
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

When graph theory meets unsupervised learning:
the statistical properties ‘spectral clustering’

Fanny Bergström

Matematiska institutionen

Masteruppsats 2020:5
Matematisk statistik
Juni 2020

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2020:5

http://www.math.su.se

When graph theory meets unsupervised

learning: the statistical properties ‘spectral

clustering’

Fanny Bergström∗

June 2020

Abstract

Spectral clustering treats clustering as a graph partitioning prob-
lem, where clusters are constructed based on the commute time distance

(CTD) between the nodes of the graph. The CTD combines the local
connections between nearby points to establish the global connections
among remote points, allowing us to detect shapes and intrinsic man-
ifold structures buried in high dimensional data. Furthermore, the
CTD is simply the Euclidean distance in the space spanned by the
eigenvectors of the graph Laplacian. This implies that clusters can be
easily detected using a classical clustering algorithm (e.g., k-means)
when data is represented in this space. This thesis aims to scruti-
nize the statistical principles of this nonparametric clustering method,
which is robust and manages to capture both local and global geomet-
rical structures in the data. Properties of the CTD and its relations
with the clustering structures of the data are investigated extensively.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: fannybergstrom@gmail.com. Supervisor: Chun-Biu Li.

Acknowledgements

I would like to thank Prof. Chun-Biu Li, my supervisor from Stockholm University, for

his support and guidance throughout this project. I would also like to thank Prof. Taras

Bodnar, Stockholm University, for kindly lending me his office during the months of writing

this thesis.

Contents

I. Introduction 1

A. Objectives 2

B. Structure of the thesis 2

II. Clustering 2

A. The k-means clustering 3

B. Clustering for high-dimensional data 4

III. Similarity graphs and the graph Laplacian 5

A. Similarity Graphs 6

1. Practical considerations: Choice of similarity graph and respective

parameters 8

B. Matrices derived from graphs 9

1. The unnormalized graph Laplacian 10

2. The normalized graph Laplacian 11

IV. The algorithm 12

A. Justification of the algorithm 13

V. Graph cuts perspective 15

VI. Random walks perspective 19

A. The commute time distance 21

VII. Demonstrative examples 22

A. Imbalanced data 22

B. Detecting the number of clusters 23

C. Sensitivity to parameter selection 24

VIII. Validation 25

IX. Discussion and conclusions 27

A. Outlook on further studies 29

References 30

Appendix 33

A. Eq. (11) extended 33

I. INTRODUCTION

Machine learning can be divided into supervised and unsupervised learning, where the

latter is sometimes referred to as ‘learning without a teacher’ as it aims to detect unknown

structures in data without pre-existing labels. Unsupervised learning is mainly focused on

two types of problems; dimensionality reduction and clustering. Dimensionality reduction is

the process of reducing the number of dimensions by feature selection or feature extraction,

and clustering is the process of dividing a dataset into subsets. Spectral clustering methods

have connections to both and can be used to study the structure of networks as it allows

us to detect shapes and intrinsic manifold structures buried in high dimensional data. This

thesis aims to scrutinize the statistical principles of this method, focusing on the problem

of clustering.

Given a distance metric between any pair of data points, clustering is a problem where

we want to group data points such that points within clusters are ‘similar’ and data points

in different clusters are ‘dissimilar’. The question now arises of how to define a similarity

measure, what is the meaning of two points being ‘similar’? It is well known that a simple

metric, such as the Euclidean distance, fails to capture the underlying nonlinear geometrical

structures on which the data points reside, especially in a high-dimensional space.

Spectral clustering treats clustering as a graph partitioning problem, where clusters are

constructed based on the commute time distance (CTD) between the nodes of the graph.

The CTD is the expected time for a random walk to travel from one node to the other and

back again. Since all possible paths between the two nodes are considered, the metric is

more robust to noises and outliers than if we would only use a single path. This distance

metric combines the local connections between nearby points to establish global connections

among remote points. This allows us to capture the global intrinsic geometrical structures

buried in the high dimensional data. Furthermore, the CTD is simply the Euclidean distance

in the space spanned by the eigenvectors of the graph Laplacian. This implies that clusters

can be easily detected using a classical clustering algorithm (e.g. k-means) when data is

represented in this space.

1

A. Objectives

This thesis aims to scrutinize the statistical principles of a nonparametric clustering

method, called the spectral clustering. The main objectives are to

1. Investigate the properties of the graph Laplacian matrices related to spectral cluster-

ing, and how their eigenvalues and eigenvectors relate to the clustering structures of

the data.

2. Describe how spectral clustering relates to graph cuts and random walks on graphs,

with emphasis on its connection to the CTD between nodes on the graph.

3. Depict how the CTD can be used as a distance metric in cluster-validation methods.

4. Apply the method to various simulated datasets to investigate the abilities and possible

drawbacks.

B. Structure of the thesis

The thesis is structured as follows; An introduction to clustering is found in Sec. II. Sec.

III describes mathematical objects needed to perform the spectral clustering, the main tools

being similarity graphs, and the graph Laplacian matrices. We also state some important

properties of the graph Laplacians used in spectral clustering. The essential steps of the

algorithm are found in Sec. IV, followed by an intuitive justification of the algorithm. Sec. V

shows how spectral clustering can be derived as a graph partitioning problem, and Sec. VI

describes how it relates to a random walk on graphs and the CTD. Demonstrative examples

of the method using simulated data are found in Sec. VII. Validation in unsupervised

learning methods and the use of the CTD as a distance metric in cluster-validation are

discussed in Sec. VIII. General discussion and an outlook on further studies are found in

Sec. IX.

II. CLUSTERING

Clustering has the purpose of grouping or segmenting a dataset into subsets or ‘clusters’

such that data points within the same cluster are more related than data points belonging

2

to different clusters. Clustering can also be used to arrange clusters in a hierarchy, such

that clusters are successively grouped so that on each level of the hierarchy, clusters within

groups are more similar than other groups. A data point can be described by its features

or its relation to other data points. The extent to which a pair of data points are related

can be measured by their pairwise similarity (or distance). Clustering methods attempt to

group the objects based on the type of similarity supplied to them. The question now arises

how to define an appropriate similarity measure.

A. The k-means clustering

Using a spatial metric, such as the Euclidean distance, is the most intuitive and natural

way to describe the distance between two data points [1]. The Euclidean distance describes

how the data points are separated in space without considering any other information, e.g. a

manifold, beyond the coordinates of the two data points. The Euclidean distance is supplied

to one of the most classical clustering methods; the k-means clustering [2]. This clustering

method aims to minimize the Euclidean distance of data points to the cluster centers. Let

xi denote the data points in a dataset X = (x1, . . . , xn), and cj denote cluster j in a set

of k partitions of X, C = (c1, . . . , ck). The k-means algorithm constructs the clusters by

minimizing the sum of squared distances simultaneously for all clusters

J(C) =
∑
cj∈C

∑
xi∈cj

||xi − µj||2, (1)

where µj is the mean of the data points in cj. For a given number of clusters k, the k-means

algorithm starts with an initial guess of the cluster center. Then the following two steps are

repeated until convergence; 1) for each data point the closest center is identified, and 2) the

cluster centers are updated, such that they are centered by the data points belonging to the

respective cluster.

Fig. 1 shows an example where the k-means algorithm is applied to two simulated

datasets. From the figure, one can see that the k-means algorithm successfully manages

to separate the spherical clusters found in the left panel. However, when the data points

are formed into non-spherical clusters, such as the circles in the right panel, the k-means

algorithm fails. The failure of k-means in this simple example originates from the fact that

data points belonging to the same cluster, e.g., in the outmost circle in the right panel of Fig.

