 7, and 10 as H1, respectively, for each test might differ
fairly much when the disturbances are multivariate t-distributed compared
to when they were simulated from a multivariate normal distribution. Over-
all, under cases 3, 7, and 10, the probabilities of rejection obtained based on
multivariate t-distributed disturbances were generally lower than those ob-
tained based on multivariate normally distributed disturbances (note that
the probabilities of rejecting H0 based on 50% screening under normality
and when the residuals are multivariate t-distributed, respectively, gave us
the same values). It also seems like cases 3 and 10 give similar probabilities
of rejection, and the probabilities of rejecting H0 obtained under case 7 are
closer to the corresponding probabilities under the cases 3 and 10 compared
to those obtained under case 6. We can also see that the α-vector seems
to be the main crucial factor that affects the probabilities of rejecting H0

for the spanning tests. When all the elements of α are equal to 0.1 (cases 3
and 10), we can see that the probability of rejecting H0 for each spanning
test does not differ much for different vectors of 1⊺Kβ

⊺. Moreover, when the
α-vector consists of solely zeros (case 6 and 7), the probability of rejecting
H0 for each test becomes high when 1⊺Kβ

⊺ is a vector consisting of larger
values than 0.1 (the elements in 1⊺Kβ

⊺ in case 6 are all set to 0.1, while these
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are all set to 1 in case 7). In other words, the weights of the two tangency
portfolios might mainly determine the power of the spanning tests.

Table 9: The probabilities of rejecting the null-hypothesis in (13) when H1

is true for the tests, under the assumption of having normally distributed
and t-distributed disturbances, respectively, which were obtained based on
10,000 simulations. T = 144 represents that the results were obtained by
using monthly returns, and T = 627 by using weekly returns.

Multivariate normal distribution Multivariate t-distribution

Asymptotic test Exact test Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM LR W LM LR W LM

3

10% 2 19
144 0.423 0.441 0.406 0.327 0.328 0.328 0.302 0.318 0.286 0.218 0.217 0.218
627 0.981 0.981 0.981 0.979 0.979 0.979 0.857 0.861 0.855 0.845 0.845 0.846

25% 5 16
144 0.720 0.755 0.682 0.592 0.597 0.587 0.520 0.560 0.478 0.382 0.385 0.380
627 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996 0.996 0.996 0.996

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 0.430 0.538 0.323 0.278 0.283 0.273 0.316 0.412 0.220 0.183 0.186 0.181
627 0.984 0.987 0.981 0.980 0.981 0.980 0.853 0.867 0.836 0.830 0.833 0.827

6

10% 2 19
144 0.087 0.096 0.081 0.050 0.050 0.050 0.089 0.096 0.081 0.051 0.051 0.051
627 0.079 0.081 0.078 0.070 0.070 0.071 0.075 0.076 0.073 0.066 0.066 0.067

25% 5 16
144 0.111 0.133 0.091 0.055 0.056 0.056 0.111 0.132 0.089 0.055 0.054 0.055
627 0.099 0.103 0.094 0.084 0.084 0.084 0.085 0.090 0.081 0.073 0.073 0.073

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 0.124 0.180 0.071 0.052 0.052 0.052 0.120 0.181 0.070 0.053 0.051 0.052
627 0.081 0.090 0.072 0.066 0.066 0.066 0.075 0.085 0.066 0.063 0.063 0.062

7

10% 2 19
144 0.549 0.567 0.530 0.443 0.444 0.442 0.383 0.400 0.364 0.287 0.287 0.286
627 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.990 0.989 0.988 0.988 0.988

25% 5 16
144 0.874 0.893 0.848 0.791 0.794 0.788 0.674 0.708 0.632 0.537 0.541 0.533
627 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 0.556 0.657 0.429 0.386 0.390 0.379 0.400 0.500 0.291 0.247 0.250 0.241
627 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.996 0.994 0.994 0.994 0.993

10

10% 2 19
144 0.414 0.430 0.397 0.319 0.319 0.320 0.296 0.309 0.278 0.211 0.212 0.212
627 0.978 0.979 0.977 0.974 0.974 0.974 0.843 0.846 0.841 0.831 0.832 0.832

25% 5 16
144 0.706 0.741 0.663 0.577 0.584 0.571 0.504 0.546 0.463 0.371 0.373 0.368
627 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.995 0.994 0.993 0.993 0.993

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 0.419 0.525 0.313 0.268 0.270 0.264 0.310 0.403 0.215 0.179 0.181 0.178
627 0.979 0.983 0.976 0.974 0.975 0.974 0.833 0.849 0.817 0.811 0.814 0.809
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The analysis of the robustness to the assumption of normality made
so far has been based on the assumption that the residuals are identically
distributed, which might not be satisfied in our data. Hence, we study the
actual probabilities of rejecting H0 at the 5% significance level under H0

and H1, respectively, where we simulate new returns (monthly and weekly
respectively) of the test assets by applying the residual bootstrap procedure
on the residuals (see Section 3.2.3 for more details). In Table 10, the actual
probabilities of rejecting the null-hypothesis in (13) under H0 based on the
bootstrapped residuals are presented, and these values are quite similar
to the actual probabilities we obtained when the residuals were normally
distributed, which can be found in Table 8. We can furthermore see from
Table 10 that the actual probabilities of rejecting the null-hypothesis in
(13) when H0 is true are the lowest for the exact tests. The probabilities of
rejection for the exact tests are close to the expected value 0.05. Moreover,
the probabilities of rejection for the asymptotic tests exceed the expected
value of 0.05 fairly much when we used the monthly returns, while it is closer
to 0.05 when we used the weekly returns. The reason might be that we have
a larger sample size when we use the dataset consisting of weekly returns
compared to when we use monthly returns.

