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Abstract

In this report, we discuss the diffusion map, a nonlinear dimension-

ality reduction method, which focuses on discovering the underlying

geometrical structure of data. We first consider a given dataset as a

weighted graph, then construct a Markov chain on this graph. The

transition matrix P , expressed by a Gaussian kernel function with a

single parameter σ - kernel width, characterizes the local connectivity

on the graph. When running the Markov chain forward in time, P t

integrates the local connectivities to describe the global connectivity,

leading to the idea of diffusion distance viewed as the average length

of all paths connecting two nodes in the weighted graph. The diffusion

distance defined from P t thus contains the information of the intrinsic

data geometry. We then use eigen-decomposition of P t to define dif-

fusion coordinates and the diffusion map. This map reorganizes the

data according to the diffusion distance in which the points are close

if they are highly connected in the weighted graph. Moreover, the dif-

fusion map embeds the data in a lower-dimensional space where the

Euclidean distance is an approximation of the diffusion distance.

Diffusion map is very robust to noise and easy to implement. Nev-

ertheless, it is not trivial to choose the parameters appropriately: the

kernel width σ, the timescale t, and the dimension of the embedding

space q. While the kernel width relates to how transition probabilities

describe local connectivity, the timescale t affects the ability of the

diffusion distances to capture global connectivity, and the dimension

q characterizes the intrinsic dimension of the representation we would

like to discover. All of them are investigated by toy examples in our

report.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: tthnga.nguyen@gmail.com. Supervisor: Chun-Biu Li.



Acknowledgements
I would like to express my gratitude to my supervisor, Prof. Chun-Biu Li, for his advise, patience,
guidance, encouragement as well as his enthusiasm and confidence. I am grateful to him for precious
helping in proofreading and correcting my report. This report would not have been possible without
his support.
I would also like to thank my friends, Marina and Arthur, for their willingness to read and provide
valuable comments on this report. Special thanks to Marina for having accompanied and listened
to me throughout my studies.
I appreciate the understanding and constant support given to me by my husband. Finally, my
thanks go to my parents and my brother for their unfailing love.



Contents
1 Introduction 1

2 Linear dimensionality reduction methods 1
2.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Principal components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 PCA and Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . 4
2.1.3 Advantages, disadvantages and limitations . . . . . . . . . . . . . . . . . . . 5

2.2 Multidimensional Scaling (MDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Embedding of the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Gram matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 The equivalence of MDS and PCA . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Advantages, disadvantages and limitations . . . . . . . . . . . . . . . . . . . 9

3 Diffusion Map (DM) 10
3.1 Local similarity and connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Timescale t and relationship of local and global structure . . . . . . . . . . . . . . 12
3.3 Eigen-decomposition of the transition matrix . . . . . . . . . . . . . . . . . . . . . 15
3.4 Diffusion distance and diffusion map . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Intrinsic geometry and dimensionality reduction . . . . . . . . . . . . . . . . . . . . 19

4 Computational experiments 20
4.1 S-shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 S-shape with large width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 S-shape with small width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 S-shape with hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Experiment with diffusion map . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Non-spherically symmetric data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Experiment with diffusion map . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 30

6 Discussion 30

References 32

Appendices 34

Appendix A Decomposition of the transition matrix 34

Appendix B Spectrum of the transition matrix 35

Appendix C Diffusion distance in the term of eigenvalues and eigenvectors of
Markov matrix 35



1 Introduction
Today, we face a lot of complex and high-dimensional data under the rapid development of instru-
mentation technologies. Working with these data problems come out: difficulty in visualizing, high
computational cost, sparseness, locality, boundary, and high bias [5, 10]. Dimensionality reduction
is one common strategy to resolve these issues.

The goal of dimensionality reduction is to find a low-dimensional representation of a high-
dimensional data capturing essential geometrical features. For example, an image of a handwriting
digit 11 has a size of 28 × 28, and its dimension is thus 784. Observing Figure 1a, these images
display digit 1 with different angles. Therefore, we can reorganize them by their angle, as shown
in Figure 1b, where we need only one variable. Now, if we have similar images of ten digits from
0 to 9, an intuitive organization is to divide them into ten groups of the digit, and in each group,
the images are arranged according to the angle of each digit. With this organization, we need only
two variables, digit and angle, to express the important information of the data.

There are a lot of methods developed to solve the problem of finding the lower-dimensional
description of the data. They are usually classified into linear and nonlinear methods. A linear
method finds a linear transformation of the data and normally preserves the Euclidean distance
between points such as Principal Component Analysis (PCA). However, when a data structure is
nonlinear, the Euclidean distance between points, when it is large, provides very little information
about the disconnection between data points. It thus fails to describe the underlying structure
of data. Diffusion map [4], otherwise, is a nonlinear method preserving diffusion distance which
is small when the points are connected via many points between them and large when they are
disconnected. This distance better expresses the disconnection between points. The diffusion
map is a topology-preserving method [6] which preserves the neighborhood relationships between
subgroups of the data, similar to Locally Linear Embedding (LLE), Laplacian eigenmaps (LE) (see
[11] for more details about these methods). The diffusion map is the main focus of our report.

(a)

(b)

Figure 1: (a) Images of digit 1 and (b) a reorganization by angle.

The report’s outline is as follows. Section 2 gives an overview of two well-known methods for
dimensionality reduction: PCA and Multidimensional Scaling (MDS). In Section 3, we introduce
and explain the diffusion map. In Section 4, computational experiments on some toy examples are
performed and discussed. Section 5 presents the conclusion. Finally, the discussion of potential
studies is given in Section 6.

2 Linear dimensionality reduction methods
Linear dimensionality reduction methods are usually performed under the assumption that the
data are linearly embedded into a higher-dimensional space. Finding out this linear transformation

1from MINST in http://yann.lecun.com/exdb/mnist/
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Figure 2: A example of PCA. A sample of 100 (black) points distributed along a straight line with
adding the noise and the principal components. The first component (the red arrow) describes the
data in the largest variance direction. The second component (the blue arrow) is orthogonal to
the first one.

gives a lower-dimensional representation. Among these methods, PCA is very well popular. MDS
less so, however, it has some similarities with PCA: both of these methods are solved by using
eigenanalysis, which is also used in the construction of the diffusion map.

Let us assume that our data have n observations, and each of them contains d features. While
PCA is solved on the data covariance matrix (of size d × d) in feature space, MDS works with a
distance matrix (of size n×n) in observation space. Like MDS, the diffusion map is constructed by
using the eigen-decomposition of a transition matrix, the row-normalization of a distance matrix
in observation space, of size n × n. Therefore, by comparing to MDS, we can get some insights
regarding the eigenvalues and eigenvectors defined in the diffusion map process.

2.1 Principal Component Analysis (PCA)
PCA is the most common method in dimensionality reduction. The purpose of PCA is to find a
new basis, which is a linear combination of the original basis, that best expresses the data. With
the assumption that the directions of the large variance contain important information about the
data while the directions of small variance correspond to the noise, the method transforms the
original data to a new representation by rotating its coordinate system to capture the variance
maximally.

To have a general overview of PCA, let us look at an example in Figure 2. In this example, a
set of 100 points in a 2-dimensional plane is considered. These points are distributed along a line
with a noise addition. Note that in real situations, noise can be incurred during data measurement,
collection, or storage. By this construction, the data are actually defined in one dimension, which
corresponds to the largest variance direction. This direction does not lie along with the basis of the
data points (x, y) but rather lies along the best fit line. After using PCA, the basis is changed by
rotating so that the projection of the data points on the first principal component has the largest
possible variance. The second component on which the data are projected is orthogonal to the
first one and has a very small variance. In this case, the second component can be considered as
noise and neglected. The dimensionality can be reduced to one. In the next section, we will see
how PCA is formulated mathematically.
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2.1.1 Principal components

Consider a dataset X where each observation x ∈ Rd is a random vector of d variables. Suppose
that the dataset has n observations, X denotes a matrix of size n × d. PCA helps to find a new
representation Y , a matrix of size n×m, in which each element y ∈ Rm has m < d variables such
that

Y = XW . (1)

The columns {wi}i=1,...,m of matrixWd×m are a set of new basis vectors. By this transformation,
yi is a projection of xi onto the new basis {wi}i=1,...,m.

The variables in the data, in many cases, contain important information and the noise. We
assume that important information has a large variance, while noise has a small variance. In
addition, there is an extra factor in the data - redundancy - represented by the covariance between
variables [16]. When two variables are strongly correlated (as the example shown in Figure 2),
corresponding to high linear redundancy, they describe the same information of the data. The goal
of PCA is to find out the appropriate rotation of the basis of the original data which maximizes
the variance describing the important information and minimizes the redundancy measured by the
magnitude of the covariance. Thus, the optimal covariance matrix is diagonal, where the diagonal
entries are ordered decreasing according to the variance, and the off-diagonal entries are all zero.
With this matrix, the important information is described by the large variance directions while
the noise corresponds to the small variance.

Nevertheless, the covariance matrix is usually unknown in reality where we only measure the
data. For this reason, the unbiased sample covariance matrix CX can be considered. For the sake
of simplicity, assuming that the dataX is centered, that means 1

n

∑n
i=1 xi = 0d, where 0d is vector

of d zero entries, the unbiased estimate of the covariance matrix is

CX =
1

n− 1
X>X.

Note that the centralization can be done in data preprocessing. CX is a square symmetric d × d
matrix where the diagonal entries are the variance of a particular variable, and the off-diagonal
entries are the covariance between d variables. Since Y is centered after the transformation (1)
when X is centered, the covariance matrix of the new representation Y can be similarly estimated
by

CY =
1

n− 1
Y >Y ,

where CY is a square symmetric m × m matrix. For the goal of PCA, the optimal covariance
matrix of Y is diagonal, i.e. all off-diagonal entries are zero and all diagonal entries should be
ordered descendingly according to variance. To diagonalize the covariance matrix CY an intuitive
method is assuming the basis vectors {wi}i=1,...,m are orthonormal, that means W>W = Im,
where Im is m×m identity matrix. From this assumption, the solution of PCA in a natural way
is a set of eigenvectors of the covariance matrix, which we will see below.

Using the transformation (1), the relationship between CY and CX is

CY =
1

n− 1
Y >Y =

1

n− 1
W>X>XW = W>

(
1

n− 1
X>X

)
W = W>CXW .

Since the covariance matrix CX is symmetric with all entries are real numbers there exists an
eigen-decomposition

CX = QΛQ>, (2)

where Λd×d is a diagonal matrix whose entries are eigenvalues and the columns of Qd×d are
orthonormal eigenvectors of CX , i.e. Q>Q = QQ> = Id. Moreover, since a covariance matrix is
positive semi-definite, its eigenvalues are all real numbers and non-negative. Now assuming that
the entries of Λ are in decreasing order, an intuitive solution for PCA problem is

W ≡ QId×m, (3)
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where Id×m is the d×m identity matrix. This choice satisfies the assumption ofW>W = Im and
diagonalizes the covariance matrix of Y because

CY = Im×dQ
>CXQId×m = Im×dQ

>QΛQ>QId×m = Im×dΛId×m.

