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Abstract

In an audio streaming service where its success is greatly depen-

dent on the degree to which its users retain on the service, it is of evi-

dent interest to predict who will stay and not for proactive measures.

Moreover, to optimize the service towards the preferences of its users,

inferential work is needed towards obtaining a better understanding

of the underlying processes of why certain users decide to stay on the

service or not. This work centers around the study and evaluation of

boosted tree models on predictive and inferential grounds. Empirical

results shows however only a marginal predictive benefit of using these

rather complex models in comparison with a baseline logistic regres-

sion. However, more exhaustive future work which utilizes a larger

degree of the vast amount of information available could prove the

boosted tree models justice for the task of interest.
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E-mail: c.samuelsson94@gmail.com . Supervisor: Chun-Biu Li.



Sammanfattning

För en ljudströmningstjänst vars framgång i stor grad definieras av hur
pass väl dess användare väljer att bevara sin prenumeration av tjäns-
ten, är det av uppenbart intresse att vilja prediktera vem som riskerar
annullera sin tjänst, i syfte av att kunna vidta proaktiva åtgärder.
Därutöver är det viktigt att kunna dra inferens om de bakomliggande
processer kring varför användare förblir prenumeranter över tid, såle-
des också kunna anpassa tjänsten efter användarnas önskemål. Detta
arbete studerar nyttan i att använda “boostade” beslutsträd utifrån
ett prediktivt- och statistiskt inferensperspektiv. Resultaten visar en-
bart en måttlig förbättring i prediktiv stryrka för den mer komplexa
modellklassen av boostade beslutsträd, i jämförelse med en logistisk
regressionsmodell som referens. Det vidhålls däremot att vidare stu-
dier centrerat runt användning av fler variabler skulle kunna tala till
fördel för de boostade beslutsträden som modellklass.
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Chapter 1

Introduction

For companies operating in the digital service domain, growing the business
in terms of number of customers is evidently an important objective of the
business operations, regardless of whether the customers are people or other
businesses. This is especially true for digital services for which a customer
or a user is paying for accessibility towards the service by e.g. a monthly
payment plan, as maximizing the number of users on plans with similar
payment structures would be expected to generate larger financial returns.
In order to grow the business in terms of the number of users, the number of
newly acquired users must undeniably be greater than the number of churned
(lost) users, for some considered time period. Hence, acquiring and retaining
users are the two fundamental blocks of driving user growth. Interestingly,
the cost of acquisition (of users) is often claimed to be around five times
greater than the cost of retention [22], showcasing the importance of retaining
existing users. Assuming some degree of rationality of consumers, retention
could be seen as a proxy towards user satisfaction of the service. Therefore,
the task of retaining users, and sub-consequently driving user growth, can
be seen as a proxy task of maximizing user satisfaction. Moreover, in a
digital era where immense amount of user data is generated and stored by
the tech companies offering these services, quantitative methods can be used
to predict retention based on user behavioural data generated from a given
user, for which proactive measures can be used to positively influence the
latent user satisfaction and thus the retention levels. Due to psychological
aspects and nature of habits [10, chap. 1], one can suspect that any targeted
proactive measures designed to increase the likelihood of user retention for
a given individual, are most effective during the onboarding phase, meaning
when a user first starts interacting with the service.
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1.1 Background
Spotify is a client-server audio streaming service, consumed by millions of
users across all regions of the world. As of March 2020, the streaming service
was constituted by over 50 million songs and 1 million podcast titles, which
were consumed by 130 million subscribers and by 286 million monthly active
users [25]. In this context, subscribers refer to users who are on one of the
Spotify Premium plans, typically through a paid subscription model, and
consequently enjoying a larger set of features on the service. Moreover, users
can interact with a subset of the functionality of the Spotify Premium offer-
ing through an advertisement-based free version, called Spotify Free, which
explains why the number of monthly active users surpasses the number of
subscribers (as of March 2020). Throughout this work, premium will be used
as an adjective to describe something in relationship towards the Spotify Pre-
mium entity. For example, premium features refer to the features that are
exclusive towards the (premium) subscribers, and hence not available for
non-subscribers.

As the number of (premium) subscribers is a vital metric for the overall suc-
cess of the Spotify business, retention is consequently an important metric
as well. Moreover, previous research has shown that different types of users
interact with a music streaming service differently [17, 33], and may respond
differently towards various service offerings and recommendations that are
competing of space and exposure. For the purpose of understanding which
premium propositions generate the most value for users, it is hence important
to understand how they may vary over different user personas or segments.

In a statistical setting characterised by a high-dimensional feature/covariate
space of various types, as one can expect to find in an audio streaming service,
it is important for any deployed model to handle these rather complex spaces
adequately. Although the mathematical folklore “No free lunch” theorem [34]
typically applies in most statistical or data-mining applications, meaning that
one cannot expect to know beforehand which statistical model will perform
best for a specific task, some arguments have been made for various boosting
methods for decision trees. Leo Breiman famously called the first boosting
algorithm for decision trees, known as AdaBoost [11], as the “best off-the-
shelf classifier in the world ”. Moreover, in [15, pp. 350-352] gradient boosted
models as generalizations of AdaBoost, are reasoned for as near-optimal “off-
the-shelf” methods for predictive learning data-mining applications, while
still being fairly interpretable.
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1.2 Problem formulation and purpose
The studied problem for this work is both predictive and inferential. This
work aims to study the effectiveness of boosted tree models as classifiers for
user retention, posed as a binary target. Moreover, to stem as a basis for
future recommendations and further experiments, it is of interest to infer the
statistical relationships that form the predictive mapping. With the Spotify
personas as a qualitative mental model, it is also of interest to study how the
predictions vary over different user cohorts, assumed to be characterised by
the available quantitative representations in the feature space. Furthermore,
the onboarding phase of when a user first interacts with the premium offering
should is presumed to be a preferred time of any proactive recommendations
or intervening effects. Consequently, this work is specifically concentrated
around data generated during that initial time period and its implications
towards retention. Lastly, an accent is put towards the premium exclusive
features for the inferential work, in order to better tailor the experience
around the Spotify Premium entity. However, due to confidentiality, these
premium exclusive features/covariates will not be identified explicitly from
the other studied covariates within this thesis, but arise as a central aspect for
internal studies at Spotify based on the same research methodology presented
here.

1.3 Delimitations
Although Spotify as a service is available in many countries spanned over
the whole world, this work centers around the analysis of North American
(American and Canadian) users. Moreover, for the purpose of detecting
trends in how users interact with the features without any prior experience
with the Spotify Premium offerings, which excludes e.g. previously churned
users and users who have utilized trial offers in the past. Furthermore, with
recent launches of new service plans, such as Spotify Premium Duo [27] and
Spotify Premium Family [28] which might skew the interpretation of reten-
tion as a proxy towards price elasticity or user satisfaction, only users who
started their subscriptions through standard non-price deducted individual
premium plans with monthly price plans were included for the study. In
this context, price deduction covers the Spotify Premium Student plan [29]
and any campaigns with either a deducted monthly price, or any campaigns
composed such that the user obtains the service a longer period of time than
in a normal setting.
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Lastly, the study was constrained towards users enrolling the premium plan
during the time period 2019-12-01 to 2020-01-12, and sub-consequently their
(binary) service plan status 45 days after enrollment.

1.4 Outline
The remaining part of this thesis is outlined as follows: Chapter 2 is devoted
fully towards the data collection and exploration part, with the purpose of fa-
miliarizing the reader with collected data and the meaning of the underlying
processes; Chapter 3 covers relevant theories of statistical learning, standard
and boosted tree methods for classification and ways of interpreting them;
Chapter 4 holds the conducted results and experiments with accompanying
interpretations and discussions; lastly, Chapter 5 covers the main conclu-
sions obtained from the master’s thesis project. For ease of reading, some
complementary material can be found separately in the appendices and are
referenced throughout the report.
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Chapter 2

Data

2.1 Data characteristics
In an audio streaming service, or in digital services in general, there is gen-
erally a rich amount of information that could serve useful or descriptive
towards different user attributes. For this thesis, a smaller subset of all the
vast number of variables available will be studied. As some variables stem
from the same source, hence have similar meanings, the studied variables will
be named accordingly. Throughout this work, the terms variables, features,
predictors and covariates will be used interchangeably.

For confidential reasons, the exact meaning of each variable cannot be dis-
closed, whereas instead the following identification schema will be followed:
group/unit/identifier. Group refers to a set of features that should
have similar meanings (e.g. demographics, behavioural data, listening pref-
erences etc.), unit refers to some type measurement/quantity and identifier
is a unique ID for each feature with the same group and unit. The actual
groups can not be disclosed for this work, and similarly some of the unit
values. For disclosed units, the terminology of Arbitrary Units (AU) will
be used. In some cases, unit values such as attribute or bool will refer
to some arbitrary categorical or binary feature levels. Note also that two
features with the same (arbitrary) unit, but different groups, may have dif-
ferent interpretations and should hence in some cases not be compared across
groups. For example, there are some fundamental similarities between the
features with AU1 as measurement unit across groups, whereas the features
with AU2 as measurement unit are generally not comparable between groups.

Furthermore, a smaller percentage of observations were left out from the
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analysis as they, from a business perspective, were considered displaying
anomalistic behaviours. Due to confidentiality, the exact criteria and per-
centage of observations left out will not be disclosed in this work. After the
(fundamental) outlier removals, the study was left with 32 predictors and
a binary target corresponding towards whether the user stayed (retained)
on a premium plan or not1, and 18 516 as the number of observations (one
observation per user). However, these 18 516 observations were also subject
to (uniform) random sampling without replacement, hence being a subset of
the total number of users matching the delimitations of the study. Further-
more, the aggregated fraction of retained users can not be disclosed due to
confidentiality.

Moreover, some predictors contain missing values, but where “missing” in this
context should for fundamental reasons be interpreted as “not applicable”,
rather than missing as in unobserved. Therefore, the missing values have an
intrinsic meaning and are rather to be seen as a foundation for an additional
level in the categorical or binary setting. For the continuous setting (for
group1/AU1/4 and group1/AU1/5), these missing values were imputed
as 0 on fundamental grounds. A brief summary of each predictor can be
found as of Table 2.1.

1Technically, the definition of retention in this context is relaxed to regard retention
on the Spotify Premium (which includes multiple plans) opposed to retention towards the
specific premium plan for which conversions were delimited towards. More concretely,
users who are observed to subscribe towards another premium plan after the 45 days of
study, are still to be considered as retained premium subscribers. On the contrary, users
who are not observed to be premium subscribers after 45 days of study, potentially still
as active users on the Spotify Free version, are not to be considered as retained premium
subscribers.
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Feature Type Range % Missing values
group1/reach/1 Binary {0, 1} 5.54%
group1/AU1/3 Continuous R+ 0%
group1/AU1/4 Continuous R+ 11.46%
group1/AU1/5 Continuous R+ 12.78%
group1/AU2/1 Ordinal N 0%
group2/AU1/1 Continuous R+ 0%
group2/AU1/2 Continuous R+ 0%
group2/AU1/3 Continuous R+ 0%
group2/AU1/4 Continuous R+ 0%
group2/AU1/5 Continuous R+ 0%
group2/AU1/6 Continuous R+ 0%
group2/AU1/7 Continuous R+ 0%
group2/AU1/8 Continuous R+ 0%
group2/AU1/9 Continuous R+ 0%
group2/AU1/10 Continuous R+ 0%
group2/AU2/1 Ordinal N 0%
group3/AU1/1 Continuous R+ 0%
group3/AU1/2 Continuous R+ 0%
group3/AU1/3 Continuous R+ 0%
group3/AU1/4 Continuous R+ 0%
group3/AU1/7 Continuous R+ 0%
group3/AU1/9 Continuous R+ 0%
group3/AU1/10 Continuous R+ 0%
group3/AU2/1 Ordinal N 0%
group3/AU1/12 Continuous R+ 0%
group4/AU1/1 Continuous R+ 0%
group5/bool/1 Binary {0, 1} 0%
group5/attribute/2 Categorical {1, . . . , 7} 0.63%
group6/AU2/1 Ordinal {1, . . . , 31} 0%
group6/AU2/2 Ordinal N 0%
group6/attribute/1 Binary {0, 1} 0%
group6/bool/1 Binary {0, 1} 0%

Table 2.1: Characteristics of the used features for this study. The type
regards different types of features, such as categorical, continuous or binary
features. The range regards the outcome space for each underlying random
variable. Note for the ordinal case, corresponding towards AU2, that some
variables have certain constraints which restrict their ranges.
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2.2 Empirical distributions
For the extracted data, two immediate observations are striking. Firstly,
many AU1 features have a relatively low reach, meaning discovery by a user
- mathematically in this context that the AU1 measure is strictly greater
than zero. This could suggest a discovery problem, where a considerable
fraction of users have not, purposely or not, interacted during their first days
with a certain feature offered through the subscription service. Figure 2.1
shows reach for the different features that regard AU1 as unit measure, from
which one can note that the reach for certain features are as low as 5.9%. A
low reach does not necessarily mean a disinterest in the specific offering, but
could might as well signal low visibility or exposure of the feature itself, as
various features compete against each other for visibility.

