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Abstract

The aim of this thesis is to create algorithms for automatic de-
forestation detection. The detection of forests, or the lack thereof, is
interesting in many ways. Presumably everyone is aware of the ongo-
ing climate crisis and our forests role in mitigating it. It may also be
of interest to land owners managing crop portfolios, cities measuring
percentages of park areas in the city or detection of natural disas-
ters such as wildfires. In this thesis we propose two algorithms using
high altitude images for this purpose. The two algorithms include one
parametric and one non parametric. The parametric model assumes
independent stable distributions for the color intensities of the pixels
of forest images. It uses the Cramér-von Mises test statistic and ob-
tained 96.7% accuracy when separating forest and non forest in the
test set. The non parametric model uses the squared Mahalanobis
distance and obtained an accuracy of 98.4% on the test set. The the-
sis is also accompanied by a small R package including the proposed
algorithms.
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E-mail: jespermuren@gmail.com. Supervisor: Dmitry Otryakhin.



Acknowledgements

I would like to thank my supervisor, Dmitry Otryakhin, for introducing me
to the topic of this thesis. I also want to thank him for all the hours he spent
giving me guidance and support. It would not have been possible without him.

Finally, I would also like to extend my gratitude to my partner Ia for her
patience and support throughout this time.



Contents

1 Introduction 4
1.1 Alm .. .. 5
1.2 Disposition . . . .. ... . L 5

2 Theory 5
2.1 Stable distribution . . . . ... ..o 6

2.1.1 Stable density and distribution function expressions 7
2.1.2 Parameter estimation . . . ... ... ... ... 0. 8
2.2  Empirical distribution function tests . . . . . ... .. ... ... 11
2.3 Mahalanobis Distance . . . . . . .. .. ... . 0L 12
2.4 Hotelling T? statistic . . . . . . . ... ... ... ... ...... 13
2.5 Performance analysis . . . . . ... ... 0oL 15
2.5.1 Performance metrics . . . . .. .. ... oL 15
2.5.2 Receiver operating characteristic curve . . . . . .. . .. 17
2.6 Hierarchical Clustering . . . . . ... ... ... ... ...... 18

3 Data 19
3.1 Exploratory data analysis . . . . ... ... ... ... ... 20
3.2 Separability of terrain distributions . . . . . . .. ... ... ... 22

4 Modeling 25
4.1 Non-parametric modeling . . . . .. ... ... ... .. ... .. 26
4.2 Parametric Modeling . . . . .. ... oL oL 29

5 The package: deforeStable 31

6 Results 36
6.1 Model performance metrics . . . . .. ... ... ... 36
6.2 ROCcurves . . . . .. . . . it 37

7 Discussion 39
7.1 Performance considerations . . . . . ... ... ... ... .. 39
7.2 Parametric model performance . . ... ... ... ... ..... 41
7.3 Non parametric model performance . . . . . . .. ... ... ... 42
7.4 Model comparison . . . . .. ... 43
7.5 Potential improvements . . . ... ... ..o 43

8 Conclusion 45

9 Appendix 48
9.1 Stable density theorem . . . . . . ... ... ... ... ... .. 49



1 Introduction

Automatic deforestation detection in near real time is interesting in a number of
ways. The first thing that spring to mind might be our forests role in the ongoing
climate change with their ability to mitigate it by capturing and storing carbon.
According to The State of the World’s Forests, by the United Nations (2020) [7],
the leading cause of deforestation is agricultural expansion, predominantly in
Africa and South America. In these regions, there has been a net forest area loss
for the last 30 years, unlike most other parts of the world where we are seeing net
increases in forest area. Ironically, the reduction of biodiversity that comes with
deforestation has a negative impact on the agricultural sector making the current
rate of deforestation by the large scale commercial agriculture unsustainable.
Further use of change detection in forests could be interesting for land owners
or governments in regards to prevention of illegal logging, management of crop
portfolios, computing the percentage of park areas in cities, detection of wildfires
or other natural disasters as well as just monitoring forest plantations or other
green areas.

The problem of deforestation detection lies within the remote sensing domain
and the natural way of obtaining data is through satellite imagery. While aerial
photos in general might be better and likely would give better results, they
are taken too infrequently to make sense for large scale applications. Therefore
satellite imagery is the natural way of obtaining repeated images of large areas
of land. The satellite imagery intended to be used for deforestation detection
by our algorithms will be obtained using Sentinel-2 operated by the European
Space Agency, which can effectively provide global coverage on a five-day basis.
However, as of writing this thesis, the infrastructure needed to effectively obtain
these satellite images is not in place. For this reason, the images used for the
results presented in this thesis will be obtained from the satellite and aerial
images available through the Google Earth engine.

The Sentinel-2 satellite infrastructure, as well as deforestation detection re-
sults using this data, will be a part of the paper being written on this topic.
This paper is being written with hopes of journal publishing and in addition to
the algorithms developed in this thesis, it will include a bayesian approach.

As of writing this thesis, there are no algorithms for deforestation detection
using the type of frequentist inference we aim to investigate, therefore the al-
gorithms proposed in this thesis are originally our ideas. Most literature on the
topic seems to be geared towards machine learning approaches such as Ortega
et.al (2020) [18], using deep learning for deforestation detection in the Brazilian
Amazon and Shermeyer & Haack (2015) [23], using k-nearest neighbour classi-
fication to track deforestation in Peru. A Bayesian approach has also seen use
in Reiche et. al (2015) [20] on time series data from Fiji. We hope to create
a lightweight algorithm that can detect areas covered by forest or not without
being too computationally intensive, as machine learning applications such as
deep learning often are. Our goal is also to make the algorithm interpretable,
which often is an issue with black-box machine learning techniques.



We intend to investigate two different approaches to the problem: a para-
metric one and a non parametric one. We take a supervised learning approach
where we use training data to learn the distribution of the intensity of red,
green and blue colors of pixels in two different ways. The idea in general is
to split images into much smaller square sub images, then test distribution of
these sub images against reference images that we know contains forest. In one
case, we assume a parametric distribution for the intensity of red, green and
blue colors of pixels and use training data to estimate the parameters of said
distribution. New data is then tested against this distribution. This type of
anomaly detection has been successfully applied to automatic detection of ships
in Wang, Liao & Li (2008) [26]. In the other case, we do not assume any known
distribution for the color intensities but instead use a non parametric test to
test if the distribution of the color intensities of the training data and new data
is equal.

1.1 Aim

The main aim of this thesis is to create and test algorithms used to automatically
detect if areas of satellite images are covered by forest or not. We aim to create
multiple models and compare their performance, including a non parametric
model as well as a model based on the stable distribution. Further, the work
done should result in an R package including the proposed algorithms, as well
as a paper intended for journal publishing.

1.2 Disposition

The disposition of this thesis from this point on is as follows. In Section 2
we outline theory of techniques and concepts used in the thesis. In Section
3, we describe the data used in modeling and testing as well as explore its
characteristics. In Section 4, we give the outline of the algorithms as well as
the training of the models. Section 5 includes information about the R package
accompanying the thesis with example code snippets and output, a link to the
package is available through [33]. After this, we move on to Section 6, where we
present the numerical results obtained when applying the models to the test set.
These results, special performance considerations and potential improvements
are then discussed in Section 7. Lastly, Section 8 gives the finishing conclusions
and takeaways of the thesis.

2 Theory

This section will include the theory of techniques and concepts used in this
thesis. This thesis is written for the reader with at least the equivalent of a
Master’s degree in mathematical statistics. Hence theory of concept that should
be familiar to such a reader is omitted.



2.1 Stable distribution

Unless otherwise specified, the following theory follows that of Samorodnitsky
and Taqqu (1994) [22].

There are several equivalent definitions of a stable distribution, this section
will outline two of them where one is based on a generalized central limit theorem
and one the characteristic function. Proofs of these will be omitted but can be
found in, for example, Gnedenko and Kolmogorov (1954) [9].

Definition 1. A random wvariable X is said to have a stable distribution if
there is a sequence of i.i.d random variables Y1,Ys, ... and sequences of positive
numbers {d,} and real numbers {ay}, such that

Yi+Yet---1Y,
1+2;F T x (1)

So basically, if you sum a sequence of i.i.d random variables and there is a
limiting distribution, it must be stable. Further, you can see the resemblance of
the above definition with the conventional central limit theorem where the Y's
are taken to also have finite variance and X is Gaussian. This means that the
normal distribution belongs to the family of stable distributions.

The probability density function of a stable distribution cannot be expressed
in closed form except for in special cases, this means that there are no exact
likelihood estimation techniques to estimate the parameters of the distribution.
Because there is no explicit way of expressing the probability density function in
the general case the stable distribution is often expressed with its characteristic
function which is why we provide the following definition equivalent to the
previous one.

Definition 2. A random wvariable X is said to have a stable distribution if
there are parameters 0 < a < 2,0 >0, -1 < <1 and 6 € R such that its
characteristic function has the following form:

A expy — o|t|*(1 —if(sign t)tan*) + iét} ifa#1
$(t) = Ble"¥] = (2)

expy — olt|(1 4 iB2(sign ¢)Inft]) + iét} ifa=1.

Where sign ¢t = 0 if ¢ = 0. The parameter « is known as the index of stability and
controls the decay of the tails. The parameters g is not the classical statistical
skewness but it indicates how the distribution is skewed, indicating left skewness
if 8 < 0, right skewness if 8 > 1 and symmetry if 3 = 0. The parameter o is a
scale parameter controlling variability and § a location parameter which shifts
the distribution. The location parameter only corresponds to the mean when
a > 1, otherwise the mean is undefined. In fact, for a < 2 the p-th absolute
moment E[|X|P] < oo iff p < a.



The most famous special cases where the probability density function can be
expressed explicitly is when the stable distribution follows a Gaussian, Cauchy or
Lévy distribution. A stable distribution is Gaussian when oo = 2 and (typically)
B = 0. This can be seen by considering the characteristic function, in this case,
given by

B(t) = E[e"™™] = exp{ — ot + i5t}

which is the characteristic function of a Gaussian distributed random variable
with mean & and variance 202. Further, a stable random variable is Cauchy
when o =1 and =0 and Lévy when o =1/2 and g = 1.

2.1.1 Stable density and distribution function expressions

For this thesis, we will need to compute the density and distribution function of
stable distributions for various reasons. An example being that the distribution
function will be used for the Cramér-von Mises test described in Section 2.2.
This means that even if, in general, there are no explicit expressions for these
functions, we need to know how to compute them. This is done numerically us-
ing integral formulas and the characteristic function. The theory of this section
will follow that of J.P Nolan (1997) [16], where the reader can find the proofs
which will be excluded from this thesis due to their very technical nature.

Nolan finds that even if the parametrization of the characteristic function
in Equation (2) is the most commonly used one it is numerically favourable to
compute the density and distribution functions using another parametrization.
This parametrization is a version of Zolotarev’s (M)-parametrization, Zolotarev
(1986) [28]. This alternate parametrization relates to the one stated in Equation
(2) by the location parameter in the following way

5 — 0+ Botan 5+ if a#1
) if a =1.