The eigenvalues represent the variance of the data projection on the new basis defined by the
orthonormal eigenvectors of CX . The column vectors of Q, indicating the direction of the new
representation Y , define the principal components. And the identity matrix Id×m allows keeping
m among d dimensions of the original data as follows

Y = XQId×m,

where m ≤ d.
Note that, if m < d, W>W = Im but WW> 6= Id because the rank of matrix W is m. In

other words, the rows of W are not linearly independent. Additionally, W> is the generalized
inverse [2] ofW (sinceWW>W = W ) that implies the reconstructionX = YW>. The columns
of W> thus form the basis of X. Their dependence shows that dataset X is embedded into a
higher dimensional space than its intrinsic space. Discovering the intrinsic space is the goal of not
only PCA but also all dimensionality reduction methods.

One problem of PCA is to determine m, the number of retaining dimension. If the linear
transformation in (1) exists, only the first m eigenvalues of Λ are non-zero. m is thus the number
of non-zeros eigenvalues of the covariance matrix CX . However, in real situations, there are some
noises in the observations as in the example in Figure 2. Choosing m, in this case, becomes more
difficult. There are some shoosing methods, such as observing the gap (sudden fall) in the plot of
the eigenvalues or using a threshold of neglected variance [11].

In summary, PCA gives a new representation Y of the dataset X by rotating the original basis
under the following assumptions:

• The transformation is linear: we can define a new basis of linearly independent vectors
expressing the data in small representation space.

• The directions of large variance describe the data’s important information while the ones
with small variance represent the noise. That implies that only the principal components
corresponding to the large variance are interesting.

• The principal components are orthonormal, which means the vectors form the new basis is
orthogonal and of unit one. That is an intuitive way that makes PCA solvable using linear
algebra.

2.1.2 PCA and Singular Value Decomposition (SVD)

Another perspective of PCA can be seen by using SVD. Consider matrix

X ′ =
1√
n− 1

X;

it is following that the covariance matrix of X can be computed by

CX = X ′>X ′.

Now let us consider the SVD of the real matrix X ′ of size n× d given by

X ′ = UΣ′V >,

where Σ′ is an n × d rectangular matrix with non-negative real numbers on the diagonal, U is
n×n and V is d×d orthonormal matrices, i.e. U>U = UU> = In and V >V = V V > = Id. The
diagonal entries of Σ′ are known as the singular values, the columns of U are left singular vectors,
and the columns of V are right singular vectors of X ′. The columns of V yield an orthonormal
basis of the data observations (in Rd) while the columns of U yield an orthonormal basis of the
data variables (in Rn) of the matrix X ′. Regarding the eigen-decomposition, V is the set of the
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eigenvectors of X ′>X ′, the columns of U are the eigenvectors of X ′X ′>, and the singular values
are the square root of the eigenvalues of both of matrices, X ′>X ′ and X ′X ′> which have the
same eigenvalues.

The matrix CX can be rewritten as

CX =
(
UΣ′V >

)>
UΣ′V > = V Σ′>U>UΣ′V > = V Σ′>Σ′V >

Comparing to the eigen-decomposition of CX in (2), the right singular vectors V of X ′ are
equivalent to the eigenvectors Q (also see in (2)) of CX and the singular values Σ′ = Λ1/2.
Therefore, when the singular values in Σ′ are decreasingly ordered the new representation Y of
PCA can be computed by

Y = XV Id×m, (4)

where the first m singular vectors of X ′ are the principal components.

Note that the columns of V are also the right singular vectors of X. In particular, it can be
written by

X = U
(√
n− 1Σ′

)
V >.

Moreover, the factor
√
n− 1 does not affect the order of singular values. Since the goal of PCA

is to identify the principal components or the orthonormal vectors forming the basis of the new
representation Y , the matrix V in (4) can be thus computed from the dataset X instead of X ′.
Using the properties of SVD of X, we have

XV = UΣ, (5)

where Σ =
√
n− 1Σ′. This equivalence allows computing Y by using the left singular vectors of

X instead of the rights and the singular values without the appearance of X. Additionally, the
singular values and left singular vectors are equivalent to the eigenvalues and eigenvectors of the
Gram matrix XX>. That relates to the multidimensional scaling method which will be discussed
in Section 2.2.

2.1.3 Advantages, disadvantages and limitations

Advantages: The reason why PCA is used widely comes from the following advantages:

• It is simple: easy to implement and understand based on linear algebra.

• Less sensitive to the outliers: the principal components are determined based on the co-
variance matrix of the whole dataset. The outliers usually have a small size do not have a
significant influence on the final answer.

• Non-parametric and unique principal component: there is no need to choose any model
parameter, and the principal component vector is unique [8]. Therefore, the users will get
the same answer if they use the same dataset with the same units [16].

Disadvantages: Although there is no model parameter in PCA, data may have to be standard-
ized during reprocessing, and we need to decide m the number of principal components to be
used.

• Data standardization [8]: data variables can be expressed in different units such as kilograms,
meters, years, and they can have very different variance. We need to standardize these
variables by their standard deviation before PCA; otherwise, the principal components will be
biased towards the high variance variables. However, standardization is not always necessary.
For example, when a variable has noise with small variance, it becomes more important after
standardization. That makes choosing the principal components more difficult and may lead
to an incorrect answer. Therefore, standardizing data variables should be decided carefully
based on the prior knowledge of the data.
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• Difficulty in choosingm - intrinsic dimension: as discussed above, all d eigenvalues are usually
non-zero in real situations. There is not a well-accepted objective way to identify m principal
components [8]. The choice depends on the users’ purpose and dataset. If we would like only
to visualize, then two or three principal components are a good choice. If we would like to use
the result of PCA for further analysis, there are some criteria to determine m, as discussed
in [11].

Limitations: PCA is solved under the assumptions (mentioned at the end of Section 2.1.1)
which do not always hold in real situations. PCA fails when the dataset has some of the following
properties:

• Nonlinear transformation: when the data are nonlinearly embedded into a high-dimensional
space, PCA cannot detect the intrinsic dimension, as shown in the example in Figure 3 and
4.

• Non-Gaussian distribution: PCA works on the covariance matrix which does not well describe
the dataset if its points are non-Gaussian distributed. We can get a biased answer. For
example, the points uniformly distributed in a rectangle are embedded linearly into three-
dimensional space [11]. PCA cannot discover the rectangle; the first principal component
captures the diagonal of the rectangle instead of the length.

• Non-orthogonal transformation: when the transformation is not orthogonal, PCA finds out
the intrinsic data with some errors [11, 8]. For example, when data points are distributed
as +-shape, it turns into an X-shape after a non-orthogonal transformation. PCA cannot
discover the +-shape; the second principal component does not capture the second dimension
of +-shape.

Finally, the Cartesian coordinates of data points are required to solve PCA. If the data are not
numeric (e.g., categorical data), it must be mapped into numerical space before applying PCA.

2.2 Multidimensional Scaling (MDS)
MDS is a family of methods that preserve the distance. We can classify this family into: (1)
classical MDS, (2) metric MDS, and (3) non-metric MDS [12, 11]. However, in this report, we
only discuss the classical MDS with the assumption that the data are given in the Euclidean space
where we can get the exact solution. The classical MDS, in general, works in any space.

The classical MDS is also known as another approach of PCA which preserves scalar product.
A less familiar name of MDS is Principle Coordinates Analysis (PCoA). If the data points are given
in the Cartesian coordinates, MDS and PCA provide the same result. However, unlike PCA, which
requires the knowledge of the coordinates of the data points, MDS starts with the dissimilarities
that are usually defined by a distance matrix. MDS’s goal is to represent the structure of distance
data from a high-dimensional space to a lower-dimensional space preserving the distance.

2.2.1 Embedding of the dataset

In reality, the data can be given as the distances between points instead of the coordinates system.
Assuming that we have data distance information, the goal of MDS is to find data coordinates in
as few dimensions as possible with the same distance.

Like PCA, the purpose of the classical MDS is to find out a representation Yn×m of the original
data Xn×d by a linear transformation Wd×m as in (1) with the assumption that the columns of
W are orthonormal, i.e. W>W = Im. This assumption is to make the problem solvable using
linear algebra. We have WW>W = W , W> is a generalized inverse of W [2]. Therefore, the
transformation in (1) can be rewritten as

X = YW>.

Note that it is not necessary to know X in MDS. Instead, the pairwise scalar products or pairwise
distances are the input of MDS. Both of them are real symmetric matrices that can be diagonalized
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by an orthogonal matrix. Another assumption of MDS is thatX and Y are centered for the reasons:
(i) the solution is the same as the one using PCA, and (ii) the so-called double centering operation
can be used to compute scalar products from the distances. Both of these reasons will be precise
in the next section.

Note that, in a Euclidean space, rotation, reflection, or a combination of them preserve the
scalar product while the translation does not. Therefore, by the centralization assumption, scalar
products are not preserved after MDS in the original space. In other words, if X ′ is the original
data and X is its centered version, the scalar product between points in the new representation
Y corresponding to the centered X is different from the new representation Y ′ obtained from the
original space X ′.

2.2.2 Gram matrix

As discussed in Section 2.1.2, when the coordinate information X is missing, we can get the new
representation Y by using the eigenvalues and eigenvectors of the matrix XX>. In Euclidean
space, this matrix is the Gram matrix. In general, the Gram matrix of the dataset X is an n× n
symmetric matrix of the scalar products of all pair vectors in X. The scalar product between two
vectors xi and xj is given by

s(xi,xj) = 〈xi,xj〉 = x>i xj , (6)

where xi,xj ∈ Rd are the column vectors. The Gram matrix of X can be thus written as

SX = XX>.

It can be seen that the Gram matrix of X and Y are the same,

SX = XX> = YW>WY > = Y Y > = SY . (7)

The classical MDS thus preserves the scalar product after transforming.
Next, we will see how Y can be computed from this Gram matrix. By the symmetry, there

exists the eigen-decomposition

SY = SX = QΛQ> = QΛ1/2
(
QΛ1/2

)>
, (8)

where Q is an n× n orthonormal matrix, i.e. QQ> = Q>Q = In, and Λn×n is a diagonal matrix
containing the eigenvalues of SY . If the eigenvalues are arranged in decreasing order, the new
representation Y can be computed by

Y = QΛ1/2In×m. (9)

Note that the Gram matrix is positive semi-definite; therefore, all its eigenvalues are non-
negative. Besides that, the rank of this matrix is at most d, and it thus has at most d strictly positive
eigenvalues while the rest ones are zero. The d associating eigenvectors form a new orthogonal
basic of Y , and the eigenvalues are proportional to the variance in Y along the corresponding axis
[12]. Like PCA, choosing m < d dominant eigenvalues is done under the assumption that the large
variance directions contain the important information of the data while the small variance ones
represent the noise.