Figure 2.1: Percentage of samples for each feature with AU1 as unit with
strictly positive values, i.e. AU1 > 0 for some feature GROUP/AU1/ID.

Secondly, a rapid decay in the empirical distributions for AU1-features was
noticed. Figure 2.2 suggests that most features seem to experience a so called
high infant mortality, meaning high densities for smaller values of AU1, and
where the rate of change in probability density decreases for larger AU1
values. One possible explanation on qualitative grounds could be a discovery
phase, where newly acquired users are exploring various features and hence
discarding some features that does not compete as well as other features for
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their interest. The same phenomena seems to hold for the other groups with
AU1 as unit, and not just group1 as showcased by Figure 2.2. Similar plots
for the other groups can be found as Figure B.1 - Figure B.8 as of Appendix
B.

Figure 2.2: Histograms for AU1 features in group 1 on log10-scale for the rel-
ative frequency. Note that the AU1 measures have been scaled by some pos-
itive factor of α� 1 to preserve confidentially and make the range smaller.

To reduce the range of the AU1 features and therefore easier discovery of
good split candidates for the studied tree methods (see section 3.2), a log-
arithmic transform was applied prior to any model fitting. Moreover, as
many observations are zero-valued for these features, the specific logarithmic
function log(x+ 1) was used, to ensure a positive and lower-bounded range.
Interestingly, Figure 2.3 shows two distinct clusters or mixtures for each em-
pirical logarithmic distribution. The first one as the high-density zero bar,
which indirectly captures the reach, and the positive samples captured as a
negatively skewed distribution.
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Figure 2.3: Histograms for the AU1 features in group1 (scaled by some factor
β) on log(x+ 1) scale.

Looking at the pairwise Pearson-Spearman correlations, one can note from
Figure 2.4 that most features seem to be non-heavily linearly correlated, with
a few exceptions such as the Pearson-Spearman correlation coefficient of 0.8
between group3/log_AU1/8 and group6/AU2/1.
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Figure 2.4: (Pearson-Spearman) Correlation matrix for all features, rounded
to the nearest two decimals.

2.3 Weibull distribution fitting
The Weibull distribution is one common parametric model in the field of re-
liability studies and survival analysis [2, p. 209], which deals with questions
that regard the expected life-cycle of a product or individual, e.g. when in
time a machine is expected to break down. In a customer retention problem
setting, a similar view can be utilized where each user (customer) can inter-
act with certain features offered through the service in a limited time period.
In a service with many features, it would deem natural to assume that dif-
ferent features have different appeal from the user audience, potentially also
conditioned on previous exposure and segments of the users.

For a random variable X, with the positive reals as outcome space, and
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parameters λ, k > 0, the Weibull density function f(x) is given as

f(x;λ, k) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

, (2.1)

where the k parameter is referred to as the shape and λ as the scale. The
former parameter has some interesting implications, firstly that the Weibull
distribution collapses into an exponential distribution (with expectation λ)
for the special case of k = 1. If X is interpreted as a time-to-event random
variable, then the failure rate is said to be subject to a high infant mortality
for k < 1 [19], meaning that the failure rate decreases over longer measures of
engagement (measured by AU1). Hence, a feature engagement distribution,
where each sample corresponds to a “failure”, the magnitude of k describes the
level of infant mortality for the range of k ∈ (0, 1), assuming a Weibull model.

To assess the fit of a Weibull model, a popular graphical tool in the field of
reliability engineering and survival analysis [18], is the so called Weibull plot,
which utilizes the linearity of the model parameters on a log-log scale. This
can be seen algebraically by manipulating the cumulative density function
F (x)

F (x) = 1− e−( xλ)
k

⇔

log(1− F (x)) = −
(x
λ

)k
⇔

log (log(1− F (x))) = −k log
(x
λ

)
⇔

log (log(1− F (x))) = −k log x+ k log λ ,

(2.2)

and hence if a random variable X ∼ Weibull(λ, k), then log (log(1− F (x)))
should be linear in log(x) for realizations x of X. Figure 2.5 shows an
example of the visual diagnostics for one of the AU1 features (specifically
group1/AU1/3). From the fitted CDF itself, it seems to suggest an ade-
quate fit. However, the log-log CDF and the Weibull plots suggest some an
overestimate of the probability density for lower AU1 values. One can com-
pare the bottom left Weibull plot with the one for simulated data from a true
Weibull distribution (in this case with the same parameters). Evidently, the
Weibull plot which corresponds towards the empirical data is not completely
linear, and the Weibull distribution serves at most as a simplified model of
the decaying characteristics of the AU1 features. Figure B.9 - Figure B.30
of Appendix B showcases similar behaviours, some with more acceptable fits
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and some with worse. Interestingly, as can be seen from Table 2.3, all fitted
Weibull distributions for these features has estimates of k < 1, indicating
the high infant mortality effect mentioned earlier in this section. Under a
Weibull model, comparing the k-values for different distribution fits (assum-
ing k < 1 for all fits) could indicate the overall appeal of first engaging with
a newly discovered feature. One should however not form too strong conclu-
sions around these estimates, or their interpretations, as the distribution fits
are acceptable at best, especially for smaller values of AU1.

Figure 2.5: Weibull fitting towards the positive values of group1/AU1/3.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel shows
the CDFs on log-log scale in order to spot deviations easier. The bottom
panels show the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Feature kMLE Wald 95% CI
group1/AU1/3 0.499 [0.489, 0.509]
group1/AU1/4 0.700 [0.691, 0.708]
group1/AU1/5 0.605 [0.597, 0.612]
group2/AU1/1 0.498 [0.475, 0.521
group2/AU1/2 0.503 [0.491, 0.514]
group2/AU1/3 0.523 [0.517, 0.530]
group2/AU1/4 0.475 [0.465, 0.486]
group2/AU1/5 0.496 [0.488, 0.503]
group2/AU1/6 0.497 [0.487, 0.507]
group2/AU1/7 0.633 [0.623, 0.642]
group2/AU1/8 0.522 [0.515, 0.529]
group2/AU1/9 0.512 [0.502, 0.522]
group2/AU1/10 0.723 [0.715, 0.731]
group3/AU1/1 0.809 [0.800, 0.819]
group3/AU1/2 0.459 [0.442, 0.477]
group3/AU1/3 0.522 [0.509, 0.535]
group3/AU1/4 0.548 [0.537, 0.560]
group3/AU1/7 0.465 [0.447, 0.482]
group3/AU1/9 0.606 [0.581, 0.632]
group3/AU1/10 0.413 [0.399, 0.428]
group3/AU1/12 0.864 [0.854, 0.874]
group4/AU1/1 0.590 [0.583, 0.597]

Table 2.2: Maximum Likelihood point estimates for k and corresponding 95%
Wald confidence intervals for the parameter estimates.
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Chapter 3

Theory

3.1 Supervised statistical learning
The supervised (statistical) learning problem is characterised by the presence
of an outcome or target variable to assist the learning (fitting) procedure of
finding a predictive model or function approximation fθ : x 7→ y, where x is
a set of features/covariates/predictors and y the targets [15, p. 9]. Moreover,
the function f is parameterized by its model parameters θ, to uniquely define
f within a class of functions F . For example, a predictive model, say a linear
regression model, is uniquely defined within the class of all linear regression
models by its assigned weights to each feature.

Remark. Not all statistical learning problems fall under the supervised learn-
ing category. For instance, in the unsupervised learning problem, where no
target measures are available during training, the task is rather to infer clus-
ters or similarities between different data points [15, chap. 14].

Typically, supervised learning tasks are divided into two separate categories
based on the inherent meaning of the target variable. Problems with the
appearance of a numerical or continuous target variable are referred to as re-
gression problems, whereas tasks constituted by a categorical or discrete tar-
get variable are referred to as classification problems. This distinction proves
useful when selecting an appropriate algorithm or family of functions for a
given supervised learning problem. For example, a linear regression model
might be adequate for the regression problem of predicting house prices as a
function of square meters, but would not be applicable for classifying emails
as spam. On the contrary, a logistic regression model would qualify as a
strong candidate to consider for the latter task, but not for the former.
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Moreover, an important aspect of supervised statistical learning problems
is the distinction between seen and unseen data points. The training data
refers to data points which have been used to guide the model during the
learning procedure, with the objective of generalizing towards unseen data,
which also will be elaborated on more mathematical terms later on in this
section.

When determining fθ for a given supervised learning problem, conditioning
on the choice of some class of functions F (the model class), it can be viewed
as a minimization problem, where

θ∗ = arg min
θ
L(θ) , (3.1)

for some objective function L(θ). The purpose of the objective function is
to quantify an associated cost or error for the model parameters θ, and indi-
rectly the predictions fθ(x), evaluated against the true targets y. Therefore,
different functions in F can be compared relative each other by their respec-
tive losses, hence justifying Equation (3.1).

Intuitively, the objective function should be such that it is minimized when
fθ(x) and y are consistent, and penalized for larger inconsistencies. One real-
izes however that there are multiple ways of quantifying consistencies, which
naturally will affect the solution by minimizing the objective function, as of
Equation (3.1). Recalling the linear regression problem, the standard choice
of objective function would be the sum of squares, between the predictions
and targets, arising from a parametric assumption about N(0, σ2) - normality
for the residuals. However, other choices such as the sum of absolute errors,
between the predictions and targets, could also be used and would implicitly
impose other meanings towards the learning objective.

Generally, the objective function can be seen as the expected prediction risk
[15, p. 220] over the data distribution P , from which (x, y) are realizations of,
and an error-/loss function L that quantifies the divergence/error between
the predictions fθ(x) and targets y. Hence,

L(θ) = E(x,y)∼P [L(fθ(x), y)] , (3.2)

which is intractable to minimize directly as P is unknown. Instead, the
objective of Equation (3.2) can be minimized empirically by the empirical
predictive risk L̃(θ), hence
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θ∗ ≈ arg min
θ
L̃(θ) = arg min

θ

1

N

N∑
i=1

[L(fθ(xi), yi)] , (3.3)

where N is the number of samples in the training dataset. If the training
dataset can safely be assumed to be representative towards the distribution
P , then the approximation as of Equation (3.3) can be expected to be good.

One way of testing the assumption about homogeneity is to holdout some
partition of the dataset for the fitting procedure, and later test the general-
ization capability of the fitted model by assessing the fit on unseen data. This
partition is often referred to as the test data, and its corresponding empirical
predictive risk (evaluated only for samples in the test dataset) is called the
test error or test prediction error. For symmetry, the empirical predictive
risk evaluated for the training dataset will be referred to as the training er-
ror (or training prediction error). Moreover, as discussed more in detail in
the coming subsection, the approximate solution as of Equation (3.3) is also
affected by the complexity of the model.

3.1.1 Bias-variance trade-off and model complexity

Generally, when distilling the expected prediction risk, three important terms
will appear, namely an irreducible error, the bias and the variance. This sec-
tion is devoted towards explaining the meaning of each of them and how they
affect the supervised learning procedure.

Starting with the irreducible error, which arises from stochasticity in the
target variable. For instance, consider the task of predicting the number of
bicycle rentals by the temperature and rainfall levels. Obviously, the number
of bike rentals will inherently depend upon many other exogenous effects
(e.g. whether a given day is a weekend or not, local competition etc), that
limits the performance of any predictive model for this task. Philosophically,
this limitation corresponds to the classical aphorism “All models are wrong,
but some are useful” by George Box. Mathematically, one can view the
irreducible error as the lower bound of the expected prediction risk, i.e.

Eirr(F) = inf
fθ∈F

E(x,y)∼P [L(fθ(x), y)] , (3.4)

where Eirr(F) is the irreducible error, conditioned on F as the set of all mod-
els considered. Alternatively, one might view F as the hypothesis space for
some true underlying mapping. Intuitively, the irreducible error, conditioned
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on some F , becomes smaller in the presence of (endogenously) strong predic-
tors, as the mapping between the predictors and the target becomes (nearly)
deterministic, which consequently yields good generalization capabilities for
unseen data. To illustrate the contrary, recap the bike rental problem, with
rainfall and temperature as the predictors. If the two predictors do not ex-
plain a considerable degree of the number of rentals, the exogenous effects
(noise) will be larger, therefore yielding a higher irreducible error.