For the rest of this section, we will denote the alternate location parameter §*
as § to keep notation consistent.

It also turns out that numerically it is favourable to compute the density
and distribution functions of stable distributions which have been standardized
to have location parameter § = 0 and scale parameter ¢ = 1. For a stan-
dardized stable random variable the characteristic function, using the alternate
parametrization, can be expressed in the following way

_ expq — [t|*(1 + iB(sign t)tan T (|1~ — 1))} ifa#l
$(t) = Ble™] =
expy — [t|(1+iB2(sign t)ln|t|)} ifa=1.

(3)
The theorem stating the integral formulas for the standardized stable random
variables require us to state a number of quantities. These quantities as well as



the Theorem itself is not of special interest to us and is quite lengthy, therefore
we will include it into Section 9.1 of the Appendix.

In practice, densities and distribution functions are computed by numerically
evaluating the integrals stated in the appendix. The proofs involve taking the
inverse Fourier transform of the characteristic function and some quite tedious
algebra and integral solving for each of the four cases in Theorem 2. Again, these
will be omitted but the interested reader is directed to [16] for these proofs as
well as numerical considerations when evaluating the integrals.

2.1.2 Parameter estimation

This section will cover the estimation of the four parameters of the univariate
stable distribution used in this thesis. There are a number of ways available
to estimate these parameters, including quantile-based estimators, Maximum-
likelihood-based estimators and moment-based estimators. A good general
overview of several estimators can be found in Kharrat Boshnakov (2016) [32].
For this thesis, we have chosen to use the Koutrouvelis regression-type estima-
tor, this estimator is one of the fastest estimator for the parameters with good
performance. We tried other estimators, which performed well but were very
slow, including ones based on generalized method of moments. Similarly, we
tried estimators which were faster than the Koutrouvelis one but these did not
perform well enough for our purposes, this includes the McCulloch estimator
based on quantiles. A more in-depth study on the performance of different pa-
rameter estimators may be of interest to individuals interested in improving the
algorithm proposed in this thesis.

The Koutrouvelis regression-type estimator is quite fast, but one big down-
side is that the estimator of the location parameter ¢ is often quite unreliable.
For our purposes this turns out to not be a big issue though because experimen-
tally we have seen that the parameter o > 1 in all our forest data and when this
is the case the location parameter ¢ equals the mean of the distribution,[22].
Which means that the sample mean is a consistent estimator for the location
parameter ¢ for our data. The theory on the Koutrouvelis regression-type esti-
mator of this section will follow that of Koutrouvelis (1980) [14].

The method Koutrouvelis suggested assumes « # 1, which is exclusively
the case for the data used in this thesis so it does not pose a problem. The
method is initially based on two observations, firstly the characteristic function
¢(t) taking the form of Equation (2) implies that

log(~ log |(t)|*) = log(20™) + alog . (4)

The second observation follows from Eulers formula and is that the real and
imaginary part of ¢(t) are given by

Re(6(t)) = exp(—a®[t|*) cos (5t — 0®|t|* B(sign t) tan %)

and o
Im(¢(t)) = exp(—a®[t|*) sin (6t — o[¢|*B(sign ) tan 7)



From here, we note that Equation (4) only depends on the index of stability
parameter o and the scale parameter 0. Koutrouvelis then suggests estimating
these parameters by using linear regression with y = log(— log |¢,(t)|?) where

bn(t) = % > expl(itz;)
j=1

is the sample characteristic function for a random sample 1, zo, ..., x,, which,
by the law of large numbers, is a consistent estimator for ¢(¢). With this we can
estimate the parameters oo and o of our distribution using the model

yp=p+awg +e, k=12 .. K (5)

where p = log(20%), wy = log |tx| and €, is a residual error term which should
converge to zero as the sample size grows. Further, (¢, k =1,2,..., K) is a set
of real numbers which needs to be carefully chosen.

When the parameters o and o are estimated, we move on to consider the
real and imaginary part of ¢(t), specifically we consider

Im((b(t))) . T
arctan | ————== | = 0t — o®|t|*B(sign t) tan —. 6
(R stz b tan o)
The idea is then to fix o and o to their estimated values and then estimate the

remaining parameters S and § by regressing z = arctan G’iEiEZ%%) + mkp(u) on

u and sign(u)|u|® in the model
. o
21 = duy — o%uy|*B(sign u;) tan 5 +mn, (=1,2,...,L (7)

where 7; again is a residual error term and (ug,l = 1,2, ..., L) is an appropriate
set of real numbers. Further, k,(u) is an integer introduced to account for
possible nonprincipal branches of the arctan function.

Koutrouvelis found that the estimators of « and o from Equation (5) depend
on the true values of a, 5 and o as well as n and the choice of ¢} s. Similarly,
the estimators of 8 and ¢ from Equation (7) also depend on the true values of
a, 3,0 and J as well as n, the choice of t;’s and u;’s.

The two rounds of regression described above is repeated until satisfactory
convergence. For each round a type of standardization, like the one described
in Section 2.1.1, of data is performed in order to alleviate some of the depen-
dencies on § and 0. We consider a sample of data points x1, xs, ..., x,, which
are standardized in the following way

z) = =% 9
0o
Where §y and o are chosen in advance with some more rudimentary technique.
Then 1}, x5, .., x], are used as data to get the estimates &; and 61 from Equation
(5). The estimate for « that would be returned at this stage is &; but since we
already standardized by dividing by o the estimate for o would be ogd1. We



now move on to estimate the parameters 5 and ¢, for this we standardize again
by dividing with &7 in the following way

o ==L, j=12 ..n.

A )

01

We then move on to consider the integer k., (u;), since this is a function of the
u;’s we would have to find this for each of the u;’s. Instead, we opt to find a
constant ¢, to subtract from each point x;’ in order to make sure that the arctan
function is continuous on the range of the w;’s. This is done by numerical search
starting from 6, = 0.

Finally, we estimate 8 and ¢ using Equation (7) with &; replacing « and
the data points s; = z7/ — d., j = 1,2...,n. Under the assumption that our
estimation of the scale parameter o is good the x;’ ’s should have a scale close to
1 and hence we can ignore ¢ in Equation (7). From this, we get the estimates
Bg and &5 where B = Bz can be returned as the estimation of 8 from the original
distribution but 6 = &y + 6(d2 — d).

Since this whole procedure can seem quite involved, a simplified version is
described in pseudo-code in Algorithm 1.

Algorithm 1 Koutrouvelis parameter estimation pseudo-code

1: Inputs: Data points x1, 2o, ..., z,, and convergence criteria.

2: while not converged do

3 if first round then Estimate §y and o¢ with simple technique.
4: else 6y = 3, o9 =0.

5: end if

6 Transform data @, = (z; — do)/00, J=1,2,...,n.

7 Estimate &, d; using Eq. (5) with x}’s as data. Set & = 0¢07.
8 Transform data 27/ =27 /61, j=1,2,...,n.

9: Find d. s.t s; = 27/ — 0. makes LHS of Eq. (7) continous.

10: Estimate f3, 05 from Eq. (7) with s;’s as data. Set & = Jp + &(d2 — d.).
11: Check convergence

12: end while if converged

13: return d,B,‘y and 4.

For more information on things like appropriately choosing the ¢;’s and w;’s,
the dependence of the estimators as well as simulation results the reader is di-
rected to the original paper by Koutrouvelis [14]. The specifics of this is left
out because the regression-type technique of Koutrouvelis was later improved
in a paper by Kogon & Williams (1998) [13]. They, instead of the standard
parametrization of the characteristic function stated in Equation (2), used the
Zolotarev (M)-parametrization we previously gave in Section 2.1.1. The charac-
teristic function in this parametrization is continuous for all values of o and [
unlike the standard parametrization which is discontinuous for « = 1 and 8 # 0.
They also used better initial estimates of §y and g which were obtained with the
McCulloch quantile-based estimator. Further, they choose the interval [0.1, 1]
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for the frequencies, (t;’s and w;’s) where the sample characteristic function es-
timates the characteristic function well. These changes lead to the algorithm
not needing the iterative approach that Koutrouvelis suggested, which means
that it estimates the parameters faster. They also obtain better estimates for
values of o and (3 close to the discontinuity of the standard parametrization.
The one downside of the new algorithm is worse performance for a close to 0,
it is however unusual to have o < 0.5 in practice.

2.2 Empirical distribution function tests

This section will cover the theory of testing whether a sample has been drawn
from a specified distribution using cumulative distribution functions (CDF).
The theory will follow that of Anderson & Darling (1952) [1] and Anderson &
Darling (1954) [2].

For this thesis, we first considered the Anderson-Darling test proposed to
test whether a sample of size n with empirical CDF F,,(z) is drawn from a
specified distribution with CDF F(x). The test measures the distance between
the two distributions in the following way

Wi=n [ [Ful) - F@PUF@IIF ®
where ¢[F(x)] is a weighting function used to emphasize specific regions of the
distributions which are of interest to the experimenter. The empirical CDF at
any given point ¢ in a sample of n points, X7, X5 ..., X, is calculated as

Fu(t) = % Z 1{X, < t}.

The classical Anderson-Darling test used the weighting function ¢[F(z)] =
[F(z)(1 — F(z)]~!, which takes small values when F(z) is close to zero or one,
and hence places extra emphasis on difference in tails of F(x) and F,(x). We
realized that this weighting function would not be optimal for our application
because large scale images such as the ones used in this thesis will almost un-
avoidably contain outliers. We noticed that these outliers are often white or
black, which would return values in far ends of the support of the distribution
of the color intensities. Further, the distributions of our data, the color intensi-
ties, are only defined between the values 0 and 1 while this is not the case for the
estimated distributions we will test against. This is another reason to give less
weight to distributions in the tails. With these realizations, we instead consid-
ered the case where weighting function ¢[F(x)] = 1 is used, which corresponds
to the Cramér-von Mises criterion.

Asymptotic distributions can be found for the statistic W72, see [1], using the
values of the statistics which correspond to certain significance levels of the test
can be used to compute p-values. However, for our purposes, we chose to work
directly with the value of the statistics, this is done for a few reasons. Firstly,
as mentioned in [2], these significance points are not available for small sample
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sizes, which can be the case for us after we split images into smaller sub images
for testing. Further, we are not as interested in using the test to answer whether
a sample belongs to a specified distribution but instead we are interested in it
as a goodness of fit measure, to see how well the empirical distribution of the
sample fits to our specified distribution. Finally, we saw better results using
the value of the statistic in practice then using p-values, one reason for this is
presumably due to truncation of small p-values in the implementation of the
test in R. For these reasons, as well as the fact that we value the speed of the
algorithm we want to avoid the unnecessary computation of p-values.

2.3 Mahalanobis Distance

Unless otherwise specified, the theory of this section follows that of Varmuza &
Filzmoser (2009) [25].