2.2.3 Distance matrix

The Gram matrix is not usually known in reality, but instead, a pairwise distance matrix is
generally available. Consider data points xi,xj ∈ Rd, the Euclidean square distance matrix D =
{d2(xi,xj)}1≤i,j≤n can be defined by using the scalar product as follows

d2(xi,xj) = ‖xi − xj‖2 = 〈xi − xj ,xi − xj〉 = 〈xi,xi〉 − 2〈xi,xj〉+ 〈xj ,xj〉
= s(xi,xi)− 2s(xi,xj) + s(xj ,xj), (10)

where x is assumed to be centered, i.e. 1
n

∑n
i=1 xi = 0d, where 0d is vector of d zero entries. Note

that we use the square distance d2 instead of d in the matrix D for simplicity of notation in later
computations. The input of MSD is usually the Euclidean distance matrix.
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Using the centralization of X which is
∑n
i=1 s(xi,xj) =

∑n
j=1 s(xi,xj) = 0 and Equation (10)

we have
n∑
i=1

d2(xi,xj) =

n∑
i=1

s(xi,xi) + ns(xj ,xj),

n∑
j=1

d2(xi,xj) = ns(xi,xi) +

n∑
j=1

s(xj ,xj),

n∑
i=1

n∑
j=1

d2(xi,xj) = n

n∑
i=1

s(xi,xi) + n

n∑
j=1

s(xj ,xj) = 2n

n∑
l=1

s(xl,xl).

By substituting these equations into the relationship between the pairwise distance and the scalar
product in (10), the scalar product can be computed from the Euclidean distance as follows

s(xi,xj) = −1

2

(
d2(xi,xj)− s(xi,xi)− s(xj ,xj)

)
= −1

2

d2(xi,xj)−
1

n

 n∑
j=1

d2(xi,xj)−
1

2n

n∑
i=1

n∑
j=1

d2(xi,xj)


− 1

n

 n∑
i=1

d2(xi,xj)−
1

2n

n∑
i=1

n∑
j=1

d2(xi,xj)


= −1

2

d2(xi,xj)−
1

n

n∑
j=1

d2(xi,xj)−
1

n

n∑
i=1

d2(xi,xj) +
1

n2

n∑
i=1

n∑
j=1

d2(xi,xj)

 .

In the matrix form, the Gram matrix, S = SX = SY , can be written as

S = −1

2

(
D − 1

n
D1n1>n −

1

n
1n1>nD +

1

n2
1n1>nD1n1>n

)
= −1

2
JDJ (11)

where J = In − 1
n1n1>n is the centering matrix, 1n is a column vector of length n with all entries

equalling one, and In is the identity matrix of size n×n. Equation (11) is called “double centering”
operation. It is composed of subtracting all entries of the distance matrix D by the mean of the
corresponding row, the mean of corresponding column, and adding the mean of all entries. The
eigen-decomposition of the Gram matrix S computed from (11) gives the new representation Y as
in (9).

The relationship between the distance and the scalar product in Equation (10) implies that
MDS preserves not only the scalar product but also the Euclidean distance if X is in Euclidean
space. We mentioned that if the original data are not centered at the beginning, the Gram matrix
of new representation Y will not be the same as the Gram matrix of the original space since
centering. However, the centering does not change the pairwise distance. Therefore, MDS actually
preserves the Euclidean distance.

2.2.4 The equivalence of MDS and PCA

The classical MDS and the PCA give the same result if the Cartesian coordinates of the dataset
X are known. In this case, the computation of Y in (4) and (9) are equal. Let us consider the
SVD of X as X = UΣ′V >, where Σ is an n × d diagonal matrix containing singular values,
U>U = UU> = In and V >V = V V > = Id, we have

SY = SX = XX> = UΣ′V >V Σ′>U> = UΣ′Σ′>U>.

By identifying to (8), we can set Q = U and Λ = Σ′Σ′>. The new representation Y in (9)
becomes

Y = U
(
Σ′Σ′>

)1/2
In×m = UΣ′Id×m. (12)
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Figure 3: C-curve data (of size 50): (a) one-dimensional hidden space, z ∼ U(π/3, 5π/3), and (b)
two-dimensional embedding space, x = (cos(z) + ε1, sin(z) + ε2) where εi ∼ N(0, 0.12). Two green
points have the largest separation in z. The point color is encoded by z.
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Figure 4: PCA: (a) two and (b) one principal components of C-curve data (in Fig. 3b). The color
is encoded by the value of z shown in Figure 3a.

By using (5), we have the same result of Y using PCA in (4) and using MDS in (12). PCA uses
the right singular vectors of X while MDS uses the left ones. Under the assumption that the data
coordinates X is unknown, the use of V of MDS is reasonable. With this left eigenvectors, we do
not need X to compute the new representation Y .

2.2.5 Advantages, disadvantages and limitations

The classical MDS has all the advantages, disadvantages, and limitations of PCA (discussed in
Section 2.1.3). However, compared to PCA, MDS is more flexible since the input can be the
coordinates, the Gram matrix, or the distance matrix, while PCA requires the coordinates. For
this reason, MDS does not meet the difficulty in the standardization of the variables in PCA.
Nevertheless, MDS can be more expensive in the computation if the number of observations of the
data is larger than its dimension.

Both PCA and classical MDS are the linear methods of dimensionality reduction. They fail
when the data are a nonlinear combination of its basis, as shown in the example of C-curve in
Figure 3. Both of the two principal components (in Fig. 4a) do not provide a correct order in
color as (1D) hidden space shown in Figure 3a. Figure 4b shows the superposed turns at the top
and bottom of C-curve in the first PC. Therefore, PCA fails in discovering the (1D) hidden space
of the data, and MDS fails too. A nonlinear method will be discussed in the next section.
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3 Diffusion Map (DM)
One reason for the failure of PCA and MDS on a nonlinearly embedded data is due to the Euclidean
distance they preserve. In a nonlinear data structure, the Euclidean distance gives very little
information about the dissimilarity. For example, two green points in Figure 3b have the largest
distance in (1D) hidden space (in Fig. 3a). However, their Euclidean distance is not the largest
one. Diffusion maps method, in a different approach, works with diffusion distance on a weighted
graph. The diffusion distance better describes the dissimilarity between points; that is, the points
are far apart if they are poorly connected. Besides, the diffusion map embeds the data into a
Euclidean space where the Euclidean distance corresponds to the diffusion distance defined in
terms of a random walk on the weighted graph constructed from the data. We will now turn to
the discussion on how to construct a weighted graph from data.

3.1 Local similarity and connectivity
The method starts with the idea that only highly correlated data points are meaningful. This
correlation will be characterized by local similarity. Considering the dataset X (X ⊂ Rd or a
vector space) as a weighted undirected graph (where each data point is a node), we construct a
Markov chain on this graph. The connectivity of two nodes is defined by the probability of jumping
between these nodes. In this sense, a nonlinear kernel k(., .), which measures the similarity between
nodes, is useful to describe this connectivity.

Kernel function: On the dataset X, we construct a weighted graph in which each data point
is a node and the weights are represented by a modification of Gaussian kernel function given by

k(xi,xj) =

{
exp

(
−‖xi−xj‖2

2σ2

)
if xi 6= xj

0 if xi = xj ,
(13)

for xi,xj ∈ X, where σ is called kernel width. This function is the Gaussian kernel, not allowing
self transition within the node. The reason for this choice will be discussed at the end of this
section after introducing the transition matrix of a Markov chain.

The Gaussian kernel function mentioned above is only one example of the general functions
k(., .) satisfying two following properties:

• symmetric, i.e. k(xi,xj) = k(xj ,xi),

• non-negative, i.e k(xi,xj) ≥ 0 for all xi,xj .

However, later in this report, we will only consider the Gaussian kernel with the kernel width σ
in (13). This kernel function can be later interpreted as a scaled transition probability between
nodes that must be non-negative. The second non-negative property comes from this reason. The
first symmetric property is necessary to perform the eigen-decomposition of the transition matrix
(see Appendix A).

The kernel function measures the local similarity of a node. Given node xi, the function in (13)
has significant non-zero value within a neighborhood, and quickly goes to zero outside this area.
A node xj is similar to xi if it lies inside the neighborhood of xi.

The function in (13) is the non-normalized form of the isotropic Gaussian density with mean
xi and variance σ2. The missing constant is not necessary; it will be canceled out in the definition
of the connectivity, that we will see later. Therefore, the kernel width has the same meaning as
the standard deviation in the Gaussian distribution, and characterizes the neighborhood of xi.

Kernel width: In (13), σ defines the spatial extent within which the nodes are similar. As an
illustrated example of the effect of σ, Figure 5 displays graphs of C-curve data with the edges
weighted by the Gaussian kernel.

• When σ is large, in Figure 5a, this spatial extent is large. It allows us to jump between nodes
apart directly, e.g., there is a direct link between two red nodes in the figure. In this case,
we cannot see the geometrical structure of the data.
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(a) σ = 1 (b) σ = 0.5 (c) σ = 0.1

Figure 5: The graphs are constructed on C-curve data (in Fig. 3). Two red nodes have the largest
separation of z shown in Figure 3a. The edges of the graph are weighted by the Gaussian kernel
in (13) with various σ.

• When σ is small, in Figure 5b, it is only possible to jump between close nodes. There is no
direct link to go further nodes. We can see the curvature of C-shape by connecting together
short links residing on the nonlinear geometrical structure of the data points.

• When σ is too small, as in Figure 5c, so that there is no link between any two nodes, the
graph is disconnected. It does not capture any global geometrical relationship.

With different values of σ, the local structure of the data is described in different ways. This
kernel width thus depends on the prior knowledge of geometry and the density of the data. If the
data points are uniformly distributed, σ can be chosen as a constant such that

• It is not too small to ensure the graph is connected;

• It is small enough to describe the geometry of data such as the curvatures and the discon-
nection.

A simple way to choose a suitable width is to use the k-nearest neighbor (knn) distance. In
the computational experiments section, we will choose σ as the median of the knn distances with
a default value of 1-2% of the sample size for k in the diffusionMap2 package of ©©©©©RR.

Other criteria to choose the constant σ were discussed in [3, 7]. When the distribution of data
points is non-uniform or anisotropic, more than one σ should be used to get a good description of
the data structure. In [15], they suggested choosing different σ for different data points. However,
we will not discuss these choices in detail, they are out of the scope of this report.