Moreover, the remaining source of errors can be identified as the approxima-
tion error and the estimation error, also referred interchangeably to as the
bias and variance (of predictors) respectively [9]. The first one is the squared
difference of the true model average and the expectation of the estimator.
While a low bias is obviously desirable, one should also consider the second
term of the estimation error, namely the variance of the estimator. The
variance corresponds to vast changes in the model parameters for changes in
the dataset, suggesting overfitting towards the training data. Therefore, the
ideal model would have a low bias and a low variance. In practice however,
one typically observes these two terms as functions of the model complexity,
where the bias typically decreases for increased model complexity, whereas
the opposite effect can be said for the variance [15, p. 37]. Mainly, these two
errors arises and changes by the family of models to consider (e.g. linear
models), the dataset (x, y) = {(x1, y1), . . . , (xn, yn)} and potentially the fit-
ting procedure as well (if no closed-form solution exists).

In order to acquire a more mathematical intuition of the relationships be-
tween the irreducible error, the bias and the variance, consider a setting with
the squared error as the loss function L, yielding an expected prediction risk
as (c.f. Equation (3.2))

L(θ) = E(x,y)∼P
[
(fθ(x)− y)2

]
, (3.5)

where E regards the expectation with respect to distribution P , form which
(x, y) are realizations from. Hence, E serves in this context as a shorter nota-
tion for E(x,y)∼P . With the squared error as the loss function, Equation (3.5)
can be rewritten as

E
[
(fθ(x0)− y)2

]
= Var (ε) + (f(x0)− E [fθ(x0)])

2 + (3.6)
Var (f(x0)− fθ(x0)) , (3.7)

evaluated at some point x0. In this context, f(x) denoted the true underlying
model, separated from the measurement error or noise ε - assumed to have
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a zero-valued expectation, hence y = f(x) + ε. Moreover, fθ(x) is assumed
to be fitted towards a finite set of realizations (x, y) from P (training data),
therefore stochastic. The full derivations for Equation (3.6) are available in
Appendix A as Lemma (A.1) with accompanying proof. From the error de-
composition as of Equation (3.6), it is noticed that the first term corresponds
to noise, which is irreducible for any fθ ∈ F (see also Equation (3.4)). The
second term is the squared bias between the expectation of the true mean
f(x0) and the estimate fθ(x0). Lastly, the third term is identified as the
variance of the difference between the real model and the fitted one, and
depends on how well the regression fit towards the training data generalizes
for unseen data.

Consequently, a trade-off between the bias and variance arises when deter-
mining the model complexity, which is depicted visually in Figure 3.1. Models
with low bias and high variance can be said to overfit towards the training
data, i.e. emphasizing too much on local noise apparent in the training data,
and hence fail to generalize well for unseen data. On the other hand, models
with high bias and low variance underfit, meaning that they fail to capture
relevant structure in the feature space, and therefore also fail to generalize
well for unseen data.
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Figure 3.1: Test prediction error (red) and training prediction error (aqua)
as a function of model complexity. The test- and training prediction error
regard the empirical predictive risk (see Equation (3.3)) evaluated on the test
and training dataset respectively. Picture taken from [15, p. 38].

3.1.1.1 Model complexity and regularization

So far as of Section 3.1.1, the existence of a general trade-off between bias and
variance, which should delicately be balanced to achieve the best generaliza-
tion capabilities for a predictive model. However, the term model complexity
can mean different things depending on the inherent structure of a model.
For example, it might make sense to talk about complexity measures in terms
of the number of used features and magnitude of the effect parameters for
the case of linear regression. For a specific model structure, the particular
parametric assumption could give raise to other useful complexity measures.
For instance, for the case of polynomial regression models, the degree of the
polynomial could be used as a complexity measure.

One way of combating high model complexities, and consequently high vari-
ances, is to add a penalty term towards the loss function for some predefined
complexity measure. In other words, the expected empirical risk function
would be changed towards (c.f. Equation (3.2)),

L(θ) = E(x,y)∼P [E(fθ(x), y) + Ω(θ)] , (3.8)
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where Ω(θ) is some complexity measure of the model parameters θ. Hence,
it also follows from Equation (3.8) that the empirical predictive risk obtains
as (c.f. Equation (3.3))

L̃(θ) =
1

N

N∑
i=1

[L(fθ(xi), yi) + Ω(θ)] . (3.9)

Equation (3.9) generalizes other popular regularization techniques such as
ridge regression [16] and lasso regression [32]. From a bias-variance stand-
point, the introduction of the complexity term introduces a bias, but for the
benefit of (generally) reducing the variance [15, p. 224].

Moreover, besides talking about complexity within a class of models, the
framework also proves useful to compare different families of models against
each other. For instance, simpler models, such as the linear regression model,
impose some assumptions on the inherent workings of the model, in the
example of linear regression particularly, the features are assumed to interact
linearly and in an additive manner. Consequently, as typically the mapping
between the features and the target are nonlinear and non-additive in x
[15, p. 139], the linear regression will have a high bias compared to more
expressive nonlinear models, such as complex mixture models, which might
express the true underlying mapping more adequately. On the other hand,
as understood from the bias-variance trade-off viewpoint, the former model
will have a lower variance than the latter. Hence it appears useful to apply
the bias-variance framework not only for model parameter fitting within a
class of models, but also to compare families of models against each other.

3.1.1.2 K-fold Cross Validation

Another way of combating overfitting issues, while at the same time being
more efficient with using data both for training and validation, is by vari-
ous cross-validation techniques. The trade-off is mainly the computational
aspects of further required fitting procedures, especially for cross-validation
methods such as the leave-one-out method. More computationally efficient
cross-validation techniques include the K-Fold Cross-Validation [15, sec. 7.10]
technique (assuming K � N). The high-level idea is to split the dataset into
K approximately equal sized folds, thereafter taking turns on using each par-
tition as the validation set (kept unseen) while using the remaining K − 1
folds for training. The last step is then to average the different estimations,
in this case the empirical predictive risk L̃(θ), as
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CV (L̃(θ)) =
1

N

N∑
i=1

[
L
(
f
(k)
θ (xi), yi

)
+ Ω(θ)

]
, (3.10)

where CV (L̃(θ)) denotes the (K-fold) cross-validated empirical predictive
risk, and f (k)

θ the fitted model/function after holding the kth (k ∈ {1, . . . , K})
data fold unseen.

Figure 3.2: Example of a partition of the dataset with 5 folds, where each
fold take turns on being the validation set (at this snapshot the third fold).
Picture taken from [15, p. 242].

3.1.1.3 Early stopping

Another method to prevent overfitting is to introduce the concept of early
stopping as a stopping criterion. As Figure (3.1) suggests that the predic-
tion error on the held-out data reaches a plateau before the corresponding
prediction error on the training dataset does. Therefore, a simple strategy
to avoid overfitting is to stop the learning process at the lowest point of the
test error curve [5, p. 259]. In practice, this can be done by defining a stop-
ping criterion, such as when the prediction error on the test dataset does not
decrease over a given number of training iterations. Other similar criterion,
e.g. comparing the test error over rolling windows, may also be used [23].

3.1.2 Performance metrics for binary classifiers

Even in the binary domain of classification problems, there are various ways
of quantifying the performance of a classifier. The fraction of correctly classi-
fied instances, regardless of the target values, of the total number of instances
is known simply as the accuracy of a classifier, and can be a reasonable choice
of performance metric under the premise that our (two) classes are somewhat
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well balanced.

To illustrate the potential pitfalls of the accuracy metric when imbalance of
our target variable is present, imagine a financial fraud detection problem
with binary outcome, where we for the purpose of illustration could assume
that a great majority of the financial transactions are not at fault. One
overly simplified way of achieving a great accuracy for our classifier would
be to have it, in a deterministic fashion, return negative values (non-fraud)
for each instance, independent of any available covariates. Due to the severe
class imbalance of the target variable, and by implicitly penalizing type I
and type II errors equally, the deterministic classifier would achieve a great
accuracy score while at the same time fails miserably at detecting any frauds,
which fundamentally makes the classifier useless.

3.1.2.1 Balancing Type I and Type II errors

In the binary classification domain, it is evident that four different scenarios
can occur for classification of each sample: true positives, false positives,
true negatives and false negatives. Moreover, as only the total number of
evaluated samples is fixed, the outcome counts can be summarized by a 2x2
contingency table with a Multinomial sampling strategy [3, p. 25], as depicted
in Table 3.1.

True values

Predicted values Positive Negative

Positive TP FP
Negative FN TN

Table 3.1: Contingency table of possible binary classification results. TP
stands for true positive counts, FP for false positive counts, FN for false
negative counts, and TN for true negative counts.

Let x be a feature vector in some feature space X, y its corresponding target,
and let f(x) ∈ {1, 2} denote the predicted class of the binary classifier f(x),
Y ∈ {1, 2} the true values, where 1 corresponds towards the positive class,
and 2 towards the “negative”. In order to study the effect of Type I and Type
II errors when evaluating a given classifier f , it is of great interest to infer
the joint, marginal and conditional probabilities of f(x) and y.
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Remark. As other literature, e.g. [15], tend to use {−1, 1} as the notation
for the binary target. Using the encoding 2 as notation for the negative class
might not be intuitive, but adds for easier notation and interpretation when
using contingency tables by relating towards the row- and column indices.

Assuming a sample of n++ predictions compared against the true target val-
ues, has been represented as a contingency similar to Table 3.1, the task
remains as inferring the joint probabilities πij, as well as the marginal prob-
abilities πi+ and π+j, for all i, j ∈ {1, 2} (row and columns indexing starts
from 0). Maximum likelihood estimates of πij, πi+ and π+j (see Lemma (A.2)
of Appendix A and its accompanying proof) obtains as

π̂ij =
nij
n++

, (3.11)

π̂i+ =
ni+
n++

, (3.12)

π̂+j =
n+j

n++

. (3.13)

Lastly, the conditional probabilities πi|j = P (f(x) = i | y = j), for some
i, j ∈ {0, 1}, estimate as

π̂i|j =
π̂ij
π̂+j

=
nij
n+j

. (3.14)

As the true underlying rates of true positives (TPR), false positives (FPR),
true negatives (TNR) and false positives (FPR), correspond to the different
permutations of πi|j, these rates can be estimated using Equations (3.11)-
(3.14) as

T̂PR = π̂1|1 =
TP

TP + FN
, (3.15)

F̂PR = π̂2|1 =
FP

TP + FN
, (3.16)

T̂NR = π̂2|2 =
TN

FP + TN
, (3.17)

F̂NR = π̂1|2 =
FP

FP + TN
. (3.18)

Recalling the posed problem domain of financial fraud detection from Sec-
tion 3.1.2, the classifier that simply outputs negative values for all financial
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transactions, regardless of what information they might carry, will have a
perfect true negative rate of 1, but concurrently, assuming the existence of
at least one fraud in the evaluation data, have a zero valued true positive rate.

Formally, the output of the classifier, often a “raw”- or pseudo probabil-
ity of a positive event, can be distinguished from a policy that operates
on this raw probability and return the predicted class, hence a function
D : [0, 1] → {1, 2}. Practically, the space of decision functions is restricted
towards indicator functions that thresholds the predicted class probability,
e.g.

D(x) =

{
1 if x ≥ 0.5,
2 otherwise,

where x is the predicted probability of belonging to the positive class for
a given observation. It appears obvious that by increasing the threshold,
P (f(X) = 1) decreases and vice versa. In order to account for this trade-off
when evaluating the predictive performance of a given classifier, it is often
of interest to examine how the TPR and FPR changes as a function of the
threshold for the decision function, which is graphically examined by a ROC
curve (receiver operating characteristic curve) by plotting the estimated TPR
on the y-axis, and the estimated FPR on the x-axis, for varying thresholds.
As a baseline, it is easy to see that the true positive rate will equal the false
positive rate in the case of a fully random classifier, i.e. f(X) being inde-
pendent of Y , hence implying that π̂1|1 = π̂1|2.
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Figure 3.3: Example ROC curve for some binary classifier (red), where the
diagonal line corresponds to the ROC curve of a fully random classifier.
Higher values for the true positive rate, and lower values for the false positive
rate are better.

With the ROC curve in place, it makes also sense to talk about the area under
the ROC curve, abbreviated as AUC. Clearly, higher AUC values corresponds
to a high (estimated) TPR and a low FPR for most thresholds. Moreover,
as the baseline of random guessing would yield an AUC value of 0.5, which
yields a lower bound for what can be considered reasonable for any binary
classification task.
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3.2 Classification and Regression Trees
The core principle of a tree model or decision tree can be described in layman
terms - by asking a set of questions with pre-set alternatives in a hierarchical
manner, to eventually arrive at an answer/prediction. In computer scientific
terms, this process can be thought of as traversing a tree with a question
at each node until a leaf (end node) is reached, for which a corresponding
prediction is obtained, e.g. as in Figure 3.4.

Rainy?

Yes
Yes

Cold?

Windy?