The Mahalanobis distance D was originally introduced as a distance between
a given multivariate point p and a distribution. For a point p and distribution
with mean vector g and covariance matrix 3; the distance is given by

D=\/(p-wT= " (p— p).
Where, in practice, the mean and covariance matrix of the distribution would be

estimated by the sample mean and covariance matrix. Further extensions can
be made to calculate the distance between two multivariate populations with

_ _ a1 — _
D:\/(Xl—Xg)TZ (X1 —X2). (9)
Where X, and X, are the sample mean vectors of the two populations. The

variable 271 is the inverse of the pooled sample covariance matrix, given by
)y (nq ) IR 22)/(71—2) for samples with respective sample sizes ni, ng, total
sample size n = n; +no and sample covariance matrices f]l, f]g, Mardia, Kent &
Bibby (1979) [15]. This case of the Mahalanobis distance between populations
will be further explored in Section 2.4

The Mahalanobis distance is often used in cases where there is correlation
present in the considered multivariate distribution. As the reader might have
noticed the Mahalanobis distance expression is closely related to the statistical
concept of standardization, i.e subtracting the mean and dividing by the stan-
dard deviation. The idea is to decorrelate and scale each dimensions variance
to be 1 and then calculate the euclidean distance. In Figure 1, we can see an
example in two dimensions, which illustrates why the Mahalanobis distance is
favourable to the Euclidean distance in the case of correlated variables. We see
in Figure 1, how the Mahalanobis distance takes into account the correlation
between the variables while the euclidean distance does not. For example the
Euclidean distance would indicate that a point at (—2,2) and (2,2) is equally
close to the distribution, which clearly is not the case.

12



Figure 1: Comparison of Euclidean distance (left) and Mahalanobis distance
(right) with distance lines corresponding to distances of 1, 2 and 3 from (0,0)
[25].

2.4 Hotelling 77 statistic

The theory of this section follows Mardia, Kent & Bibby (1979) [15] unless
otherwise specified.

The Hotelling 72 distribution is often said to be the multivariate version of
the well known t-test. It is considered when comparing means of multivariate
distributions and is classically defined as follows.

Definition 3. Let d and M be independently distributed as Normal N, (0, I)
and Wishart W,(I,m) respectively. We then say that X = md'M~'d follows
a Hotelling T? distribution with parameters p and m, denoted X ~ T?(p, m).

It can also be shown that properly scaled a T2 distributed random variable
is F' distributed, interested readers are directed to Section 3.5 of [15] for more
information on this.

Since the Hotelling T2 distribution would have limited use if it could only
be applied in the cases of standard normal and Wishart distributed random
variables there are of course extensions. Consider independent X ~ N,(p,3)
and M ~ W,(3%, m). We can show that

m(X = p) MY (X — p) ~ T?(p,m)
by using a N,(0,I) distributed random variable d* = X7Y3(X — p) and
W, (I,m) distributed random variable M* = £~Y2M%~/2, The fact that

13



M* ~ W,(I,m) follows from the definition of the Wishart distribution, which
unfamiliar readers can see in Section 3.4 of [15]. Using Definition 3, we can then
see that

md” M*'d* = m(X — p)'M (X — p) ~ T2(p,m).

Similarly, if considering a sample of size n from N,(p,X) with sample mean
vector and covariance matrix X and 3 one can see that

(n—1)(X —p)/E (X —p) ~ T?(p,n — 1)

by substituting m =n — 1, M = n¥ and (X — p) = n'/2(X — p).

We can now begin to see the similarity between the Hotelling 72 statistic and
the Mahalanobis distance discussed in the previous section. In fact we will show
that the square of the Mahalanobis distance, D?, between two populations, as
seen in Equation (9) follows a Hotelling 7 distribution under certain conditions
when properly scaled. This is called the Hotelling’s two-sample T2 statistic.

Theorem 1. Let X7 and X be independent samples of size n1 and ny from
i.4.d Np(py,25), ¢ = 1,2 and n = nq + na. Then, if py = py and 31 = Xy,
(ning/n)D? is T?(p,n — 2) distributed.

Proof. The sample means X~ Np(ui7n;1§]i), ¢ = 1,2. This means that d =
X1 — X2~ Ny(pa — p2,ny ' S1 +ny ' Bg). When py = py and 81 =8 = %
this means that d ~ N, (0, -2-X).

’ ning

~

Further, if M; = n;%;, then M; ~ W,(2;,n; — 1) and if 31 = ¥y = 3,
this means that

M =M, +M;y=(n-2)%,~W,(Z,n—2).
Thus —2-M ~ W,(-2-3,n — 2). Further, M is independent of d since the

nin nin
sample 'mean and samlplze variance are independent under the assumption of
normality and the two samples are independent of each other. From this we get

that

n

(n—2)d’< M>_1d~T2(p,n—2).

From this the proof is finished by seeing that the left hand side is equal to

(n1n2/n)D? by inserting d = X1 — X5 and M = (n — 2)3,. O

ning

While there is an assumption of underlying multivariate normality here,
under certain conditions, the T2 statistic is asymptotically non parametric, Oja
& Randles (2004) [17]. This is is because, asymptotically, the T statistic follows
a x?2 distribution, this can be seen by considering the following scenario:

Let X7 & X2 be samples of size n; and no, drawn from a p-variate dis-
tribution with mean vector g and covariance matrix . The multivariate cen-
tral limit theorem then tells us that, with increasing sample sizes, the sample
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mean vectors of these samples, X; & X, tend to multivariate normal dis-
tributions with mean vector g and covariance matrices n; 'Y and ny "X, re-
spectively. This means that X; - X, is asymptotically N(0, (n;' + ny 1)%).
Hence ((n]'4+n; )~ V2(X, - X,) is asymptotically N (0, I), where 3 is the
pooled sample covariance matrix. Finally, this means that the 72 statitistic (X
- X)) (ny 40y HE))"H(X - X5), under these assumptions, is asymptotically
x2(p) distributed.

This would allow the use of x? quantiles for testing means of distributions
which are not normal. While we will not make use of these quantiles specifically,
or p-values at all for that matter— for the same reasons as discussed in Section
2.2—it is worth noting that the assumption made above hold for our data, since
it is bounded between 0 and 1 the mean and variance will always be finite.

2.5 Performance analysis

This section will briefly cover the tools and metrics used to analyze the perfor-
mance of our model. At the core of most of these metrics will be the quantities
true positive (tp), true negative (tn), false positive (fp) and false negative (fn),
which respectively denote the number of correctly classified as positive and neg-
ative, as well as incorrectly classified as positive and negative. For this thesis,
we will consider the label ”forest” as positive and "not forest” as negative.

2.5.1 Performance metrics

This section will follow the theory of Hossin & Sulaiman (2015) [11] unless
otherwise specified.

A natural starting point for visualizing the results of a binary classifiers like
the ones we will create is to create a confusion matrix. The confusion matrix
uses the quantities tp, tn, fp and fn mentioned above and gives an overview of
the performance of the classifier on the test set. Further, performance metrics
are then easily calculated from the confusion matrix. A confusion matrix for a
binary classifier is a two-by-two matrix with rows representing predicted class
and columns representing true labels. This is visualized in Table 1.

Table 1: Visualization of confusion matrix for binary classifier.

Confusion Matrix

Actual Positive Class Actual Negative Class

Predicted Positive Class True Positive False Positive

Predicted Negative Class False Negative True Negative

While the confusion matrix gives a good overview of how the classifier per-
formed, we need more tangible metrics which can easily be compared between
models. The most natural and commonly used one is accuracy, which is just the
ratio of correctly classified samples in the entire sample. This is easily computed
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as well as easily understood by virtually everyone, which is presumably why it is
so widely used. We will, however, not limit ourselves to using the accuracy as a
performance metric since it also has some drawbacks. The biggest one is prob-
ably that it can be very misleading when working with unbalanced data, which
is often the case. Imagine a data set consisting of 90% positive samples, then a
classifier which only predicts positive would yield an accuracy of 0.9 which at
first glance looks very good. To try and give a comprehensive performance anal-
ysis, we will also include the metrics error rate, sensitivity, specificity, precision
and F-score. These metrics are explained in Table 2.

Table 2: Performance metrics for binary classifier.

Metrics Formula Description

Accuracy (Acc) % Fraction of correctly classified in the en-
tire sample.

Error rate (Err) 1—Accuracy | Fraction incorrectly classified in the en-
tire sample.

Sensitivity (Sn) tpjffn Fraction of positive samples correctly
classified.

Specificity (Sp) fptﬁ Fraction of negative samples correctly
classified.

Precision(P) tpﬁf 7 Fraction of samples classified as positive
correctly.

F-Score (F) 2l Performance metric based on both re-
call and precision.

We can see from Table 2 that with the newly introduced metrics, we can also
take into account the overall performance on the positive samples (Sensitivity).
The overall performance on the negative samples (Specificity) as well as how
good the performance is on specifically positive samples (Precision). The F-
score gives us a sort of average between sensitivity and precision by taking the
harmonic mean of the two. What we denote F-score is also known as F-score,
in general, one can consider the F-score given by

Sn-P
B2 P+ Sn

where one can vary § to give more importance to sensitivity or precision de-
pending on what kinds of performance you want from your classifier.

Finally, we adopt the metric alarm area (AA) [18], which is used when
assuming that there will be human double-checking of the classifier when it
predicts "not forest”. We then want the AA, given by

Fg = (1+52)

B tn+ fn
Ctp+fp+ fntin’

AA
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to be as close to the total fraction of "not forest” samples as possible. This is
in order to detect the non-forest areas while not giving too many false alarms.

2.5.2 Receiver operating characteristic curve

This section will cover the concepts of receiver operating characteristic (ROC)
curve and the area under the curve (AUC). The theory will follow that of Fawcett
(2006) [8].

The ROC curve is another widely used way to visualize the performance
of a classifier, as well as a way to choose between different classifiers. A ROC
curve is drawn in two-dimensions, with axes corresponding to true positive rate
(TRP) and false positive rate (FPR). These are given by

TPR = 4 and FPR = /p
Tp ny
where n, and ny is the total number of actual positive and negative samples
tested in the data set respectively. These quantities are then plotted against
each other for varying thresholds. In our case this threshold corresponds to the
Mahalanobis distance in the non parametric model and the Cramér-von Mises
test statistics in the parametric case, in other models these threshold often
correspond to probabilities. In Figure 2, we see an example of a ROC curve
with values calculated for seven different thresholds of a model.
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Figure 2: Example ROC curve plotted.
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Looking at Figure 2, we first consider the dashed line y = xz—this line corre-
sponds to the value you would expect to get from random guessing, for example
guessing positive 10% of the time would be expected to give 10% true positive
and 10% false positives. Any values below the dashed line would hence be worse
than random guessing. Classifiers that perform better than random guessing
will take values above the dashed line with perfectly scoring classifiers landing
on (1,0). The (uninteresting) cases of always predicting positive or negative
yields (1,1) and (0,0). Another nice property of the ROC curve is that as long
as the threshold is one dimensional it is non-decreasing, since a sample classified
as positive will never not be classified as positive when lowering the threshold.