3

FIG. 1: Example of the k-means algorithm applied to two different datasets. The left panel consists

of three spherical clusters generated from two-dimensional normal distributions, showing successful

results of the clustering. The right panel has three clusters of circles where the k-means algorithm

cannot classify the data points correctly.

1, are not necessarily close to each other in terms of the Euclidean distance. The example

illustrates the requirement of an alternative objective function than to simply minimize the

Euclidean distance to the cluster centers for the non-spherical clusters, as when clusters are

non-convex sets in the feature space. This example is just given in a two-dimensional space,

but it is well known that the Euclidean distance fails to capture the underlying nonlinear ge-

ometrical structures on which the data points reside, especially in a high-dimensional space

[1].

Another drawback of the k-means clustering is its inability to handle clusters of significant

imbalance in the number of data points [3]. As the cost function of the k-mean clustering,

defined as in Eq. (1), does not aim to minimize the sum of squared distances of each cluster

separately, the method tends to assign data points belonging to clusters of a larger number

of data points to clusters of fewer points.

B. Clustering for high-dimensional data

As can be seen from Fig. 1, k-means clustering method is appropriate only when the

clusters are convex sets in the feature space. This type of classical clustering method is based

on the compactness of the clusters as they minimize the distance to the cluster center. If the

4

aim instead is to maximize the similarities between data points within clusters, we construct

clusters based on the connectivity in data, rather than the compactness. Clustering methods

based on the connectivity does not make any assumptions of the shape of the clusters, and

generally perform better for high-dimensional data or if the clusters are non-convex sets

in the feature space. Popular methods that construct clusters based on connectivity are

density-based methods (e.g. the DBSCAN algorithm [4]), the ISOMAP [5], local linear

embedding [6], spectral clustering, etc.

Spectral clustering dates back to 1973 when Donath and Hoffman [7] suggested to par-

tition graphs based on the eigenvectors of the adjacency matrix. The same year Fiedler [8]

connected the second smallest eigenvalue of the graph Laplacian to the connectivity of the

graph and suggested partitioning the graph by its second smallest eigenvector.

By representing data in the form of a graph, spectral clustering reformulates the objec-

tive of clustering into finding a partition of the graph such that nodes within clusters are

connected by strong edge weights, and nodes belonging to different clusters have low edge

weights. The distance metric used on the graph to construct the clusters is based on the

CTD (see Sec. VI A). The CTD between two nodes on a graph is the expected time it

takes for a random walk to transition from one node to the other, and then back again.

Furthermore, we will show in Sec. VI A that the CTD is simply the Euclidean distance in

the space spanned by the eigenvectors of the graph Laplacian. This implies that clusters can

be easily detected using a classical clustering algorithm (e.g. the k-means algorithm) when

data is represented in this embedding.

III. SIMILARITY GRAPHS AND THE GRAPH LAPLACIAN

Spectral clustering is a method with roots in spectral graph theory, which can be described

as the field that studies properties of graphs in terms of the eigenvalues and eigenvectors of

matrices derived from the graphs, the main reference often being the book Spectral Graph

Theory by Fan Chung [9]. In this section, we introduce how to represent data by a weighted

network, also called the similarity graph, constructed from the pairwise similarities (or

distances) between data points. In the following, we define matrices derived from the graph;

the adjacency matrix, the degree matrix, and the graph Laplacian matrices. In addition, we

state some properties of the graph Laplacian matrices associated with spectral clustering.

5

A. Similarity Graphs

Any set of data points, given their pairwise similarities, can be represented by a weighted

network. In a network representation of data, we are only concerned with how the data

points, represented by nodes in the network, are related to each other, and not the spa-

tial location of the data point itself. A network representation of data captures the local

neighborhood relationships between nodes and can help us detect groups of nodes that are

strongly connected.

Given a dataset X = (x1, . . . , xn) ∈ Rd, and a distance dij ≥ 0 with dij = dji, between all

pairs of data points xi and xj, we can represent the data points in an undirected, possibly

weighted, similarity graph. Denote the graph G = (V,E,W), where V is the set of nodes

and E is the set of edges, which are pairs of nodes, and W being the edge weights. The

graph has nodes V = (v1, .., vn), where each node vi ∈ V corresponds to a data point

xi ∈ X. The edges are weighted by the pairwise distance between the data points. It

follows that the graph is undirected as dij = dji. In other words, the distances between

data points are symmetric and as a direct consequence, the edges in the similarity graph

are also symmetric. The nodes are connected if the edge weight is positive or exceeds some

threshold. This threshold can be e.g. a distance ε between the data points or the k nearest

neighbours. One can also consider a fully connected graph, where each node is connected to

all the other nodes by weighted edges. The edge weights ωij are typically computed using

the Gaussian similarity

ωij = exp

(
−||xi − xj||2

2σ2

)
, (2)

for i 6= j and ωii = 0. A justification of this formula was given by Belkin and Niyogi [10].

We note that in the similarity graph, we are only interested in capturing how data points are

related given their pairwise similarity, not how similar data points are to themselves; hence

the self-similarity is set to 0. The σ in the Gaussian similarity function is a scale parameter

defining the extent of the local neighbourhood of a data point that will be discussed in

section III A 1.

According to Hastie et al. [2], another popular similarity graph is the mutual k-nearest

neighbour graph. In the mutual k-nearest neighbour graph node i and j are connected only

if i is among the k nearest neighbours of j and vice versa. An overview of some other popular

methods to construct similarity graphs is given by von Luxburg [11].

6

Fig. 2 illustrates three types of similarity graphs created from a dataset of two non-

spherical clusters in the shape of two half-moons. The graph seen in b) is a ε-neighbourhood

graph which only connects data points within a certain distance ε ≥ 0 from each-other. The

graph in c) is a mutual k-nearest neighbour graph (k = 3) and the graph in d) is a fully

connected graph where the edge weights are given by the Gaussian similarity function. Both

the similarity graphs in c) and d) manage to capture the underlying geometrical structure

of the moon-shaped clusters.

FIG. 2: Example of a dataset with two nonlinear clusters in the shape of half-moons seen in a) and

three different similarity graphs. In b), an ε-neighbourhood is constructed, resulting in a graph

with four connected components. The graph in c) is a mutual k-nearest neighbour graph (k = 3)

and d) illustrates a fully connected graph with edges weighted by the Gaussian similarity function

such that a dark shade illustrates a strong weight.

A graph is connected if there is a path of edges connecting all nodes, e.g. the fully

connected graph seen in Fig. 2d) is a connected graph. A connected component of a graph

is a subset of nodes A ⊂ V such that there is a path of edges connecting all nodes in A, and

no edges to nodes not belonging to A. The graphs in Fig. 2b) and c) have 4 and 2 connected

components respectively. A connected graph has exactly one connected component. To

use similarity graphs for clustering, we do not need to construct similarity graphs with the

same number of connected components as clusters we are trying to identify. Instead, we can

use the similarity graph to find partitions of nodes that are strongly connected within the

7

partition and weakly connected to nodes belonging to other partitions. On the other hand,

creating a sparse graph whose nodes only connect to their local neighbours is advantageous

as the simple Euclidean distance between data points is unlikely to be a suitable choice of

distance metric for points with a large distance, especially in a high dimensional space, or

if the dataset has non-spherical clusters. E.g., consider the data points in Figure 2. The

data points follow the lines of two half-moons, and their pairwise distances should rather

be measured along these lines. The Euclidean distance is not a good measure between

data points belong to different lines or residing on different ends of the half-moons but is

reasonable when only considering a within a few neighbouring data points as we can assume

that the manifold is locally linear [1].