Yes
Yes

No
No

No

Yes
Yes

No

Figure 3.4: Example of a high-level classification tree structure, visualized
from left to right, where the task is to predict whether a jacket would be
needed given the current whether status. It is noticeable how the intrinsic
logic of the classifier arguably follows decision patterns that could resemble
how a human would approach answering the same question. Moreover, ques-
tions such as Rainy?, Cold?, and Windy?, are subjective and would instead
be posed quantitatively from available features by the model, possibly with
a similar interpretation.

A popular method for creating such trees, called CART (Classification and
Regression Trees), was outlined in [6]. Mathematically, the interpretation of
the modelling approach is to divide the feature space into disjoint partitions
R1, . . . , RT , represented as T leafs of the tree after recursively introducing
binary splits in the feature domain. Regardless of whether the prediction
problem is a regression or a binary classification problem, for a feature vector
xi in feature space X that the model is assumed to be trained upon, the
prediction f(xi) is given as

f(xi) =
T∑
j=1

wj · 1(xi ∈ Rj) , (3.19)
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for some constants w1, . . . , wT , and where 1(·) denotes the indicator func-
tion. The only restriction the binary classification domain imposes is that
wj ∈ [0, 1] to be interpreted as the probability of a positive event, conditioned
on X. Comparing Equation (3.19) with Figure 3.4, it can be noted that the
former generalizes the deterministic nature of latter in the binary classifica-
tion domain, to allow for different policies based on different thresholds, as
discussed in Section 3.1.2.1. In other words, Figure 3.4 would be generalized
to output raw probabilities of the positive event, in this setting the prob-
ability that a jacket will be needed, rather than also imposing a policy of
whether to actually bring a jacket.

Remark. Equation (3.19) can be extended for multi-class classification prob-
lems by introducing a second index towards w to denote the conditional prob-
ability towards each class, e.g. making w into a matrix, and by constraining
that each row-/column vector (depending on how the matrix is composed)
equals 1.

3.2.1 Fitting the trees

Although the intrinsic hierarchical binary split (see Figure 3.4) nature of
CART models make them highly interpretable fundamentally and mathemat-
ically alike, the fitting procedure of determining the optimal tree structure
with its corresponding w vector (see Equation (3.19)) is generally computa-
tionally infeasible [15, p. 307]. In layman terms, a tree structure refers to
which questions to ask at which time by the model and how to utilize that
information for predictive purposes. Mathematically it can be thought of as
a function f ∈ F , where F being the class of CART functions, is determined
by its feature partitions R =

⋃T
j=1Rj and weights w = (w1, . . . , wT )T .

To infer the tree structure f , i.e. fitting the tree model, a greedy approach
can be utilized. The idea is to start with all data x, to recursively find
optimal features and threshold values to split on. Let θm = (j, tm)T denote
a proposed split for node m (determined by feature partition Rm) and its
corresponding feature subset x(m) = {x : x ∈ Rm}. Consider now a split tm
for feature x(m)

j , where the left and right subsets of x are denoted Rleft(θ)
and Rright(θ), obtains as

Rleft(θm) = {x(m) : x
(m)
j ≤ tm} ,

Rright(θm) = {x(m) : x
(m)
j > tm} .

(3.20)
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Ideally, a proposed split θm should increase the level of homogeneity, or purity,
within each partition Rleft(θm) and Rright(θm) respectively. On the contrary,
impurity refers to heterogeneity, which can be interpreted as something that
should be minimized when comparing different split options. Let H(x) be
an impurity function, where a few popular ones will be elaborated upon
in Section 3.2.1.1, then a proposed split θm at node m can be the sum of
impurities in each resulting partition, weighted by the fraction of samples
falling into each respective partition. Letting Nm denote the total number of
samples available for node m (before the split), nleft the number of samples
in Rleft, and nright the number of samples in Rright, yields

G(R, θm) =
nleft

Nm

H (Rleft(θm)) +
nright

Nm

H (Rright(θm)) , (3.21)

where G(R, θm) can be interpreted as an impurity cost associated for each
split proposition θm. Therefore, the optimal split θ∗m for node m will be
chosen as the one which minimises the impurity

θ∗m = arg min
θm

G(R, θm) . (3.22)

The above schema can be applied recursively for Rleft and Rright respectively
until some stopping criterion is reached, e.g. a maximum depth of the tree
or if Nm = 1. Heuristically, one can think of the depth of a tree as the maxi-
mum numbers of questions/nodes to traverse before arriving at a prediction
(leaf node).

Lastly, the weight vector w needs to be inferred. For regression tasks, it is
calculated as the mean target value for each partition R1, . . . , RT [15, p. 308],
i.e.

w∗m =
1

Nm

∑
xi∈Rm

yi . (3.23)

For multi-class classification problems, with K outcomes, the probability
(bounded leaf weight) for class k at node m, is estimated as the fraction of
available observations in partition Rm, hence

p∗mk =
1

Nm

∑
xi∈Rm

1(yi = k) . (3.24)

In the binary classification domain, where K = 2, Equation (3.24) simplifies
to
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w∗m = p∗m =
1

Nm

∑
xi∈Rm

1(yi = 1) . (3.25)

The probability p∗m from Equation (3.25) is the estimated probability of a
positive event at node m, where the estimated probability of a negative event
is given as the complement 1− p∗m. Therefore, the same notation of wm can
be used for both regression and binary classification problem, highlighted by
the equality between pm and wm.

3.2.1.1 Impurity measures

When defining the impurity cost as of Equation (3.21), it was built upon the
existence of some impurity measure H. This subsection will touch upon a
few common choices for impurity measures for the classification setting.

An intuitive choice may be the misclassification error, defined as

H(pmk) =
1

Nm

Nm∑
i=1

1
(
yi 6= arg max

k
pmk

)
= 1−max(pmk) , (3.26)

which measures the fraction p of incorrectly classified samples, which intu-
itively one would like to minimize. However, there are mainly two problems
associated with using the misclassification error as impurity measure. The
first one is that it is not differentiable, imposing some problems for the min-
imization problem as of Equation (3.21). The second one being the linear
punishment of impurity. To illustrate why that is a problem, consider the
example from [15, pp. 309-310], where a balanced two-class training dataset
with 400 positive, and 400 negative outcomes, is obtained. Consider two pos-
sible splits. The first one creates the leaves (300, 100) and (100, 300), where
the first element in the tuples corresponds towards the number of positive
samples, and the second element towards the number of negative samples in
each leaf. Using the same notation, consider also the split (200, 400) and
(200, 0). Computing the misclassification rate for each split yields the rate
0.25 for both splits, where hence the misclassification error as impurity mea-
sure would value both splits equally. However, it is often desirable to obtain
pure nodes [15, pp. 310], meaning that the second split should be evaluated
better than the first one.

To combat the two issues mentioned with the misclassification error, two
other common ones will be considered, namely the Gini index and the Shan-
non entropy [24]. As can be noticed from Figure 3.5, both the Gini index and
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the entropy measures show a similar concave behaviour, but have different
interpretations. The Shannon entropy measure, defined as

H(pmk) = −
∑
k

pmk log(pmk) , (3.27)

stems from the field of information theory and quantifies the level uncer-
tainty or (un)informativeness over a random variable [24], by averaging the
informativeness of each possible for a random variable of interest. In the
setting of classification trees, it deems obvious that the “questions” (splits)
posed towards the feature space should be informative in terms of making
a predictive decision. It can be shown that for a random variable with out-
come space {1, . . . , K}, the entropy achieves its maximum for the case of an
uniform random variable (see Lemma (A.3) of Appendix A and its accompa-
nying proof), hence achieves its local maximum at pmk = 1/K.

Lastly, the Gini index is defined as

H(pmk) =
∑
k

pmk(1− pmk) . (3.28)

One interpretation of the Gini index is to leverage the stochasticity of the
pmk for prediction, and not just truncate that uncertainty by deterministically
predicting the class as arg maxk pmk. Then the training error rate with that
policy becomes

∑
k 6=k′ pmkpmk′ , which is exactly the Gini index.
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Figure 3.5: Different impurity measures as a function of the fractions of
classes in the training data in the binary classification domain. For ease of
comparison, the entropy measure has been scaled in order to intersect the
point (0.5, 0.5). Picture taken from [15, p. 309].

3.2.2 Overfitting issues

So far, it has been established that classification trees can be useful for solv-
ing binary classification problems as they are non-parametric and remain
highly interpretable. The trade-off using the bias-variance viewpoint, is that
CART models tend to be more prone to overfitting when they grow larger
[15, p. 312].

One way of understanding why CART models easily overfit, is to consider
the expressiveness of a class of functions, in this case classification trees. For
a finite set of data points, (x1, y1), . . . , (xn, yn), it is always possible to grow a
large enough tree such that f(xi) = yi for all data points, in the extreme case
by splitting the feature space such that each xi, i ∈ {1, . . . , n} falls within a
unique feature partition R1, . . . , RT (where T ≥ n). For continuous features,
there exists infinitely many cut-off points (assuming completeness of the real
numbers), and hence infinitely many solutions in terms of tree structures.
Practically, this is neither useful nor desirable as the model would not be able
to generalize well for unseen data. However, the point here is to illustrate
that the variance within different classes of functions may vary substantially.
Consider instead a linear classifier, which assigns labels {−1, 1} for a feature
vector xi based on which side of a hyperplane for the same feature space
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xi falls onto. The intrinsic assumption of linearity and additivity in the
feature space for the case of a linear classifier limits the expressiveness of the
model class. Geometrically, one can observe that there exists at least one
linear classifier that can fully separate the positive labelled samples from the
negative ones, when n ≤ 3. However, as visualized by Figure 3.6, no such
linear classifier exists for n > 3. Hence, a bias will inevitably be introduced
within the class of linear classifiers on the training dataset, similar towards
the irreducible error (see Equation (3.4)).

Figure 3.6: For three points, the linear classifiers (with corresponding hyper-
plane is highlighted in blue) are perfectly able to fully distinguish the labels,
but fails for four points. Picture taken from [15, p. 238].

As CART models as model class is more relaxed in terms of assumptions,
hence more expressive, it means that they are more prone to overfitting than
simpler models, e.g. linear classifiers, when allowed to grow more complex.
There are more rigorous arguments around model class expressiveness to
be found in the subfield of statistical learning called Vapnik–Chervonenkis
dimension theory [15, pp. 237-239].

3.3 Boosting methods for CART models
In social sciences, there exists a theory called Wisdom of the crowd, that
refers to the idea of obtaining a better decision collectively than relying on
any individual expert decision, by different aggregation methods [31]. Many
procedures common in the modern society relies on such principles, e.g.
democratic voting procedures and trial by jury, but also openly available
collective creation processes such as the encyclopedia Wikipedia, or various
open-source software projects. More everyday examples, such as in golf by
continuously adjusting the position of the ball until the target is hit, can also
be said to rely on similar principles. It is evident that in order to obtain a
collective knowledge, there must exist a way of aggregating the contribution
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of each individual. From a statistical learning perspective, this is exactly
what is studied in the subfield ensemble learning - namely to combine indi-
vidual base learners into a collective one [15, p. 605].

Addressing the first issue of finding a proper aggregation measure, in the field
of ensemble learning, some common techniques include bootstrap aggregat-
ing, also known as bagging [15, p. 282], and different boosting techniques.
The former works by creating multiple splits from the training data is drawn
randomly with replacement and later used to in parallel fit multiple learners
that are averaged by majority voting into one “collective” learner. Boost-
ing on the other hand, fits learners sequentially with higher emphasis on
training samples that the previous learners struggled to predicts their tar-
gets for, in order to ensemble a collective learner. The difference between the
two aggregation measures might be explained more intuitively by comparing
simple analogies. It may be noted that the examples regarding various voting
procedures are easily performed in parallel. On the contrary, contributing
towards a Wikipedia page depends on what previously has been written, as
well as for the golf shots, which should alter to correct the errors from the
previous shots. The former parallelizable voting tasks resemble the bagging
aggregation, and the with latter sequential improvements resemble boosting
aggregation methods. This section will treat the boosting methods more in
detail, specifically in the setting for classification trees (see Section 3.2).

As discussed in subsection 3.2.2, CART models are prone to overfitting when
allowed to grow fairly large. The main idea with boosting methods for tree
methods is to combine a set of weak learners (high bias, low variance), to
collectively obtain a low-biased ensemble model [15, p. 337]. To obtain these
weak learners from the CART model family, one usually utilizes various reg-
ularization methods (see subsection 3.1.1.1), or hard constraints towards the
trees to control the variance.