Nonetheless, we obtained the actual probabilities of rejecting the null-
hypothesis in (13) under H1 based on the residual bootstrap procedure,
where we studied the same ten cases as before as our H1. The probabilities
of rejecting H0 using the bootstrap procedure under the cases 3, 6, 7, and
10 are shown in Table 11, while those under the cases 1, 2, 4, 5, 8, and 9
can be found in Tables 15 and 16, respectively, in Appendix A.3. We saw
that the probabilities of rejecting H0 under cases 1, 4, 5, and 8, respectively,
based on the bootstrap procedure were fairly similar to the corresponding
probabilities obtained when the residuals were i.i.d. multivariate normally
distributed. Furthermore, the probabilities obtained under cases 2 and 9,
respectively, based on the residual bootstrap simulation was generally higher
than those obtained when the disturbances were normally distributed. We
could also see that the actual probabilities of rejecting H0 under cases 3,
7, and 10, respectively, gave us probabilities equal to one, which are higher
or equal to the corresponding probabilities when the residuals follow a mul-
tivariate normal distribution. Furthermore, case 6 gave us values close to
one, which are also much higher or equal to the corresponding probabilities
when the normality assumption holds. Hence, we observed that the prob-
abilities of rejecting H0 at the 5% significance level when H1 is true might
differ from what we found when the residuals follows a multivariate normal
distribution (see the probabilities of rejection under normality and H1 in
Table 9). However, the probabilities of rejecting H0 for the spanning tests
where we used bootstrapped residuals seem to be almost as high or higher
than when the residuals are multivariate normally distributed. We can also
see from Tables 11, 15 and 16 that the probabilities of rejecting H0 might be
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generally lower under an H1 where the weights of the test assets in the TP
are zero (α = 0N ) compared to an H1 where the weights of the test assets in
the TP are not equal to zero (α ≠ 0N ).

Table 10: The probabilities of rejecting the null-hypothesis in (13) when
H0 is true for the spanning tests, and these were obtained by using 10,000
residual bootstraps.

Monthly returns (T = 144) Weekly returns (T = 627)

Asymptotic test Exact test Asymptotic test Exact test

Screening N K LR W LM LR W LM LR W LM LR W LM

10% 2 19 0.084 0.092 0.078 0.049 0.050 0.050 0.063 0.064 0.061 0.056 0.056 0.056
25% 5 16 0.110 0.133 0.090 0.055 0.055 0.056 0.058 0.060 0.055 0.050 0.050 0.050
50% 10 11 0.127 0.179 0.084 0.057 0.058 0.058 0.066 0.073 0.060 0.055 0.055 0.055
All 12 9 0.128 0.192 0.076 0.058 0.057 0.057 0.068 0.076 0.059 0.056 0.056 0.056

Another aspect one should note is that the residuals do not necessarily
have to be homoscedastic, and they might also be serially correlated. We
used the non-overlapping block bootstrap procedure to simulate new residu-
als (see Section 3.2.4 for more details), and one reason for using this method
is to be able to include some possible heteroscedasticity and autocorrelation
patterns (if there are any) in the simulations. We implemented this proce-
dure on the monthly and weekly returns, respectively, for the four different
scenarios we obtained by the screening procedures. We presented the prob-
abilities of rejection under H0 and under the following three possibilities of
H1: cases 3, 6, and 10, in Table 12. The other results are available from
the author on request. We can see from Table 12 that the probabilities of
rejecting the null-hypothesis in (13) under H1 are extremely high. Hence,
the power of the spanning tests seems to be high when possible patterns
such as heteroscedasticity exists in the residuals. However, the probabilities
of rejecting the null-hypothesis in (13) when H0 is true are all higher than
expected, they all exceed 0.05 fairly much, with the exception when 10%
screening is applied on weekly returns. This implies that the nonsignificant
results (that the difference between the efficient frontiers is not statistically
significant at the 5% significance level) we obtained in Tables 1, 2, 3, and 4
might not be misleading if possible heteroscedasticity exists in the residuals.
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Table 11: The probabilities of rejecting the null-hypothesis in (13) when H1

is true for the spanning tests, and the probabilities were obtained by using
10,000 residual bootstraps. T = 144 represents that the probabilities were
obtained by using monthly returns, and T = 627 by using weekly returns.

10,000 bootstrap simulations

Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM

3

10% 2 19
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

6

10% 2 19
144 0.919 0.924 0.911 0.873 0.873 0.873
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

7

10% 2 19
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

10

10% 2 19
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

50% 10 11
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000
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Table 12: The probabilities of rejecting the null-hypothesis in (13) when H0

andH1 is true, respectively, for the tests and they were obtained using 10,000
non-overlapping block bootstrap simulations on the residuals. T = 144 and
T = 627 represent that the probabilities were obtained by using monthly
returns and weekly returns respectively. The number of equally sized blocks
we used was twelve for monthly returns, and eleven for weekly returns.

Block bootstrap simulations

Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM

H0

10% 2 19
144 0.124 0.132 0.115 0.079 0.079 0.080
627 0.044 0.046 0.043 0.039 0.039 0.040

25% 5 16
144 0.192 0.222 0.169 0.125 0.126 0.123
627 0.107 0.110 0.103 0.094 0.094 0.094

50% 10 11
144 0.237 0.294 0.179 0.145 0.147 0.142
627 0.121 0.128 0.112 0.105 0.105 0.105

All 12 9
144 0.250 0.319 0.183 0.156 0.158 0.154
627 0.155 0.167 0.143 0.138 0.138 0.137

10% 2 19
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000

H1 627 1.000 1.000 1.000 1.000 1.000 1.000

(case 3)
50% 10 11

144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

10% 2 19
144 0.975 0.977 0.972 0.954 0.954 0.953
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000

H1 627 1.000 1.000 1.000 1.000 1.000 1.000

(case 6)
50% 10 11

144 1.000 1.000 0.999 0.999 0.999 0.9990
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

10% 2 19
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

25% 5 16
144 1.000 1.000 1.000 1.000 1.000 1.000

H1 627 1.000 1.000 1.000 1.000 1.000 1.000

(case 10)
50% 10 11

144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000

All 12 9
144 1.000 1.000 1.000 1.000 1.000 1.000
627 1.000 1.000 1.000 1.000 1.000 1.000
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Furthermore, Kan and Zhou [17] described a spanning test approach
based on GMM, which works well when the residuals show conditional het-
eroscedasticity. More details about this specific test can be found in their
paper or the paper by Hansen [12]. We applied this test based on the
monthly and weekly returns, respectively, in order to verify our results, and
we observed that the GMM Wald test statistics were all very small, which
gave us very high p-values (over 0.9) for the eight different scenarios (data
of monthly and weekly returns with 10%, 25%, 50%, and All screening).
Hence, the hypothesis of spanning can not be rejected for these scenarios,
and the asymptotic and exact spanning tests seem to perform well for our
data even though the assumptions of the residuals such as being i.i.d. nor-
mally distributed might be violated.