1. Practical considerations: Choice of similarity graph and respective parameters

Choosing the type of similarity graph, and the parameters related to it is not a trivial task.

The aim of the similarity graph is to construct a sparse representation of data, capturing

the underlying, intrinsic structures in data by the pairwise distances. It can be seen in Fig.

2 that the mutual k-nearest neighbour graph and the fully connected graph managed to

capture the geometrical structures by the connections between the data points lying near

each other on the manifolds consisting of two half-moons. From the figure, it could also

be seen that the ε-neighbourhood graph did not capture the underlying structure of the

clusters, as data points lying on the same manifold ended up in different partitions of the

graph.

The parameters k, ε or σ, in the respective similarity graph needs to be chosen with

caution such that the local neighbourhood structure in data is captured. Small k or ε will

lead to a sparse similarity graph, limiting only to data points being within the first few

neighbours, or a certain distance from each other, to be considered being similar. The σ in

the Gaussian similarity function, and ε have a similar function as k. While k is related to

the number of data points considered to be close, σ and ε are related to the scale of distance

between the data points. Choosing the threshold too small will make the graph essentially

disconnected. On the other hand, a large k, ε, or σ, will not be able to resolve the global

nonlinear structures of the dataset as many remote points can be connected by a single

edge that does not respect the underlying structures in the dataset. Again considering our

8

example of the two half-moons in Fig. 2, choosing k, ε or σ too large in any of the similarity

graph would lead to connecting the two half-moons, such that it simply becomes one strongly

connected component.

The ε in the ε-neighbourhood graph decides the scales of the local geometrical structures

in data, as it controls the maximum distance between data points considered to belong

to the same neighbourhood. Since there is only one value for ε chosen, we assume that

the neighbourhoods are formed on the same scale. In other words, the ε-neighbourhood

graph requires the underlying data points to be as spatially close to their neighbouring

data points, in all local geometric structures in data. This is not the case for the mutual k-

nearest neighbour graph. As k is not related to the spatial scale, it can connect communities

of neighbouring data points on multiple scales. However, a drawback with the mutual k-

nearest neighbour graph is that it cannot form connected regions of mixed density. If we

consider a dataset with a high-density region with a nearby low-density region, then data

points at the low-density region are likely to have nearest neighbours in the high-density

region. However, since data points in the high-density region have more close neighbours

also belonging to the same high-density region, the two regions will be disconnected. In the

case of constructing a fully connected graph, it is proposed by [12] to use an adaptive σi

for each data point xi when neighbourhoods of data points have different densities. They

suggested extending the Gaussian similarity function to the form

ωij = exp

(
−||xi − xj||2

2σiσj

)
, (3)

where each σ is estimated locally. By locally estimating the appropriate scale parameter, one

can connect local neighbourhoods on multiple scales and allow the within neighbourhood

density to vary.

B. Matrices derived from graphs

There are several matrices associated with a graph, two of them being the edge weight

matrix, also called the adjacency matrix, and the degree matrix. Let G = (V,E,W) be

an undirected and weighted graph with a set if n nodes.

Definition 1. Given a graph G=(V , E, W), the adjacency matrix W is defined

9

as

Wij =

ωij if (i, j) ∈ E

0 if else.
. (4)

and the degree matrix D is defined as the diagonal matrix with diagonal elements

di =
n∑

k=1

ωik.

For an unweighted network ωij is 1 if node i and j are connected, and 0 if they are not. If

the edges are weighed, the adjacency matrix also specifies the extent of the connection. The

degree matrix is the diagonal matrix whose elements di specifies the sum of edge weights

connecting to node i, also called the degree of node i. Both the adjacency matrix and the

degree matrix are symmetric and of size n× n.

The graph Laplacian, is a matrix representation of a graph derived from D and W ,

which can be used to find various properties of the graph, extensively studied by Chung

[9]. Using the graph Laplacian, we can e.g. construct a low dimensional embedding from

high dimensional data (Sec. IV), identify and approximate the smallest cut of a graph by its

second smallest eigenvector (Section V). In the following, we will define the unnormalized

and normalized graph Laplacians, and state some of their properties connected to spectral

clustering.

1. The unnormalized graph Laplacian

Definition 2. Given a graph G=(V , E, W), the unnormalized graph Laplacian is defined

as

L = D −W, (5)

where the adjacency matrix W and degree matrix D are defined as in Def. 1. For any

real-valued vector f , L has the following property;

f ′Lf = f ′Df − f ′Wf

=
n∑

i=1

dif
2
i −

n∑
i,j=1

fifjωij

=
1

2

n∑
i,j=1

ωij(fi − fj)2.

(6)

10

Eq. (6) shows that f ′Lf have a small value if pairs fi and fj with large edge weight ωij have

values that are close. It also shows that L is positive semi-definite, from which it follows

that L has n non-negative real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λn. Since 1′L1 = 0, the

constant one-vector 1 is a trivial eigenvector of L with corresponding eigenvalue 0. If the

graph is connected, this is the only 0 eigenvalue. For a graph with k connected components,

L has k eigenvectors of eigenvalue 0. These k eigenvectors can be arranged such that L is

a block diagonal matrix, with one block for each connected component of the graph [2, p.

547].

2. The normalized graph Laplacian

Two matrices are generally referred to as the normalized graph Laplacian.

Definition 3. Given a graph G=(V , E, W), the normalized graph Laplacian matri-

ces are defined as

Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw = D−1L = I −D−1W,
(7)

where Lsym is a symmetric matrix and Lrw is related to a random walk on graphs (see Sec.

VI). For every real-valued vector f we have that

f ′Lsymf = f ′f − f ′D−1/2WD−1/2f

=
n∑

i=1

f 2
i −

n∑
i,j=1

fifj
ωij√
di
√
dj

=
1

2

n∑
i,j=1

ωij

(
fi√
di
− fj√

dj

)2

.

(8)

Eq. (8) shows that f ′Lsymf will have a small value if the difference between fi and fj are

small for the pair of nodes i and j with large edge weight ωij. The same is also true for Lrw.

The normalized graph Laplacians are positive semi-definite matrices with n non-negative

real-valued eigenvalues 0 = λ0 ≤ · · · ≤ λn−1. Lrw and Lsym share the same eigenvalues,

such that λ is an eigenvalue of Lrw with corresponding eigenvector v if and only if λ is an

eigenvalue of Lsym with eigenvector w = D1/2v. As for the unnormalized graph Laplacian,

the multiplicity of the eigenvalue 0 of the normalized graph Laplacians corresponds to the

number of connected components of the graph.

11

IV. THE ALGORITHM

There are various spectral clustering algorithms with different cost functions, yielding

different results depending on whether one consider the normalized or unnormalized graph

Laplacian. However, most algorithms follow the same essential steps. These can be summa-

rized as follows;

• Input: n× n matrix of pairwise similarities, the number of clusters k.

1. Given the pairwise similarities, the adjacency matrix W and degree matrix D are

constructed.

2. From W and D, the graph Laplacian matrix L is computed.

3. The first k eigenvectors of L are computed. The vectors are placed as columns in a

n× k matrix V .

4. Rows of V are used as the coordinates in the new representation of data. Data points

are clustered using the k-means algorithm.