Transition matrix: On the weighted graph constructed from the dataset X, we construct a
Markov chain. We then introduce a diagonal matrix D with the entries,

Di =

n∑
k=1

Wik (14)

that measures the degree of the node xi, where Wij = k(xi,xj) is the weight. Note that Di is
proportional to the number of links to node xi. Thus, it relates to the point density: a low-density
point corresponds to a node with a small degree and vice versa. Consider a row normalization
matrix of W ,

P = D−1W . (15)

We can see that
∑n
j=1 Pij = 1, and Pij ≥ 0. The matrix P can be thus viewed as the Markov

chain’s transition matrix, where each entry,

Pij = p(xj | xi) =
Wij

Di
=

k(xi,xj)∑n
k=1 k(xi,xk)

, (16)

2https://cran.r-project.org/web/packages/diffusionMap/diffusionMap.pdf
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defines the connectivity of two nodes xi,xj

connectivity(xi,xj) = p(xj | xi) ∝ k(xi,xj).

The term p(xj | xi) is the transition probability of moving to node xj given that the chain starts
at xi in a single step. Although W inherits the symmetry of the kernel function, the matrix P
is no longer symmetric. Note that the indices for an element of P are swapped when writing the
corresponding conditional probability. In particular, Pij is the probability of xj given xi; therefore,∑
j Pij = 1. And if p0 is a column vector of the initial distribution of the chain, it has to multiply

by the left of P to get the chain’s distribution in the next step, i.e., p>1 = p>0 P .

We reconsider the kernel function in (13), the case of k(xi,xi) = 0 is equivalent to the self-
transition probability Pii = 0, which leads to the following conclusions:

• Due to excluding the self-transition, the Markov chain cannot stay a long time at low-
density nodes. If the Gaussian kernel includes the self-transition, that is k(xi,xi) = 1,
the self-transition probability Pii at a low-density node xi is dominant among the transition
probabilities {Pij}j=1,...,n. The Markov chain will thus stay in xi a long time before jumping
to another node. By setting Pii = 0, the Markov chain will continuously move to another
node.

• The probability of jumping to other nodes becomes large because the row summation Di in
(14) becomes small. The graph is thus connected with a small kernel width σ. Furthermore,
when the data are non-uniform, the choice of a constant σ is more difficult. The kernel
function with a large σ cannot describe the underlying data structure (such as curvature and
disconnection), while a small σ causes loss of connection with low-density nodes. Excluding
the self-transition at each node on the graph helps the low-density nodes keep connected with
a small σ.

• If xi has a higher density than xj then the ratio Dj

Di
< 1. This ratio becomes smaller because

of excluding the self-transition, which leads to a small ratio p(xj |xi)
p(xi|xj)

. It means that this kernel
function makes a wider gap between p(xj | xi) and p(xi | xj). Therefore, it emphasizes the
difference in density between data points.

3.2 Timescale t and relationship of local and global structure
As previously mentioned, Pij defines the connectivity between nodes on the weighted graph (where
each node is a data point). However, when the data have a nonlinear structure, given a small
enough kernel width σ, this connectivity is not enough to describe the connection between the
long-distance nodes (along the underlying data structure). For example, in figure 5, the edges’
thickness of C-curve graph represents the scaled values of Pij , a thicker edge shows a large value.
When σ = 0.5 is small, there is no direct link between two red points that have the longest
distance in the one-dimensional parametrization z used to generate the data (shown in Figure 3a).
A feasible connectivity path between them is indirect and along the C-curve. Such path consists of
multiple short and direct links between nodes presented by the thickness, as shown in Figure 5b.
By introducing timescale t, the matrix P t describes the connectivity between the long-distance
nodes along the data structure.

As a normalization of the kernel function, which measures the local similarity between points,
Pij contains the information of the local structure of the data. Besides, Pij is the transition
probability of moving from xi to xj in one step. Using the properties of a time-homogeneous
Markov chain, the probability of going to xj from xi in t steps is represented by P tij . We denote
pt(xj | xi) = P tij . For a large enough t > 1, when moving the chain forward, P tij is the summation
of all paths of length t between xi and xj . The probability of each path of length t is the product
of the local connectivities,

p(xj | xh)p(xh | xk) · · · p(xl | xi),

where xh,xk,xl are arbitrary nodes on the graph. These paths have high probability if the nodes
are highly connected via other nodes. Additionally, the probability of jumping to a high-density
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node xj is larger than that of a low-density node because xj has more connecting links. Therefore,
the paths along the underlying data structure via highly connected nodes have a higher probability
to be reached than the paths via low-density nodes.

In this way, with a large enough t, the matrix P t integrates the local connectivities to provide
the global measure for the connectivity of the data. It thus reveals the global data structure.
Nevertheless, by the Markov chain properties, when t is too large, the transition probability tends
to a stationary distribution.

Stationary distribution: We will show that the transition probability tends to be a unique
stationary distribution as t goes to infinity. This stationary distribution is independent of the
initial state of the Markov chain.

Assuming that a kernel width σ is chosen so that the graph is fully connected, it implies that
the chain is irreducible. And when the timescale t > 1, the probability of returning to itself after
t steps is non-zero, i.e. pt(xi | xi) > 0. The chain is thus aperiodic. Using the properties of a
time-homogeneous Markov chain, the transition probability P t tends to be a unique stationary
distribution over the nodes π when t goes to infinity, that is

lim
t→∞

pt(xj | xi) = π(xj),

where π is a column vector of length n. We can verify that this stationary distribution has the
form

π(xj) =
Di∑n
k=1Dk

, (17)

since π>P = π>,

n∑
i=1

π(xi)Pij =

n∑
i=1

Di∑n
k=1Dk

Wij

Di
=

∑n
i=1Wij∑n
k=1Dk

= π(xj),

using the definition of Pij in (16).
Additionally, the stationary probabilities satisfy the detailed balance condition

π(xi)p(xj | xi) =
Di∑n
k=1Dk

Wij

Di
=

Dj∑n
k=1Dk

Wij

Dj
= π(xj)p(xi | xj)

sinceW is symmetric. Using this condition, we will show that the stationary distribution depends
on the local density of nodes. If xi is high density, it has large Di (e.g. middle nodes in C-curve
shown in Figure 5), and if xj is low density, Dj is small (such as two red nodes in Figure 5). From
(16), we have p(xj | xi) < p(xi | xj) since W is symmetric, leading to π(xi) > π(xj) using the
balance condition. Consequently, the value of π(x) depends on the local density and location of
x: if x is high density and easy to get in from other nodes, π(x) is large; while this value is small
if x has low-density and poor connection to other nodes.

This observation clarifies the last comment in the previous section about the choice of the
Gaussian kernel function excluding self-transition: the ratio of the transition probabilities p(xj |xi)

p(xi|xj)

is smaller than that on the graph weighted by the Gaussian kernel allowing self-transition, where
xi is higher density than xj . The ratio

π(xj)
π(xi)

becomes thus smaller by using the balance condition.
As a consequence, the Markov chain’s stationary probabilities, excluding self-transition, emphasize
the point density.

Timescale: We will discuss the effect of timescale t on the connectivity of the graph and a
criterion of choosing t.

Let us look at the example of P t constructed on the C-curve set with a different value of t
shown in Figure 6. Note that the order of nodes follows the one-dimensional parametrization zi
shown in Figure 3a, where z1 < z2 < . . . < z50. In the first row of the figure, the color of a node
xj is encoded by the transition probability of moving from the big top node x1 to xj in t steps,
i.e., pt(xj | x1).

13



−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5
x1

x 2

0.00

0.05

0.10

P1
t

t = 1

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5
x1

x 2

0.01

0.02

0.03

P1
t

t = 8

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5
x1

x 2

0.012

0.016

0.020

0.024

P1
t

t = 32

0

10

20

30

40

50

0 10 20 30 40 50
ending node

st
ar

tin
g 

no
de

0.00

0.05

0.10

P^1

0

10

20

30

40

50

0 10 20 30 40 50
ending node

st
ar

tin
g 

no
de

0.01

0.02

0.03

0.04

P^8

0

10

20

30

40

50

0 10 20 30 40 50
ending node

st
ar

tin
g 

no
de

0.012

0.016

0.020

0.024

P^32

Figure 6: Diffusion at time t = 1, 8, 32 on the C-curve dataset, as shown in Figure 3. The first
row shows the data points with the color encoded by the first row of the matrix P t where the
row corresponds to the big top point. Two big points have the longest distance in one-dimensional
parametrization z used to generate the data (Fig. 3a). The second row displays the value of matrix
P t where the order of the rows is the order of z, the first row (the bottom of the image) corresponds
to the smallest value of z, and the last row corresponds to the largest z. The first and last rows
correspond to two big points in the C-curve data in the first row of the figure.

• When t = 1, the probabilities of jumping from the big top node to its neighbors are sig-
nificantly higher than zero, it is impossible to go out of the neighborhood. The transition
probability describes the connectivity between nodes locally.

• When t = 8, the probabilities are different along the C-shape. The probability of getting out
of the neighborhood of x1 is larger. P t represents the global connectivity of data points and
reveals the underlying structure.

• When t = 32, P t does not describe the connectivity any more. The probabilities of moving
to some middle nodes are large, while they are quite similar between nodes near the top and
the bottom of C-curve. These probabilities are the stationary distribution of the Markov
chain on C-curve data.

The images in the second row of Figure 6 represent the matrix P t. Note that the first row of
P t is displayed at the bottom of each image, while the last row is shown at the top.

• Matrix P is close to symmetric (but it is not symmetric). The reason is that the connectivity
is described locally within the spatial extent where the nodes are similar. When xi and xj
are similar, the probabilities p(xj | xi) and p(xi | xj) are approximately the same. When
they are not similar, their transition probabilities are almost zero.

• P 8 is asymmetric. It represents the global connectivity. Given a node xi, the probability
pt(xj | xi) (a row of the matrix P t) is non-zero for a non-neighbor xj of xi. Besides,
pt(xj | xi) varies depending on how long to go from xi to xj along C-shape.

• P 32 has constant columns which approximate the stationary distribution. Given an arbitrary
initial distribution p0, P 32 maps p0 into the stationary distribution, p>0 P 32 = π>.

Timescale t plays an essential role in discovering the underlying data structure. Given a small
enough kernel width σ, the matrix P t reveals the underlying structure of the data with a suitable
t:
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• t should not be too small. When t is too small, P t cannot describe the connectivity of the
long-distance points. Therefore, it cannot provide the global structure of the data.

• t should not be too large. If t is too large, P t maps all distributions to the stationary
distribution. It does not describe the connectivity between nodes and does not provide the
data structure.

Besides, we will see later that t is a scale parameter. With various t, the global structure of the
data is represented in different scales. Also, t affects the outcomes of dimensionality reduction and
the accuracy of the method. Therefore, we will discuss the criterion for choosing t later in Section
3.5.