6 Conclusion

In this thesis, we studied whether investing in a portfolio constructed by
more sustainable assets might give us as a high utility as when one is in-
vesting in a portfolio consisting of both sustainable assets and unsustainable
assets. Sustainability was measured with total ESG scores and total ESG
risk ratings, respectively, provided by Sustainalytics and can be found at
Yahoo Finance. The data we used consist of the monthly and weekly re-
turns of 21 large-cap stocks that are included in the OMXS30 index over the
period 2008-2019. To study whether an investment in all the 21 stocks might
give better investment opportunities compared to investments in solely the
more sustainable stocks, one might analyze the efficient frontiers of the dif-
ferent numbers of assets. If the difference between the efficient frontiers is
statistically significant, one might assume that adding the stocks that are
less sustainable into the investment portfolio would improve the investment
opportunity. Some methods that can possibly test for this are the mean-
variance spanning tests proposed by Huberman and Kandel [16] as well as
those spanning tests presented in Kan and Zhou [17]. These tests are based
on a multivariate regression and were the methods used in this thesis.

The mean-variance spanning tests based on a multivariate regression
assume that the residuals are i.i.d. multivariate normally distributed. How-
ever, this assumption might, unfortunately, be violated for most data, which
can lead to misleading interpretations. Nevertheless, we saw that the ex-
act spanning tests found in Huberman and Kandel [16], and Kan and Zhou
[17] give the best performance overall. Even when most of the assumptions
are violated, they still perform well under H0 (with an exception for when
possible heteroscedasticity or autocorrelation might be present), but also
under H1 when the residuals are independently but not necessarily identi-
cally distributed. Nevertheless, the power of the tests seems a little weaker
when the disturbances are i.i.d. but not normally distributed compared to
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when they are i.i.d. normally distributed. Additionally, the main compo-
nent that affects the power of the spanning tests seems to be the weights
of the N test assets in the TP. Furthermore, we saw that the power of the
tests seems high if possible heteroscedasticity and autocorrelation exist in
our data. However, further studies on these aspects are possibly needed
to get a better estimate of the performances of the spanning tests when
heteroscedasticity and autocorrelation are present, respectively, in the data.

We saw that the minimum-variance frontier of the 21 stocks and the
minimum-variance frontier when we applied 10%, 25%, and 50% screening
on data with monthly and weekly returns, respectively, are not significantly
different for the whole study period (2008-2019). This means that investors
would probably not get better investment opportunities if they, in addition
to investing in the more sustainable assets in the OMXS30 index, also invests
in those stocks with higher total ESG scores. Furthermore, we saw similar
results from the mean-variance spanning tests based on monthly and weekly
returns, respectively, when we screened for all the stocks with a total ESG
risk rating between medium and severe.

7 Discussion

We have studied the robustness to non-normality of the asymptotic and
exact mean-variance spanning tests based on various simulations, and by
computing the probabilities of rejecting H0 under different possibilities as
H1. We saw that the weights of the N test assets in the TP seem to affect
the tests the most. However, we would probably need to study more cases
of H1 (that both the TPs and the MVPs differ in the efficient frontiers,
where α and 1N − β1K differ from H0, and where one of the two vectors
differs more than the other) in order to conclude for that. Furthermore,
this finding in our study contradicts to what Kan and Zhou [17] observed
in their paper. They mentioned that the spanning tests would place heavy
weights on 1N −β1K and smaller weights on α. Their motivation to why the
spanning tests mainly rely on 1N − β1K is that β does not depend on the
expected returns µ, so 1N − β1K can be estimated more accurately than α
(see, Kan and Zhou [17]). Hence, further studies on the power of the tests
will probably be needed if one uses the simulation procedures mentioned in
our thesis.

Moreover, we have mentioned that the eigenvalues, λ1 and λ2, can be
seen as measures of the maximum and minimum differences, respectively, be-
tween the expected minimum-variance frontiers (based on the estimated pa-
rameters B̂ and Σ̂), according to Kan and Zhou [17]. Then, the eigenvalues
θ1 and θ2 of HĜ−1, where H = ΘΣ−1Θ⊺, would be measures of the maximum
and minimum differences, respectively, between the population minimum-
variance frontiers based on the true parameters B and Σ. One might then
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want to make sure to choose a B-matrix that satisfies an H1, where both
the TPs and the MVPs differ, and a Σ-matrix such that θ1 ≥ θ2 > 0 (thus
if the maximum and minimum differences between the minimum-variance
frontiers are strictly greater than zero, then it is logical to think that both
the TPs and the MVPs are different in the minimum-variance frontiers).
Furthermore, when either the TPs or the MVPs are identical, on the other
hand, one would desire to have θ1 > 0 and θ2 = 0. An interesting aspect to
study for the robustness to the non-normality for the spanning tests under
H0 and H1, respectively, is then to take these conditions of θ1 and θ2 into
account when one performs the simulation procedures in Section 3.2. This
interesting aspect to study the probabilities of rejecting the null-hypothesis
in (13) when H0 or H1 is true is left for future research. However, if the in-
terest is to solely study the power of the asymptotic or exact mean-variance
spanning tests and where the normality assumption holds, one would prob-
ably prefer to use the simulation method described in Section 3.2 in the
paper by Kan and Zhou [17].

It is also worth to mention that we divided the residuals obtained us-
ing the monthly returns into twelve equally sized blocks when we applied
the non-overlapping block bootstrap on the residuals. Likewise, we divided
the residuals of the weekly returns into eleven equally sized blocks. These
numbers of blocks might not be the most efficient choices, and there may
exist better resampling or simulation methods to use when one wants to
preserve, e.g., possible heteroscedasticity or autocorrelation patterns in the
data. Hence, the actual probabilities of rejecting the null-hypothesis in (13)
under H0 and H1, respectively, when heteroscedasticity or autocorrelation
is present might be higher or lower than what we observed. However, one
might argue that our results, that the differences in the efficient frontiers
are statistically insignificant, obtained by using the asymptotic and exact
tests might be correct when heteroscedasticity exists, and in the absence
of autocorrelation. The reason is that the results obtained by applying the
GMM Wald test for spanning showed nonsignificance differences between the
efficient frontiers, and this method considers heteroscedasticity, but not nec-
essarily autocorrelation. Nevertheless, one should note that the GMM Wald
test does assume that xt ⊗ εt for t = 1,2, ..., T , are not serially correlated,
which can be checked by applying the multivariate Ljung-Box test.