5. The original data points are labeled based on the k-means clustering.

The trick of the algorithm is to change the representation of the original data points to

the k-dimensional space spanned by the first k eigenvectors of L. This is a type of nonlinear

dimensionality reduction, to a space where clusters are linearly separable such that they can

be identified by the k-means clustering algorithm.

An illustrative example of the algorithm is shown in Figure 3. The dataset used in the

example contains 300 data points separated into 3 clusters of intertwined swirls. A classic

clustering algorithm, such as the k-means, would not be able to identify the clusters as they

are non-spherical. A fully connected similarity graph was constructed from the data with

edges weighted by the Gaussian similarity function with σ = 0.5. The first eigenvalue of

the graph Laplacian is exactly 0 with the corresponding eigenvector the constant vector 1,

as the graph is fully connected. The second and third following eigenvalues are close to 0,

which indicates that three clusters are indeed a suitable number of clusters for this dataset.

The right bottom panel of the figure illustrates the space spanned by the first and second

eigenvectors, where clusters are now linearly separable and easily detected using e.g. the

k-means clustering algorithm.

12

FIG. 3: Illustrative example of spectral clustering. The dataset contains three intertwined swirls

seen in the top left panel. The similarity graph is constructed using a fully connected graph, with

edge weights given by the Gaussian similarity function with σ = 0.5. The ten smallest eigenvalues

of L can be seen in the top right panel. The first eigenvector corresponds to the constant one

vector, as the graph is fully connected. Coordinates of the second and third smallest eigenvector

of L is seen in the bottom left panel, colored the same way as in the first figure. The bottom right

panel illustrates the new representation of data, given by the space spanned by the eigenvectors in

which we can successfully apply the k-means algorithm for clustering.

A. Justification of the algorithm

This section is not aimed to mathematically justify the algorithm, but to provide some

intuition. Considering a graph G = (V,E,W) with k connected components. L is the graph

Laplacian, and let L1, ..., Lk be the graph Laplacians of the connected components. Then,

13

L can be put into the following block form

L =

L1

L2

. . .

Lk

 .

As stated in Sec. III B 1, if L has k connected components, it also has k eigenvectors as-

sociated with the eigenvalue 0. Denote the connected components A1, . . . , Ak, then the k

eigenvectors v1, . . . , vk with eigenvalue 0 will be arranged as following

v1 vk

A1

1

1
...

1

0

0
...

0

, . . . ,

0

0
...

0

1

1
...

1

Ak

.

This illustrates that the eigenvectors form indicatorvectors labeling the sets of data points

assigning them to the k clusters. It also shows that creating the n × k matrix V with

the k smallest eigenvectors of L and clustering the rows of V into k clusters by minimiz-

ing the Euclidean distance between the rows, yields a clustering result of the k connected

components.

In practice, the clusters are in general not exactly the connected components of the

graph since the components are likely connected by edges with low edge weights. Then

the multiplicity of the eigenvalue 0 will not equal the number of clusters k. However, by

continuity, there will still be k eigenvalues close to 0. The rows of V can also be used in the

same way; if two nodes belong to the same cluster, their corresponding rows of V should

be close in terms of the Euclidean distance. This means that the k-means algorithm can

be applied to successfully to identify the clusters when considering the rows of V as the

new coordinates of the data points also when the numbers of clusters does not equal to the

number of connected components of the graph.

14

V. GRAPH CUTS PERSPECTIVE

When data is represented in the form of a graph, clustering can be reformulated to a

graph partitioning problem. The objective becomes finding a partition of the graph such

that edges between nodes within a cluster have substantial weights and edges between nodes

in different clusters have low weights. In this section, we will derive spectral clustering

based on this graph partitioning problem. We have followed a similar discussion as in A

Tutorial on Spectral Clustering by Ulrike von Luxburg [11].

For a subset of nodes A ∈ V , and its complement Ā, we define the cut between A and Ā

cut(A, Ā) =
∑

i∈A,j∈Ā

ωij.

The cut is simply the weights of the edges connecting nodes in different subsets. The graph

cut problem can now be formulated as finding the non-overlapping partition A1, . . . , Ak, of

k subsets of V , minimizing

cut(A1, . . . , Ak) =
k∑

i=1

cut(Ai, Āi).

However, in general, this approach does not work well as a clustering algorithm, as it tends

to identify individual nodes weakly connected to others (outliers) as clusters. This follows

from the fact that an outlier has low edge weights to the other nodes, meaning that isolating

this single node would yield the smallest cut. In clustering, one generally does not want

any of the clusters to be too small. An approach to overcome this problem is to introduce a

balancing criterion on the clusters. Proposed by Shi and Malik [13] is the normalized cut,

called the Ncut. The Ncut is defined as

Ncut(A1, ..., Ak) =
k∑

i=1

cut(Ai, Āi)

vol(Ai)
, (9)

where vol(Ai) =
∑

vj∈Ai
dj is the sum of edge weights of nodes in the subset Ai to all nodes

in the graph. Minimizing Ncut means finding a partition of nodes in the graph of relatively

small edge weights between different subsets and strong internal edge weights within the

subsets. The Ncut avoids creating small clusters of isolated nodes by considering the total

edge weights connecting the partition with the rest of the nodes in the graph.

15

Introducing this balancing criterion makes the problem of finding the minimum cut more

complex to solve. In the following, it will be shown how spectral clustering is one way

to solve a relaxed (or approximated) version of this problem. There are other objective

functions, e.g. the RatioCut, introduced by Hagen and Kahng [14], favoring clusters of a

comparable number of nodes. In this thesis, we have chosen to focus on the Ncut relaxation

problem and how it relates to the normalized spectral clustering.

For the sake of simplicity, we start with a binary partition of nodes of a graph G into two

subsets A, Ā ⊂ V . The goal of the partition is to solve the optimization problem

min
A⊂V

Ncut(A, Ā).

As in von Luxburg [11], we define a cluster indicator vector f = (f1, ..., fn)′ ∈ Rn, having

entries

fi =

√

vol(Ā)
vol(A)

if i ∈ A

−
√

vol(A)

vol(Ā)
if i ∈ Ā.

(10)

The Ncut objective function can now be rewritten using the unnormalized graph Laplacian

L defined as in Eq. (5)

f ′Lf =
1

2

n∑
i,j=1

ωij(fi − fj)2

=
1

2

∑
i∈A,j∈Ā

ωij

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

+
1

2

∑
i∈Ā,j∈A

ωij

(
−

√
vol(A)

vol(Ā)
−

√
vol(Ā)

vol(A)

)2

=
1

2
vol(V)cut(A, Ā)

(
1

vol(Ā)
+

1

vol(A)

)
+

1

2
vol(V)cut(Ā, A)

(
1

vol(Ā)
+

1

vol(A)

)
= vol(V)cut(A, Ā)

(
1

vol(Ā)
+

1

vol(A)

)
= vol(V)Ncut(A, Ā),

(11)

where the first equality follows from Eq. (6). A more extensive derivation of Eq. (11) is

found in the Appendix Sec. A. Furthermore, given the definition of f in Eq. (10), the vector

16

Df is orthogonal to the constant one-vector 1. This is showed showed by

(Df)′1 =
n∑

i=1

difi

=
∑
i∈A

di

√
vol(Ā)

vol(A)
−
∑
i∈Ā

di

√
vol(A)

vol(Ā)

= vol(A)

√
vol(Ā)

vol(A)
− vol(Ā)

√
vol(A)

vol(Ā)
= 0.