All of this means that drawing a horizontal line to the left and vertical
line up from a point yields the area in the ROC space that corresponds to
better performance than the given point. This is because any point in this area
has either lower FPR but the same TPR, higher TPR but the same FPR or
both higher TPR and lower FPR. With this, we can see in Figure 2 that, for
example, the point labeled C is better than D. However, a decision between B
and D would have to be made while taking into consideration how many false
positives to allow in relation to true positives.

A further attractive property of the ROC curves is that they are still effective
on unbalanced data since they use the true positive and false positive rate, so
they do not depend on the class distribution.

Finally, the ROC curve also offers a good way of comparing different models
using the area under the curve (AUC). Since the ROC curve only takes values
in the unit square, the AUC takes values between 0 and 1, while you would
expect the value to always be above 0.5 since this is the value random guessing
yields. The fact that the ROC curve is non-decreasing means that a value of 1
would mean that the classifier could get a perfect TPR with no false positives.

Further, if you consider a classifier that ranks positive samples higher than
negative samples, the AUC corresponds to the probability that the model will
rank a randomly chosen positive sample higher than randomly chosen negative
sample. This means that you would expect a classifier, which yields a higher
AUC, to have a better performance on average, leading to a way to choose
models using the AUC.

2.6 Hierarchical Clustering

The theory of this section follows that of Section 14.3.12 of Hastie, Tibshirani,
Friedman (2001) [10].

Hierarchical clustering creates clusters using a dissimilarity measure, most
commonly a distance. Given a set of observations, the dissimilarity measure is
calculated between each pair of observations. Observations are then clustered by
the magnitude of their dissimilarity measure. At the lowest level of the hierarchy
all observations are in their own cluster and at the top level, all observations
are in one cluster. Every level of the hierarchy is created by combining the
clusters with the pairwise smallest dissimilarity on the level below. This can be
done in two ways: bottom-up, starting with one cluster for every observation
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and combining clusters with small dissimilarity. The other way is top-down,
starting with one cluster for all observations and splitting recursively to get
the largest dissimilarity. When clusters contain more than one observation, the
dissimilarity can be decided in different ways; the most common one is to just
average the dissimilarities between the observations of the two clusters.

The easiest way to understand hierarchical clustering is to visualize it with
a dendrogram; this also makes it quite easy to interpret. We see an example
is Figure 3 using euclidean distance as dissimilarity measure. Here we can see
that, for example, observation 1 and 2 are grouped together into a cluster at
the lowest level and then they are merged with observation 3. The number of
clusters can be chosen either by just deciding the number of clusters you want
the observations divided into or by choosing the maximum value of dissimilarity
to allow.

Cluster Dendrogram
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(a) Scatter plot of observations

Figure 3: Example of hierarchical clustering using euclidean distance as dissim-
ilarity measure.

3 Data

The intention is for the automatic deforestation detection models in this thesis to
use data from Sentinel-2. Sentinel-2 is a constellation of two satellites, Sentinel-
2A and Sentinel-2B, developed and operated by the European Space Agency.
Sentinel-2 provides high-resolution images of the Earth’s land surface as often
as every five days between the two satellites. This makes Sentinel-2 attractive
for near real time applications such as deforestation detection or agricultural
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monitoring. Sentinel-2 has, for example, seen use in rice crop detection, Campos
et al. (2017) [5], and yield forecasting, Pagani et al. (2019) [19].

The infrastructure needed to effectively obtain images from Sentinel-2 was
not quite ready as of writing this thesis; for this reason, images from the Google
Earth engine is used for the results presented in this thesis instead.

Sentinel-2 provides multispectral imaging in 13 bands, but for our application
we will only make use of the three bands corresponding to the colors red, green
and blue. These bands are of course also available in the data obtained from
Google Earth. Hence, our data will consist of images where for each pixel, we
have a color intensity value in [0, 1] for each of the three colors red, green and
blue.

For training and validating, we will be using a data set consisting of 45
images, where 22 are of forests and the remaining 23 are of non-forest. While
the test set consists of 5 forest images and 7 non-forest images for a total of
12 images. However, this does not accurately depict how balanced the data
set is or how big it is because for testing, the images are split into equal-sized
sub-images and then classified. This means that the size of each individual
picture matters because they will generate a different amount of sub-images.
When split into sub-images of 7 by 7 pixels, the training set consists of roughly
29% forest data and 71% non-forest data and the test set roughly 20% forest
and 80% non-forest. This should be taken into account when considering the
performance, since just guessing non-forest on all samples in the training data
would yield 72% accuracy.

3.1 Exploratory data analysis

The first method of deforestation detection we were interested in is based on
testing the distribution of color intensities of pixels from an image against a
distribution with parameters obtained from a training set. With this in mind,
we wanted to start by finding suitable distributions for the color intensities. This
was done by exploring images obtained from the satellite and airplane images
used in Google Earth.

Already at the start of this thesis, we knew that the stable distribution was
one we were interested in trying, as it has already seen use in remote sensing
areas such as ship detection [26] and video foreground detection [4]. Further,
initial inspection of the empirical density of the data gave us some additional
ideas for potentially suitable distributions. We looked at distributions including,
but not limited to, stable, Normal, Log-Normal, Gamma, Cauchy, Weibull and
Levy. We estimated parameters for each of the color intensity distributions and
calculated the root-mean-square-error (RMSE)

FAISE = \/Z?‘l(f (2) = ()2

n

where f (+) is the probability density function using the estimated parameters,
f*(+) is the empirical density and x; is color intensity of data point ¢ =1,...,n.
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Density

Figure 4: Plots of empirical and estimated probability density functions for
distribution of color intensities in an image of a forest

To choose the best fitting distributions we then plotted the densities of the three
distributions with the lowest RMSE’s together with the empirical densities and
compared. Examples of these comparisons can be seen in Figure 4 where we can
see that the three best fitting distributions for a forest image according to the
RMSE’s was Normal, Gamma and Stable. Further from the plots we see that
the Normal distributions do not seems to fit very well while the Gamma and
Stable distributions are quite close, with Stable edging out Gamma especially
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for the intensity of the color red.

Since the focus in this thesis is to be able to detect if an area has forest or not,
we will work with images of forest. However, our exploratory data analysis shows
us that the framework developed could be used to detect other natural objects
from satellite images as well. In Figures 20 and 21 in the Appendix, we can see
promising results from, again using the stable distribution to describe the color
intensities of images of mountain and sea. When it comes to man-made objects
such as, for example a city, we would assume a multimodal mixture model
of some kind to be appropriate since satellite images would contain distinctly
different parts, i.e., an orange roof, green grass and gray pavement.

3.2 Separability of terrain distributions

In this section, we will attempt to show that, assuming independent stable
distributions for the color intensities, yields well-separated distributions for dif-
ferent terrains. We will consider the overlap between forest and the terrains
of mountain and farmland. In order to show this, we consider the overlap of
different distributions in the following way. Let X and Y be stable random
variables representing one of the color intensities of a forest image and an image
of a different terrain respectively. Let X and Y have location parameters 0y
and dy. We compute the value a of the 5" or 95" percentile of X according to
the following rule

| 5" percentile of X  if 8y < 0x
~ 195t percentile of X if dy > dx.

Using this, we then compute the probability p of sampling a value above a,
if 0y < dx, or below a, if dy > §x, when sampling from the distribution of Y.
Hence, the probability p is calculated in the following way

_JP(1>Y >a) ifdy <dx
| P(O<Y <a) ifdy >6x.

This is illustrated using densities in Figure 5, where, in this example, the red
curve is the density of non forest image, the black curve is the density of the
forest image and the area under the curve corresponds to the probability p.

The calculation of this probability is done for all three channels separately
and the probabilities are finally multiplied. This multiplied value then give us a
measure of how likely you would be to see all three values of the color intensities
of a pixel, from a non forest image, take values in the range where the most
of the pixels from the forest image would fall. This measure will take values
between 0 and 1 since it is a product of three probabilities, further this metric
calculated using the same image as baseline and comparison image will yield
the value 0.95% = 0.857.

To illustrate how small this overlap is, we compute these measures between
the forest images and the mountain and farmland images and plot them in a
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lllustration of overlap probability calculation

— Density of v
— Density of X

Density

Color intensity

Figure 5: Illustration of the area corresponding to the probability of overlap
between color intensity distributions of forests and other terrains.

heat map that we can see in Figure 6. We can see in this heatmap that the over-
whelming majority of values are close to 0, indicating good separation between
terrains. The outlier seems to be the image ”Mountains_Norway_6.jpeg” with
higher overlap measures across the board. To explain this, we look at Figure 7
depicting this image, we see that a good portion of the image seems to contain
forest, or at least greenery, which would explain the higher overlap measure.
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Heatmap of pairwise overlap measure

Forest_Dennmark_13 jpeg 02
Forest_Dennmark_14 jpeg -
Forest_Fargelanda_1 jpeg
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Figure 7: Image ”"Mountains_Norway_6.jpeg”.
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4 Modeling

As previously mentioned, this section will include two approaches to testing us-
ing training data. The first approach is parametric, where we assume a stable
distribution for the color intensities of pixels. This distribution is multivari-
ate—more precisely, it is three-dimensional with dimensions corresponding to
the color intensities of the colors red, green and blue. For this approach, we will
assume independence of these three random variables and perform tests on them
separately. One reason for this is that, in R, we could not really find a stan-
dardized parametric goodness-of-fit test when normality cannot be assumed.
Furthermore since many multivariate parametric goodness of fit tests compare
cumulative distribution functions (CDF), they quickly become very computa-
tionally intensive since computation of the empirical CDF involves ordering
observations and for each observation computing the sum of the probabilities
less than or equal to that of said observation. Since the goal of this thesis is
to create not only an accurate but also a relatively fast classifier, this kind of
computational intensity is undesirable. There are also already some problems of
estimating parameters of the stable distributions in the univariate case, which
we did not wish to extend into the multivariate version of the stable distribution.

As previously mentioned, the second approach of this section is a non para-
metric one. We chose to include a non parametric approach, partly for the
reason of comparing performance to that of a parametric one, as well as be-
cause of the intrinsic difficulties of multivariate parametric testing described
above. Further, a non parametric approach was taken because our exploratory
data analysis, as well as trouble in estimation of the parameters of the stable
distribution, discussed in Section 2.1.2, lead us to think that our data does not
follow any of our candidate distributions exactly, which is an assumption in the
parametric case. For this non parametric approach, we have decided to use the
squared Mahalanobis distance or unscaled Hotelling’s two-sample T2 statistic
described in Section 2.3 and 2.4 respectively.