Lastly, we should also mention another interesting aspect for future stud-
ies if one has, for instance, obtained a result from a mean-variance spanning
test, which shows that the difference between the minimum-variance fron-
tiers is statistically significant. If such a result is observed, one might be
interested in knowing whether the difference is caused by the MVPs or
the TPs. One might then perhaps want to apply the step-down test pre-
sented in Kan and Zhou [17], which tests for α = 0N first and then test for
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1N − β1K = 0N conditional on α = 0N
4. If one can reject α = 0N from the

first test, then it means that the TPs differ. Moreover, if one can reject
1N − β1K = 0N conditional on α = 0N based on the second test, then it
implies that the MVPs are different [9]. Alternatively, one can test whether
the difference in the minimum-variance frontiers was caused by the MVPs
by using the exact test presented in the paper by Bodnar and Schmid [7].
One can also consider applying the exact test found in Bodnar and Okhrin
[6] if one wants to study whether the difference in the minimum-variance
frontiers was due to the TPs.
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A Appendix

A.1 Proofs, matrices and maximum likelihood estimators

A.1.1 Proof of the two-fund theorem

Let us first assume that the inverse of the covariance matrix of returns,
V , exists, and that the vectors µ and 1N are linearly independent. Assume
furthermore that w1 and w2 denote two vectors consisting of the weights from
any two portfolios (P1, and P2) on the minimum-variance frontier with the
expected returns µ1 and µ2, where the two portfolios do not have the same
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expected returns. It is then possible to obtain the weights of each portfolio
P3 on the minimum-variance frontier by using the following formula

w3 = γw1 + (1 − γ)w2,

for some γ ∈ R [8].

Proof. Let us denote the expected return of the portfolio P3 as µ3, and let
us then define µ3 as a function of the expected returns of the portfolios P1

and P2

µ3 = γµ1 + (1 − γ)µ2. (16)

Solving for γ gives

γ = µ3 − µ2
µ1 − µ2

.

Note that µ1 − µ2 ≠ 0 thus the expected returns are different. Moreover,
when a portfolio with the expected return µP lies on the minimum-variance
frontier, then its weights can be expressed in the form w = µPa+b (see Section
2.1.3). Hence, we have that w1 = µ1a+ b, w2 = µ2a+ b, and w3 = µ3a+ b, and
we need to show that w3 = γw1 + (1 − γ)w2. By plugging in the expressions
for w1 and w2 into γw1 + (1 − γ)w2 gives

γw1+(1−γ)w2 = γ(µ1a+b)+(1−γ)(µ2a+b) = [γµ1+(1−γ)µ2]a+b = µ3a+b,

which is equal to the weights of portfolio P3, where we used Equation (16)
in the last equality [8].

A.1.2 Inverse of a partitioned matrix

A symmetric nonsingular block matrix

V = (V11 V12
V21 V22

) ,

where V11 is a nonsingular K ×K matrix, V12 a K ×N matrix, V21 an N ×K
matrix, and V22 a nonsingular N×N matrix, has the following inverse matrix

V −1 = (V
−1
11 + β⊺Ω−1β −β⊺Ω−1

−Ω−1β Ω−1 ) ,

where Ω = V22 − V21V −1
11 V12, and β = V21V −1

11 .

Proof. From Henderson 1981 [13], we know that the inverse matrix of V can
be written in the following form

V −1 = (V
−1
11 + V −1

11 V12(V22 − V21V −1
11 V12)−1V21V −1

11 −V −1
11 V12(V22 − V21V −1

11 V12)−1
−(V22 − V21V −1

11 V12)−1V21V −1
11 (V22 − V21V −1

11 V12)−1
) ,
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by using the following expression

( V −1
11 0K×N

−V21V −1
11 IN

)(V11 V12
V21 V22

) = ( IK V −1
11 V12

0N×K V22 − V21V −1
11 V12

) ,

where IK and IN are a K ×K-identity matrix and an N ×N -identity matrix
respectively. Hence,

V −1 = (V11 V12
V21 V22

)
−1

= ( IK V −1
11 V12

0N×K V22 − V21V −1
11 V12

)
−1

( V −1
11 0K×N

−V21V −1
11 IN

) .

We can use the inverse of a partitioned matrix to obtain another expression
for the inverse matrix of

M = (M11 M12

M21 M22
) = ( IK V −1

11 V12
0N×K V22 − V21V −1

11 V12
) .

Let us follow the steps from Herman J. Bierens [5]. We first note that
M11 = IK is not singular, which means that M11 is invertible. Assume also
that the inverse of M22 exists. We also know the following property,

MM−1 =M−1M = IK+N ,

where IK+N is a (K +N)×(K +N)-identity matrix. Let us write the inverse
matrix on this form

M−1 = (A11 A12

A21 A22
) ,

where A11 is a K ×K matrix, A12 a K ×N matrix, A21 an N ×K matrix,
and A22 an N ×N matrix. Then,

MM−1 = (M11 M12

M21 M22
)(A11 A12

A21 A22
)

= (M11A11 +M12A21 M11A12 +M12A22

M21A11 +M22A21 M21A12 +M22A22
)

= ( IK 0K×N

0N×K IN
) .

This implies that we get the following four matrix equations

M11A11 +M12A21 = IK , (17)

M11A12 +M12A22 = 0K×N , (18)

M21A11 +M22A21 = 0N×K , (19)

M21A12 +M22A22 = IN . (20)
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Thus, we have assumed that M11 and M22 are nonsingular, then we can
solve for A12 and A21 in Equation (18) and (19), which gives that

A12 = −M−1
11M12A22, (21)

and
A21 = −M−1

22M21A11. (22)

The next step is to plug in Equation (21) and (22) into Equation (20) and
(17) respectively, and then solve for A11 and A22. So, we obtain the following

A11 = (M11 −M12M
−1
22M21)

−1
,

and
A22 = (M22 −M21M

−1
11M12)

−1
.