(12)

Also, the constant f ′Df equals the volume of the full graph G. This can be seen from

f ′Df =
n∑

i=1

dif
2
i

=
∑
i∈A

di
vol(Ā)

vol(A)
+
∑
i∈Ā

di
vol(A)

vol(Ā)

= vol(A)
vol(Ā)

vol(A)
+ vol(Ā)

vol(A)

vol(Ā)
= vol(V).

(13)

Using Eq. (11)-(13), we can rewrite the problem of minimizing Ncut, given a binary partition,

as

min
A⊂V

f ′Lf s.t. f as in (10), Df ⊥ 1, f ′Df = vol(V).

However, as the elements in f are only allowed to take two particular values, this is a

NP-hard optimization problem [15]. If we instead allow any f ∈ Rn, we get the relaxed

optimization problem

min
f∈Rn

f ′Lf s.t. Df ⊥ 1, f ′Df = vol(V). (14)

By the substitution f = D−1/2g, the relaxed optimization problem in Eq. (14) is given by

min
g∈Rn

g′D−1/2LD−1/2g s.t. g ⊥ D1/21, ||g||2 = vol(V). (15)

Given the definition of Lsym in Eq. (7), we can further rewrite the minimization problem of

Eq. (15) as

min
g∈Rn

g′Lsymg s.t. g ⊥ D1/21, ||g||2 = vol(V), (16)

since g′D−1/2LD−1/2g = g′Lsymg. Shown by Shi and Malik [13], this relaxation of Ncut

transforms the mincut problem to an eigenvalue problem, where the solution is given by the

second smallest eigenvalue λ from

Lsymg = D−1/2LD−1/2g = λg.

17

It can easily be shown that g1 = D1/21 is the first eigenvector of Lsym with eigenvalue 0. For

the minimization problem in Eq. (16), one seeks the smallest eigenvalue and corresponding

eigenvector, given the constraints, since the problem is to minimize g′Lsymg.

The smallest eigenvector of Lsym, g1, does not fulfill the first constraint g ⊥ D1/21, since

g1 = D1/21. It was seen in Sec. III B 2 that Lsym is positive semi-definite and symmetric

and as a consequence its eigenvectors are orthogonal. Hence, g2, the second eigenvector of

Lsym , is orthogonal to g1, and thus the solution to the minimization problem. The second

constraint, ||g||2, can be seen as a normalization factor, making sure that the volume of the

clusters equals the volume of the whole graph.

A simple approach to obtain the clusters is to use the sign of the values of the second

eigenvector (also known as the Fiedler vector [8]) as an indicator vector. In other words,

data point xi is assigned to cluster A if sign(gi) > 0, and Ā if else. Another approach,

used in spectral clustering, is to separate the clusters given the position of the gap of the

values of the elements in the vector. Fig. 4 shows an example of a graph of two strongly

connected groups of nodes with few edges connecting the two groups (left panel), and its

corresponding values of the second smallest eigenvector of the normalized (symmetric) graph

Laplacian (right panel). The figure shows that the position of the gap in the second smallest

eigenvector appears around the same indices where the elements of the vector change signs.

This means that both the change in sign and the gap of the values of the second eigenvector

of Lsym can be used to identify the two clusters in this example.

FIG. 4: A connected similarity graph of two Gaussian clusters (left) and the corresponding values

of the second smallest eigenvector of the normalized (symmetric) graph Laplacian (right).

18

When the numbers of clusters are k > 2, the solution to the relaxation of Ncut is given

by the first k eigenvectors of the graph Laplacian [11]. Using a similar argument as we used

above, one can show that the eigenvector with the third smallest eigenvalue is the optimal

real-valued solution to further partition the first partition of the graph [13]. As described in

Section IV, most spectral algorithms use the values of the eigenvectors as coordinates for fi

as a low-dimensional representation of data, and cluster the data points with the k-means

algorithm in this space spanned by the first k eigenvectors.

VI. RANDOM WALKS PERSPECTIVE

In the graph cut point of view of spectral clustering, the relaxation of the Ncut minimiza-

tion is just an approximate solution. It is not guaranteed that the solution of the relaxed

problem is always close to the true solution of the Ncut minimization, see an example in

Guattery and Miller [16]. Another point of view to justify spectral clustering is that of a

random walk on the similarity graph. In this section, the statistical foundation of spectral

clustering is provided from the perspective of finding a partition of the graph such that the

random walk stays within the same cluster for a long time and rarely jumps to another

cluster.

By a normalisation of the rows in the adjacency matrix W defined as in Eq. (4), we obtain

the transition matrix of a random walk

P = D−1W,

where all rows sum to 1 (
∑

j pij = 1). P has elements

pij =
ωij

di
=

ωij∑
k ωik

,

which means that we can interpret pij as the conditional probability of a random walk

currently at node i transitioning to node j in one step. We note that the edge weights

between node i and j are symmetric, but since in general di 6= dj, the transition probabilities

are not.

The relation of P to the normalized Laplacian Lrw defined as in Eq. (7) is Lrw = I − P .

It follows immediately that λ is an eigenvalue Lrw if and only if (1− λ) is an eigenvalue of

P . Also, Lrw and P share the same set of eigenvectors, where the smallest eigenvector of

19

Lrw corresponds to the largest eigenvector of P . In other words, the solution of the relaxed

Ncut minimization problem as formulated in Eq. (14) can also be formulated in terms of

the transition probabilities of the random walk, a formal equivalence between the two is

provided by Maila and Shi [17].

The random walk defined on a similarity graph is a finite Markov chain, where each state

of the Markov chain is a node in the similarity graph, and P its transition probability matrix.

In a Markov chain, state i and j are said to be communicating if one can jump from i to j

with a finite probability. If G is a connected graph, then the Markov chain corresponding

to the random walk on G is irreducible as all states are communicating. The random walk

defined on the graphs in Fig. 2b) and c) are not irreducible as the graphs have two or

more connected components where states in different components are not communicating.

A Markov chain is aperiodic if the largest common divisor of the number of steps in all

possible paths from a state to itself is 1. See Serfozo [18, p. 23] for further discussion about

aperiodicity. For an irreducible and aperiodic Markov chain (e.g. consider the random walk

on the graph of Fig. 2d) there exists a unique stationary distribution π′ = (π1, . . . , πn),

satisfying π′P = π′. It can easily be shown that π have elements πi = di/vol(V).

Let Xt be the state at which the random walk is at time t ≥ 0, and A, Ā ⊂ V two disjoint

subsets of nodes in a graph. Suppose one starts a random walk in t = 0 according to the

stationary distribution π, one can then express the conditional probability of starting in A

and transitioning to Ā in one step as

P (X1 ∈ Ā|X0 ∈ A) =
P (X0 ∈ A,X1 ∈ Ā)

P (X0 ∈ A)

=
∑

i∈A,j∈Ā

πipij

/∑
i∈A

πi

=

∑
i∈A,j∈Ā ωij

vol(V)

/
vol(A)

vol(V)
=

cut(A, Ā)

vol(A)
.

It follows from the definition of Ncut, provided in Eq. (9), that

Ncut(A, Ā) = P (X1 ∈ Ā|X0 ∈ A) + P (X1 ∈ A|X0 ∈ Ā).

This leads to the interpretation of minimizing Ncut as finding the partition of nodes in a

graph such that a random walk have a low probability of transitioning between the partitions.

20

A. The commute time distance

Another prominent statistical interpretation provided by the random walk viewpoint to

the method of spectral clustering is the CTD. The CTD, denoted as cij, is the expected

number of steps in a random walk starting at node i, and returning to the same node after

visiting node j only once. In this section, we will establish the CTD connection to spectral

clustering, and show the important property of the CTD that it corresponds to the Euclidean

distance in the space spanned by the eigenvectors of the graph Laplacian. Therefore, this

property justifies the use of the traditional unsupervised learning method, namely the k-

means, in the space spanned by the eigenvectors of the graph Laplacian to discover clusters

in the spectral clustering algorithm, as discussed in Sec. IV.