Consider once again the golfing problem. At each shot, the golfer of course
does his/her best at calibrating the shot to hit the target. However, it is
rare to hit the target at the first shot, therefore the golfer will more likely
than not need to sequentially correct the previous shots. Another way to
think about the problem is that the golfer tries to reduce the error between
the hole and the ball’s position after each shot, conditioned on the “knowl-
edge” or position of the previous shots. Hence, major improvements could
be expected for the first few shots, where the later ones likely will constitute
smaller adjustments. Mathematically, this situation can be interpreted as an
additive strategy, where the previous knowledge (golf shots) are saved, and
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where the algorithm greedily will seek for the optimal strategy at each point,
determined by the empirical predictive risk evaluated at some time step t.
Consequently, succeeding learners will focus on samples where the previous
ones misclassified [15, p. 338]. Let ŷ(t)i be the prediction with xi as feature
vector for the ith sample at step t. By following an additive strategy [15,
pp. 341-342], and letting ŷ(0)i = 0, the prediction at step t obtains as

ŷ
(0)
i = 0 ,

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi) ,

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi) ,

. . .

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi) ,

(3.29)

where ŷ(t−1)i is treated as a known constant when fitting ft(xi). Typically,
the learners fk are restricted towards the same model class, i.e. fk ∈ F ∀k ∈
{1, . . . , t}, for some model class F . For ease of notation, let φ(xi) denote the
ensemble model

∑t
k=1 fk(xi). To infer its functional components f1, . . . , ft,

the regularized empirical predictive risk (c.f. Equation (3.9))

L̃(φ) =
1

N

[
n∑
i=1

L(yi, ŷi) +
t∑

k=1

Ω(fk)

]
, (3.30)

which will be minimized with respect to φ. Minimization of Equation (3.30) is
not possible with standard mathematical optimization techniques, as L̃(φ) is
parametrized by basis functions f1, . . . , ft, which in their own are parametrized
by their respective function parameters. This imposes a non-Euclidian pa-
rameter space which restricts the usage of standard optimization techniques
[7]. Instead, the minimization procedure can be performed sequentially/-
greedily, i.e. fitting the best ft at step t, conditioned on what has previously
been inferred as of f1, . . . , ft−1 (see Equation (3.29)). Hence, the idea is to fit
the optimal tree structure q that maps an observation towards some feature
partition Rj, j ∈ {1, . . . , T}, which together with the leaf weights w defines a
tree function f . Let L̃(t)(φ) denote the regularized empirical predictive risk
at step t, conditioned on f1, . . . , ft−1, which is, up to a constant, written as

L̃(t)(q) ∝
n∑
i=1

L(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) . (3.31)
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To obtain Equation (3.31), the fact that
∑t−1

k=1 Ω(fk) is considered known
at step t, was used. For the complexity cost in the case of a CART (see
Section 3.2) base learner f , it is suggested in [7] to use

Ω(f ; γ, λ) = γT +
1

2
λ||w||2 , (3.32)

where w corresponds towards the leaf weights, and T towards the number of
leaves in f . Hence, large trees (i.e. trees with many leaves) will be penalized
by the first term of Equation (3.32), and large weight values penalized by the
second term. The latter might be more important for regression problems,
where each element in w are not bounded within the range of [0, 1], as for
classification problems.

Choosing proper parameter values for γ and λ, is tied towards the bias-
variance trade-off described in Section 3.1.1. The parameters for the com-
plexity cost term, γ and λ as of Equation (3.32), should be tuned such that
the model achieves a good balance between the bias and the variance, where
the bias is penalized by the error/loss term, and the variance by the model
complexity term. Consider a problem where an user’s interest in some topic
is predicted as a function of time. Figure (3.7) illustrates how one can think
visually about finding a good balance between the error function term L(f)
and the model complexity function term Ω(f), for a fitted regression tree f .
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Figure 3.7: Comparison of fitted regression trees for the task of predicting an
user’s interest on some topic k as a function of time t. The top right panel
shows an overfitted solution with too high variance, yielding a high Ω(f);
the bottom left panel showcases an underfitted solution with too high bias,
implying a high L(f); lastly, the bottom right panel showcases a good bal-
ance between the two terms constituting the minimization objective. Picture
taken from [8].

3.3.1 Gradient boosting methods

To optimize L̃(t)(q) as of Equation (3.31), for loss functions that are not
necessarily available on closed form, the numerical optimization procedure
can be generalized by considering the second order Taylor expansion of
L(yi, ŷ

(t−1)
i + ft(xi))‚ which yields that

L(t)(q) ≈
n∑
i=1

[
L(yi, ŷ

(t−1)
i ) + gift(xi) +

hi
2
f 2
t (xi)

]
+ Ω(ft) , (3.33)

where
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gi =
∂L(yi, z)

∂z

∣∣∣∣
z=ŷ

(t−1)
i

,

hi =
∂2L(yi, z)

∂z2

∣∣∣∣
z=ŷ

(t−1)
i

,

are the first- and second gradients evaluated at ŷ(t−1)i , corresponding towards
fitting the new tree model towards the pseudo-residuals [15, p. 360] to account
for what previous base learners failed to capture.

Remark. The approximation of Equation (3.33) is technically only true up
to a constant, which can be realized by comparing Equation (3.30) with Equa-
tion (3.31).

It is noticed from Equation (3.33) that prior knowledge at step t, i.e. what
is captured by ŷ

(t−1)
i , is assumed to be known, hence L(yi, ŷ

(t−1)
i ) can be

considered as constants for all i = 1, . . . , n. Therefore, it holds that

L(t)(q) ∝
n∑
i=1

[
gift(xi) +

hi
2
f 2
t (xi)

]
+ Ω(ft) . (3.34)

Moreover, Equation (3.34) has an important implication, namely that any
loss function L can be used in the gradient boosting optimization framework,
given that L is of differentiability class C2 (its second-order derivative is con-
tinuous).

Using the model complexity cost term from Equation (3.32) and inserting it
into Equation (3.34), and also utilizing the model definition of CART (see
Equation (3.19)), yields that

L(t)(q) ∝
n∑
i=1

[
gift(xi) +

hi
2
f 2
t (xi)

]
+ γT +

1

2
λ

T∑
j=1

w2
j , (3.35)

=
T∑
j=1

∑
xi∈Rj

gi

wj +
1

2

∑
xi∈Rj

hi + λ

w2
j

+ γT . (3.36)

As
∑

xi∈Rj gi and
∑

xi∈Rj hi +λ are constants with respect to wj, differentia-
tion of Equation (3.36) implies that the optimal weight at leaf j, ŵj, obtains
as
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ŵj = −
∑

xi∈Rj gi∑
xi∈Rj hi + λ

, (3.37)

by standard optimization techniques from differential calculus. Consequently,
substitution of wj with ŵj in Equation (3.36), yields that the best reduction
of the loss at step t, for a tree structure q, is

L(t)(q) ∝ −1

2

T∑
j=1

(∑
xi∈Rj gi

)2∑
xi∈Rj hi + λ

+ γT . (3.38)

As highlighted in Section 3.2.1, it is infeasible to compare all the different
tree structures q ∈ Q in a brute force manner. However, using once again
a greedy optimization procedure and hence using a single leaf/node as the
starting point, it is then possible to evaluate a suggested split by considering
the loss reduction before and after imposing the split. Let R be the feature
partition at the starting leaf for which the suggested split stems from, then
by letting R = Rleft ∪ Rright, i.e. cutting R into two disjoint partitions RL

(left partition) and IR (right partition). Then the reduction of the objective
(empirical predictive risk), as of Equation (3.38), obtains as

Lsplit =
1

2

 (∑xi∈Rleft
gi
)2∑

xi∈Rleft
hi + λ

+

(∑
xi∈Rright

gi

)2∑
xi∈Rright

hi + λ
−
(∑

xi∈R gi
)2∑

xi∈R hi + λ

− γ ,
(3.39)

which allows for comparisons of multiple suggested splits at each leaf. By
greedily finding the best strategy as of Equation (3.39), until reaching a stop-
ping criterion (e.g. the predefined maximum depth for the tree), an optimal
tree structure q̂ can be learned, which corresponds to the fitted tree model
f̂t(x).

Lastly, recapping the additive model in Equation (3.29) at step t, the ensem-
ble model obtains as

φ(xi) =
t∑

k=1

fk(xi) = ŷ
(t−1)
i + f̂t(xi) . (3.40)

In the binary classification setting, the prediction for xi would be obtained
as [12]

sign (φ(xi)) , (3.41)
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and hence is not to interpreted as pseudo-probabilities, as what was men-
tioned for the case of subsection 3.2.

3.3.1.1 Shrinkage

Recall the example of sequentially hitting golf shots in order to eventually
hit the hole. In some situations, such as when hitting the ball from difficult
terrains of the pitch, it might be more fruitful to purposely aim for parts
of the pitch which allow for an easier next shot, rather than trying to hit
the hole directly, possibly causing an even worse situation for the next shot.
Moreover, if the golfer also was liberated from the scoring based on the num-
ber of hits needed to hit the hole, the incentive of these “safe plays” would
obviously be more evident, assuming there would still exist an associated
cost of hitting the ball e.g. in the water or out in the woods. A similar
approach can be translated into the setting of gradient boosting methods for
tree models.

Another regularization technique specific for the gradient boosting trees, be-
sides the general model complexity cost term as of Equation (3.8), is the
introduction of a shrinkage factor. Intuitively, it’s a factor η ∈ (0, 1) that
suppresses the influence of a newly fitted individual tree towards the ensem-
ble, hence allowing future fitted trees to have a greater impact towards the
ensemble model. Modifying Equation (3.40), the prediction of xi after step
t becomes

ŷ
(t)
i = φ(xi) =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ηf̂t(xi) , (3.42)

with sign(·) as decision function in the binary classification domain (see Equa-
tion (3.41)). Empirically, more aggressive shrinkage (η < 0.1) has shown to
reduce the risk of overfitting [13, 15, p. 365], but requires more iterations
in the boosting schema as a trade-off due to the slower convergence. The
shrinkage factor hence has similar interpretations and implications as for a
learning rate, central for some other gradient based sequential supervised
learning procedures [5, pp. 143-144].

Remark. Technically, the range restriction of η ∈ (0, 1) could be relaxed to
include larger values where η ≥ 1, but which would defeat the whole purpose
and interpretation of a shrinkage factor, and hence will be excluded for this
work.
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3.3.2 Loss functions

For a binary classification problem, with targets y ∈ {−1, 1}, the classifica-
tion margin yif(xi), for some classifier f (φ in subsection 3.3.1) and feature
vector xi, plays an important role to study. By the signs of the two factors
in the classification margin, it follows that yif(xi) > 0 for correctly classified
samples, and yif(xi) < 0 for misclassified ones. Clearly, any reasonable loss
function for the binary classification problem should impose a greater penalty
towards negative values of the classification margin then the positive ones,
hence reducing the misclassification error. In Figure 3.8, a few common loss
functions are compared for the classification margin yf(x), where the respec-
tive definitions can be found as of Table 3.2.

Loss function Definition
Misclassification 1(sign(f(x)) 6= y)

Exponential e−yf(x)

Binomial deviance log
(
1 + e−2yf(x)

)
Squared error (y − f(x))2

Support vector (Hinge) max(1− yf(x), 0)

Table 3.2: Different loss functions for binary classification and their corre-
sponding definition.
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Figure 3.8: Loss functions for a binary classification problem (y ∈ {−1, 1}).
Picture taken from [15, p. 347].

Starting with the misclassification loss function, there are mainly two prob-
lems that disqualifies it as an adequate loss function. Firstly, the disconti-
nuity in yf(x) = 0 causes it to be non-differentiable in the same point, and
therefore problematic for gradient based optimization methods. Secondly,
the misclassification loss function penalizes all negative margins equally, re-
gardless of the proximity to the decision boundary, and does not penalize
high uncertainties for correctly classified samples. Moreover, as the squared
error increase quadratically for yf(x) > 1, it does not constitute as a viable
option for classification problems.

Other alternatives, such as the exponential and the binomial deviance loss,
can be seen as monotone continuous approximations of the misclassification
loss function [15, p. 347]. Both of these imposes greater incentives for reduc-
ing the magnitude of negative classification margins rather than increasing
the magnitude for the positive ones. From Figure 3.8, one can see that the
exponential loss function puts an exponentially increasing influence towards
lower values of the classification margin, consequently allowing outliers with

45



low classification margin to be highly influential, and hence problematic in
noisy classification settings [15, p. 348]. The binomial deviance on the other
hand is more restrictive towards letting such extreme observations determine
too much of the fitting procedure, instead emphasizing more equally over all
samples.

In subsection 3.3.1, it was shown that the presented gradient boosting method
framework requires that L is of differentiability class C2. For the case of the
exponential and binomial deviance loss, it is easy to verify that they are
indeed of differentiability class C2 due to their exponential nature. For the
Support vector loss however, this is not the case as the first-order derivative
discontinuous at yf(x) = 1. Computationally, smoothed approximations [35]
can be utilized in software implementations [7] to enjoy similar properties as
of the Support vector loss.