Hence, we have that

M−1 =
⎛
⎝

(M11 −M12M
−1
22M21)

−1 −M−1
11M12 (M22 −M21M

−1
11M12)

−1

−M−1
22M21 (M11 −M12M

−1
22M21)

−1 (M22 −M21M
−1
11M12)

−1

⎞
⎠
.

(23)
Similarly, using M−1M = IK+N instead, we obtain

M−1 =
⎛
⎝

(M11 −M12M
−1
22M21)

−1 − (M11 −M12M
−1
22M21)

−1
M12M

−1
22

− (M22 −M21M
−1
11M12)

−1
M21M

−1
11 (M22 −M21M

−1
11M12)

−1

⎞
⎠
.

(24)
Equation (23) and (24) are equivalent because a nonsingular matrix can only
have one inverse.

By using Equation (23) or (24), we obtain the following

M−1 = ( IK −V −1
11 V12(V22 − V21V −1

11 V12)−1
0N×K (V22 − V21V −1

11 V12)−1
) .

Then,

V −1 =M−1 ( V −1
11 0K×N

−V21V −1
11 IN

)

= ( IK −V −1
11 V12(V22 − V21V −1

11 V12)−1
0N×K (V22 − V21V −1

11 V12)−1
)( V −1

11 0K×N

−V21V −1
11 IN

)

= (V
−1
11 + V −1

11 V12(V22 − V21V −1
11 V12)−1V21V −1

11 −V −1
11 V12(V22 − V21V −1

11 V12)−1
−(V22 − V21V −1

11 V12)−1V21V −1
11 (V22 − V21V −1

11 V12)−1
)

Let Ω = V22 − V21V −1
11 V12 and β = V21V −1

11 . Furthermore, we know that V is
a symmetric block matrix, so V21 = V ⊺

12. We can then rewrite V −1 as

V −1 = (V
−1
11 + β⊺Ω−1β −β⊺Ω−1

−Ω−1β Ω−1 ) .
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A.1.3 Maximum likelihood estimators of B and Σ

Assume that the desired multivariate regression can be expressed as

Y =XB +E,

where the matrices Y , X, B and E are described in Section 3.1.1. Let us
assume that T ≥ N +K +1 and that X has rank K +1. Furthermore, assume
that conditioned on Rt, the εt are i.i.d. normally distributed with mean
0N and covariance matrix Σ for t = 1, ..., T . So, the rows in matrix E are
i.i.d. N(0N ,Σ)-distributed thus E = (ε1, ..., εT )⊺. Then from Muirhead [22],
we know that E is multivariate normally distributed with mean 0T×N and
covariance matrix IT ⊗Σ (which can be denoted as N(0T×N , IT ⊗Σ)), where
⊗ denotes the Kronecker product. So, Y is N(XB, IT ⊗Σ)-distributed, and
the density function of Y is given by (note that we have change the notation
for determinant to det(⋅) in this section)

f(Y ;B,Σ) = (2π)−NT /2[det(Σ)]−T /2[det(IT )]−N/2

exp{Trace [−1

2
I−1T (Y −XB)Σ−1(Y −XB)⊺]} ,

which is equivalent to

f(Y ;B,Σ) = (2π)−NT /2[det(Σ)]−T /2 exp{Trace [−1

2
(Y −XB)Σ−1(Y −XB)⊺]} .

Note that this is also the likelihood function, so the log-likelihood function
can be written as

l(B,Σ)∝ −T
2

log[det(Σ)] +Trace [−1

2
(Y −XB)Σ−1(Y −XB)⊺]

= −T
2

log[det(Σ)]

+Trace [−1

2
(Y Σ−1Y ⊺ − Y Σ−1B⊺X⊺ −XBΣ−1Y ⊺ +XBΣ−1B⊺X⊺)]

= −T
2

log[det(Σ)] +Trace [−1

2
Y Σ−1Y ⊺] +Trace [1

2
Y Σ−1B⊺X⊺]

+Trace [1

2
XBΣ−1Y ⊺] +Trace [1

2
XBΣ−1B⊺X⊺] ,

where we have used the property that Trace(M+F ) = Trace(M)+Trace(F ),
where M and F are T ×T -matrices, in the second equality sign [27]. Setting
the derivative of the log-likelihood function with respect to the matrix B
equal to a (K + 1) ×N -matrix consisting of only zeros, where we use that
[27],
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∂Trace(XBΣ−1Y ⊺)
∂B

=X⊺(Σ−1Y ⊺)⊺,

∂Trace(Y Σ−1B⊺X⊺)
∂B

=X⊺Y Σ−1,

∂Trace(XBΣ−1B⊺X⊺)
∂B

=X⊺(X⊺)⊺B(Σ−1)⊺ +X⊺XBΣ−1,

gives that

∂l(B,Σ)
∂B

= 1

2
X⊺Y Σ̂−1 + 1

2
X⊺(Σ̂−1Y ⊺)⊺ − 1

2
X⊺(X⊺)⊺B̂(Σ̂−1)⊺ − 1

2
X⊺XB̂Σ̂−1

=X⊺Y Σ̂−1 −X⊺XB̂Σ̂−1

= 0(K+1)×N .

The second equality holds thus Σ−1 = (Σ−1)T because Σ is a symmetric
nonsingular matrix, so its inverse will also be symmetric. We then obtain
that

X⊺Y Σ̂−1 =X⊺XB̂Σ̂−1.

Multiplying both sides by Σ̂ on the right gives

X⊺Y =X⊺XB̂.

Hence, the maximum likelihood estimator of B is given by

B̂ = (X⊺X)−1X⊺Y.