3.3 Eigen-decomposition of the transition matrix
The matrix P t contains interesting information about the global structure, which helps discover
the underlying structure of the data. However, evaluating P t of size n× n is computationally ex-
pensive when t gets large. Eigen-decomposition is a classical technique for this problem. Moreover,
using eigenvalues and eigenvectors helps to define diffusion coordinates and diffusion map as well
as obtain the relationship between diffusion distance and the Euclidean distance.

The matrix P defined in (15) has non-negative entries but is not symmetric, although W is
symmetric. Hence, the existence of the eigen-decomposition of P is not guaranteed. However,
matrix

P ′ = D1/2PD−1/2

is symmetric and has the same eigenvalues as P (shown in Appendix A). From the symmetry of
P ′, there exists a set of eigenvalues {λl}l=0,...,n−1 and an orthonormal set of column eigenvectors
{φl}l=0,...,n−1 such that

P ′ =

n−1∑
l=0

λlφlφ
>
l .

By letting

ψl = D−1/2φl and ϕl =
(
φ>l D

1/2
)>

= D1/2φl, (18)

we can decompose P as follows

P =

n−1∑
l=0

λlψlϕl
>, (19)

where ψl is the column right eigenvector and ϕl is the column left eigenvector. From Appendix
B, the eigenvalues satisfy

1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . . ≥ |λn−1|.

We have the following eigen-decomposition of P t

P t =

n−1∑
l=0

λtlψlϕ
>
l . (20)

Eigenvectors: Since {φl}l=0,...,n−1 is orthonormal, ψl and ϕl are bi-orthonormal such as

〈ψl,ϕm〉 = ψ>l ϕm = δlm =

{
1 if l = m

0 if l 6= m,

where 〈x,y〉 = x>y =
∑
i xiyi is the inner (dot or scalar) product of vectors x and y. Besides,

the left eigenvector corresponding to the largest eigenvalue λ0 = 1, ϕ0, satisfies

ϕ>0 P = ϕ>0 .
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This eigenvector is thus a stationary distribution. As shown above, the stationary distribution is
unique. Therefore, ϕ0 = π, and ϕ0 has the form as in (17). The corresponding right eigenvector
ψ0 = 1n×1 because

P1n×1 = 1n×1,

which comes from the row of P summing to one.
Moreover, as described in Appendix A, the set of the left eigenvectors {ϕl}l=0,..,n−1 is an

orthonormal basis in the so-called diffusion space l2(Rn,D−1), where matrix D is defined in (14).
In this space, the norm is defined as follows

‖x‖2l2(Rn,D−1) = x>D−1x, (21)

for any column vector x ∈ Rn.

Now let us consider an arbitrary initial distribution p0 of n nodes. Note that p0 is a column
vector of length n. Since {ϕl}l=0,..,n−1 forms a basis of Rn, there exists a set of al ∈ R such that

p0 =

n−1∑
l=0

alϕl. (22)

We can check that

〈p0,ψl〉 = p>0 ψl =

n−1∑
m=0

amϕ
>
mψl =

n−1∑
m=0

amδml = al.

Therefore, the coefficient al ∈ R depends on not only the initial distribution p0 but also the right
eigenvectors {ψl} of the transition matrix. Since ψ0(xi) = 1 for all xi, then a0 =

∑n
i=1 p0(xi) = 1.

Given an initial distribution p0, the probability that the Markov chain is in node xj after t
steps is

pt(xj) =

n∑
i=1

p0(xi)pt(xj | xi),

or equivalently, using (22) and (20),

p>t = p>0 P
t =

n−1∑
m=0

amϕ
>
m

n−1∑
l=0

λtlψlϕ
>
l

=

n−1∑
m=0

n−1∑
l=0

amλ
t
lϕ
>
mψlϕ

>
l

=

n−1∑
l=0

alλ
t
lϕ
>
l

where the last equation comes from the fact that ψl and ϕl are bi-orthonormal. We know that
a0 = 1, λ0 = 1, and ϕ0 = π, we have

p>t − π> =

n−1∑
l=1

alλ
t
lϕ
>
l = p>0

n−1∑
l=1

λtlψlϕ
>
l . (23)

Note that ψ>l ϕl = 1 but ψlϕ>l is a matrix of size n×n. We now turn to discussing the implications
on the diffusion properties from the eigen-decomposition in (23)

Eigenvalues: As mentioned above, all eigenvalues are smaller or equal to 1. If the graph is fully
connected, as t goes to infinity, λtl tends to 0 for l > 0, and the probability pt(xi) converges to the
stationary probability π(xi) (by Equation (23)). The value of λl thus characterizes the convergence
speed of the associating direction in the diffusion space: when λl is small, the convergence is fast,
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and slow for a large λl. In other words, the eigenvalues describe the diffusion timescales when the
Markov chain goes through the associating directions in the diffusion space. The larger λl is, the
longer the timescale it takes to go through the corresponding direction. Note that this space has
n dimensions that are the sample size and is independent of the dimension of the feature space of
X.

Spectral decay: In the following discussion for the spectral decay, we consider a weighted graph
without a specific kernel function.

The decay of the eigenvalues of P describes the connectivity between nodes in the graph:

• If the graph is fully connected where the weights are all one, the transition matrix has
constant entries and rank 1. The matrix has thus one non-zero eigenvalue (which is equal to
1 as shown in Appendix B), and all of the rest eigenvalues are 0. That is the fastest decay
case. From an arbitrary node, it can immediately jump to any other node. The connectivity
is maximal. All nodes can be considered as one point which requires only one dimension to
describe.

• When all nodes in the graph are disconnected, i.e., the transition matrix is the identity
matrix. P has full rank n, it thus has n non-zero eigenvalues. These eigenvalues are all equal
to 1 since Pν = ν for any vector ν in Rn. That is the lowest decay case where the Markov
chain cannot jump from node to node. There is no connection between node, we thus need
all n dimensions to describe n isolated nodes.

• The decay usually lies in between the two extreme cases above. It relates to how fast the
Markov chain diffuses via nodes: a fast decay shows a fast diffusion, and a low decay accounts
for a low diffusion on the graph. The rate of decay depends on the chosen kernel width, the
underlying structure, and the intrinsic dimension of the data.

The spectral decay helps determine the dimensions in the diffusion space to describe the data, and
achieve the dimensionality reduction. We will discuss that later in Section 3.5 and 4.

3.4 Diffusion distance and diffusion map
As described in the previous sections, the matrix P t reveals the global structure of the data.
Besides, if the graph constructed on the data is fully connected, there exists an eigen-decomposition
of P t. The diffusion space l2(Rn,D−1) is defined as the basis formed with the left eigenvectors.
Putting all together, the eigenvalues and right eigenvectors of P t, diffusion distance, and diffusion
map are constructed to characterize the geometry of the data.

Diffusion distance: Again, we consider the Markov chain constructed on the weighted graph
constructed from the dataset X and the transition matrix P . For a t ≥ 1 (t ∈ N), diffusion
distance, Dt, of two points xi,xj ∈X is defined as follows

Dt(xi,xj)
2 = ‖P t

i − P t
j ‖2l2(Rn,D−1)

= (P t
i − P t

j )D−1(P t
i − P t

j )>

=

n∑
k=1

1

Dk
(pt(xk | xi)− pt(xk | xj))2 (24)

where P t
i = pt(. | xi) is ith row vector of the matrix P t, and the norm ‖.‖l2(Rn,D−1) is defined in

(21). D is the diagonal degree matrix of the graph, and Dk is the degree of xk defined in (14).
If xk is low-density, then Dk is small and the probabilities pt(xk | xi), pt(xk | xj) are close for
any xi, xj . Therefore, the weights 1

Dk
makes the difference, pt(xk | xi)− pt(xk | xj), to be more

significant on low-density nodes.
As explained in Section 3.2, the probability pt(xk | xi) is large when xk and xi are highly

connected via other nodes along the underlying data structure and vice versa. From the definition,
the diffusion distance Dt(xi,xj) is small when pt(xk | xi) and pt(xk | xj) are close for all xk,
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Figure 7: Diffusion distance on (a) C-curve (when t = 8) and (b) a non-spherically symmetric data
(when t = 64), represented by the thickness of the connected curves between big points (a thicker
curve corresponds to a longer distance). In C-curve, two red points have the largest distance in
the hidden space (shown in Fig. 3a). In non-spherically symmetric data, two red points belong to
a cluster, and the green one lies on another cluster.

meaning that both xi and xj well connect to xk or poorly connect to this node. That happens when
xi and xj are highly connected. When xi,xj are poorly connected, the difference of pt(xk | xi)
and pt(xk | xj) is large, leading to the diffusion distance of these nodes being large as well.
Consequently, this distance reflects the underlying structure in terms of the connectivity of the
data points. The points are close if they are similar. Moreover, sinceDt is defined as the summation
of many paths, it is very robust to noise perturbation.

Setting a large enough value for t so that P t describes the global connectivity of the data well
enough, diffusion distance reveals the intrinsic geometry of the data. For example, in Figure 7 we
consider two datasets: C-curve (see Figure 3), where a straight line is nonlinearly embedded into
two-dimensional space; and non-spherically symmetric data containing two clusters in different
distribution. We obtain the following results:

• In Figure 7a, the Euclidean distance between the red and the green points is larger than the
distance between two red ones. However, the diffusion distance represented by the thickness
of the connected curves (i.e., a thicker curve represents a longer distance) makes more sense
where the distance between two red points is larger. In this way, the diffusion distance
contains the information of the underlying geometry of the data.

• The two red points, in Figure 7b, lie on the same cluster while the green one belongs to
another cluster. Although the Euclidean distance between two red points is larger than that
of the top red and the green points, the diffusion distance gives an opposite result: two red
points are closer than the red and the green ones. Diffusion distance, therefore, provides a
good measure of the disconnectivity of the data points.

Note that the diffusion distance with a small t does not provide a satisfying measure for the
global connectivity since the matrix P t only describes local connectivities. For instance, the
distance between the two red points in C-curve is smaller than that between the one between the
top red and green points; or in non-spherically symmetric data, the top red point is closer to the
green one than to the bottom red one.

The diffusion distance defined in (24), however, is computationally expensive. Using the eigen-
decomposition of P described in the previous section is a classic technique for lower computational
cost. As shown in Appendix C, the diffusion distance in (24) can be rewritten in terms of eigenvalues
and eigenvectors as follows

Dt(xi,xj)
2 =

n−1∑
l=1

λ2tl (ψl(xi)− ψl(xj))2, (25)
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where λl is the eigenvalue and ψl is the right eigenvector of P . Since ψ0 = 1n×1, the term in the
sum in (25) for l = 0 is omitted. From that, the dimensionality of the diffusion space is reduced
to n− 1.