3.4 Interpretation methods
In the field of statistics, the concepts of inference and prediction have two
distinguished meanings and purposes. For the case of inference, one is in-
terested in understanding the generative process of the studied data. Unlike
descriptive statistics, some distributional assumptions are imposed, hence
forming some sort of statistical model to learn from. Pure prediction prob-
lems regard the usage of statistical models to predict the outcomes of unseen
data points. In many real-world situations however, these two tasks are of
mutual interest [20, sec. 2.1]. Surely, a predictive model in its predictions
should be accurate by some measure, but ideally also arrive at the right
prediction for the right reasons and serve. Interpretation methods are e.g.
necessary to evaluate a level of fairness within the model (that no clear biases
against certain groups appear either explicitly or implicitly) and to evaluate
the causality of a model’s mapping on qualitative grounds. In a customer
retention problem, this means being able to both predict who will stay on
the plan and not; to understand why that is the case to serve for future rec-
ommendations, either globally for all customers, or locally for some segment
of users; and to avoid any causally or ethically spurious actions/interventions
perform sub-consequently.

When talking about interpretable methods, there are two important distinc-
tions to make - intrinsic model interpretability and model-agnostic inter-
pretability [20, sec. 2.2]. The first one regards model-specific, such as infer-
ring feature effects based on the learned model parameters (e.g. in linear- and
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logistic regression), and the latter regards general methods to infer the inner
workings about a model when treating it, partly or fully, as a “black-box”.
This section covers one model intrinsic interpretation method for boosted tree
models that stems from the highly interpretable CART models as base learn-
ers, but also a few model-agnostic methods which are useful when challenges
on the intrinsic model interpretability are imposed by boosting methods.

3.4.1 Relative importance for tree models

In many situations, a good starting point when analyzing a large set of fea-
tures/predictors, is to infer which ones had the highest contributions towards
the learning task. Generally, in data-mining applications with a large feature
space, a smaller subset of these can be expected to have a substantial impact
on the target variable [15, p. 367]. For a single CART tree model T , one can
obtain a measure of the relative importance for some feature xj as

I2j (T ) =
J−1∑
t=1

τ̂ 2t 1(v(t) = j) , (3.43)

where J − 1 is the number of internal (non-child) nodes. Hence, for ev-
ery node t, a selected feature xv(t) forms two sub-regions by a binary split,
and thereafter fits two constants (weights) for each towards the target vari-
able. The feature of choice is the one that maximizes the estimated improve-
ment, denoted τ̂ 2t , in squared error risk over the entire region. Lastly, the
global importance measure I2j (T ) sums for a given tree T the improvements
{τ̂ 21 , . . . , τ̂ 2J−1} for a feature xj, conditioned on whether it was chosen as the
“top” (the one that maximized the improvement) feature at each internal
node {1, . . . , J − 1} [15, p. 368].

For an additive model of such trees, e.g. a boosted tree model, the importance
measures can be averaged over all M base learners, i.e.

I2j =
1

M

M∑
m=1

I2j (Tm) , (3.44)

which is argued for in [15, p. 368] being a more stable measurement of fea-
ture relative importance than the one from Equation (3.43), operating on
one single high-variance learner. Since the values I2j and I2j (T ) are to be
interpreted relatively, it is a common practice to normalize them towards a
range of e.g. [0, 100] or [0, 1] for ease of comparison features in between.
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3.4.2 Partial Dependence Plots

Only considering the relative importance omits a large amount of informa-
tion regarding how a subset of features affect the predictions of the model. In
general, one is not only interested in targeting important features, but also
how a fitted model has learned the mapping between a subset of features
and the target. One way of obtaining that knowledge is by construction of a
Partial Dependence Plot (PDP) [15, pp. 369-370].

Let S be a set of integers, serving as a subset for the feature indices {1, . . . , p}
(for a p-dimensional feature space), such that S ⊂ {1, . . . , p}. Furthermore,
let C be the complement of S with respect to {1, . . . , p}, i.e. C = {1, . . . , p}\
S ⇔ {1, . . . , p} = S ∪ C, then the partial dependence of f(x) on xS is

fxS (xS) = ExC [f(xS , xC)] . (3.45)

The partial dependence measure provides a helpful understanding of how
xS influences the function f , under the assumption that xS does note in-
teract strongly with xC, hence justifying the averaging. Using Monte-Carlo
methods, one can obtain an estimate of Equation (3.45) as

f̂xS (xS) =
1

n

n∑
i=1

f
(
xS , x

(i)
C

)
, (3.46)

where x(i)C is the ith observation in the training dataset that jointly is in xC.
Limited by the human visual perception and computational feasibility, one
is typically interested in restricting the cardinality (feature dimensions) of
xS to be less than or equal to three. As an example, Figure 3.9 illustrates
two one-dimensional PDPs (two different features) for a fitted cervical cancer
classification model.
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Figure 3.9: Partial dependence plot of cervical cancer probability as a func-
tion of age (left) and years on hormonal contraceptives (right) marginally.
The marks on the x-axes correspond to the density of the data distribution.
Picture taken from [20, sec. 5.1].

3.4.2.1 ICE Plots

One problem with the averaging effect of the partial dependence plot is that
disagreeing individual instances are not visualized. One way of capturing
this variance of feature effects is to plot each instance of f(xS, x

(i)
C ) (c.f.

Equation (3.46)), which is exactly what is done in an Individual Conditional
Expectation (ICE) plot [14] by disaggregating the averages of a PDP. Hence,
the inverse also holds, i.e. that a PDP averages the individual lines of an
ICE plot [20, sec. 5.2].

One problem with the ICE plots is that different plotted instances may vary
simply because they start from different initial values of the features [20,
sec. 5.2]. A relatively simple fix is to center the instances around some
anchor point xa (typically at the lower end of the feature space), and plot
the difference in predictions to this point, by defining the centered ICE curves
as
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f̂
(i)
cent = f̂ (i) − 1|xC |f̂(xa, x

(i)
C ) , (3.47)

where 1|xC | denotes a vector of 1’s with dimensionality |xC| (feature dimen-
sions of the complementary set). Therefore, the interpretation of the y-axis
for a centered ICE plot can be seen as the change in the predicted probability
of a positive event, in comparison against some baseline obtained in xa.

Figure 3.10: Centered ICE plot of cervical cancer probability as a function
of age, where each line corresponds to one sample. The yellow line shows
the partial dependence, interpreted as the average effect the instances (c.f.
Figure 3.9). There is a noticeable increase in predicted cervical cancer prob-
ability happening in the age of 40s for most women. One can also note a
stagnation of the predicted probabilities after the age of 60, but for which
only a few data points are available. The marks on the x-axes correspond
towards the density of the data distribution. Picture taken from [20, sec. 5.2].

Naturally, displaying the ICE plots is only fruitful in the one-dimensional
setting, as variation is challenging to visualize in higher dimensions.
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3.4.3 Feature interactions

In the case of strong feature interaction effects, it can be spurious to interpret
the effects of multiple features additively [20, sec. 5.4]. As an illustrative ex-
ample, consider a restaurant who wants to infer customer satisfaction based
on their orders. Assume the side orders of french fries and chocolate sauce
both have shown to positively correlate with customer satisfaction. Still, it
would most likely not be advisable to recommend either french fries or choco-
late sauce as a side regardless of what type of food the customer ordered.
Presumably, french fries would constitute a reasonable side order recommen-
dation for a main dish, but not for a dessert, and vice versa for chocolate
sauce. Instead, one could model the interaction between the type of food
(main dish or dessert) and the side order (french fries or chocolate sauce), to
hopefully capture a more reasonable picture.

To later understand about ways of quantifying feature interactions, consider
first the relationship between the two-dimensional and the one-dimensional
partial dependencies. Let PDjk(xj, xk) denote the two-dimensional par-
tial dependence (PD) between features xj and xk. Comparing with Equa-
tion (3.45), the notation of PDjk(xj, xk) would yield that xS = {xj, xk} and
xC = x \ {xj, xk}. Similarly, let PDj(xj) correspond to the one-dimensional
(marginal) partial dependence for a single variable xj, i.e. xS = xj and
xC = x \ xj. If two features do not interact, an additive interpretation of the
partial dependence is possible, i.e.

PDjk(xj, xk) = PDj(xj) + PDk(xk) . (3.48)

Moreover, if a single feature xj has no interaction with the remaining ones,
one can expect to retrieve the one-dimensional partial dependence for xj as

f̂(x) = PDj(xj) + PD−j(x−j) , (3.49)

where PD−j(x−j) denotes the partial dependence for the remaining x \ xj
features. One way of quantifying the the interaction strength between two
features xj and xk is by computing the fraction of the variance explained
by their interaction, and can be estimated by the difference between the
two-dimensional partial dependence and their linear one-dimensional coun-
terparts. Hence, if Equation (3.48) holds, the statistic should be zero-valued.
One such statistic is theH-statistic [20, sec. 5.4], which, between two features
(two-way interaction) xj and xk, is defined as
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H2
jk =

n∑
i=1

[
PDjk(x

(i)
j , x

(i)
k )− PDj(x

(i)
j )− PDk(x

(i)
k )
]2
/

n∑
i=1

PD2
jk(x

(i)
j , x

(i)
k ) .

(3.50)
Moreover, the total interaction between some feature xj and the rest of the
features x \ xj obtains as

H2
j =

n∑
i=1

[
f̂(x(i))− PDj(x

(i)
j )− PD−j(x(i)−j)

]2
/

n∑
i=1

f̂ 2(x(i)) , (3.51)

where f̂(x(i)) is the prediction for some sample x(i).

Two considerable downsides with the H-statistic for measuring interaction
strength is computationally expensive, and also that the integration over fea-
ture combinations are based on often naive assumptions about independence
between the features [20, sec. 5.4].
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Chapter 4

Results and Discussion

4.1 Experiment overview
To find an optimal classifier, 200 random hyperparameter configurations with
ranges as of Table 4.1 were generated following a random search strategy [4].
For this random search approach, 75% of the data was used for hyperparam-
eter tuning together with a K-Fold Cross-Validation schema with K = 5.
Recapping subsection 3.1.1.2 this means that the training set was split into 5
disjoint folds, where each fold was used for validation exactly once. Moreover,
an early stopping criterion was imposed of requiring a decrease in the loss ev-
ery 10 iterations, meaning if no improvement (decrease in loss) has occurred
for the validation set, the training procedure stops (see subsection 3.1.1.3 for
more details). Thereafter, the best hyperparameter configuration was chosen
as the one which (on average for 5 folds) minimized the loss. This random
search strategy was independently applied for both the binomial deviance
loss and the support vector (hinge) loss in order to compare the performance
the two functions in between. For the impurity measure, the Gini index was
chosen as it is natively supported by the XGBoost package [7].

Furthermore, to evaluate the generalization capability for the final model
defined by the chosen parameter configuration, the AUC (see section 3.1.2)
was evaluated for the unseen 25% of the samples. Lastly, as a baseline for
predictive benchmarking, a logistic regression model was fitted towards all
the available features and evaluated on the heldout test dataset on similar
grounds as for the final model.

53



Hyperparameter Range
Shrinkage factor [0.01, 0.1]

Maximum tree depth {3, . . . , 9}
Regularization parameter α [0.1, 1]
Regularization parameter λ [0.1, 1]

Table 4.1: Table of hyperparameters and their respective range constituting
the hyperparameter search space. The notations of α and λ regard the reg-
ularization parameters for the model complexity cost (see Equation (3.32)).
The ranges regarding the shrinkage factor and the maximum tree depth fol-
lowed by heuristics from [15].

4.2 Evaluation
After running the experiments as of subsection 4.1, which is shown in Ta-
ble 4.2, the best mean AUC values were obtained as 0.7772 and 0.5654
(rounded towards the nearest 4 decimals) for the binomial deviance loss and
the hinge loss respectively. Hence, it was found empirically that the binomial
deviance loss seemed to yield noticeably better result in terms of AUC than
the hinge loss, at least for the explored parameter subspace as of Table 4.1.
Therefore, the hyperparameter configuration for the binomial deviance loss
setting was chosen as the final model. It is noticeable however that the best
choice of the regularization parameter α in the setting of a hinge loss was
obtained near the upper boundary in the explored range, or what one can
view as the prior over the hyperparameter space, for which a relaxation of
these priors could serve as a benefit for the hinge loss.

Loss Function Mean AUC Std. error Wald 95% CI
Binomial deviance 0.7771564 0.007994274 [0.7615, 0.7928]

Hinge 0.5653842 0.006823795 [0.5520, 0.5788]

Table 4.2: AUC evaluations on test data (heldout data) for the binomial
deviance and hinge loss function, based on five fits according to a K-Fold
Cross-Validation (with K = 5) schema.
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Hyperparameter Binomial deviance loss Hinge loss
Shrinkage factor 0.02 0.060

Maximum tree depth 4 8
α 0.90 0.99
λ 0.27 0.44

Table 4.3: Best hyperparameters (rounded to the nearest two decimals) for
the two respective loss functions.