Mathematically, the CTD is defined in Lovász [19] as the sum

cij = H(i, j) +H(j, i),

where H(i, j) is the expected number of steps it takes to reach node j from node i. We note

that the CTD between two vertices decrease if there are many different short ways to get

from node i to node j. The CTD have a strong connection to the spectrum of P , and it is

showed in Theorem 3.1. in Lovasz [19] that we can express H(i, j) as

H(i, j) = vol(V)
n∑

k=2

1

λk

(
v2
kj

dj
− vkivkj√

didj

)
, (17)

where λk is the k:th eigenvalue of Lsym and vki is the i:th element of the k:th eigenvector.

As a direct consequence of Eq. (17), we obtain the formula of the CTD;

cij = vol(V)
n∑

k=2

1

λk

(
vkj√
dj
− vki√

di

)2

. (18)

This shows that we can consider cij as the squared Euclidean distance between node i and j

in the space spanned by the eigenvectors of Lsym. Therefore, k-means clustering using cij as

a distance function is similar to the spectral clustering algorithm. The difference between

the two is that spectral clustering only consider the first k eigenvectors while the CTD

takes into account all of them, scaled by the inverse eigenvalue of the graph Laplacian. The

scaling factor means that the most influential coordinates are those corresponding to the

eigenvectors with small eigenvalues. This means that the CTD emphasise the difference of

the values of the smallest eigenvectors. This may be used as a motivation why the algorithm

21

only considers the first few eigenvectors. The approximation of the CTD used in spectral

clustering becomes better if there is a gap in the spectrum. This follows from that the

dominance of the eigenvectors before the gap will increase, and at the same time, decrease

for the eigenvectors after the gap. We further note that in Eq. (18) cij contains the volume

of the graph, vol(V). This is a multiplicative constant; hence it will not affect the relative

distances between the nodes and can be disregarded when constructing the clusters.

The CTD quantifies the random walk on the graph by finding a nonlinear transformation

that embeds the nodes from the original feature space to the Euclidean space spanned by

the eigenvectors of the graph Laplacian. We further note that the knowledge of the original

(hidden) feature variables of the datasets is not needed since only the pairwise similarities

of the data points are required as input for the whole spectral clustering algorithm. An

important property of the CTD, making it a suitable distance metric used for clustering,

is that it considers all possible round-trip paths between two nodes, implying that CTD

decreases (increases) as the number of round-trip paths increases (decreases).

VII. DEMONSTRATIVE EXAMPLES

Using simulated datasets, this section provides some illustrative examples of the strengths

and drawbacks of the spectral clustering. The software used for the implementation of the

spectral clustering algorithm in these examples is R [20]. The eigenvectors were computed

by the function eigen. In the space spanned by the first k eigenvectors, we performed the

k-means clustering with the function kmeans from the stats package.

A. Imbalanced data

One promise of spectral clustering is its ability to handle clusters of various sizes. In

this example, we have two two-dimensional Gaussian clusters with different numbers of data

points, seen in the left panel of Fig. 5. The smaller cluster contains 10 data points, and the

larger cluster 50 data points. From the spatial data, we created a fully connected similarity

graph with edges weighted by the Gaussian similarity function with σ = 2. The right

panel of Fig. 5, shows the values of the second smallest eigenvector of the normalized graph

Laplacian. From the figure, it can be seen that the clusters can be identified by the gap in

22

the second eigenvector’s values as discussed in Sec. V.

FIG. 5: A dataset of two imbalanced clusters (left) and the corresponding values of the second

smallest eigenvector of the normalized graph Laplacian (right).

B. Detecting the number of clusters

As stated in Sec. III B and illustrated in Fig. 3, the spectrum of the graph Laplacian can

be used as an indication of how many clusters would be appropriate for the dataset. In this

section, we will show that it is also possible to detect hierarchical cluster structures in data

from the gaps in the spectrum. We have used the simulated data of four two-dimensional

Gaussian distributions, organized in a hierarchical structure, which can be seen in the left

panel of Fig. 6. The structure in data is as follows; there are two well separated clusters.

Within these two clusters, there are two subgroups that are not as well separated, as shown

in Fig 6.

We created a fully connected graph, meaning that the only leading eigenvalue is exactly 0.

Looking at the spectrum in the right panel of Fig. 6, we can see that the second eigenvalue is

also close to 0. This indicates that one can identify the two main groups of highly connected

nodes. After the first and second eigenvalues, there is a gap in the spectrum, followed by

another gap after the fourth eigenvalue. This indicates that one can further identify two

subgroups within the main groups of strongly connected nodes. The appearance of multiple

gaps in the spectrum signifies the existence of a hierarchical cluster structure in the data.

As illustrated in this example, we can use the spectrum of the graph Laplacian to detect

23

FIG. 6: An example of cluster detection by the graph spectrum. A dataset of two main clusters, di-

vided into two sub-clusters, (left) and the corresponding 10 first eigenvalues of the graph Laplacian

(right).

not only the numbers of clusters, but also possible hierarchical organizations in the dataset.

C. Sensitivity to parameter selection

A drawback with the spectral clustering, is the volatility in performance based on the

construction of the similarity graph and choosing appropriate parameters related to the

graph [11]. Using the dataset of two half-moons from Sec. III A, we will illustrate this

sensitivity. From data, we created two similarity graphs, both fully connected but with

different scale parameter σ in the Gaussian similarity function. Fig. 7 shows the values

of the second eigenvector of the corresponding graph Laplacian, by choosing σ = 0.1 (left

panel) and σ = 0.03 (right panel). From the figure, we can see that the values substantially

changes when we vary σ. The larger σ (left panel), results in a constant increase of the

values while choosing a smaller σ creates a big gap among values being below and above

0. This implies that in the first case, when σ = 0.1, we define the local neighbourhood as

large enough to include both moon-shaped clusters. In the latter case, choosing σ = 0.03,

we define a smaller neighbourhood and give stronger connections to fewer neighbouring data

points, by which we manage to capture the underlying geometrical structures in data. The

gap implies that we have two groups of nodes that are strongly connected within the groups.

In our example, this shows that the smaller parameter value for σ is the more suitable choice.

24

FIG. 7: An example of the sensitivity in parameter selection in spectral clustering. Shown are the

values of the second largest eigenvector of the graph Laplacian of a fully connected similarity graph

constructed from a dataset of two moon-shaped clusters. In the first case the Gaussian similarity

has been used with σ = 0.1 (left), and in the second case σ = 0.03 (right).

Furthermore, this illustrates the use of the spectrum for the choice of σ, where an indication

of a suitable σ would yield a spectrum of one, or multiple, gaps.

VIII. VALIDATION

In supervised learning, we have a ‘teacher’ who can tell us what the correct answer should

be. It follows that there are clear evaluation measures for supervised methods. One can

measure the success of a supervised learning method by e.g. a loss function or by cross-

validation [2]. In unsupervised problems, like clustering, there is no direct answer to the

correct results, so we need to use alternative methods to evaluate the outcome of these

methods. According to Tan et al. [21], there are four main aspects of cluster validation;

1) distinguish whether there is a clustering tendency in data, 2) determine the number of

clusters, 3) evaluate the clusters, and 4) compare sets of clusters.