To obtain the maximum likelihood estimator of Σ, we should take the
derivative of the log-likelihood function with respect to Σ, and then set the
expression equal to an N × N -matrix of solely zeros. Let us also use the
following [27],

∂ det(Σ)
∂Σ

= det(Σ) [2Σ−1 − diag (Σ−1)] ,

∂Trace[(Y −XB)Σ−1(Y −XB)⊺]
∂Σ

= − [Σ−1(Y −XB)⊺(Y −XB)Σ−1]⊺

−Σ−1(Y −XB)⊺(Y −XB)Σ−1

+ diag{ [Σ−1(Y −XB)⊺(Y −XB)Σ−1]⊺ }.
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Then,

∂l(B,Σ)
∂Σ

= −T
2

1

det(Σ̂)
det(Σ̂) [2Σ̂−1 − diag (Σ̂−1)]

− 1

2
{ − [Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1]⊺

− Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1

+ diag ([Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1]⊺)}

= −T Σ̂−1 + T
2

diag(Σ̂−1) + Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1

− 1

2
diag [Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1]

= −T Σ̂−1 + Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1

+ 1

2
diag [T Σ̂−1 − Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1]

= 0N×N .

Hence, we obtain the following equality

T Σ̂−1−Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1 = 1

2
diag [T Σ̂−1 − Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1] ,

which holds when

T Σ̂−1 − Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1 = 0N×N ,

which can be rewritten as

T Σ̂−1 = Σ̂−1(Y −XB̂)⊺(Y −XB̂)Σ̂−1.

Multiplying both sides by Σ̂ on the left and right gives

T Σ̂ = (Y −XB̂)⊺(Y −XB̂).

The maximum likelihood estimate of Σ is then obtained by dividing both
sides by T

Σ̂ = 1

T
(Y −XB̂)⊺(Y −XB̂).

A.2 Test for multivariate normality

A.2.1 Generalized Shapiro-Wilk test for multivariate normality

One possible method to test for the hypothesis of having univariate nor-
mality is the Shapiro-Wilk’s test. Assume that we have a random sample
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x1, ..., xn, and let x̄ = 1/n∑ni=1 xi and s2X = ∑ni=1(xi − x̄). The test statistic is
then given by

WX = σ̃X
s2X

,

where, σ̃X = (∑ni=1 aix(i))
2
. Furthermore, x(1) < x(2) < ... < x(n) and they

represent the ordered observations, and ai denotes the ith element of the
vector a = (a1, ..., an)⊺, which is obtained by the following expression

m⊺C−1

√
m⊺C−1C−1m

,

where m⊺ is the expected values of a vector Z, which consists of the ordered
statistics of n random variables drawn from the standard normal distribu-
tion, N(0,1). In other words, Z contains a sample of n observations from
the N(0,1)-distribution, and these values are ordered in the vector Z. Fur-
thermore, C denotes the covariance matrix of the ordered statistics in vector
Z (i.e., the covariance matrix of the ordered sample drawn from the standard
normal distribution) [34].

Villaseñor and González-Estrada [34] purposed a method based on the
Shapiro-Wilk’s test in order to test for multivariate normality. Let X1, ...,Xn

denote n number of random vectors of size p, where p ≥ 1. Let us assume
that X1, ...,Xn are i.i.d. p-multivariate distributed with mean vector µ (of
size p) and covariance matrix Σ (a p × p-matrix), N(µ,Σ). Furthermore,
a well-known proposition is presented in Villaseñor and González-Estrada
[34], which states that a random vector X is N(µ,Σ)-distributed if and only
if the random vector Z = Σ−1/2(X − µ) is N(0p, Ip)-distributed. Here, 0p
and Ip denote a zero-vector of size p and a p×p-identity matrix respectively.
Moreover, let X̄ and S represent the sample mean and the covariance matrix
respectively, i.e., X̄ = 1

n ∑
n
j=1Xj and S = 1

n ∑
n
j=1(Xj − X̄)(Xj − X̄)⊺. If the

random vectors X1, ...,Xn are N(µ,Σ)-distributed, then the distribution of
the random vectors given by Z∗

j = S−1/2(Xj − X̄), for j = 1,2, ..., n, will be
approximately N(µ,Σ). This implies that the coordinates of Z∗

j , which we
denote by Z1j , ..., Zpj , will be approximately independent univariate stan-
dard normal distributed.

In order to test the null-hypothesis that the sample X1, ...,Xn is from
the N(µ,Σ)-distribution, where the parameters µ and Σ are unknown, one
can use the test statistic purposed by Villaseñor and González-Estrada [34].
The test statistic is given by the following formula

W ∗ = 1

p

p

∑
i=1

WZi ,

where WZi represents the Shapiro-Wilk’s test statistic computed on the
ith coordinate of the transformed observations Zi1, ..., Zin for i = 1,2, ..., p.
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Villaseñor and González-Estrada mention that the test statistic, W ∗, is ex-
pected to be almost equal to one under the null-hypothesis because each of
the WZi for i = 1,2, ..., p is expected to be approximately one. This gen-
eralized Shapiro-Wilk test for multivariate normality, W ∗, will reject the
null-hypothesis at the (α0 ⋅ 100)%-significance level if W ∗ < cα0;n,p for a
value cα0;n,p that satisfies the following

α0 = P ({W ∗ < cα0;n,p∣H0 holds}).

One can however not obtain the distribution ofW ∗ under the null-hypothesis,
and the reason is that it does not exist a known formula for the distribution of
the Shapiro-Wilk test statistic yet. Hence, Villaseñor and González-Estrada
[34] opt to use the Monte-Carlo simulation to obtain the percentiles, cα0;n,p.

A.2.2 Mardia’s test of multivariate normality

Another method to test for multivariate normality is based on multivariate
extensions of skewness and kurtosis and was introduced by Mardia [20]. Let
X1, ...,Xn be n random vectors, where each vector consists of p elements. Let
also γ1,p and γ2,p denote the multivariate skewness and kurtosis respectively,
which are given by the following

γ1,p =
1

n2

n

∑
i=1

n

∑
j=1

m3
ij ,

γ2,p =
1

n

n

∑
i=1

m2
ii,

where mij represents the squared Mahalanobis distance, which is obtained
by mij = (Xi − X̄)⊺S−1(Xi − X̄) [18]. Furthermore, X̄ = 1

n ∑
n
i=1Xi and

S−1 = 1
n ∑

n
i=1(Xi − X̄)(Xi − X̄)⊺ are the sample mean and covariance matrix

respectively. In the paper by Mardia [20], it is mentioned that the skewness
in a multivariate normal distribution is equal to zero, and the kurtosis is
equal to p(p + 2). Hence, one will test for the hypothesis that γ1,p = 0 and
γ2,p = p(p + 2), but this is done separately in order to test for multivariate
normality. The test statistic for skewness is given by

n

6
γ1,p

a∼ χ2
p(p+1)(p+2)/6,

which is approximately χ2-distributed with p(p+1)(p+2)/6 degrees of free-
dom. The asymptotic distribution for the test statistic for kurtosis is asymp-
totically normal distributed with mean p(p + 2) and variance 8p(p + 2)/n,
i.e.,

γ2,p
a∼ N [p(p + 2),8p(p + 2)/n] .