From this point on, the binomial deviance loss and its corresponding hyper-
parameter fit will be accepted and referred to as the final/optimal model.
Moreover, it is of interest to evaluate the fitting/training procedure of this
final model as a function of the number of boosting rounds (the number of
base learners constituting the ensemble). Figure B.31 and Figure B.32 of
Appendix B show the (logarithmic) loss and AUC respectively for the final
model. It shows that the marginal benefit, either in terms of reduction in
the loss or increase in AUC, appears to be low slightly before 200 boosting
rounds, before eventually stopping by the early stopping criterion after 247
iterations. As performance on the training set seems to be improving, it
means that further training iterations would make the model more prone to
overfitting if anything. Similar figures for the hinge loss can be found as
Figure B.33 and Figure B.34 of Appendix B.

For a predictive benchmark, as mentioned already in section 4.1, a logis-
tic regression model was fitted towards all of the available data. The R
summary output, containing among others the log odds parameter effects
and corresponding p-values, can be found as of Figure B.35 of Appendix B.
Moreover, an AUC value of 0.7422 towards the test dataset was obtained,
which suggests that the more complex approach of the boosted tree model
only gained around 3.5 percent units relative towards the baseline logistic
regression model.

4.3 Model interpretation
With the expressive nature of the boosted tree methods, the suggested in-
terpretation methods as of section 3.4 can be used to identify influential
features and how they interact with each other. Studying a larger feature
space and how the features interact with each other is however rather com-
putationally expensive, especially for the interaction effects which require,
in the worst case, 2n2 PDP calls for the two-way H-statistic (between fea-
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tures xj and xk) and 3n2 calls for the overall interaction H-statistic [20,
sec. 5.4]. Therefore, this section is limited towards studying the effect and
interactions between a smaller subset of features, identified by their (under
the final model) relative importance and interaction effects. Figure 4.1 shows
the relative importance for the top 20 features under the final model. It is
noticed that group6/AU2/1 seems to be the most influential predictor, fol-
lowed by group3/log_AU1/12 and group5/bool/1. From the summary
of the logistic regression model fit as of Figure B.35, one can note that the
null hypotheses of random effects for the above three mentioned features,
were rejected on 0.1% significance levels respectively, hence supporting the
narrative of their importance.
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Figure 4.1: Relative importance for the most influential 20 features of the
best performing boosted tree model with binomial deviance loss. The rel-
ative importance measure is explained more thoroughly for tree models in
subsection 3.4.1. It is noticed that the model infers group6/AU2/1 as the
single most important predictor. Two other important predictors seem to be
group3/log_AU1/12 and group5/bool/1, being the second and third
most important predictors respectively based on the relative importance mea-
sure.

For further analysis, the top 6 features based on Figure B.35 will be studied
more in depth, and to showcase how one in general can infer the effects of
other features of interest. By studying the marginal PDPs for the continuous
and ordinal variables out of the above mentioned top 6 features, it is noticed
that group6/AU2/1, group3/log_AU1/12 and group3/log_A1/1 seems

57



to have a (near) monotonically positive relationship with the target, i.e. in-
crease the likelihood of retaining for larger values of these predictors. On the
other hand, the group3/log_A1/4 seems to have the opposite effects, de-
creasing the likelihood of retaining for higher values of group3/log_A1/4.
Looking at the centered ICE plots, however, it is noticed that there is
some variability in terms of the effects towards the targets, especially for
group3/log_A1/4, but also for group6/AU2/1 and group3/log_A1/1.
For the case of group3/log_AU1/12, it seems to be the case that most
instances agree upon the monotonic increase in retention probabilities for
larger values of group3/log_AU1/12.
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Figure 4.2: Marginal partial dependence plots (see subsection 3.4.2) for the
top 4 continuous features in terms of relative importance (see Figure 4.1)
under the final model. The partial dependence plots for the categorical
features could not be disclosed due to confidentiality. The top left panel
shows a monotonic positive near-linear relationship between the predictor
group6/AU2/1 and the target. The top right and bottom right panel show
a noticeable increase of predictive values for the target for smaller incre-
ments of the predictors (group3/log_AU1/12 and group3/log_AU1/1
respectively) in the regions of log_AU1 ≈ 15. Lastly, the bottom left panel
shows a negative relationship between the predictor group3/log_AU1/4
and the target, meaning lower prediction values in the presence of larger
values of group3/log_AU1/4.
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Figure 4.3: Centered ICE plots (see subsection 3.4.2.1) at x = 0 for the top 4
continuous features in terms of relative importance (see Figure 4.1) under the
final model. The ICE plots for the categorical features could not be disclosed
due to confidentiality. Each panel, except for arguably the top right panel,
shows by the variability of predictions that some instances have an opposing
effect towards the target as what was suggested by the PDP (yellow line).
This suggests that the effects for group6/AU2/1, group3/log_AU1/4
and group3/log_AU1/1 may have opposing interpretations for different
cohorts. On the contrary, the top right panel seems to suggest homogeneous
view on the positive relationship between group3/log_AU1/12 and the
target.

Recapping the independence assumption of PDPs (and by definition ICE
plots) mentioned in subsection 3.4.2, one can expect some pitfalls with naively
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interpreting marginal PDPs without understanding the feature interactions
in between. Figure 4.4 shows the overall H-statistic interactions (see Equa-
tion 3.51) for each predictor variable. Indeed, the features with the highest
relative importance have, generally, considerable interaction strength with
other features.

Figure 4.4: Overall feature interactions based on the H-statistic (see
Equation 3.51) for the best performing boosted tree model with bino-
mial deviance loss. By comparing the strongest overall interaction effects;
group5/bool/1, group6/AU2/1 and group1/reach/1; are suggested
as the three leading interaction features.

To identify the strongest two-way interactions in the feature space, two-way
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H-statistics were computed over the 5 top categorical or ordinal features
(group5/bool/1, group6/AU2/1, group1/reach/1, group5/attribute/2
and group6/attribute/1) against all the other features, which can be
found as Figure B.36 - Figure B.40 of Appendix B. The categorical and ordi-
nal features were premiered due to the vast computational expense required
for each continuous feature. Thereafter, 2-dimensional partial dependence
plots were created for the 4 strongest pairwise interactions for more granular
inference.

By examining the two dimensional PDPs for the pairwise strong interaction
effects, one can uncover patterns hidden in the marginal counterparts. For ex-
ample, by the left top panel of Figure 4.5, it is seen that the earlier mentioned
decrease effect towards the target for larger values of group3/log_AU1/4,
only holds for one of the levels of group5/bool/1. The existence of such
discrepancy was however indicated by the ICE plot as of Figure 4.3, show-
casing how the different interpretation methods presented in this thesis can
successfully work together. For confidentiality, further such two-dimensional
PDPs will not be disclosed for this work.
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Figure 4.5: Two-dimensional partial dependence plots for group5/bool/1
and the 4 variables with largest two-way interaction strength towards
group5/bool/1. The top left panel shows that the negative relationship
between group3/log_AU1/4 and the target (see Figure 4.2) seems to only
hold for the True level values of group5/bool/1. The bottom left and top
right panels indicate similar relationships towards the target across groups
(levels), but where the False level values of group5/bool/1 have larger
baseline (initial) predictive values. The bottom right panel shows the two-
dimensional PDP for two categorical/binary variables with two levels each,
hence four combinations to consider. The combination of False as level value
for group5/bool/1, and 2 for group6/attribute/1, seems to yield the
highest prediction values.
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4.4 Future work
As mentioned in section 2.1, only a smaller feature space out of an im-
mense available feature space that can quantitatively describe how various
types of music listeners engage with an audio streaming service was explored.
Hence, immediate recommendations for future work regard how other groups
of features that capture more spectra of these personas affects the modelling.
Moreover, a larger feature space could potentially highlight the positive as-
pects of boosting methods for tree models, by first identifying a smaller subset
of the most influential features, and later how they interact with each other.
Any results obtained on quantitative grounds with this methodology, includ-
ing what have been done for this work, should also be assessed on qualitative
grounds to ensure sane and meaningful insights.

Moreover, to give the model family of gradient boosting methods some jus-
tice, it is worth mentioning that several changes and generalizations can be
explored for future work to most likely elevate the performance of the model.
This includes more exhaustive hyperparameter space searches, further exper-
iments with early stopping, evaluating more loss functions, and by utilizing
other generalizations such as stochastic gradient boosting [13]. The latter
works by fitting each base learner towards a subsample of the training data,
obtained by sampling some fraction of the training data without replacement.
This approach yields faster training, hence allowing for more exhaustive hy-
perparameter exploration (assuming time is somewhat scarce) and in many
cases better predictive results [15, p. 365].

Ideally, one would want to test the interaction effects inferred from this study
more thoroughly, in order to reduce the risk of spurious correlations. The
same argument applies for any other interactions inferred from further studies
utilizing the same research methodology. One way of doing that is through
randomized experiments, where users are assigned into “treatment” groups
randomly, for the greater purpose of marginalizing out confounding effects.
These groups could then be studied by e.g. ANOVA models, that study
the variances among and between groups. However, as experiment designs
with randomization tend to be expensive and time-consuming to conduct,
it would serve as useful prior knowledge to identify good feature interaction
candidates from observational data. Hence, further studies centered around
a larger feature space could profit from a richer identification ability of strong
interactions from observational data, serving as candidates for more expen-
sive randomized studies to validate true effects.
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On the same note regarding the proposed interpretation methods, the Partial
Dependence Plot (PDP) is, as mentioned in subsection 3.4.2, built upon a
somewhat naive assumption about independence between the studied feature
subset xS and its complement xC. Although interaction strength statistics,
such as the H-statistic (see subsection 3.4.3), can provide some insights to-
wards this assumption, the independence assumption might impose some
biases towards the interpretation. Another method discussed in [20, sec. 5.3]
is the so called Accumulated Local Effects (ALE) plots. The ALE plots are
based on averaging the predictions over a conditional distribution P (xC | xS),
to be compared with the marginal distribution P (xS , xC) which the PDP av-
erages over. Therefore, the ALE plots are unbiased [20, sec. 5.3] and hence do
not rely on any independence assumptions between features. On the down-
side, however, ALE plots do not enjoy similar nice relationships towards the
ICE plots, and these two plot types cannot be used together as for the PDP.
Moreover, the ALE plots are parametric in the sense of choosing a number of
intervals to average the conditional distribution over, which for poor choices
of the number of intervals can be challenging to interpret.

Regarding any recommendations stemming from the results of this work, it
would be useful to study the response of recommendations. In other words,
one cannot presumably force the user into engaging with e.g. a non-utilized
service feature. Therefore, to better understand which actions should be
taken based on the result of this work, one would need to study how the users
respond towards recommendations or incentives change their behaviours on
the service. Considering that different service features compete in exposure
towards the user, an important latent variable would presumably be whether
the user actively ignores this feature or whether it is undiscovered. Future
work could also stem around a recommendation framework based on the
(near) Weibull fits for the AU1 measures, highlighted in section 2.3. The
high-level idea would be to premiere offerings which increases the probabil-
ity of high engagement (high AU1 values) and simultaneously increases the
probability of retention, globally or on some cohort level.

If the target variable could be relaxed in time, meaning if the study is not
bounded towards a binary 45-day retention target, one could instead utilize
methods from survival analysis to study failure times (in this context time of
churn/quitting the service) and thereby infer survival functions. The survival
functions regard the probability for a failure time to exceed some threshold
point t in time. Some common methods suitable for further studies, assuming
such target relaxation is possible, include the non-parametric Kaplan-Meier
estimator [2, p. 70] and Cox proportional hazards regression model [2, p. 34].
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Both can be used to infer the survival functions for the whole population as
a whole, or for specific cohorts.

Finally, at the time of writing, it is inevitable to mention the recent outbreak
of the COVID-19 disease [30] (caused by the SARS-CoV-2 virus) and its po-
tential effects of the study. As it has been shown that the audio streaming
behaviours from users have been different during the time after various so-
cietal restrictions and lockdowns have been enforced all over the world [26],
the timeline of pandemic and studied time period are evidently important to
consider, especially in the Northern American region in which the study was
conducted. Recapping the time delimitations from section 1.3, and the ob-
jective of measuring retention after 45 days, the obtained samples regarded
the time period 2019-12-01 to 2020-02-26. The World Health Organization
(WHO) labelled COVID-19 as a pandemic at the 11th of March 2020 [1], and
shortly after, California declared at the 19th of March the first state-wide
order for their residents to stay in their homes [21]. Presumably, the effects,
if any, of the pandemic towards the user behaviour within an audio streaming
service should be negligible.
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Chapter 5

Conclusion

In this study, the theoretical framework of boosting by combining multiple
decision trees into an ensemble or “committee” for increased predictive power
was presented. For the context of an audio streaming service, where customer
retention is of great importance for the business, this work explored whether
the boosted tree models could predict customer retention and infer the statis-
tical relationships forming the basis of such predictions. Given that previous
qualitative research has shown that different types of users stay on an audio
streaming service for different reasons, the study also explored how two-way
interactions between features could be utilized for a more granular view of
the statistical relationships between the features and the target.