Spectral methods provide a natural way to answer the aspects of clustering tendency and

number of clusters. As described in Sec. III B, the spectrum of the graph Laplacian entails

the connectivity of the graph, such that the multiplicity of the eigenvalue zero equals the

number of connected components. By continuity, the number of clusters can be detected by

the eigenvalues close to zero, even for a connected graph. This was shown in the illustrative

25

example of the algorithm in Fig. 3. As could be seen in Sec. VII B, we can also use the gaps

in the spectrum to detect hierarchical, intrinsic cluster structures in data.

One approach to validate the clusters is by the correlation between the similarity matrix,

and the incident matrix. The incident matrix is the n×n symmetric matrix with elements

Iij equal to 1 if data points i and j belong to the same cluster, and 0 if else. The Pearson

correlation coefficient is computed for the two matrices. As the two matrices are symmetric,

only n ∗ (n − 1)/2 elements are compared. If we consider the distance as the similarity

matrix elements, a correlation coefficient of −1 is associated with data points belonging

to the same cluster being similar. In other words, a correlation of −1 would indicate a

successful clustering. If we would simply use the Euclidean distance as the elements in our

similarity matrix, this validation approach would only be appropriate if the clusters were

spherical symmetric. If we instead would replace the Euclidean distance in the similarity

matrix with the CTD, we would also be able to capture possible geometrical structures data

making it a suitable method for cluster validation of clusters of arbitrary shapes.

Spectral clustering was applied to a dataset consisting of three non-spherical clusters

in the shape of three circles, seen in Fig. 8. As can be seen from the figure, the clusters

FIG. 8: A dataset of three non-spherical clusters. The spectral clustering algorithm successfully

separated the clusters. In the algorithm, we used the normalized graph Laplacian, calculated from

a fully connected graph with σ = 1 in the Gaussian similarity.

are well defined and detected using spectral clustering. By validating the clustering by the

correlation with a similarity matrix defined by the Euclidean distance, the result is a Pearson

correlation coefficient of 0.09. This indicates a poor clustering result as it indicates that there

26

is no correlation between data points being close in the Euclidean space and belonging to

the same cluster. In other words, it does not entail the information that the three clusters

were successfully identified. By replacing the Euclidean distance by the CTD, one would get

a correlation coefficient of −0.72, showing that using the CTD in the correlation analysis

would be a more appropriate measure in the validation of clusters that are non-convex sets

in the feature space.

IX. DISCUSSION AND CONCLUSIONS

In this thesis, we give an introduction to the unsupervised learning method, the spectral

clustering. By representing data points in the form of a weighted graph, spectral clustering

reformulates the problem of clustering to a graph cut problem. This is a method especially

well suited when the data is not linearly separable or forms spherical clusters. It is also a

suitable method when the data points in a cluster reside on a low-dimensional manifold in

a higher dimensional embedding.

Sec. II contained an introduction to the problem of clustering. The popular clustering

algorithm, the k-means, was discussed and we illustrated how it is only a suitable method

when clusters are linearly separable or spherical symmetric (Fig. 1). We further discussed

the need for alternative methods more suitable for high-dimensional data or if the clusters

are non-convex sets in the feature space, e.g. density-based methods [4], ISOMAP [6], and

spectral clustering. In Sec. III, the main tools in spectral clustering, similarity graphs and the

graph Laplacian matrices were presented. We described some of the spectral and algebraic

properties of the graph Laplacians associated with spectral clustering. An extensive study

of the graph Laplacians and their properties has been made by Chung [9].

The essential steps in spectral clustering algorithms were shown in Sec. IV, followed

by an intuitive justification of the algorithm in Sec. IV A. There is not a single spectral

clustering algorithm, and the outcome will differ depending on whether the normalized or

unnormalized graph Laplacian is used. A discussion of the comparison of different spectral

clustering algorithms can be found in von Luxburg [11]. In Sec. V, we derived spectral

clustering as a relaxation of the problem of minimization of graph mincuts. We focused on

the objective function Ncut [13] and how it relates to the normalized graph Laplacian. There

are other objective functions in graph cuts that can also be linked to spectral clustering,

27

such as e.g. the RatioCut [14] and the MinMaxCut [22]. Then, we considered the statistical

foundation of spectral clustering in terms of the random walk perspective in Sec. VI. We

showed how spectral clustering finds a nonlinear transformation of data that embeds the

nodes of the similarity graph in a Euclidean space, in which the associated Euclidean distance

between the nodes corresponds to the CTD of a random walk on the similarity graph. This

illustrated that the k-means algorithm applied to the CTD as a distance metric is equivalent

to applying the k-means to the Euclidean distance in the space spanned by the eigenvectors

of the graph Laplacians. In Sec. VI A, we concluded that the CTD is an appropriate distance

metric in discovering clusters of arbitrary shapes since it considers all possible round-trip

paths between two nodes, implying that CTD decreases (increases) as the number of round-

trip paths increases (decreases). As a result, the CTD takes into account the underlying

geometrical structures in data. This makes the CTD more robust to noises and outliers

than if only a single path were considered, e.g. the shortest path between two nodes in the

graph or the spatial distance (the Euclidean distance), that does not take into account the

underlying geometrical structures of the data. In Sec. VII, we illustrated some strengths and

drawbacks of spectral clustering by using some simulated data. The examples demonstrated

the ability of clustering imbalanced data, how the spectrum of the graph Laplacian can be

used to identify the number of clusters, and the sensitivity of parameter selection. Cluster

validation and how the CTD can be used as a distance metric in one of these methods were

discussed in section VIII.

An advantage of spectral clustering is its ability to handle clusters of arbitrary shape, and

we have seen throughout the thesis examples of moon-shaped clusters, intertwined swirls,

etc. We have assumed that the data points are represented in some d-dimensional Euclidean

space. E.g., the Gaussian similarity function (defined as in Eq. (2)) is only applicable when

this is the case. However, there are several situations where data is naturally represented as

pairwise relationships rather than spatial data points (e.g. in social networks), where spectral

clustering is highly applicable, see e.g. [23]. In other words, since spectral clustering only

considers the pairwise relationships, it does not require a data representation of featured

data points but only the pairwise distances.

One of the drawbacks of spectral clustering, which has not yet been discussed in this

thesis, is that the method could be computationally costly if one were to calculate the

eigenvectors of large matrices. This issue can be resolved by representing the data in a

28

sparse similarity graph (see Sec. III A) or only compute the first few leading eigenvectors

(e.g. the Lanczos method proposed by Golub and Van Loan [24]). Another approach would

be to use other methods to first detect communities in the similarity graph, e.g. using the k-

clique method proposed by Farkas et al. [25]. Then the spectral clustering can be applied to

the detected communities to either further detect sub-communities or compare and classify

them based on their network structural difference, see e.g. Willis and Meyer [26] for metrics

of graph comparison including metrics based on the graph Laplacian.

A. Outlook on further studies

In this thesis, mainly the clustering aspects of spectral clustering were investigated. How-

ever, as seen in the illustrative example of the algorithm (Fig. 3, Sec. IV) the main trick in

spectral clustering is to consider the rows of the n×k matrix with the first k eigenvectors of

the graph Laplacian as columns as the new coordinates of the data points. In other words,

there is a nonlinear dimensionality reduction step before applying the k-means algorithm in

this new k-dimensional space spanned by the first k eigenvectors of the graph Laplacian. A

natural continuation of the study, after this thesis, would be the investigation of nonlinear

dimensionality reduction techniques using the CTD, and more generally the random walk

perspectives, as a distance preservation criterion for the new representation of data, in com-

parison with some other well-known distance preserving dimensionality reduction methods,

such as the locally linear embedding (LLE) [6], diffusion maps [27], Laplacian Eigenmaps

[28], etc.