The time constraint of this thesis means that an in-depth comparison of non
parametric multivariate tests is not a possibility for us, so we make no claim that
the one we chose is definitely the best choice, as there are a variety of similar
tests implemented in packages for R. Examples include the multivariate version
of the Cramér test proposed in Baringhaus & Franz (2004) [3], implemented in
the cramer package available at [29]. Another choice is using Multiple Response
Permutation Procedures proposed in Mielke Jr, Berry & Johnson (1976) with
implementation in, for example, the vegan package available at [34]. Another
possible test is the energy test proposed by Szekely & Rizzo (2013) [24], im-
plemented in the energy packages [35]. A final example is the crossmatch test
proposed in Rosenbaum (2005) [21] implemented in the crossmatch package
available at [30]. We again stress that this is not an exhaustive list.
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4.1 Non-parametric modeling

This section will cover the procedures gone through when creating and training
our non parametric model.

In order for any image to be tested, a training set of images containing only
forest needs to be provided. The image to be tested is then split into equally
sized square sub-images, where the size of these sub-images needs to be decided
in advance. As previously mentioned, we have decided to use the size 7-by-
7 pixels. The distribution of the color intensities in each sub-image is then
tested against the color intensities of all the images of forest in the training
set. For each sub-image the score of the best performing test is returned and
then compared to a threshold. For the non parametric model, the test score
will be the squared Mahalanobis distance outlined in Section 2.3 and 2.4. We
chose to use the squared Mahalanobis distance D? instead of its scaled version
corresponding to the Hotelling’s two-sample T2 statistic, the reason for this
is mostly computational. After reading the reference forest images, we reduce
the number of pixels used for each image to the number of the smallest image
by randomly sampling. This reduces the computational times in two ways: it
reduces the time it takes to compute the square Mahalanobis distance for each
forest image (except the smallest one) and it allows us to not compute the
scaling factor. Because the size of all reference images is the same and the size
of all sub-images is the same, the scaling will be identical for all calculations.
Further, as long as the smallest reference image is not extremely small, the
procedure of reducing the sample sizes by random sampling should still give a
good representation of the distribution. For reference the smallest forest picture
in our training data contains over 7000 pixels.

Because the Mahalanobis distance is non parametric, the training of this
model is essentially only deciding the threshold for the distance. The thresh-
old should be chosen so that as many non-forest sub-images as possible has a
distance above the threshold and as many forest sub-images as possible has a
distance below the threshold.

This threshold is decided using k-fold cross-validation; we decided to use
k = 5 in order to keep the size of the holdout folds relatively large. The
cross-validation is started by first randomly shuffling the training data and then
splitting it into k folds. The data (images) in one holdout fold is then split
into smaller sub-images of predecided size. After this the squared Mahalanobis
distance, see Eq. (9), between each sub-image and all images of forest in the
remaining k£ — 1 folds is calculated. For each sub-image, the smallest squared
Mahalanobis distance is then chosen. These steps are repeated for all k£ folds.
Finally, with the squared Mahalanobis distances computed for all the sub-images
in all the folds, we adopt the accuracy metric, described in Section 2.5.1, to
decide the best threshold for the distance to use. The best threshold is found
by comparing the distances of all sub-images to a range of thresholds, from 0
to Truaz, and the threshold in this range that gives the best accuracy is chosen.
For the non parametric model, we have found empirically that T},,,, = 15 works
well.
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It may be a good idea to run cross-validation multiple times and average

the results in order to reduce the error in the estimates we have, however,

de

cided against this. Partly due to the already large amount of time consuming

computations needed in our training and partly because we did not see large
differences in the estimates in practice. A more concise outline of this procedure
can be seen in Algorithm 2.

Algorithm 2 Non parametric cross validation procedure

—_

@ AR

%

10:
11:
12:

13:
14:
15:

: Inputs: Data set of images labeled forest or non-forest, sub image size m,
number of folds k & max threshold range T},4,-
: Randomly shuffle images and split into k folds.
: fori=1to k do
Split images in fold ¢ into smaller sub images of size m-by-m.
Reduce sample size of all forest images in the k — 1 training folds to the
size of the smallest forest image in data set.
for each sub-image in fold ¢ do
Compute squared Mahalanobis distance D?, Eq. (9), between sub-image
and all images labeled forest in the remaining k& — 1 folds.
Choose smallest D? for sub-image.
end for
end for
for ¢ in 0 to T}, do
For all sub-images, predict sub-images with D? < t as forest and D? > ¢
as non forest.
Compute the accuracy for the given threshold ¢, Acc(¢).
end for
return argmax; Acc(t) and data set of reduced size forest images.
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In Figure 8, we can see a plot of the accuracy versus threshold for the non
parametric classifier with sub images of size 7-by-7 pixels. A vertical red line
is drawn at the best performing threshold. The threshold that gives the best
performance according to the accuracy is 4.16, giving an accuracy of roughly
93.8% across the training set.

Accuracy
075 0BO 0B85 090

0 5 10 15 20

Threshold

Figure 8: Threshold versus accuracy from 5-fold cross-validation using the non
parametric model and sub-images of size 7-by-7 pixels.
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4.2 Parametric Modeling

This section will cover the procedures gone through when creating our para-
metric model. The training part consists mainly of parameter estimation and
deciding thresholds for the test statistics. As previously mentioned, each color
intensity distribution is considered independently in this method.

For this model, we use the Cramér-von Mises test statistic to decide if an
image is of forest or not. The training procedure is similar to the one used
in the non parametric case described in Section 4.1. Just like before, we use
5-fold cross validation. Before this is done, stable distribution parameters are
estimated for the three color intensities of all forest images in the data set. This
is done prior to the cross-validation in order to avoid multiple computations of
the time consuming estimations described in Section 2.1.2.

Another difference in this model is that due to the extreme amount of com-
putations needed when computing the Cramér-von Mises statistic with multiple
parameter set, we decided to include the option of clustering in this cross-
validation. The forest images are clustered using hierarchical clustering, de-
scribed in Section 2.6, with the squared Mahalanobis distance as a dissimilarity
measure. Images which are clustered together are assumed to have the same
distribution, so their parameters are averaged and returned, effectively reduc-
ing the number of parameter sets which need to be tested. We found that the
number of clusters n,s = 7 gave a good balance of speed and performance.

We chose to consider the minimum sum of the three statistics when choosing
the best test statistics result to return for each sub-image. With the Cramér-
von Mises statistics computed for all the sub-images in all the folds, we again
adopted the accuracy metric to decide the best threshold for the distance to use.
Since we have three statistics in this case, one for each color intensity, this is not
as straightforward as in the non parametric case. In this case, to get as close
as possible to the maximum accuracy, we need to perform a grid search over
a range of threshold values for the three dimensions. Where we must compute
the accuracy for all combinations of threshold values in this range. The choice
of the range of thresholds to test over is not as easy in the parametric case, this
is because the Cramér-von Mises test statistic depends on the sub image size
m. We have found that for smaller values (which we recommend), it works well
to use Tipar = 2 - m. However, when increasing m this will not work, as you
may need to go as high as Tj,4, = 10 - m. The cross validation procedure for
the parametric model is outlined in Algorithm 3.

As previously mentioned, we use sub-images of 7-by-7 pixels. Performing the
cross validation to find the best thresholds for the Cramér-von Mises statistics
yielded an accuracy of roughly 96.2%. With the best result given by the thresh-
olds 5.76, 6.18, 5.76 for the color intensities of red, green and blue, respectively.
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Algorithm 3 Parametric cross validation procedure

1:

w

10:

11:
12:

13:
14:
15:
16:

17:
18:
19:

Inputs: Data set of images labeled forest or non forest, sub image size m,
number of clusters n.j, s, number of folds k& & max threshold range T},qz-
for All images labeled forest do
Estimate the stable distribution parameters using the scheme outlined
in Section 2.1.2.
end for
Randomly shuffle data and split into k folds.
for =1 to k do
Split images in fold ¢ into smaller sub images of size m-by-m.
for each sub-image in fold i do
Cluster forest images in the remaining k — 1 folds into n.s¢ clusters and
return averaged stable distribution parameters within clusters.
Compute Cramér-von Mises statistics, Eq. (8), for each color intensity
using the n.,s¢ parameter sets.
Sum the Cramér-von mises statistics for the three color intensities.
Choose the three Cramér-von Mises statistics which produces the small-
est value when summed.
end for
end for
for All combinations ¢ in (0,0,0) to (Tmazs Tmaz, Tmaz) dO
For all sub-images, predict sub-images with Cramér-von Mises test statis-
tics smaller than all three corresponding elements of ¢ as forest and the
rest as non forest.
Compute the accuracy for the given threshold ¢, Acc(t).
end for
return arg max; Acc(t) and the set of stable parameters obtained from clus-
tering forest images in data set.
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5 The package: deforeStable

As previously mentioned, the work presented in this thesis also resulted in a
small R package. This section will briefly cover the functionality of this package
and include some examples. A more thorough run through of the package can
be found in the manual of the package. The package and manual are available
at the link provided in Muren & Otryakhin (2021) [33]. In the github repository
containing the package we will also include the training and test set, as well as
mixed terrain images for visual testing.

Further, many functions in the package are computationally expensive; be-
cause of this, we have included parallelization of the computations performed
in many functions. This means that a user with many cores available for these
computations will get results much faster.

A natural place to start is with reading images, as this is the core data used
in our algorithms. The package contains various options for reading data, they
are all based on reading JPEG images using the jpeg package [36], but return
the data in different forms. We go through the data reading below.

e Firstly, we load the package as with any R package and provide a directory
containing the image we want to read. We also load the doParallel package
[37] and let it use all but one of the computer cores.

library (” deforeStable”)
library (" doParallel”)

cores <— detectCores ()

cl <— makeCluster(cores[1]—1)
registerDoParallel (cl)

dir <— 7C:\\ Users\\User\\images\\”

e We then continue with reading an image into an object of class Raster-
Stack. The raster package [31] is the industry standard for working with
these kinds of images and this gives it many advantages. Naturally, there
are already many functions implemented in packages across R that uses
RasterStack object. Further, you can tag images with a geolocation, mak-
ing comparisons of altered images and the original easier. Another exam-
ple, that we show below, is that you can plot an image directly in R. The
name of the image we want to read must be provided. In Figure 9 we see
an example of plotting images using raster.

library (" raster”)

filename <— ”image.jpeg”

image_raster <— read_data_raster (filename , dir)
plotRGB (image_raster , scale = 1, asp = 1)

e Another way of reading data included is to read it into a matrix with one

row for each pixel and columns for the color intensities of the colors red,
green and blue. This is useful when considering only the distributions
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Figure 9: Example output of plotRGB.

of the color intensities. Example with histogram of red color intensity is
included below in Figure 10.

image _mat <— read_data(filename , dir)
hist (image _mat|[,1])

Figure 10: Example histogram plot of read data.

e Finally, the data can be read into a list of three matrices with dimensions
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corresponding to the pixel dimensions of the image, one matrix for each
color intensity. This is useful to keep the image representation of the data
and when splitting images into smaller sub-images.

image_mat_list <— read_data_matrix (filename , dir)
str(image_mat_list)