Diffusion coordinates and diffusion map: Each vector λtlψl = (λtlψl(x1), ..., λtlψl(xn)) of
length n in the sum in (25) defines a diffusion coordinate of data points. And a so-called diffusion
map, Ψt : X → Rn−1 embeds the dataset X into a Euclidean space of n− 1 dimensions, that is

Ψt(x) =


λt1ψ1(x)
λt2ψ2(x)

...
λtn−1ψn−1(x)

 ∈ Rn−1. (26)

Each dimension in the new space is characterized by one diffusion coordinate.
Using the diffusion map and the diffusion coordinates, the diffusion distance in (25) between two

data points, xi,xj , is equal to the Euclidean distance between two mapped points, Ψt(xi),Ψt(xj),

Dt(xi,xj) = ‖Ψt(xi)−Ψt(xj)‖.

The equivalence with the Euclidean distance makes diffusion distance be more feasibly used by
classical clustering methods, requiring the Euclidean distance, such as k-means.

Furthermore, in terms of the diffusion coordinates we can see the scaling role of t:

• The timescale t affects only the eigenvalues, not the eigenvectors. It thus rescales the diffusion
coordinates.

• When t is increasing, the distance in (25) is smaller since |λl| ≤ 1. The discovered embedding
characterized by the diffusion coordinates becomes more global.

Besides, λ2tl goes to zero exponentially in t. The terms, λ2tl (ψl(xi)− ψl(xj))2, in the sum in
(25) associated with the zero values of λ2tl can be removed without changing the diffusion distance.
Moreover, by keeping only the first q diffusion coordinates the Euclidean space, the dimensionality
of the discovered embedding is reduced to q. The Euclidean distance in the q-dimensional space is
an approximation of the diffusion distance.

3.5 Intrinsic geometry and dimensionality reduction
The diffusion map embeds the data points X into a Euclidean space Rn−1 in the way that the
diffusion distance in the original space is equal to the Euclidean distance in the diffusion space.
With a large enough timescale t, the diffusion distance reveals the underlying intrinsic geometry
of the data. Therefore, the diffusion map reorganizes the data according to the mutual diffusion
distance and preserves the intrinsic geometry of the data.

Figure 8 shows an example to illustrate the discovering intrinsic data geometry of the diffusion
map. Again, the C-curve data (in Fig. 3b) was considered. We performed the diffusion map with
the chosen parameters, σ = 0.5 and t = 8. These choices come from the discussion about the
kernel width in Figure 5 and the timescale in Figure 6. Unlike PCA and MDS, the diffusion map
successfully discovers the (1D) hidden data (shown in Fig. 3a) with the first diffusion coordinate
in which the color order is preserved (Fig. 8b).

The dimensionality reduction is achieved by retaining q diffusion coordinates associated with
the dominant eigenvalues such that the Euclidean distance in the truncated space is still a good
approximation of the diffusion distance. In many cases, a spectral gap (a sudden fall) appears right
after the qth eigenvalue. The dimensionality can be reduced to q [3] by choosing a large enough
timescale t to reach a given accuracy δ > 0 for the diffusion distance. More precisely, t is chosen
such that q = max{l : |λl|t > δ|λ1|t} [4].

If there is not any spectral gap, the problem of identifying the retained dimensions becomes
more difficult. Since n− 1 eigenvectors are describing the data which are usually in fewer dimen-
sions, many of the eigenvectors capture the same direction of the original space. The significant
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Figure 8: Diffusion coordinates: (a) the first two, and (c) the first diffusion coordinates (DC)
computed on C-curve data (shown in Fig. 3b) with σ = 0.5 and t = 8. The color is encoded by
the value of z in Figure 3a.

eigenvectors can thus be separated by redundancy. Such redundancy is a combination or func-
tion of the previous eigenvectors. Further analysis of relations between eigenvectors is required to
remove this redundancy [13].

4 Computational experiments
All computational experiments were done in ©©©©©RR using the package diffusionMap3.

4.1 S-shape
4.1.1 Data generation

S-shape is a two-dimensional manifold (see in Fig. 9a) embedded into a three-dimensional space
using a nonlinear transformation, as shown in Figure 9. We will see if the diffusion map can
discover the underlying data in two dimensions.

S-shape is generated from uniformly distributed points in R2 embedded into R3. In particular,
x1 ∼ U(0, 1) and x2 ∼ U(0, 1), the data point is a nonlinear mapping

y =

 sin(w)
Hx2

sign(w)(cos(w)− 1)

 (27)

where w = 3π(x1− 0.5), sign(w) is the sign of w, and H is the width (corresponding to y2 axis) of
S-shape.

In the three-dimensional space, the point distribution is not isotropic as in the two-dimensional
hidden space. It is because of the difference between the width and the length along S-shape. Later
in this report, we will perform the diffusion map on S-shape with two different width values. One
with a large width H = 8 (shown in Fig. 9b), where the width is approximately the same as the
length, and the point distribution is nearly isotropic. And another one with a small width H = 2
(shown in Fig. 9c), where there is a large difference between the length and the width, and the
point distribution is anisotropic.

These data are examples of the failure in describing the nonlinear structure of the Euclidean
distance. Similar to C-curve data, nonlinear embedding does not preserve the Euclidean distance
order in S-shaped. For instance, the largest separation in x1 in Figure 9a does not have the greatest
Euclidean distance in the three-dimensional space in Figure 9b and 9c. Therefore, the methods
based on Euclidean distance fail to discover the embedding.

From the generation in (27), there is a parameter H to control the width of S-shape in 3-D
embedding space. If the data were stretched, we would get a rectangular shape whose length is
approximately equal to 8 and whose width is H. The diffusion process will change when the value

3https://CRAN.R-project.org/package=diffusionMap
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Figure 9: S-shape data of size 5000: (a) two-dimensional manifold where the points are uniformly
distributed, (b) three-dimensional nonlinear embedding with a large width H = 8, and (c) three-
dimensional embedding with a small width H = 2. The color in both of them is encoded by the
value of x1 in (a).

of H is altered. We will look at two examples, one with large and one with small width to get
insights about the two different possibilities.

4.1.2 S-shape with large width

First, we set a width H = 8 that is approximately the same as the length of the S-shape (as shown
in Fig. 9b). The point distribution is quite isotropic in this case. The isotropic Gaussian kernel
seems to be a reasonable choice.

Kernel width: Choosing a good kernel width is the first thing we have to do before computing
the diffusion map. As discussed above, the kernel width depends on the distribution, the density,
and the geometry of the data. In this case, the points are uniformly distributed in the hidden
space. In the embedding space, the data distribution is still uniform, but it is quite different along
the length and the width of the S-shape. However, the difference is not significant, and the kernel
width can be chosen as a constant.

The kernel width is estimated by using the k-nearest neighbor (knn) distance. In particular,
the median of knn is an estimate of σ, where k is 1% of the sample size, that gives σ = 0.5.
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Figure 10: The first ten from n−1 eigenvalues of the matrix P t constructed on S-shape with large
width (H = 8, Fig. 9b) using the estimated kernel width σ = 0.5.

Eigenvalues: The spectral gap is next verified by plotting the first ten eigenvalues of the matrix
P t in Figure 10. It is easy to see a gap after the second eigenvalue (in the green and blue lines
corresponding to t = 8 and 32). The first two eigenvalues are both large and followed by a big fall.
This gap is evidence that the dimension of the intrinsic geometry is 2.

Figure 10 also provides a way to choose the timescale parameter t by observing the value of λtl .
Choosing t ≥ 128 results in eigenvalues dropping to almost zero passed the third one, it seems to
be a good choice to get a good approximation of the diffusion distance.

Besides, the spectral decay displayed in Figure 10 shows the connectivity of the graph:

• When t = 1, the eigenvalues are quite flat. It closes to the extreme case where the graph
is disconnected. The connectivity of the graph is local in this case. In particular, the
nodes are only connected to their neighbors and disconnected to other points outside their
neighborhood. We need many diffusion coordinates associating with non-zeros eigenvalues
to describe the data. The dimension is thus very large.

• When t gets larger, the connectivity of the graph goes from local to global. There is a
connection between long-distance nodes. The dimension necessary to describe the data is
smaller. It is equal to the number of non-zero eigenvalues

• When t gets very large (t > 128), all eigenvalues drop to zero, and the graph reaches the sta-
tionary state, where all possible links between nodes are possible. As the diffusion distances
between all data points approach zero, all data points can be considered as one node, and
the dimension necessary to describe the data is zero.

Diffusion coordinates: The embedding of the S-shape data into the first two diffusion coordi-
nates, displayed in Figure 11, shows that the diffusion map successfully unfolds the two-dimensional
manifold. However, we do not get a perfect rectangle in the diffusion space and the points are
non-uniform. More precisely, the left and right boundaries are not equal; the points on them are
denser than the points in the middle region where there are holes (easy to see when t = 1). The
reason is that the density of sampling points is not entirely uniform. In particular,

• The point densities in the left and the right boundary are not equal. This leads to the unequal
of these boundary. They will become more equally if the sample size gets larger.

• In the diffusion space, the connectivity is normalized. That is, the total connectivity of each
point is always one. The points near the boundary are highly connected to their neighbors
and poorly connected to further points. Their connectivity to the spatial extent near the
boundary becomes higher than in the middle region. On the other hand, points located in
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Figure 11: The first two diffusion coordinates (DC) of the embedding space of the S-shape with
large width (H = 8, Fig. 9b) in various timescales t. The color is encoded by the value of x1 in
Figure 9a. The estimated kernel width σ = 0.5 was used to compute the diffusion map.

the middle have reasonably isotropic connectivity. That is why density grows relatively on
the boundary compared to spatial extents inside the “rectangle”.

• The low-density points in the middle of the (3-D) S-shape cause the holes inside the discovered
manifold. The holes’ size depends on the spatial extent within which we define the local
similarity, which is associated with the kernel width. A larger value of σ makes smaller holes.
Besides, when the timescale t gets larger, the connectivity becomes global and the holes are
smaller.

The role of t in scaling is represented clearly in this case: when t increases, the embedding
manifolds in Figure 11 become smaller.

Comparison with other methods: We investigate the performance of PCA, MDS on the
S-shape with a large width dataset, and compare them to the diffusion map.

PCA: Since the data points are given in Cartesian coordinates, the results of PCA and MDS
are the same as shown in Figure 12.

In Figure 12a, we obtained the following results for PCA:

• The first principal component (PC1) captures y2 which has the largest variance in the three-
dimensional S-shape (Fig. 9b);

• The second PC, which is orthogonal to PC1, captures the most variation in the remaining
direction, corresponding to y3;

• The third PC represents y1, which is orthogonal to y2 and y3.

Figure 12b shows the projection of the S-shape on the first two PCs. The points in the top
and bottom turns of S-shape are superposed (represented by the color). Therefore, PCA fails to
discover the (2D) hidden space of the data.

MDS using the diffusion distance: As discussed above, MDS does not require the coor-
dinates in its input. Next, we look at the approach using the diffusion distance defined in (24) as
the input of MDS.