If at least one of the hypothesis, γ1,p = 0 and γ2,p = p(p+2), is rejected, then
it means that the sample is not from a multivariate normal distribution
[18, 20].
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A.3 Additional tables

Table 13: The probabilities of rejecting the null-hypothesis in (13) when H1

is true for the spanning tests, and under the assumption of having normally
and t-distributed disturbances, respectively, which were obtained based on
10,000 simulations. T = 144 represents that the results were obtained by
using monthly returns, and T = 627 by using weekly returns.

Multivariate normal distribution Multivariate t-distribution

Asymptotic test Exact test Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM LR W LM LR W LM

1

10% 2 19
144 0.085 0.092 0.077 0.047 0.047 0.047 0.087 0.095 0.077 0.051 0.051 0.051
627 0.055 0.057 0.053 0.048 0.048 0.049 0.060 0.061 0.058 0.053 0.053 0.053

25% 5 16
144 0.104 0.125 0.083 0.050 0.051 0.050 0.106 0.126 0.086 0.051 0.051 0.051
627 0.058 0.061 0.055 0.049 0.049 0.049 0.066 0.069 0.063 0.055 0.056 0.055

50% 10 11
144 0.116 0.165 0.075 0.050 0.050 0.051 0.118 0.168 0.076 0.050 0.050 0.050
627 0.064 0.070 0.056 0.051 0.051 0.052 0.064 0.070 0.058 0.054 0.053 0.054

All 12 9
144 0.119 0.175 0.068 0.050 0.051 0.051 0.116 0.179 0.069 0.051 0.050 0.052
627 0.064 0.073 0.055 0.050 0.050 0.050 0.065 0.074 0.058 0.054 0.054 0.054

2

10% 2 19
144 0.085 0.093 0.077 0.048 0.047 0.048 0.087 0.095 0.078 0.050 0.051 0.050
627 0.056 0.057 0.054 0.048 0.048 0.048 0.059 0.060 0.059 0.052 0.052 0.053

25% 5 16
144 0.103 0.125 0.083 0.050 0.050 0.050 0.106 0.125 0.087 0.051 0.051 0.051
627 0.058 0.062 0.055 0.049 0.050 0.049 0.066 0.069 0.063 0.056 0.056 0.056

50% 10 11
144 0.160 0.216 0.109 0.077 0.077 0.077 0.149 0.205 0.099 0.067 0.067 0.067
627 0.254 0.271 0.237 0.225 0.226 0.225 0.172 0.187 0.158 0.149 0.149 0.149

All 12 9
144 0.119 0.175 0.068 0.050 0.050 0.051 0.116 0.179 0.068 0.051 0.051 0.052
627 0.064 0.073 0.055 0.051 0.051 0.051 0.065 0.074 0.058 0.054 0.054 0.054

4

10% 2 19
144 0.085 0.092 0.077 0.047 0.047 0.047 0.087 0.095 0.077 0.051 0.051 0.051
627 0.055 0.057 0.053 0.048 0.048 0.049 0.060 0.061 0.058 0.053 0.053 0.053

25% 5 16
144 0.104 0.125 0.083 0.050 0.051 0.050 0.106 0.126 0.086 0.051 0.051 0.051
627 0.058 0.061 0.055 0.049 0.049 0.049 0.066 0.069 0.063 0.055 0.056 0.055

50% 10 11
144 0.116 0.165 0.075 0.050 0.050 0.051 0.119 0.168 0.076 0.050 0.050 0.050
627 0.064 0.069 0.056 0.051 0.051 0.051 0.064 0.070 0.058 0.054 0.054 0.054

All 12 9
144 0.119 0.175 0.068 0.050 0.051 0.051 0.116 0.179 0.069 0.051 0.051 0.052
627 0.064 0.073 0.055 0.050 0.050 0.050 0.065 0.074 0.058 0.054 0.054 0.054

5

10% 2 19
144 0.085 0.092 0.077 0.047 0.047 0.047 0.087 0.095 0.078 0.051 0.051 0.051
627 0.055 0.056 0.053 0.048 0.048 0.049 0.060 0.061 0.058 0.053 0.053 0.053

25% 5 16
144 0.104 0.125 0.083 0.050 0.051 0.050 0.106 0.126 0.086 0.051 0.051 0.051
627 0.058 0.061 0.055 0.049 0.050 0.049 0.066 0.069 0.063 0.055 0.055 0.055

50% 10 11
144 0.117 0.164 0.075 0.050 0.050 0.051 0.118 0.168 0.077 0.050 0.050 0.051
627 0.066 0.072 0.058 0.053 0.054 0.053 0.066 0.073 0.059 0.056 0.055 0.055

All 12 9
144 0.119 0.175 0.069 0.050 0.051 0.051 0.116 0.179 0.069 0.051 0.051 0.052
627 0.064 0.073 0.055 0.050 0.050 0.050 0.065 0.074 0.058 0.054 0.054 0.054
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Table 14: The probabilities of rejecting the null-hypothesis in (13) when
H1 is true for the spanning tests, and under the assumption of having nor-
mally distributed and t-distributed disturbances, respectively, which were
obtained based on 10,000 simulations. T = 144 represents that the results
were obtained by using monthly returns, and T = 627 by using weekly re-
turns.