List of 3

$ : num [1:836, 1:1297] 0.133 0.118 0.098 0.137 0.118
$ : num [1:836, 1:1297] 0.22 0.204 0.192 0.231 0.22
$ : num [1:836, 1:1297] 0.169 0.153 0.141 0.18 0.176

e For individuals interested in testing the package but not gathering their
own data, the package contains a sample of 49 images on the RasterStack
format. Below, we show how to get this data, its descriptions, and how to
change image number 7 into the other two formats described above.

data (” geoimages”) #a list of images

data (” geoimages_desc”) #image names & descriptions

obj <— geoimages [[7]]

image_mat <— as.matrix(obj)

image_mat_list < list (as.matrix(obj$layer.1),
as.matrix (obj$layer.2),
as.matrix (obj$layer.3))

The function for estimating the parameters of the stable distributions of the
color intensities, described in Section 2.1.2; uses the single matrix representation
of the data shown above. The function that does these computations, using the
package StableEstim [32], returns a data frame with rows corresponding to the
colors red, green and blue. The columns contain to the estimations of the
parameters «, (3, v, and d. We see how this is done, with example output below.

params <— Koutparams(image_mat )
params

alpha beta gamma delta
red 1.703146 0.4100056 0.01862494 0.1406803
green 1.998507 —0.9990000 0.02513797 0.2027838
blue 1.998673 —0.9990000 0.02305076 0.1753170

Now that we have described the data reading process and parameter estimation,
we continue examining the functions handling the computation of the statistics
used in our classifiers. These are the Cramér-von Mises statistics, described in
Section 2.2, and the squared Mahalanobis distance, described in Sections 2.3
and 2.4. We begin with the Cramér-von Mises function; this function takes a
data frame with parameters as returned from the above Koutparams function,
as well as the color intensities of pixels on the matrix form as input. It returns
a vector with the values of the Cramér-von Mises test statistics, performed
using stable distributions with the provided parameters and the color intensity
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distribution of the provided data. Below, we see how this is done with the data
and parameters we read and computed above, and example output.

CVMtest <— Forest_Tester CVM (params, image_mat)
CVMtest

X1 X2 X3
21.23581 18.27714 14.16928

For the squared Mahalanobis distance function, the input is reference data and
data to test in matrix form. The function returns a numeric, which is the value
of the squared Mahalanobis distance. Below, we see how this is done, and
example output.

reference_image <— geoimages [[5]]

reference_data <— as.matrix(reference_image)
SqMahaladist <— Mahala_dist (reference_data , image_mat)
SqMahaladist

2.967856

Now that we have covered the core functions used in the cross-validation,
described in Sections 4.1 & 4.2, we move on to the functions that handle the
deciding of optimal thresholds for the test statistics through cross-validation.
These functions take almost identical inputs for both parametric and non para-
metric models. These inputs are: the path to a directory containing the forest
images of the data set, the path to a directory containing the non-forest im-
ages of the data set. The number of folds to use in cross-validation, as well as
the number of points (pixels) used when splitting the images into smaller sub-
images, needs to be provided. Further, the function for the parametric model
contains an option for using the clustering, mentioned in Section 4.2, due to
the time consuming nature of this function when the data set grows. The para-
metric function also includes an argument for the top end of the threshold to
calculate the accuracy over. This value is set to two times the number of points
used when splitting the data; this works well for small sub-images (which we
recommend) but may need to be increased for larger sub-images. The functions
are used as follows:

forestdir <— 7C:\\ Users\\User\\images\\forests\\”

Nonforestdir <— 7C:\\ Users\\User\\images\\nonforests\\”

ParametricCV <— ParamCV (forestdir = forestdir ,
Nonforestdir = Nonforestdir ,
n_pts = 7,nrfolds = 5,
clustering = TRUE,

maxt = 14)
NonparametricCV <— NonParamCV (forestdir = forestdir ,
Nonforestdir = Nonforestdir ,

n_pts = 7, nrfolds = 5)

These functions return lists where the first element contains a vector with the
best thresholds according to the accuracy, as well as the accuracy. The second
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element of the list contains a data frame with all thresholds tried, corresponding
accuracies obtained, as well as the number of true positives, false positives,
false negatives and true negatives. For the non parametric function, the second
element of the list can, for example, be used to create the plot shown in Figure
8. The third element is a list with the sets of the stable distribution parameters
used in the parametric case and a list of matrices containing the data of the
reduced size forest images in the non parametric case. These should be used for
testing together with the threshold found through cross-validation.

With this, we can move on to the functions that actually perform the clas-
sification of images. These functions take as inputs: the image you want to
classify, in the RasterStack format, the number of points for splitting the image,
which should be the same number used in the cross-validation to get the cor-
rect threshold. Finally, the threshold preferably obtained from cross-validation
needs to be input, as well as a list of parameter sets in the parametric case and
a list of reference images in the matrix form for the non parametric case. The
parameter and reference list should be obtained from the forest images used in
cross-validation since these are the images the optimal threshold is decided with.
The functions return a matrix of zeroes and ones with the same dimensions as
the pixel dimension of the original image, where zero indicates that the pixel
does not contain forest and one indicates that it does contain forest. In the
code snippet below, we show how these functions are called, as well as a way to
visualize the results.

Pthres <— ParametricCV [[1]][1:3]

NPthres <— NonparametricCV [[1]][[1]]

ref_list <— NonparametricCV [[3]]

param_list <— ParametricCV [[3]]

Nonpar_pred <— Nonparam_classifier (test_image, n_pts = 7,
references = ref_list |,
thres = NPthres)

Para_pred <— Param_classifier (test_image, n_pts = 7,

pars = param_list ,

thres = Pthres)
#Save visualization
jpeg :: writeJPEG (image=Para_pred , target="predicted.jpeg’)

It is worth noting that the parametric classifier is up to 20 times slower than
the non parametric one, even when implementing clustering, effectively reducing
the number of parameter sets from 22 to 7.

Finally, we give an example image and output obtained when using the
parametric model to classify an image with patch-wise deforestation—this is
shown in Figure 11. In the left panel, we see the original image and we see
the classification result in the right panel. White indicates predicted forest and
black indicates predicted non-forest.
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(a) Original image to be tested
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(b) Prediction using parametric classifier

Figure 11: Example input and output using the parametric classifier proposed

in the thesis.

6 Results

This section will cover the results obtained when applying the two models pro-
posed in this thesis to the portion of the data set aside for testing. We will limit
this section to the numerical results and discuss these and comparisons between

the models further in Section 7.

6.1 Model performance metrics

For an initial overview of the results from the two models, we provide the con-
fusion matrices obtained when applying the models to the test set. These can
be seen in Table 3 for the parametric model and Table 4 for the non parametric

model.

Table 3: Confusion matrix for parametric model.

Confusion Matrix

Actual Forest

Actual Non Forest

Predicted Forest

2008

216

Predicted Non Forest

156

8836
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Table 4: Confusion matrix for non parametric model.

Confusion Matrix

Actual Forest Actual Non Forest
Predicted Forest 2068 76
Predicted Non Forest 96 8976

For more in-depth results, we look in Table 5, where we see the values of the
performance metrics discussed in Section 2.5.1, for the two models.

Table 5: Performance metrics for tested models.

Metrics Parametric | Non parametric
Accuracy (Acc) 0.967 0.984
Error rate (Err) 0.033 0.016
Sensitivity (Sn) 0.927 0.955
Specificity (Sp) 0.976 0.991

Precision(P) 0.902 0.964
F-Score (F) 0.915 0.960
Alarm Area (AA) 0.801 0.808

6.2 ROC curves

In this section, we present the ROC curves of the two models. The theory these
are based on was discussed in Section 2.5.2.

In Figure 12 we see the ROC curve for the parametric model. The red point
indicates the true positive rate (TPR) and false positive rate (FPR) obtained
for the threshold that gave the best possible accuracy on the test set. This ac-
curacy was 0.976. The green point indicates the TPR and FPR obtained for the
threshold given by our cross-validation training, with corresponding accuracy of
0.967. Because the thresholds tested are three dimensional the parametric model
can give different TPR for a given FPR, we have plotted the best possible TPR
for each FPR between 0 and 1. This is why the green point is not on the curve.
This means that, in other words, it is possible to get a better TPR for the FPR
obtained by using the threshold given by the cross-validation.

In Figure 13, we see the ROC curve for the non parametric model. Again,
the red point indicates the best TPR and FPR obtained for the threshold that
gives the best possible accuracy on the test set, which was 0.985. Similarly, the
green point indicated the TPR and FPR obtained for the threshold given by
our cross-validation training, with accuracy 0.984.

Finally, for this section, we provide a plot with the ROC curves from both
models for comparison. This can be seen in Figure 14, where the red curve for
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Figure 12: ROC curve for the parametric model.
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Figure 13: ROC curve for the non parametric model.
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the parametric model gives the AUC value of 0.993, while the black curve for
the non parametric model gives the AUC value of 0.998.
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Figure 14: Comparison between the ROC curves for the two models.

7 Discussion

In this section, we will mainly discuss the results, presented in Section 6, com-
parisons and differences in the performance of our proposed models, as well as
potential improvements. However, first we will discuss some things that should
be taken into consideration when judging the performance of the models.

7.1 Performance considerations

When studying the results of the models proposed in this thesis, there are a few
things that should be taken into consideration.

Firstly, just like in any model that is trained on data, the quality of the data
has a big impact on the performance. Here, we mean how well the data is la-
beled, often denoted the ground truth. If the ground truth is incorrect, the data
will train under incorrect assumptions, which will lead to worse performance on
unseen data. Similarly, if there are errors in the ground truths of the test data,
performance metrics can suffer where they should not. This is a problem that
most likely will have some effect on the metrics presented in this thesis, due to
the nature of satellite and aerial images. Images covering large areas can easily
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contain some parts of different terrains. This problem is illustrated in Figure
15, which is an image in the test set labeled as not forest, we see that there are
parts of this image that might be considered as forest.

Figure 15: Example image from test set with questionable ground truth.

This naturally leads us into another consideration, which is the size m to
use when splitting images into smaller sub-images. As previously mentioned,
we have chosen to use m = 7, which gives sub-images of 7-by-7 pixels. This
produces an image like the one shown in Figure 11. Naturally, lower values
of m makes it possible to more finely divide images into forest and non-forest
parts. However, lower values of m also comes with downsides—for example,
when m is small, outliers have more effect on the predictions of the sub-images
they are in. Conversely, using large values of m means larger samples and hence
a better representation of the distribution of the color intensities of the sub-
image. Using large values of m, would not give good performance on images
with mixed terrains, but it would give better results when testing on whole
images with homogeneous terrains. This is because the larger sub-images will
contain mostly pixels of the label of the picture, making the ground truths of the
sub-images more accurate and easier to distinguish. This is illustrated in Figure
16, where we plot the best accuracies obtained using the non parametric model
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on the test set, with increasing m. In this figure we can see that the accuracy on
the test set trends upward with increasing sub image size and perfect accuracy
is obtained for all sub image sizes above 28.