Another interesting direction of further studies is the use of the graph Laplacian in the

study of networks, not only to detect groups of nodes that are highly connected, but also

to use the graph Laplacian for descriptive purposes, such as shape matching [29], shape

segmentation [30], shape recognition [31], etc. In other words, the graph Laplacian can be

used to study several properties of graphs; topology, connectivity, etc. Much beyond what

we have been able to cover in the scope of this thesis.

29

[1] J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction. Berlin, Heidelberg: Springer,

2007.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New York,

NY, USA: Springer, 2 ed., 2008.

[3] H. Xiong, J. Wu, and J. Chen, “K -means Clustering Versus Validation Measures: A Data-

Distribution Perspective,” IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cyber-

netics), vol. 39, no. 2, pp. 318–331, 2009.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,” in Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, KDD, p. 226–231, AAAI Press, 1996.

[5] J. B. Tenenbaum, V. Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear

Dimensionality Reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[6] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embed-

ding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[7] W. Donath and A. Hoffman, “Lower Bounds for the Partitioning of Graphs,” IBM Journal of

Research and Development, vol. 17, no. 5, pp. 420–425, 1973.

[8] M. Fiedler, “Algebraic Connectivity of Graphs,” Czechoslovak Mathematical Journal, vol. 23,

pp. 298–305, 1973.

[9] F. Chung, Spectral Graph Theory. American Mathematical Soc., 1997.

[10] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and Data Rep-

resentation,” Neural Comput., vol. 15, no. 6, pp. 1373–1396, 2003.

[11] U. von Luxburg, “A Tutorial on Spectral Clustering,” Statistics and Computing, vol. 17, 2007.

[12] L. Zelnik-Manor and P. Perona, “Self-Tuning Spectral Clustering,” in Advances in Neural

Information Processing Systems 17 (L. K. Saul, Y. Weiss, and L. Bottou, eds.), MIT Press,

2005.

[13] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[14] L. Hagen and A. B. Kahng, “New Spectral Methods for Ratio Cut Partition and Clustering,”

IEEE Trans. on Computer-Aided Design, vol. 11, no. 9, pp. 1074–1085, 1992.

30

[15] D. Wagner and F. Wagner, “Between Min Cut and Graph Bisection,” in Proceedings of the

18th International Symposium on Mathematical Foundations of Computer Science, MFCS,

pp. 774–750, MIT Press, 1993.

[16] S. Guattery and G. L. Miller, “On the Quality of Spectral Separators,” SIAM Journal on

Matrix Analysis and Applications, vol. 19, no. 3, pp. 701–719, 1998.

[17] M. Maila and J. Shi, “A Random Walks View of Spectral Segmentation,” in AISTATS, 2001.

[18] R. Serfozo, Basics of Applied Stochastic Processes. Berlin Heidelberg: Springer, 2009.

[19] L. Lovász, “Random Walks on Graphs: A Survey,” in Combinatorics, Paul Erdős is Eighty,

vol. 2, pp. 1–46, János Bolyai Mathematical Society, 1993.

[20] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2019.

[21] P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining. Pearson,

2 ed., 2018.

[22] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon, “Spectral Relaxation for k -means

Clustering,” in NIPS (T. G. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 1057–1064,

MIT Press, 2001.

[23] P. Symeonidis and N. Mantas, “Spectral Clustering for Link Prediction in Social Networks

with Positive and Negative Links,” Social Network Analysis and Mining, vol. 3, pp. 1433–1447,

2013.

[24] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins University Press,

3 ed., 1996.

[25] I. Farkas, D. Ábel, G. Palla, and T. Vicsek, “Weighted Network Modules,” New Journal of

Physics, vol. 9, no. 6 (180), 2007.

[26] P. Wills and F. G. Meyer, “Metrics for Graph Comparison: A Practitioner’s Guide,” PLoS

One, vol. 15, no. 2 (e0228728), 2020.

[27] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker,

“Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data:

Diffusion Maps,” Proceedings of the National Academy of Sciences of the United States of

America, vol. 102, no. 21, pp. 7426–7431, 2005.

[28] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for Embedding and

Clustering,” in Advances in Neural Information Processing Systems 14 (T. G. Dietterich,

31

S. Becker, and Z. Ghahramani, eds.), pp. 585–591, MIT Press, 2002.

[29] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer, “Articulated Shape Match-

ing Using Laplacian Eigenfunctions and Unsupervised Point Registration,” in Conference on

Computer Vision and Pattern Recognition, (Anchorage, United States), pp. 1–8, IEEE Com-

puter Society, 2008.

[30] A. Sharma, E. von Lavante, and R. Horaud, “Learning Shape Segmentation Using Constrained

Spectral Clustering and Probabilistic Label Transfer,” in Proceedings of the 11th European

Conference on Computer Vision: Part V, ECCV, (Berlin, Heidelberg), pp. 743–756, Springer,

2010.

[31] A. Tatsuma and M. Aono, “Multi-Fourier Spectra Descriptor and Augmentation with Spectral

Clustering for 3D Shape Retrieval,” Vis. Comput., vol. 25, no. 8, pp. 785–804, 2009.

32

Appendix

A. Eq. (11) extended

Given the vector f , as defined in Eq. (10), and the unnormalized graph Laplacian L,

defined in Eq. (5), we show how the objective function of Ncut, defined in Eq. (9), can be

rewritten as f ′Lf .

f ′Lf = f ′Df − f ′Wf

=
n∑

i=1

dif
2
i −

n∑
i,j=1

fifjωij

=
1

2

(n∑
i=1

dif
2
i − 2

n∑
i,j=1

fifjωij +
n∑

j=1

djf
2
j

)

=
1

2

n∑
i,j=1

ωij(fi − fj)2

=
1

2

∑
i∈A,j∈Ā

ωij

(√
vol(Ā)

vol(A)
+

√
vol(A)

vol(Ā)

)2

+
1

2

∑
i∈Ā,j∈A

ωij

(
−

√
vol(A)

vol(Ā)
−

√
vol(Ā)

vol(A)

)2

=
1

2

∑
i∈A,j∈Ā

ωij

(
vol(A)

vol(Ā)
+

vol(Ā)

vol(A)
+ 2

)
+

1

2

∑
i∈Ā,j∈A

ωij

(
vol(A)

vol(Ā)
+

vol(Ā)

vol(A)
+ 2

)

=
1

2

∑
i∈A,j∈Ā

ωij

(
vol(A) + vol(Ā)

vol(Ā)
+

vol(Ā) + vol(A)

vol(A)

)

+
1

2

∑
i∈Ā,j∈A

ωij

(
vol(A) + vol(Ā)

vol(Ā)
+

vol(Ā) + vol(A)

vol(A)

)

=
1

2

∑
i∈A,j∈Ā

ωij

(
vol(V)

vol(Ā)
+

vol(V)

vol(A)

)
+

1

2

∑
i∈Ā,j∈A

ωij

(
vol(V)

vol(Ā)
+

vol(V)

vol(A)

)

=
1

2
vol(V)cut(A, Ā)

(
1

vol(Ā)
+

1

vol(A)

)
+

1

2
vol(V)cut(Ā, A)

(
1

vol(Ā)
+

1

vol(A)

)
= vol(V)cut(A, Ā)

(
1

vol(Ā)
+

1

vol(A)

)
= vol(V)Ncut(A, Ā).

33