Figure 13 displays (2-D) embeddings found by MDS using the diffusion distance (in Fig. 13a)
with parameters σ = 0.5, t = 128, and by diffusion map (in Fig. 13b) with the same parameters.
Note that the Euclidean distance using the full expansion of coordinates in these two cases is equal.
We get a quite similar result in shape and point distribution, but a slight difference in the scale
and angle.
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Figure 12: PCA: (a) Three and (b) two principal components of the S-shape with large width
(H = 8, Fig. 9b). The color is encoded by the value of x1 in Figure 9a.
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Figure 13: Two-dimensional embeddings of S-shape with large width (H = 8, Fig. 9b) found by:
(a) MDS using diffusion distance and (b) diffusion map. The estimated kernel width σ = 0.5 and
the timescale t = 128 were used to compute both of them. The color is encoded by the value of x1
in Figure 9a.

• t = 128 is large enough to get a global connectivity description of the data from the diffusion
distance. Moreover, two dimensions are enough to capture the data structure. It is not
surprising that MDS found similar embedding as the diffusion map.

• The scaling difference between the embeddings found by MDS (in Fig. 13a) and diffusion
map (in Fig. 13b) comes from two unequal errors in the approximations of the diffusion
distance by the Euclidean distance. The error is because the high indices (from the third) of
the coordinates vanish in the Euclidean distance. In MDS, the coordinates are determined by
the eigenvalues and eigenvectors of the (symmetric) Gram matrix (obtained by using double
centering of the distance matrix). At the same time, the diffusion coordinates are associated
with the eigen-decomposition of the (asymmetric) transition matrix. The difference in co-
ordinates between MDS and diffusion map causes a gap between two errors, leading to the
difference in the scale.

• The difference in the angle between Figures 13b and 13a is due to the coordinate system
being rotated in MDS.

Although the embeddings are similarly found by MDS using diffusion distance and the diffusion
map in the case of large timescale t = 128, they are very different when t = 1, as shown in Figure
14. While in both settings, the diffusion map gives similar shapes in different scales, the first two
coordinates are very different in MDS. When t = 1, the diffusion distance does not describe the
global data structure well: it only provides a measure for the local similarity. Therefore, like PCA
above (shown in Fig. 12), MDS does not give a correct embedding. The difference in the results
between PCA and MDS can be affected by the use of kernel function and the normalization. The
first two diffusion coordinates, in another way, form a shape very close to the expected embedding
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Figure 14: Two-dimensional embeddings of S-shape with large width (H = 8, Fig. 9b) found by:
(a) MDS using diffusion distance and (b) diffusion map. The estimated kernel width σ = 0.5 and
the timescale t = 1 were used to compute both of them. The color is encoded by the value of x1
in Figure 9a.

as shown in Figure 13b. There is a difference in scaling affected by the timescale t. That is an
advantage of the diffusion map.

4.1.3 S-shape with small width

We consider the three-dimensional S-shape with a small width H = 2, displayed in Figure 9c. In
this case, the width is much smaller than the length. The point distribution is thus anisotropic.
However, we simply use the isotropic Gaussian kernel with a constant kernel width to construct
the diffusion map. Note that the result can be more interesting if two different kernel widths or
an anisotropic Gaussian kernel function are used. However, we did not consider these cases, which
are out of the scope of this report.

Kernel width: A constant kernel width is estimated by using the knn distance as the previous
example, that gives σ = 0.25. It is half of the last kernel width. It shows that the points are much
denser, although the length of S-shape does not change.

Eigenvalues: A spectral gap is not clearly visible in Figure 15 showing the first ten eigenvalues of
the matrix P t. However, the spectral decay slows down after the fifth eigenvalue until the seventh
one. Therefore, the first seven eigenvectors were analyzed to determine the essential dimensions
and the number of retained diffusion coordinates.

Diffusion coordinates: The first seven diffusion coordinates are shown in Figure 16 where the
timescale t = 1. We can see that:

• The first to the fourth DCs describe the length along S-shape. While the first DC is enough
to capture the length, three remaining DCs are all the functions of the first, in other words,
they are redundant.

• The fifth to the seventh DCs give more information about the structure of the data. They
describe the width of S-shape. Why is the width’s information of the S-shape given by the
fifth coordinate far from the first coordinate but not from the second one (like with the case
of large width)? A reason is that the point distribution is anisotropic. The points are denser
in the direction of the width comparing to the direction along S-shape, which leads to the
connectivity becomes much higher. Therefore, the fifth eigenvalue is much smaller than the
first one. Using more than one kernel width can give a more exciting result.

• The first and fifth DCs are important and should be kept in a sensible and low-dimensional
representation of the data. The DCs between them are redundant and should be removed
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Figure 15: The first ten from n−1 eigenvalues of the matrix P t constructed on S-shape with small
width (H = 2, Fig. 9c) using the estimated kernel width σ = 0.25.
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Figure 16: (a) The second, third, fourth diffusion coordinates (DC) versus the first DC with the
timescale t = 1 of the S-shape with a small width (H = 2, Fig. 9c). The color encoded by the
value of x1 shown in Figure 9a. (b) The fifth, sixth, seventh DC versus the first DC (with t = 1).
The color encoded by the value of x2 shown in Figure 9a. The estimated kernel width σ = 0.25
was used to compute the diffusion map.

• Nevertheless, the first 5 DCs should be retained to get a good approximation of the diffusion
distance using the Euclidean distance. The timescale should be not too large, 32 or smaller,
so that the fifth eigenvalue does not become too small.

4.2 S-shape with hole
4.2.1 Data generation

The dataset, shown in Figure 17a, is an example of a non-convex manifold. It is a modification of S-
shape by discarding all points inside the circle located in the middle of the manifold. In particular,
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Figure 17: S-shape with hole data of size 5000: (a) two-dimensional hidden manifold where the
points are uniformly distributed with removing those inside the circle of radius 0.5 centered at
(0.5, 0.5)>, and (b) three-dimensional nonlinear embedding with a large width H = 8, and (c)
three-dimensional embedding with a small width H = 2. The color is encoded by the value of x1
in (a).

all uniformly distributed points landing into the circle centered at (0.5, 0.5) are discarded in two-
dimensional embedding space. This manifold is then embedded into R3 using the Equation (27)
as in the case of normal S-shape. Like the previous example, we will consider two cases: one with
a large width H = 8 (shown in Fig. 17b) and another with a small width H = 2 (Fig. 17c).

In a non-convex manifold like S-shape with hole, the geodesic distance (distance along the
manifold [11]) between points near the left and right boundaries is longer than the Euclidean
distance since it goes around the hole. We will evaluate whether there is a difference between the
diffusion distance and the Euclidean distance and how the diffusion map outlines a non-convex
manifold.

4.2.2 Experiment with diffusion map

We will see whether the diffusion map works well with a non-convex manifold. The S-shape with
hole and large width, shown in Figure 17b, is considered to compare with the case without the
hole. We also discuss the result of the diffusion map for the case with a small width (shown in Fig.
17c).
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Figure 18: The first ten from n − 1 eigenvalues of the matrix P t constructed from S-shape with
hole and a large width (in Fig. 17b where H = 8) using the estimated kernel width σ = 0.45.

−0.4

−0.2

0.0

0.2

0.4

−0.6 −0.3 0.0 0.3 0.6

DC1

D
C

2

0.25

0.50

0.75

x1

(a)

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5 1.0

DC1

D
C

2

0.25

0.50

0.75

x1

(b)

Figure 19: The first two diffusion coordinates of (2D) embeddings of: (a) S-shape with hole and a
large width (as shown in Fig. 17b) using the estimated kernel width σ = 0.45 and the timescale
t = 128, and (b) S-shape with hole and a small width (as shown in Fig. 17c) using the estimated
kernel width σ = 0.23 and the timescale t = 128. The color in both plots is encoded by the value
of x1 in Figure 17a.

Kernel width: Again, the median of knn distances is used to estimate the kernel width, that
gives σ ≈ 0.45. This value is smaller than the case without hole because the data points become
denser when the same number points (5000) is located in a smaller spatial extent (missing a large
hole inside).

Eigenvalues: The spectral decay in Figure 18 is similar to that of the S-shape without the hole
in Figure 10, although all eigenvalues are larger. With the hole’s presence, the points become less
connected between the left and right boundaries in the embedding space. It follows that the speed
convergence to the stationary distribution is slower. Therefore, all eigenvalues get larger than those
in the case without the hole. Besides, like the S-shape with a large width, there is evidence for a
two-dimensional embedding with the appearance of a spectral gap after the second coordinate.

Diffusion coordinates: Looking at two first diffusion coordinates in Figure 19a the two-dimensional
embedding is decided, and the color order is preserved. However, the hole is enlarged comparing
to the hidden manifold (shown in Fig. 17a). With the presence of the hole, the points near a
boundary are more highly connected than the points near another boundary. The boundaries are
nearly disconnected and only linked to each other by longer paths.
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Figure 20: non-spherically symmetric data: 300 two-dimensional points are distributed in two
clusters, a star (non-spherical) and a disk (spherical). The distribution of points is non-uniform in
both and different between the two clusters.

We get an interesting result in Figure 19b, where the two-dimensional manifold of the data with
a small width is nicely discovered. Unlike the case without the hole, the embedding is represented
by the first two diffusion coordinates. However, the length of the left and right boundaries of the
hidden manifold (shown in Fig. 17a) are not described correctly. It is because, in the embedding
space (shown in Fig. 17c), the points near each of these boundaries are strongly connected but
nearly disconnected to those in another boundary.

4.3 Non-spherically symmetric data
4.3.1 Data

The data have 300 two-dimensional points which are distributed in two clusters: a non-spherical
star shape and a disk, as shown in Figure 20. The points distribution is non-uniform and different
between clusters: the points are denser in the disk cluster than the star one. It is an example
showing that some clustering methods based on the Euclidean distance fail, such as k-means. The
reason is that the Euclidean distance cannot describe well the disconnection of two clusters: many
points in the star cluster have a larger distance than two points separated into two clusters. We can
evaluate if the diffusion distance is able to describe the dissimilarity between points and separate
the disconnection of the data.

4.3.2 Experiment with diffusion map

Kernel width: The data points are non-uniformly distributed, as shown in Figure 20. Besides,
the point density is different between the two clusters: it is denser in the disk than in the star.
However, we choose a constant for the kernel width by using the median of knn distances. The
sample size in this example is quite small (300 observations). The k is thus chosen to be 3% of the
sample size, that gives σ ≈ 0.8.

Diffusion coordinates: Figure 21 shows a clear separation of the two clusters in the data (shown
in Fig. 20) using only the first diffusion coordinate. In the plot of the first two DCs (the left one
in Fig. 21), some blue points appear below the star cluster’s other blue points. These points
are associated with three points at the bottom of the star in the right plot. It is because with a
small, constant kernel width, these points are dissimilar to the star cluster’s rest points. However,
in the diffusion space (the left plot), these points are closer to the blue cluster than to the red
one. Therefore, the diffusion distance successfully separates the clusters in this example, whereas
k-means fails.
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Figure 21: Left plot: the first two diffusion coordinates of the data shown in Figure 20, and the
right plot: the original data with color (in both plots) encoded by the value of the first DC.

5 Conclusion
In this report, the construction of the diffusion map in the context of dimensionality reduction
was explained in detail. It starts with the weighted graph on data, the local connectivity was
defined by using the Gaussian kernel function. The combinations of local connectivities to form
global connectivities was discussed based on diffusion on the Markov chain. Finally, the diffusion
map, together with diffusion distance and diffusion coordinates, were defined. Specifically, the
diffusion map embeds the data into a lower-dimensional Euclidean space in which the distance is
approximately the diffusion distance in the original feature space. The diffusion map is easy to
implement from the construction as it only uses eigen-decomposition; also, it is very robust to
noise. However, choosing the parameters defining its behavior can be tricky.

We also discussed the meaning, the role of the method’s parameters (the kernel width σ,
timescale t, and the dimensions q of the discovered embedding) with simple illustrating examples.
While the kernel width characterizes the local connectivity, the timescale plays an essential role
in global geometrical information captured by the diffusion distance. The dimension q relates to
the intrinsic dimension of the underlying nonlinear manifold where the data reside on, and directly
defines the reduction in dimensionality. From that, a simple method for choosing these parameters
was suggested: σ is chosen by analyzing the local density of data points that is defined as their
k-nearest neighbor distances; an analysis of the spectral decay or diffusion coordinates is required
to choose q; and the choice of t, together with q, are set to best approximate the diffusion distance
by using the Euclidean distance.

To get insights into the method, some toy examples were performed and discussed at length. It
appears that the diffusion map successfully captures a low-dimensional embedding when data are
nonlinearly embedded into a higher dimensional space. Both uniformly distributed and non-convex
manifolds were verified. Two comparisons were made between the diffusion map and PCA, and
between diffusion map and MDS, using the diffusion distance. They confirmed the ability of this
method to capture the geometry at multiple scales. Besides, we also showed that the diffusion
distance provides us with an appropriate similarity measure for clustering of non-convex dataset.

6 Discussion
Choosing kernel width plays an important role in the success of the diffusion map. With a good
kernel width, the intrinsic data structure is uncovered correctly. In this report, we chose σ by
using k-nearest neighbor distances. However, when the sample size is small, choosing a suitable
k is more difficult. Moreover, problems arise when the data are anisotropic or/and non-uniform.
There are other criteria for the choice of a constant σ discussed in [17], and [7] could be considered
in further study. Besides, in [15] Rohrdanz, Zheng, Maggioni, and Clementi used different σ for
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each data point, which would be very interesting to try. An anisotropic Gaussian kernel function
proposed in [18] was applied in some studies in [19] and [9].

Diffusion distance is useful to describe the dissimilarity of data points and a powerful tool to
discover the clusters. In [14], Richards, Freeman, Lee, and Schafer proposed diffusion k-means,
a clustering method combining k-means and diffusion maps. It was applied to solve problems in
astrophysics.

Coifman and Lafon introduced a family of diffusion maps in [4] with the presence of a parameter
α ∈ R, which specifies the influence of the density on the diffusion. The method we discussed in
this report corresponds to α = 0 where the effect of the density is maximal. In [4], they also
discussed other cases when α = 1/2 for an intermediate effect and α = 1 for the null effect that
gave good improvements on the existing results. The embedding found by diffusion maps with
α = 1 is independent of the points density. It thus provides another view of the data apart from
the statistics. An application of this case can be seen in [7].

The applications of diffusion maps, in reality, are an interesting problem we would like to
study further. For example, in biology, it was used to reduce the dimension of single-cell data and
order the cells as an attempt to capture the expected differentiation structure [7]. In [20], it was
applied in dimensionality reduction for multi-dimensional gene expression data, which provides
useful information to cluster cancer samples. In image processing, the diffusion maps help to speed
up the vector multiplication recognition system and increase the accuracy in face recognition [1].
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Appendices
Appendix A Decomposition of the transition matrix
Given the dataset X of size n, we consider a weighted graph on this set such that each point in X
is a node on the graph. The weights of the graph are characterized by a kernel function k(., .). Let
D, defined in (14), be a diagonal matrix consisting the row sums of the weight matrix W where
Wij = k(xi,xj). We construct a Markov chain {Y0, Y1, ...} on this graph. The transition matrix
P can be explained as the row-normalized matrix of W and written as

P = D−1W . (28)

Note that W is symmetric but P is not. Now consider a matrix P ′ = {P ′i,j}1≤i,j≤n which is

P ′ = D1/2PD−1/2. (29)

We now show that the matrix P ′ is symmetric.
Since D is diagonal matrix we have D−1 = D−1/2D−1/2 and D1/2D−1/2 = In. Replace P in

(28) into (29) we get
P ′ = D1/2D−1WD−1/2 = D−1/2WD−1/2.

This implies that P ′ is symmetric since the symmetry of W .

As P ′ is symmetric, there exists a set of eigenvalues {λl}l=0,...,n−1 and an orthonormal set of
eigenvectors {φl}l=0,...,n−1 such that

P ′ =

n−1∑
l=0

λlφlφ
>
l . (30)

Additionally, it can be seen that

P ′D1/21n×1 = D1/2PD−1/2D1/21n×1 = D1/2P1n×1 = D1/21n×1

where 1n×1 is a column vector of size n with all entries 1. The last equality comes from the fact
that

∑n
j=1 Pij1 = 1 by the definition of the transition matrix in (15). This shows that D1/21n×1

is an eigenvector of P ′ that corresponds to the eigenvalue λ0 = 1. Consequently, φ0 = D1/21n×1.
From (29) and using (30) we can write P as

P = D−1/2P ′D1/2 = D−1/2

(
n−1∑
l=0

λlφlφ
>
l

)
D1/2 =

n−1∑
l=0

λlD
−1/2φlφ

>
l D

1/2

By letting

ψl = D−1/2φl and ϕl =
(
φ>l D

1/2
)>

= D1/2φl (31)

we get an eigen-decomposition of P as

P =

n−1∑
l=0

λlψlϕ
>
l

where ψl is the right and ϕl is the left eigenvectors. In addition, φ0 = D1/21n×1 implies that
ψ0 = 1n×1 and ϕ0 = D1n×1. Moreover, the stationary probability π = 1∑n

i=1Di
D1n×1 is the

normalization of vector D1n×1, that implies π is also a left eigenvector corresponding to λ0 = 1.

Furthermore, since {φl}l=0,...,n−1 are orthonormal, {D−1/2ϕl}l=0,...,n−1 are also orthonormal.
Therefore, {ϕl}l=0,...,n−1 sets an an orthonormal basis of l2(Rn,D−1), where the new norm is
defined as

‖x‖2l2(Rn,D−1) = x>D−1x, x ∈ Rn.
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Appendix B Spectrum of the transition matrix
We consider a transition matrix P of size n× n in which each entry is non-negative, Pij ≥ 0, and
each row sums to 1. As proving above, there is an eigen-decomposition of P . It can be checked
that

P1n×1 = 1n×1.

Therefore, 1 is an eigenvalue of P and 1n×1 is a right eigenvector corresponding to the eigenvalue
1. Moreover, we will prove that all other eigenvalues of P in absolute value are smaller or equal
to 1.

Now, let λ be an arbitrary eigenvalue of P and v is a right eigenvector that satisfy

Pv = λv.

Comparing the ith row of both sides we see that
n∑
j=1

Pijvj = λvi (32)

for all i = 1, ..., n. Consider vk is the maximal absolute value entry of v such that

|vk| = max{|v1|, |v2|, . . . , |vn|}.

Note that |vk| > 0 because the eigenvector is non-zero. From (32) we have

|λ||vk| = |λvk| =

∣∣∣∣∣∣
n∑
j=1

Pkjvj

∣∣∣∣∣∣ ≤
n∑
j=1

|Pkjvj | ≤
n∑
j=1

Pkj |vk| = |vk|,

where the first inequality comes from the triangle inequality, the second is because Pij is non-
negative, and the last equation is because row of P sum to 1. As a consequence, |λ| ≤ 1.

From that, the spectrum of the transition matrix P of size n× n satisfies

1 = λ0 ≥ |λ1| ≥ . . . ≥ |λn−1|.

Appendix C Diffusion distance in the term of eigenvalues
and eigenvectors of Markov matrix

Consider the diffusion distance of xi,xj in the dataset X defined in (24) as

Dt(xi,xj)
2 = (P t

i − P t
j )D−1(P t

i − P t
j )>, (33)

where P t
i = pt(. | xi) is a vector of the probability of moving from xi to other nodes on the graph

in t steps, and D is a diagonal matrix defined in (14).
Additionally, from the eigen-decomposition of the matrix P t in (20) we have

P t
i =

n−1∑
l=0

λtlψl(xi)ϕ
>
l .

That gives

P t
i − P t

j =

n−1∑
l=0

λtlψl(xi)ϕ
>
l −

n−1∑
l=0

λtlψl(xj)ϕ
>
l =

n−1∑
l=0

λtl(ψl(xi)− ψl(xj))ϕ>l .

The distance in (33) then becomes

Dt(xi, xj)
2 =

(
n−1∑
l=0

λtl(ψl(xi)− ψl(xj))ϕ>l

)
D−1

(
n−1∑
m=0

λtm(ψm(xi)− ψm(xj))ϕ
>
m

)>
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=

(
n−1∑
l=0

λtl(ψl(xi)− ψl(xj))ϕ>l D−1/2
)(

n−1∑
m=0

λtm(ψm(xi)− ψm(xj))D
−1/2ϕm

)

=

(
n−1∑
l=0

λtl(ψl(xi)− ψl(xj))φ>l

)(
n−1∑
m=0

λtm(ψm(xi)− ψm(xj))φm

)

=

n−1∑
l=0

n−1∑
m=0

λtlλ
t
m(ψl(xi)− ψl(xj))(ψm(xi)− ψm(xj))φ

>
l φm

where the third equation comes from (31). Using the fact that, {φl}l=0,...,n−1 is an orthonormal
eigenvector set of the matrix P ′ (see Appendix A), that means

φ>l φm = δlm =

{
1 if l = m

0 if l 6= m,

we get

Dt(xi,xj)
2 =

n−1∑
l=0

λ2tl (ψl(xi)− ψl(xj))2.

However ψ0 = 1n×1, the first term in the summation is omitted

Dt(xi,xj)
2 =

n−1∑
l=1

λ2tl (ψl(xi)− ψl(xj))2.
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