Accuracy on increasing sub image sizes

1.000

Accuracy
0.995
|

0.890
|

0.985

10 20 30 40 50

Figure 16: Non parametric model test set accuracy when increasing the size of
the sub images.

7.2 Parametric model performance

The main metric we have considered in this thesis is accuracy, from Table 5
we see that the parametric model achieved an accuracy of 0.967 on the test
set. Even with the test set being split roughly 80/20 in favor of non-forest, this
result is considered quite good. From the confusion matrix in Table 3, we see
that a larger proportion of data labeled forest is incorrectly classified than data
labeled not forest. Due to the unbalanced nature of the test set, this may not
be entirely relevant to the classifiers ability to distinguish forest and not forest,
since an even proportion of incorrectly classified samples could lead to worse
accuracy.

This is why we consider a variety of metrics, specified in Section 2.5.1. Other
than accuracy we have its natural counterpart error rate, which in Table 5 tells
us that only 3.3% of the samples in the test set were incorrectly classified. The
better performance on non-forest data can also be seen in the smaller sensitivity
score of 0.927, compared to the specificity score of 0.976. The metric that shows
the worst result for the parametric model is precision, with a value of 0.902, it
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says that there are relatively many non forest images incorrectly classified as
forest. On the other hand, the alarm area, which tells us the fraction of images
classified as not forest, is 0.801, which is very close to the true fraction in
the data set, which is 0.807 so within 1%. This would be good in applications
where the interest is in deforestation with human double-checking. The lower
precision would, however, indicate worse performance in applications interested
in finding forest, such as computing the percentage of park areas in cities. The
final metrics from Table 5 to consider in this section is the F-Score, which is
0.915. The F-score is a good alternate metric to the accuracy for the overall
performance of the classifier. We see a score that is comparably quite a bit
lower than the accuracy for the parametric model—this is because it takes into
account the poor precision score.

The performance of the classifier is also visualized in the ROC curve, plotted
in Figure 12, and with the corresponding AUC score of 0.993, which is very
good. The plot also contains the points corresponding to the threshold our
cross-validation returned (green point) and the best possible result the classified
could obtain on the test set (red point). While they are quite close, the fact that
the green point is not on the curve means that it is possible to find a threshold
with a better TPR for this FPR.

Finally, for the parametric model, we considered how good the individual
color intensities are at classifying the data set. We classified the test set using
only the Cramér-von Mises test statistic for the red, green and blue color inten-
sities, respectively. The best possible accuracies obtainable with these tests are
0.927 for red, 0.924 for green and 0.958 for blue. This suggests that the blue
color intensity is the best at classifying the test set alone. This is relatively close
to the best accuracy obtainable using all three tests, which was 0.976. Since the
parametric modeling is quite slow with the current implementation, this tells us
that it may be worth investigating using only one, or two color intensities.

7.3 Non parametric model performance

For the non parametric model we see, in Table 5, a very good accuracy of 0.984,
which translates to only 1.6% of observations being misclassified. The confusion
matrix seen in Table 4 shows that the performance is better on data labeled non-
forest, just like in the parametric case. This again can be seen in the sensitivity
score of 0.955, being lower than the specificity score of 0.991, even if this is
more a case of very high specificity than low sensitivity. For the non parametric
model we see good performance on the fraction of forest images classified as
forest correctly, with a precision score of 0.964. The model still retains an alarm
area extremely close to the actual fraction of non forest in the test set with an
alarm area of 0.808, compared to the true fraction of 0.807. Finally, for the
metrics seen in Table 5, we have an F-score of 0.960, which is quite natural with
the sensitivity and specificity being very high for the model.

When considering the ROC curve in Figure 13 we again see very good per-
formance which is translated into the extremely good AUC value of 0.998. We
also see that the green dot indicating the TPR and FPR values obtained with
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the cross validation threshold is very close to the red dot for the best possi-
ble accuracy threshold on the test set. This indicates that the cross-validation
procedure is good at finding the optimal threshold for this model.

7.4 Model comparison

In this section, we explore the differences in the results and touch on how the
properties of the models affect them and their results.

Initially, we can see in Table 5 and in the comparison of the ROC curves,
seen in Figure 14, that the non parametric model performed better across the
board. This may be surprising because you would often expect to see better
results from a parametric model compared to the non parametric one. This
expectation was further solidified for us because of the more computationally
expensive and time consuming training needed for the parametric model, as well
as the better performance in the cross-validation. The accuracy obtained on the
test set was very close to the accuracy obtained in the training for the parametric
model, with 0.962 in training and 0.967 in testing. The non parametric model
substantially outperformed the accuracy achieved in training on the test set,
with 0.938 and 0.984, respectively. This may be an indication that the training
set is not a perfect representation of the data in the test set.

Further, possible reasons for the worse performance of the parametric clas-
sifier is the clustering of the pictures used for computing the Cramér-von Mises
statistics, as well as the fact that finding an optimal threshold is much harder.
The clustering is needed because for the Cramér-von Mises statistics we compute
needs the CDF of the stable distributions. Computing the CDF repeatedly with
the numerical computations described in Section 2.1.1, is very computationally
expensive, so reducing the number of CDF’s needed takes the training from
extremely slow to just slow. Unfortunately, reducing the number of parameter
sets to test against will likely affect the performance. When it comes to find-
ing the optimal threshold in training, there is again, an issue of computational
complexity. Because we need to test all combinations in the range chosen for
the thresholds of the Cramér-von Mises test statistic, the number of thresholds
tested, as can be seen in Algorithm 3, grows very fast. This means that when
trying to keep the computational time down, the possibility of missing the op-
timal threshold increases. This can be seen in Figure 12 by the positioning of
the green point being further away from the optimal red point than in the non
parametric case.

7.5 Potential improvements

While the performance of the model is considered good based on the metrics
described in Section 2.5.1, there is of course room for improvement. Potential
improvement of the models can be divided into two categories. First improve-
ments in the computational times of the models, especially the parametric one.
Secondly, improvements in the numeric results of the models.
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When it comes to computational times, the biggest improvement would be
in finding faster ways to compute the CDF of stable distributions. These are
quite time consuming and are computed an extreme amount of times. As an
example, consider applying the parametric model to the test set. Even with the
forest pictures clustered into 7 clusters, we have 7 parameter sets where each
set contains the parameters for 3 stable distributions. When split into 7-by-7
pixel sub-images, the test set contains 11216 sub-images. This means that we
need to compute 7 -3 -11216 = 235536 CDF’s for stable distributions. Making
algorithms of this kind extremely fast is, however, probably not realistic—this
is due to the size of images obtained from satellites or planes. Since the images
need to be split into small sub frames in order to detect small changes in ter-
rains, this means a large amount of tests need to be performed. Further, when it
comes to computational times, there is likely room for improvements in the es-
timation of the stable parameters as well as in the coding implementation. The
code is written in R and includes some loops, which are notoriously slow in R,
compared to if they were written in C++, Wickham (2019) [27]. It is also likely
that computational times can be greatly reduced in practice by applying knowl-
edge of the area in training. By this we mean that with knowledge of the forests
in the area, a smaller number of images, which represent the different terrains
of the area well, could be chosen. Perhaps images of coniferous forest can be
excluded if you know the area only contains deciduous forest. Hence, reducing
the number of images trained against using knowledge of the area could reduce
the computational time greatly and even potentially improve performance. For
this thesis, we have considered images throughout most of Scandinavia, so the
22 forest images used as references may be warranted. However, the good per-
formance of the parametric classifier with the reference forest images clustered
into 7 clusters could be an indication that this number could be reduced while
preserving performance. Using smaller images that are representative of the
area will also reduce computation times. In our data set, there are images up
to the size of almost 18000 pixels, which is likely unnecessarily large. Further,
for applications of the algorithms in a given area, training should only have to
be done once per season, since the color intensity distribution of a given forest
should be mostly the same, except for seasonal changes.

For performance, there are potentially improvements to be made in the es-
timation of the stable parameters. As mentioned in Section 2.1.2, we tried
some different techniques for estimation before deciding on the Koutrouvelis
regression-type technique. However, the limited time scope of the thesis made
it impossible to include a more extensive study on the different parameter esti-
mation techniques. Looking into using the multivariate stable distribution for
the color intensities may also provide improvement in performance. For the
parametric model, there is likely room for improvement in finding the optimal
threshold for the Cramér-von Mises statistics, as discussed in Section 7.4.

The last, and in our opinion, probably the most drastic improvement in
performance could be obtained from improving the data used to train and test
on. One potential improvement in the data is to solve the ground-truth problem
discussed in Section 7.1. Another problem with the data from Google Earth is
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difference in shading—this can be seen in the different shades of the right and
left side of Figure 17, the shading difference produces a line, vertically, through
the middle of the image, this is highlighted in the top right corner. Because
the images from Google Earth can be composites of images taken at different
times or by different cameras, there are sometimes shading differences in images.
Shading differences like this will affect the results because it will change the
distribution of the color intensities.

Figure 17: Google Earth image with different shades, zoomed in area highlighted
in top right corner.

Finally, images with higher resolution would likely translate into better per-
formance. Higher resolution would mean that you could keep sub-images small,
to detect small changes in terrain, while still getting a good representation of
the color intensity distribution with more pixels. This should theoretically have
a similar effect to what we saw for increasing sizes of sub-images in Figure 16.

We expect data obtained through the Sentinel-2 infrastructure that will be
used in the paper to alleviate many of these problems with the data.

8 Conclusion
In this thesis, we have proposed two algorithms to automatically detect if areas

of images are covered by forest or not. We saw good overall performances from
both models with the non parametric one having the edge with an accuracy of
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98.4% on the test set, compared to the parametric models accuracy of 96.7%.
For more visual examples of the performance of the models we see an example of
the non parametric models performance on an image of mixed terrain in Figure
18 and the performance of the parametric model on the same image in Figure
19. We can see that they are quite close, with the parametric model predicting
a bit too much non-forest perhaps.

il

(a) Original image to be tested (b) Prediction using non parametric classifier

Figure 18: Example input and output using the non parametric classifier pro-
posed in the thesis.

(a) Original image to be tested (b) Prediction using non parametric classifier

Figure 19: Example input and output using the parametric classifier proposed
in the thesis.
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The algorithms we propose and test have also been made available in a small
R package accompanying this thesis. While we are happy with the performance
of the algorithms proposed and included in the package, the computation time
of some functions is extremely long when performed on a regular laptop. This is
especially true for the cross-validation performed when training the thresholds.
However, this may not be as big of an issue in practice because the training
should not have to be as extensive as in this thesis, or done many times, as
discussed in Section 7.5.