Multivariate normal distribution Multivariate t-distribution

Asymptotic test Exact test Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM LR W LM LR W LM

8

10% 2 19
144 0.085 0.092 0.077 0.047 0.047 0.047 0.087 0.095 0.077 0.051 0.051 0.051
627 0.055 0.057 0.053 0.048 0.048 0.049 0.060 0.061 0.058 0.053 0.053 0.053

25% 5 16
144 0.104 0.125 0.083 0.050 0.051 0.050 0.106 0.126 0.086 0.051 0.051 0.051
627 0.058 0.061 0.055 0.049 0.049 0.049 0.066 0.069 0.063 0.055 0.056 0.055

50% 10 11
144 0.116 0.165 0.075 0.050 0.050 0.051 0.118 0.168 0.076 0.050 0.050 0.050
627 0.064 0.070 0.056 0.051 0.051 0.052 0.064 0.070 0.058 0.054 0.053 0.054

All 12 9
144 0.119 0.175 0.068 0.050 0.051 0.051 0.116 0.179 0.069 0.051 0.051 0.052
627 0.064 0.073 0.055 0.050 0.050 0.050 0.065 0.074 0.058 0.054 0.054 0.054

9

10% 2 19
144 0.085 0.093 0.077 0.048 0.047 0.048 0.087 0.095 0.078 0.050 0.051 0.050
627 0.056 0.057 0.054 0.048 0.048 0.048 0.059 0.061 0.058 0.052 0.052 0.053

25% 5 16
144 0.103 0.125 0.083 0.050 0.050 0.050 0.106 0.125 0.087 0.050 0.051 0.051
627 0.058 0.062 0.055 0.050 0.050 0.049 0.065 0.069 0.063 0.056 0.056 0.056

50% 10 11
144 0.159 0.213 0.107 0.076 0.076 0.076 0.147 0.204 0.098 0.067 0.066 0.067
627 0.245 0.262 0.229 0.216 0.217 0.216 0.167 0.181 0.153 0.145 0.145 0.145

All 12 9
144 0.119 0.175 0.068 0.050 0.050 0.051 0.116 0.179 0.069 0.051 0.051 0.052
627 0.064 0.073 0.055 0.051 0.051 0.051 0.065 0.074 0.058 0.054 0.054 0.054
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Table 15: The probabilities of rejecting the null-hypothesis in (13) when
H1 is true for the spanning tests. These probabilities were obtained based
on 10,000 residual bootstrap simulations. T = 144 represents that the re-
sults were obtained by using monthly returns, and T = 627 by using weekly
returns.

10,000 bootstrap simulations

Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM

1

10% 2 19
144 0.084 0.092 0.078 0.049 0.050 0.050
627 0.063 0.064 0.062 0.056 0.056 0.056

25% 5 16
144 0.110 0.133 0.090 0.055 0.055 0.056
627 0.058 0.061 0.055 0.050 0.050 0.050

50% 10 11
144 0.127 0.179 0.084 0.057 0.058 0.057
627 0.066 0.073 0.059 0.054 0.055 0.054

All 12 9
144 0.128 0.192 0.076 0.058 0.057 0.057
627 0.068 0.076 0.059 0.055 0.056 0.055

2

10% 2 19
144 0.092 0.101 0.086 0.055 0.055 0.055
627 0.164 0.167 0.162 0.151 0.150 0.151

25% 5 16
144 0.129 0.155 0.107 0.070 0.069 0.070
627 0.313 0.323 0.303 0.284 0.285 0.284

50% 10 11
144 0.153 0.204 0.105 0.074 0.074 0.074
627 0.364 0.384 0.346 0.333 0.334 0.332

All 12 9
144 0.137 0.183 0.096 0.061 0.061 0.061
627 0.297 0.317 0.283 0.268 0.269 0.267

4

10% 2 19
144 0.084 0.092 0.078 0.049 0.050 0.050
627 0.063 0.064 0.061 0.056 0.056 0.056

25% 5 16
144 0.110 0.133 0.090 0.055 0.055 0.056
627 0.058 0.061 0.055 0.050 0.050 0.050

50% 10 11
144 0.127 0.179 0.084 0.057 0.058 0.058
627 0.066 0.073 0.060 0.055 0.055 0.055

All 12 9
144 0.128 0.192 0.076 0.058 0.057 0.057
627 0.068 0.076 0.059 0.056 0.056 0.056

5

10% 2 19
144 0.084 0.092 0.077 0.050 0.051 0.050
627 0.065 0.066 0.063 0.057 0.057 0.058

25% 5 16
144 0.110 0.132 0.091 0.055 0.055 0.056
627 0.061 0.065 0.058 0.053 0.053 0.053

50% 10 11
144 0.126 0.180 0.085 0.057 0.058 0.057
627 0.070 0.076 0.062 0.058 0.058 0.058

All 12 9
144 0.117 0.162 0.078 0.050 0.049 0.050
627 0.065 0.072 0.059 0.055 0.055 0.055
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Table 16: The probabilities of rejecting the null-hypothesis in (13) when
H1 is true for the spanning tests. These probabilities were obtained based
on 10,000 residual bootstrap simulations. T = 144 represents that the re-
sults were obtained by using monthly returns, and T = 627 by using weekly
returns.

10,000 bootstrap simulations

Asymptotic test Exact test

Case Screening N K T LR W LM LR W LM

8

10% 2 19
144 0.084 0.092 0.078 0.049 0.050 0.050
627 0.063 0.064 0.062 0.056 0.056 0.056

25% 5 16
144 0.110 0.133 0.090 0.055 0.055 0.056
627 0.058 0.061 0.055 0.050 0.049 0.050

50% 10 11
144 0.127 0.179 0.084 0.057 0.058 0.058
627 0.066 0.073 0.059 0.055 0.055 0.054

All 12 9
144 0.128 0.193 0.076 0.058 0.057 0.057
627 0.068 0.076 0.059 0.055 0.056 0.055

9

10% 2 19
144 0.092 0.100 0.085 0.054 0.055 0.055
627 0.161 0.164 0.158 0.147 0.147 0.147

25% 5 16
144 0.129 0.155 0.107 0.069 0.069 0.069
627 0.303 0.312 0.294 0.274 0.275 0.274

50% 10 11
144 0.153 0.205 0.104 0.074 0.073 0.073
627 0.353 0.373 0.336 0.322 0.323 0.320

All 12 9
144 0.137 0.183 0.095 0.061 0.060 0.061
627 0.287 0.302 0.271 0.259 0.259 0.257
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