Empirically, it was shown that the boosted tree models performed better
in predictive measures than a baseline logistic regression model through an
increase in AUC on heldout data by approximately 3.5 percentage points
(0.7772 and 0.7422 respectively). Therefore, this study suggests relatively
low marginal benefits of the usage of a rather complex class of models of the
boosted trees for the explored set of features. However, various presented
interpretation methods allowed for the identification of influential features
and their relationships towards the target and towards other features.

Lastly, it is worth emphasizing that this work merely scratched the sur-
face of evaluating the performance of boosting tree models for data mining
approaches with a massively larger feature space, deduced from an audio
streaming service with a vast amount of available data. Hence, further studies
centered around larger feature spaces, further generalizations of the boosted
tree model and their interpretations could paint a vastly different picture
than what this work suggests in terms of finding the high-retaining user,
both on predictive and inferential grounds.
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Appendix A

Calculations

Lemma A.1. Let E denote the expectation over some data distribution P ,
which (x, y) are realizations of. Assuming that the target variable y = f(x)+
ε, where f is some true model and ε noise with zero-valued expected value.
Then for a squared error loss function, the expected prediction risk for a fitted
model fθ(x), evaluated in some point x0, can be decomposed as

E
[
(y − fθ(x0))2

]
= Var (ε) + (f(x0)− E [fθ(x0)])

2 + Var (f(x0)− fθ(x0)) .

Proof. Starting with the quadratic expansion of the left-hand side, and by
first not condition on x = x0, it follows by the linearity of an expectation
that

E
[
(y − fθ(x))2

]
= E

[
y2
]

+ E
[
fθ(x)2

]
− 2E [yfθ(x)] .

Using the definition of the variance in terms of the second moments, and
sub-consequently the relationship y = f(x) + ε, one obtains that

E
[
(y − fθ(x))2

]
= Var (y) + E [y]2 + Var (fθ(x)) + E [fθ(x)]2 − 2E [yfθ(x)] ,

= Var (f(x) + ε) + E [f(x) + ε]2 + Var (fθ(x)) + E [fθ(x)]2

− 2E [(f(x) + ε)fθ(x)] .

Furthermore, utilizing that ε is independent of P and that E [ε] = 0‚ various
well-known properties of the expectation and variance can be exploited, hence
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E
[
(y − fθ(x))2

]
= Var (f(x)) + Var (ε) + (E [f(x)] +��

�E [ε])2 + Var (fθ(x))

+ E [fθ(x)]2 − 2E [f(x)fθ(x)]−(((((
(((2E [ε]E [fθ(x)] ,

= Var (f(x)) + Var (ε) + E [f(x)]2 + Var (fθ(x)) + E [fθ(x)]2

− 2E [f(x)]E [fθ(x)]− 2Cov (f(x), fθ(x)) ,

where the property E [XY ] = E [X]E [Y ] + Cov (X, Y ) was used for the
last equality. Finally, by the summation property of the variance, i.e. that
Var (X − Y ) = Var (X) + Var (Y )− Cov (X, Y ), it yields that

E
[
(y − fθ(x))2

]
= Var (ε) + (E [f(x)]− E [fθ(x)])2 + Var (f(x)− fθ(x)) .

Lastly, by imposing the condition of x = x0, it follows that E [f(x0)] is a
constant, hence

E
[
(y − fθ(x0))2

]
= Var (ε) + (f(x0)− E [fθ(x0)])

2 + Var (f(x0)− fθ(x0)) .

Lemma A.2. Let X1, . . . , Xm be cell counts for a contingency table with
m cells. Moreover, let x1, . . . , xm be realizations from X1, . . . , Xm such that∑m

i=1 xi = n. Recognized as a multinomial sampling strategy, with joint prob-
ability for all cell counts as

P (X1 = x1, . . . , Xm = xm) =
n!

x1! . . . xm!
πx11 . . . πxmm ,

then the Maximum Likelihood Estimate (MLE) of each event probability πi
is xi

λ
.

Proof. The likelihood obtains as the joint probability function, thus

L(π) = n!
m∏
i=1

πxii
xi!

,

and hence the log-likelihood as

74



l(π) = logL(p) = log

(
n!

m∏
i=1

πxii
xi!

)
,

= log n! +
m∑
i=1

log

(
πxii
xi!

)
,

= log n! +
m∑
i=1

xi log πi −
m∑
i=1

log xi! .

The Lagrange multiplier method can then be used to introduce the constraint
that

∑K
i=1 πi = 1. Let L(π;λ) denote the Lagrange multiplier function, then

L(π;λ) = log n! +
m∑
i=1

xi log πi −
m∑
i=1

log xi! + λ

(
1−

m∑
i=1

πi

)
.

Lastly, by posing the ith derivative to be 0, one obtains

∂L(π;λ)

∂πi
= 0⇒

xi
πi
− λ = 0⇒

π̂MLE
i =

xi
λ
.

Lemma A.3. For a discrete random variable X with outcome space {1, . . . , K},
the (discrete) uniform distribution maximizes the (Shannon) entropy.

Proof. Let P (X) denote the probability density function forX. Furthermore,
as maximization of the entropy

H(X) = −
∑
X

P (X) logP (X) ,

is subject towards the constraint of
∑

X P (X) = 1, the Lagrange multiplier
method will be used. Let L(P (X), λ) denote the Lagrangian function, then

L(P (X), λ) = −
∑
X

P (X) logP (X) + λ(1−
∑
X

P (X)) .
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Setting the partial derivatives of the Lagrangian, with respect to P (X) and
λ respectively, equal to zero yields

∂L(P (X),λ)
∂P (X)

= 0 = − logP (X)− 1 + λ

∂L(P (X),λ)
λ

= 0 = 1−
∑

X P (X)
⇒

P (X) = e(λ−1) ,

subject to
∑

X P (X) = 1. Hence, by the limit definition of ex, it follows that

P (X) =
1

N + 1
,

which by uniqueness implies that the discrete uniform distribution indeed
maximizes the entropy of X.
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Appendix B

Figures

Figure B.1: Histograms for AU1 features in group 1 on log10-scale for the rel-
ative frequency. Note that the AU1 measures have been scaled by some pos-
itive factor of α� 1 to preserve confidentially and make the range smaller.
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Figure B.2: Histograms for AU1 features in group 2 on log10-scale for the rel-
ative frequency. Note that the AU1 measures have been scaled by some pos-
itive factor of α� 1 to preserve confidentially and make the range smaller.
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Figure B.3: Histograms for AU1 features in group 3 on log10-scale for the rel-
ative frequency. Note that the AU1 measures have been scaled by some pos-
itive factor of α� 1 to preserve confidentially and make the range smaller.

Figure B.4: Histograms for AU1 features in group 4 on log10-scale for the rel-
ative frequency. Note that the AU1 measures have been scaled by some pos-
itive factor of α� 1 to preserve confidentially and make the range smaller.
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Figure B.5: Histograms for the AU1 features in group1 (scaled by some factor
β) on log(x+ 1) scale.

80



Figure B.6: Histograms for the AU1 features in group2 (scaled by some factor
β) on log(x+ 1) scale.
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Figure B.7: Histograms for the AU1 features in group3 (scaled by some factor
β) on log(x+ 1) scale.

Figure B.8: Histograms for the AU1 features in group4 (scaled by some factor
β) on log(x+ 1) scale.
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Figure B.9: Weibull fitting towards the positive values of group1/AU1/3.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.10: Weibull fitting towards the positive values of group1/AU1/4.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.11: Weibull fitting towards the positive values of group1/AU1/5.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.12: Weibull fitting towards the positive values of group2/AU1/1.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.13: Weibull fitting towards the positive values of group2/AU1/2.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.14: Weibull fitting towards the positive values of group2/AU1/3.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.15: Weibull fitting towards the positive values of group2/AU1/4.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.16: Weibull fitting towards the positive values of group2/AU1/5.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.17: Weibull fitting towards the positive values of group2/AU1/6.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.18: Weibull fitting towards the positive values of group2/AU1/7.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.19: Weibull fitting towards the positive values of group2/AU1/8.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.20: Weibull fitting towards the positive values of group2/AU1/9.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.21: Weibull fitting towards the positive values of group2/AU1/10.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.22: Weibull fitting towards the positive values of group3/AU1/1.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.23: Weibull fitting towards the positive values of group3/AU1/2.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.24: Weibull fitting towards the positive values of group3/AU1/3.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.25: Weibull fitting towards the positive values of group3/AU1/4.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.26: Weibull fitting towards the positive values of group3/AU1/7.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.27: Weibull fitting towards the positive values of group3/AU1/9.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.28: Weibull fitting towards the positive values of group3/AU1/10.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.29: Weibull fitting towards the positive values of group3/AU1/12.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.30: Weibull fitting towards the positive values of group3/AU1/12.
The top left panel shows the Weibull fitted Cumulative Distribution Function
(CDF) in red towards the empirical one (black), and the top right panel
shows the CDFs on log-log scale for to spot deviations easier. The bottom
panels shows the Weibull plot of empirical data (left) and simulated data as
reference (right) under the fitted Weibull model.
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Figure B.31: Loss evaluations for the best boosted tree model with binomial
deviance loss over the boosting rounds, shown separately for the training set
(red) and the testing set (blue). The loss evaluations are here displayed as
the means of the obtained results from K-fold Cross-Validation with K = 5.
By an early stopping criterion of 10 steps, the training procedure stopped
after 247 boosting rounds.
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Figure B.32: AUC evaluations for the best boosted tree model with binomial
deviance loss over the boosting rounds, shown separately for the training set
(red) and the testing set (blue). The AUC values are here displayed as the
means of the obtained results from K-fold Cross-Validation with K = 5. By
an early stopping criterion of 10 steps, the training procedure stopped after
247 boosting rounds.
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Figure B.33: Loss evaluations for the best boosted tree model with hinge
loss over the boosting rounds, shown separately for the training set (red)
and the testing set (blue). The loss evaluations are here displayed as the
means of the obtained results from K-fold Cross-Validation with K = 5. By
an early stopping criterion of 10 steps, the training procedure stopped after
30 boosting rounds.
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Figure B.34: AUC evaluations for the best boosted tree model with hinge
loss over the boosting rounds, shown separately for the training set (red)
and the testing set (blue). The AUC values are here displayed as the means
of the obtained results from K-fold Cross-Validation with K = 5. By an
early stopping criterion of 10 steps, the training procedure stopped after 30
boosting rounds.
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Figure B.35: R summary for the baseline logistic regression model, fitted
towards the training data.
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Figure B.36: Pairwise feature interactions for the group5/bool/1 feature
based on the H-statistic (see Equation 3.50) under the best performing
boosted tree model with binomial deviance loss. The two-way interaction
between group3/log_AU1/4 and group5/bool/1 is suggested as the
strongest one.
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Figure B.37: Pairwise feature interactions for the group6/AU2/1 fea-
ture based on the H-statistic (see Equation 3.50) under the best boosted
tree model with binomial deviance loss. The two-way interaction between
group5/attribute/2 and group6/AU2/1 is suggested as the strongest
one.
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Figure B.38: Pairwise feature interactions for the group1/reach/1 fea-
ture based on the H-statistic (see Equation 3.50) under the best boosted
tree model with binomial deviance loss. The two-way interaction between
group6/attribute/1 and group1/reach/1 is suggested as the strongest
one.
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Figure B.39: Pairwise feature interactions for the group5/attribute/2
feature based on the H-statistic (see Equation 3.50) under the best boosted
tree model with binomial deviance loss. The two-way interaction between
group6/AU2/1 and group5/attribute/2 is suggested as the strongest
one. Two other strong two-way interactions (with group5/attribute/2
as the static counterpart) are through the predictors group6/AU2/1 and
group5/bool/1 respectively.
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Figure B.40: Pairwise feature interactions for the group6/attribute/1
feature based on the H-statistic (see Equation 3.50) under the best
boosted tree model with binomial deviance loss. The two-way interac-
tion between group1/reach/1 and group6/attribute/1 is suggested
as the strongest one, followed closely by the (two-way) interaction between
group2/log_AU1/7 and group6/attribute/1. The interaction be-
tween group4/log_AU1/1 and group6/attribute/1 seems also to be
a strong interaction effect under the model.
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