The exploratory data analysis performed for this thesis showed promising
results in use of the stable distribution to represent the color intensities of
not only forest images, but also other terrains. Further, studying the Google
Earth data used in this thesis and the results it provided gave us even more
reason to believe that satellite data from Sentinel-2 will be a better fit for the
algorithms we propose. We believe that our algorithms can perform even better
with this data. Results using Sentinel-2 data, as well as comparisons to Bayesian
algorithms developed, will be presented in the upcoming paper being written
on this subject.
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Figure 20: Plots of empirical and estimated probability density functions for
distribution of color intensities in an image of mountain.
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Figure 21: Plots of empirical and estimated probability density functions for
distribution of color intensities in an image of sea.

9.1 Stable density theorem

Define the following quantities

—ptan’® if a £ 1

C=CleB)=1, o
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arctan(ftan’) if a # 1

>
fen)
|
>
S
—
L
=
=
|
——
SIER-

ifa=1
(2 -6y ifa<l
(o, 8)=<X0 ifa=1
1 ifa>1

1 _a _ .
V(0: 0, ) = (COSECJXFZ%) o=t (sinzo(seﬁw) o COS(aegjs(; 1)) ?f a#1
%("‘Cosg)exp(%(g—i—BG)tane) ifa=1,8+#0.
With these we are ready to state Theorem 2 from [16] which gives expressions for
the density and distribution functions of standardized stable random variables.
Because we are only considering standardized random variables with location
parameter 6 = 0 and scale parameter 0 = 1 these will be omitted from the
notation. We will use f(z;a, 8) and F(x;«, ) for the density and distribution
function of a standardized stable random variable X.

Theorem 2. Let X have characteristic function (3). the density and distribu-
tion function of X are given by:
(a) When a # 1 and x > (,

afz — )7

mla — 1

f(zi0,8) = [ 0 V(0: 0, 8) exp (—(z — 05TV (6; 0, 5)) d6

and

Faia,§) = afa8)+ 0= [ o (o -0V #a.5) o
(b) When o # 1 and x = ¢,

I (14 1) cos(6o)

7 (1 +C2)1/(2a)

[(Ga,B) =

and )

F((a,p) = p <g —90) :
(c) When o # 1 and © < ¢,

f(m;a,ﬁ) = f(—.’L';Oé, _6>

and
F(I’;OZ,B) =1- F(*I’;O[’ 7&)

(d) When a =1,

™

f(x:l,,B):{ e L3 VL e (~e Evoi1,8)do 50
a7 p=0
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and
10z -35
rer L[ exp (fe 26V(9;1,B)) 9 B>0
;1,8) = %—i—%arctanx 8=0
1—F(z;a,—p) B8 <0

o1



References

1]

Literature

Anderson, T. W.,; Darling, D. A. (1952). Asymptotic theory of certain
”goodness of fit” criteria based on stochastic processes. Annals of Mathe-
matical Statistics, 23, 193-212. doi:10.1214/aoms/1177729437

Anderson, T. W., Darling, D. A. (1954). A Test of Goodness of Fit. Journal
of the American Statistical Association, 49, 765-769, doi: 10.2307/2281537

Baringhaus, L., Franz, C. (2004). On a new multivariate two-sample
test. Journal of Multivariate Analysis, 88, 190-206. doi:10.1016/S0047-
259X(03)00079-4

Bhaskar, A., Mihaylova, LS., Achim, AM. (2010). Video foreground de-
tection based on symmetric alpha-stable mixture models. IEEE Transac-
tions on Clircuits and Systems for Video Technology, 20 (8), 1133 - 1138.
doi:10.1109/TCSVT.2010.2051282

Campos-Taberner, M., Garcia-Haro, F., Camps-Valls, G., Grau-Muedra,
G., Nutini, F., Busetto, L., ... Boschetti, M. (2017). Exploitation of
SAR and Optical Sentinel Data to Detect Rice Crop and Estimate
Seasonal Dynamics of Leaf Area Index. Remote Sensing, 9(3), 248.
d0i:10.3390 /19030248

Cramér, Harald. (1928). On the composition of elementary errors: First pa-
per: Mathematical deductions. Scandinavian Actuarial Journal, 1928(1),
13-74. doi:10.1080,/03461238.1928.10416862

FAO and UNEP. 2020. The State of the World’s Forests 2020. Forests,
biodiversity and people. Rome. doi:10.4060/ca8642en

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition
Letters, 27, 861-874. doi: 10.1016/j.patrec.2005.10.010

Gnedenko, B. V., Kolmogorov, A. N. (1954). Limit distributions for sums
of independent random variables. Cambridge, Mass: Addison-Wesley Pub.
Co

Hastie, T., Tibshirani, R., Friedman, J. H. (2009). The elements of statis-
tical learning: data mining, inference, and prediction. 2nd ed. New York:
Springer

Hossin, M., Sulaiman, M.N. (2015). A Review On Evaluation Metrics
For Data Classification Evaluations. International Journal of Data Mining
Knowledge Management Process, 5, 01-11. doi:0.5121/ijdkp.2015.5201

92



[12]

[15]

[16]

Kharrat, T. & Boshnakov, G. (2014). StableEstim: An R Package for Esti-
mating the Stable Laws Parameter and Running Monte Carlo Simulations.
Journal of Statistical Software.

Kogon, S. & Williams, D. (1998). Characteristic function based estimation
of stable distribution parameters. A practical guide to heavy tails: statistical
techniques and applications. 311-335 Birkhauser Boston Inc., USA,

Koutrouvelis, I. (1980). Regression-Type Estimation of the Parameters of
Stable Laws. Journal of the American Statistical Association, 75(372), 918-
928. do0i:10.2307/2287182

Mardia, K. V., Kent, J. T., Bibby, J. M. (1979). Multivariate analysis.
London: Academic Press.

Nolan, J. P. (1997). Numerical calculation of stable densities and dis-
tribution functions. Comm. Statist. Stochastic Models, 13, 759-774. doi:
10.1080/15326349708807450

Oja, H., Randles, R. (2004). Multivariate Nonparametric Tests. Statistical
Science, 19(4), 598-605. doi: 10.1214,/088342304000000558

Ortega Adarme, M., Queiroz Feitosa, R., Nigri Happ, P., Aparecido De
Almeida, C., Rodrigues Gomes, A. (2020). Evaluation of Deep Learning
Techniques for Deforestation Detection in the Brazilian Amazon and Cer-
rado Biomes From Remote Sensing Imagery. Remote Sensing, 12(6), 910.
doi:10.3390/rs12060910

Pagani, V., Guarneri, T., Busetto, L., Ranghetti, L., Boschetti, M., Movedi,
E., Campos-Taberner, M., Garcia-Haro, F.J., Katsantonis, D., Stavrak-
oudis, D., Ricciardelli, E., Romano, F., Holecz, F., Collivignarelli, F.,
Granell, C., Casteleyn, S., Confalonieri, R., (2019). A high-resolution, inte-
grated system for rice yield forecasting at district level. Agricultural Systems
168, 181-190. doi: 10.1016/j.agsy.2018.05.007

Reiche, J., de Bruin, S., Hoekman, D., Verbesselt, J., Herold, M. (2015).
A Bayesian Approach to Combine Landsat and ALOS PALSAR Time Se-
ries for Near Real-Time Deforestation Detection. Remote Sensing, 7(5),
4973-4996. doi:10.3390/rs70504973

Rosenbaum, P. (2005). An Exact Distribution-Free Test Comparing Two
Multivariate Distributions Based on Adjacency. Journal of the Royal
Statistical Society. Series B, Statistical Methodology, 67(4), 515-530.
doi:10.1111/j.1467-9868.2005.00513.x

Samoradnitsky, G. (1994). Stable Non-Gaussian Random  Pro-
cesses: Stochastic Models with Infinite Variance (1st ed.). Routledge.
https://doi.org/10.1201/9780203738818

93



[23]

Shermeyer, J., Haack, B. (2015). Remote sensing change detec-
tion methods to track deforestation and growth in threatened rain-
forests in Madre de Dios, Peru. Journal of Applied Remote Sensing, 9.
doi:10.1117/1.JRS.9.096040.

Székely, G. J. Rizzo, M. L. (2013). Energy statistics: A class of statistics
based on distances. Journal of Statistical Planning and Inference, 143, 1249
- 1272. d0i:10.1016/j.jspi.2013.03.018

Varmuza, K., Filzmoser, P. (2009). Introduction to multivariate statistical
analysis in chemometrics. doi:10.1201/9781420059496

Wang, C., Liao, M., Li, X. (2008). Ship Detection in SAR Im-
age Based on the Alpha-stable Distribution. Sensors, 8(8), 4948-4960.
doi:10.3390/s8084948

Wickham, H. (2019). Advanced r. CRC press

Zolotarev, V. M. (1986). One-dimensional stable distributions (Vol. 65).
American Mathematical Society, Providence, RI. ISBN: 0-8218-4519-5

Packages

Carsten Franz (2019). cramer: Multivariate Nonparametric Cramer-Test
for the Two-Sample-Problem. R package version 0.9-3. https://CRAN.
R-project.org/package=cramer

Ruth Heller, Dylan Small and Paul Rosenbaum (2012). crossmatch: The
Cross-match Test. R package version 1.3-1. https://CRAN.R-project.
org/package=crossmatch

Robert J. Hijmans (2020). raster: Geographic Data Analysis and Modeling.
R package version 3.4-5. https://CRAN.R-project.org/package=raster

Tarak Kharrat and Georgi N. Boshnakov (2016). StableEstim: Estimate
the Four Parameters of Stable Laws using Different Methods. R package
version 2.1. https://CRAN.R-project.org/package=StableEstim

Jesper Muren and Dmitry Otryakhin (2021). deforeStable: Classify jpeg
images into forest or not forest using the color intensities of red, green and
blue. R package version 0.1.0. Currently available at https://github.com/
Jmuren/Jesper-Muren-master-thesis-package

Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt,
Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O’Hara, Gavin L.
Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs and Helene
Wagner (2020). vegan: Community Ecology Package. R package version
2.5-7. https://CRAN.R-project.org/package=vegan

o4


https://CRAN.R-project.org/package=cramer
https://CRAN.R-project.org/package=cramer
https://CRAN.R-project.org/package=crossmatch
https://CRAN.R-project.org/package=crossmatch
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=StableEstim
https://github.com/Jmuren/Jesper-Muren-master-thesis-package
https://github.com/Jmuren/Jesper-Muren-master-thesis-package
https://CRAN.R-project.org/package=vegan

[35] Maria Rizzo and Gabor Szekely (2021). energy: E-Statistics: Multivariate
Inference via the Energy of Data. R package version 1.7-8. https://CRAN.
R-project.org/package=energy

[36] Simon Urbanek (2019). jpeg: Read and write JPEG images. R package
version 0.1-8.1. https://CRAN.R-project.org/package=jpeg

[37] Microsoft Corporation and Steve Weston (2020). doParallel: Foreach Par-
allel Adaptor for the 'parallel’ Package. R package version 1.0.16. https:
//CRAN.R-project.org/package=doParallel

99


https://CRAN.R-project.org/package=energy
https://CRAN.R-project.org/package=energy
https://CRAN.R-project.org/package=jpeg
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel

