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Abstract

When a fatality occurs due to COVID-19 there is a delay before
the authorities receive a report of it in their database. The authorities
then report the aggregated number of COVID-19 related fatalities to
the public. The number of daily COVID-19 related fatalities for the
most recent days close to today is hence only partially observed. For
this reason, it is difficult to determine the current trend in daily fa-
tality counts from the reported cases alone. Nowcasting is the task
of inferring total counts based on partially observed data by extrapo-
lating cases based on previous knowledge about the reporting delays.
Nowcasting methods are applicable to predict the number of daily
COVID-19 related fatalities in Sweden, and the results of one now-
casting method is published on the web site Altmejd et al. (2021a),
which is often referred to. In this thesis, we aim to comparatively eval-
uate this nowcasting method with another recent nowcasting method
of Günther et al. (2020a). To do so, we define and use proper scor-
ing rules and other evaluative metrics, such as the coverage of 95%
prediction intervals. The nowcasting methods can be evaluated in
retrospect, since fatalities are rarely reported with a delay in excess
of 1-2 months, and hence the true number of daily fatalities can be
assumed to be known after 2 months. When applying the nowcasting
methods for a “now” varying over 17 instances from February 2 until
March 2, 2021, we find that our implementation of of Günther et al.
(2020a) performs better than that published at Altmejd et al. (2021a)
by almost all metrics.
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1 Introduction

The COVID-19 pandemic has had an immense impact across the world. In Swe-
den, at the time of writing this thesis, more than one million people have tested
positive for the SARS-CoV-2 virus [FHM (2020-21)], which causes COVID-19;
The true number of cases being greater, since not all afflicted by the virus and
the disease it causes are tested. Furthermore, more than fourteen thousand in-
dividuals have perished with COVID-19 being listed as a contributing factor in
their passing [Soc. (2021a)].

When a COVID-19 related fatality occurs, a death certificate is issued by
a physician and sent to the Swedish Tax Agency (in Swedish: Skatteverket) at
latest on the next business day after the fatality. The Tax Agency subsequently
informs other government agencies about the fatality, such as the Public Health
Agency (in Swedish: Folkhälsomyndigheten) and the National Board of Health
and Welfare (in Swedish: Socialstyrelsen). At this point, these agencies do not
know that the fatality is COVID-19 related. The Public Health Agency deduce
whether or not it is COVID-19 related by checking if the deceased individual
has tested positive for COVID-19 at most 30 days before their passing. The
National Board of Health and Welfare waits until a physician has amended the
death certificate with a cause of death, and check whether it includes COVID-19
as a contributing factor. This amendation should be done at most three weeks
after the passing [Soc. (2021b)]. When the fatality is confirmed to be COVID-19
related, by each agency’s own definition of confirmation, it is included in the
time series for the number of daily fatalities by the date of their occurrence. The
time series are published by each of these agencies and available to the public
[FHM (2020-21), Soc. (2021a)]. The steps between the occurrence of the fatality
and its subsequent reporting take time. We refer to this time as reporting delay.

Indicators relating to the current state of the pandemic, such as the time
series for the daily number of fatalities, are of interest for policy makers, as to
determine whether interventions should be implemented or relaxed. But because
of the reporting delay, the number of COVID-19 related fatalities that occurred
in the recent past is–partially–unknown, since a substantial proportion of them
have not yet been reported. The task of nowcasting is to use the partially
observed fatality counts as to estimate the true number of daily fatalities.

Nowcasting has a long history in actuarial sciences in the form of the chain-
ladder method for estimating necessary claims reserves; Insurance claims are
also subject to a reporting delay. Mack (1993) provided the first distribution
free method for computing the variance of the necessary claims reserves es-
timate of the chain-ladder method. Lawless (1994) mention the long history
of epidemiological nowcasting methods for estimating the number of cases of
AIDS in countries, with Morgan and Curran (1986) being his earliest reference
to such an application. Höhle and an der Heiden (2014) generalized the method
of Lawless (1994) in a Bayesian nowcasting model, which, together with the
model of McGough et al. (2020) served as the basis for the model of Günther
et al. (2020a), an implementation of which will be presented in this thesis.
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Figure 1: Daily number of COVID-19 related fatalities in Sweden during the
last three months of 2020.

As an example of delayed reporting, we look at Figure 1. In this figure, we
see the number of COVID-19 related fatalities that occurred in Sweden per day
during the last three months of 2020, as known to us at two different dates:
December 30, which was the last day of 2020 on which new data were published
by the Public Health Agency of Sweden, and on May 7, 2021, which includes
the latest data used for the completion of this thesis. On December 30, one
is obviously only privy to the data reported until then, which corresponds to
the dark blue columns of Figure 1. But these columns do not convey what is
the most recent trend, as of December 30, in daily fatality counts, since the
more recent counts are subject to delayed reporting. In particular, if one were
completely unaware of the existence of a reporting delay, it would appear as
though the number of daily fatalities are decreasing during the latter half of
December. In retrospect, on May 7, 2021, we see that the number of daily
fatalities were actually increasing during the latter half of December, which is
the complete opposite conclusion.

Certainly, on December 30, the policy maker would benefit from an accurate
nowcast of the more recent daily fatality counts for the latter half of December.

A web page, which has gained some attention, that provides informative
illustrations of the fatality counts in conjunction with their reporting delay is
that of Altmejd et al. (2021a). In one of their figures, they include the results
of a nowcasting method, which is defined in terms of R computer code, and
made publicly and readily available at Adam Altmejd’s GitHub covid repository,
Altmejd et al. (2021b).

Another recent nowcasting method is that of Günther et al. (2020a), which,
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in their paper, is applied to nowcast the number of daily COVID-19 disease
onsets in Bavaria during the first pandemic wave in the spring of 2020. We
apply an appropriately modified version of this model as to nowcast the daily
fatality counts in Sweden. We note that the translation from disease onsets to
fatality counts demand no modification of the model, since both are of the count
nature, and are subject to a reporting delay.

In retrospect, the true number of fatalities can be assumed to be known, since
fatalities reported with delays in excess of 1-2 months are rare. This enables us
to retrospectively determine how well a nowcasting method performs. In this
thesis, we aim to comparatively evaluate the method of Altmejd et al. (2021b)
with that of Günther et al. (2020a), using different evaluative metrics. We shall
find that, when applied to the period between February 2 and March 2, 2021,
the method of Günther et al. (2020a) outperforms that of Altmejd et al. (2021b)
by almost every metric. The Altmejd et al. (2021b) method, however, seems to
perform better during the last week-and-a-half of the considered period.

1.1 Outline of thesis

The outline of this thesis is as follows: In section 2 we detail how the COVID-19
fatality data in Sweden are obtained, and how the data structure is. We also
provide an exploratory analysis, which focuses heavily on the distribution of
the reporting delay; In section 3 we provide the reader with an introduction to
the general subject of discrete time nowcasting for count data, and define the
model of Günther et al. (2020a) and how we modify it to adapt to the structure
of the Swedish data. Also, we attempt to describe the method of Altmejd
et al. (2021b), but since this is defined in terms of R computer code only, the
definition given is rather algorithmic. Finally, we give a very brief overview of
other methods for nowcasting count data in discrete time; In section 4, we define
the evaluative metrics we use, and briefly motivate their use. Importantly, we
also define what constitutes proper scoring rules; In section 5, we present our
results, and, in section 6, we provide a brief discussion.
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2 Data

The data used in this thesis originate from the Public Health Agency of Sweden
[FHM (2020-21)]. However, for reasons we will get to shortly, we obtain the
data via a secondary source, Altmejd et al. (2021b). Since the advent of the
COVID-19 pandemic presence in Sweden, the Public Health Agency has, on a
near daily basis (see Tab. 2 below for details), published several indicators as to
describe the dynamics of the pandemic and its impact in the population. They
include time series for the daily number of newly confirmed cases, intensive care
unit (ICU) admissions and fatalities by the date of their occurrence1. Cumula-
tive equivalents of these indicators are also published stratified with respect to
(either of) age, sex, region and municipality. The contents of the publications
have varied throughout the course of the pandemic. More lately, data on the
number of partially and fully vaccinated individuals have also been included.
In this thesis, however, we are solely concerned with the number of fatalities.
In Figure 2, we see the fatality time series illustrated, and compared to that
of another source, National Board of Health and Welfare [Soc. (2021a)], which
count COVID-19 related fatalities slightly differently (the specifics of which we
will get to shortly).

The Public Health Agency does not, however, publish the dates on which
fatalities were reported as such – only the dates of their occurrence. Conse-
quently, the delay between a fatality and its reporting is not directly available
from published data. This yields nowcasting models mostly inapplicable, since
their inferences rely heavily on the reporting delay distribution. In its lieu we
follow Altmejd et al. (2020) in considering the delay between the fatality and
its inclusion in the published time series. This publishing delay – as it were
– is obtainable from data, if one keeps records of the Public Health Agency’s
past publications, which are not readily available from FHM (2020-21). Altmejd
et al. (2020) have providently kept such records, and made them available as
a part of the GitHub repository Altmejd et al. (2021b). The data used in this
thesis are thus collected from this repository.

In sections 2.1 and 2.2 we present an exploratory analysis of this data. The
former section contains an overview of the fatality time series, and provides
details on the Public Health Agency’s publishing pattern. The latter section is
devoted to the delay distribution. For the remainder of this section preamble,
we define which fatalities are considered to be COVID-19 related according to
the data, and explain how one may deduce the publishing delay from the act of
keeping records of past publications.

According to the National Board of Health and Welfare Soc. (2021b), the
Public Health Agency considers a fatality to be COVID-19 related if the de-
ceased was confirmed to be infected with the novel coronavirus (SARS-CoV-2)
by laboratory test, despite their actual cause of death. This may be reported ei-
ther by the treating physician, or by comparing the national death registry with

1Newly confirmed cases are tallied by “statistical date” (in Swedish: statistikdatum), a
term which appears limited to the jargon of the Public Health Agency (and related authori-
ties). A more informative indicator, if tractable, would be the dates of e.g. disease onset.
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the registry of confirmed coronavirus infections, counting fatalities occurred at
most 30 days after infection confirmation to be COVID-19 related. In both
cases, but particularly the latter, fatalities may retrospectively be de-classified
as COVID-19 related, when the cause of death is determined to be another,
e.g. a traffic accident. Once such information becomes available, they are re-
moved from the fatality time series. The Public Health Agency, however, notes
that this occurs only in a limited number of cases. The proportion of fatalities
reported by physicians, and the frequency at which the death registry is com-
pared to the registry of confirmed infections are not readily available from the
data documentation. We should also note that the Public Health Agency, the
National Board of Health and Welfare, and the regions of Sweden may publish
slightly differing fatality counts [FHM (2020-21), Soc. (2021b)]. The reasons
for this are somewhat ambiguously put, however: FHM (2020-21) refer to Soc.
(2021b) relating to the definition of what constitutes a COVID-19 related fa-
tality, yet they use different definition. Generally, the Public Health Agency
relies on laboratory test cross-referencing more, while the National Board of
Health and Welfare use the cause of death as per the death certificate [Soc.
(2021b)]. A third, possible, measure of the number of COVID-19 related fa-
talities is the excess mortality, computed as the difference between the actual
number of fatalities and a base-line corresponding to the average number of
fatalities during years with relatively low numbers influenza related fatalities.
In a study conducted by the Public Health Agency, these three measures are
compared, yielding the conclusion that they follow the same trend, and pro-
duce fatality counts close to one another [FHM (2020a)]. They also point out
that the testing capacity for COVID-19 was limited during the first wave of the
pandemic during the spring of 2020, whence the National Board of Health and
Welfare, which go by the cause of death as per the death certificate, counted a
greater number of fatalities during this period, while later in the course of the
pandemic, they count fewer. This is seen in Figure 2.

In Figure 2, we see a comparison of the Public Health Agency’s and National
Board of Health and Welfare’s counts of daily COVID-19 related fatalities.

One may deduce the reporting delay by keeping track of past publications,
simply by computing the difference in fatality counts of subsequent publications
on corresponding dates. For instance, consider the number of fatalities occurred
on April 15, 2020: On April 15, the Public Health Agency counted 6 fatalities
on this date, which hence were reported on the day of their occurrence, having a
delay of zero days; On April 16, the Public Health Agency counted 41 fatalities
for April 15, whence 41 − 6 = 35 fatalities were reported with a delay of one
day; On April 17, 45 fatalities were reported yielding 45− 41 = 4 fatalities with
a delay of two days; and so forth. In Table 1, we illustrate this calculations for
fatalities occurred on, and reported before, April 14-17, 2020.

However, due to the fact that fatalities previously classified as COVID-19
related may be de-classified as such, this technique will not yield an exact count
of the number of fatalities reported with a certain delay. On April 16, for in-
stance, the Public Health Agency might have added 40 fatalities to the time
series, while removing 5, yielding us to falsely assume that 35 fatalities were re-
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ported with a delay of one day. Also, there are instances where the difference in
fatality counts between subsequent publications on corresponding dates is neg-
ative, due to the de-classifications, inducing observable de-classifications. These
instances are however of low order relative to the fatality counts, and rather
rare for later fatality dates: As is seen in Figure 3, the greatest number of ob-
servable de-classifications is 5 on April 6, 2020, a day on which 90 COVID-19
related fatalities occurred (as known by May 7, 2021). Note also that observable
de-classification are reported with a particularly long delay.

2.1 Overview of data

The Public Health Agency has published the time series for the daily number of
fatalities since April 2, 2020. All past publications, except that for July 30, 2020,
are available at Adam Altmejd’s GitHub, whence they may be downloaded by
cloning his covid repository [Altmejd et al. (2021b)]. Each publication consists
of an Excel file (i.e. a file with file extension .xlsx), in which each Excel-
sheet contains data corresponding to either of the indicators mentioned in the
preamble of this section. Additionally, they contain a sheet stating when data
are tallied, and when they are published. From this we find that the publishing
pattern of the Public Health Agency has varied throughout the course of the
pandemic, becoming increasingly sparse. We distinguish 4 distinct publishing
patterns, outlined in Table 2.

Consequently, the difference between the internal reporting delay observed
by the Public Health Agency and the publishing delay observed by the public
was relatively minute during period I, with fatalities being included in the time

Reporting day
April 14 April 15 April 16 April 17

F
at

al
it

y
d

ay

April 14 5 31 49 60
new 5 31 − 5 = 26 49 − 31 = 18 60 − 49 = 11

April 15 6 41 45
new 6 41 − 6 = 35 45 − 41 = 4

April 16 10 38
new 10 38 − 10 = 28

April 17 4
new 4

Table 1: Number of daily fatalities occurred on April 14-17, 2020, as reported on
April 14-17, 2020. The black numbers indicate the cumulative number of fatal-
ities for each calendar day, the form at which the Public Health Agency present
their data, while the grey numbers indicate the number of newly reported fatal-
ities, i.e. those that were reported “today”. Gray entries on the main diagonal
correspond to fatalities reported with zero days delay, on the first superdiagonal
one day delay, on the second two days delay, and the top right grey entry was
reported with a delay of three days.
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Figure 2: Time series of daily COVID-19 related fatalities as counted by the
Public Health Agency (Folkhälsomyndigheten, FHM) [FHM (2020-21)], and by
the National Board of Health and Welfare (Socialstyrelsen, Soc.) [Soc. (2021a)]
as reported by 7 May, 2021.

series at most one day after their internal reporting to the Public Health Agency.
During periods II, III and IV, the publication may occur at most three or four
days, respectively, after the internal report. That is, when the internal report
occurs on a Friday, it will not be published until Monday or Tuesday, inducing
an additional delay of three or four days. We shall see in section 2.2 that this
induces a peculiar publishing delay distribution.

The reason for the sparsification of publishing occations is that laboratory
SARS CoV-2 test results are reported to the Public Health Agency particularly
slowly during the weekend [FHM (2020b)]. This effects the fatality time series
through the additions due to comparing laboratory tests with the death registry.
One could imagine that fatalities reported by physicians are also incurred with
a longer delay during weekends, but this is not explicitly given as a reason for
the publication sparsificatoin. At any case – the number of fatalities added to
the time series were fewer during weekends and Mondays during time periods I,
II and III, as is illustrated in Figure 4.
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Figure 3: Number of observed instances of fatalities being de-classified as being
COVID-19 related.

I April 2 - June 14 (2020): Daily publications using data as of 11:30 the
same day.

II June 15 - August 10 (2020): Publications on business days (Monday -
Friday) using data as of 11:30 the same day. No publication was made on
June 19, as it is a public holiday in Sweden (Midsummer’s Eve). Also, July
30 is missing.

III August 11 - September 13 (2020): Publications on business days using
data as of the previous day. (Supposedly as of 24:00 the previous day, but
no explicit tallying time is stated.)

IV September 14 (2020) - present (May 7, 2021): Publications on busi-
ness days except Mondays using data as of the previous day. No publica-
tions were made on the various public holidays around Christmas and New
Year.

Table 2: Periods of different publication patterns of the Public Health Agency.
The date breaks correspond to Monday - Sunday when applicable.
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2.2 Delay distribution

While the main quantity of nowcasting is the most recent fatality counts, the
type of nowcasting considered in this thesis relies heavily on the distribution
of the reporting delay, yielding the latter an ubiquity of nowcasting. In this
section, we make two main points about the delay distribution, as observed
retrospectively: That it is not stationary with respect to time, and that it is
highly dependent on the weekday on which the fatality occurred, owing to the
uneven reporting distribution with respect to weekday (cf. Fig. 4). Both of these
effects relate to the fact that the publication schedule has changed over time,
but neither is solely due to this fact. As an example of the latter phenomenon,
we look at Figure 5, where the empirical probability mass functions of the
delay distribution is illustrated stratified with respect to the weekday of the
fatality, but shifted such that they are aligned with respect to the weekday of
the report. Two time periods are compared. Clearly, the probability masses
align rather neatly for both time periods, but only the latter is effected by
the sparser publication schedule. This plot is also illustrative of the fact that
the delay distribution changes more generally: During the earlier period most
reports occurred during the first and second week after the fatality, but during
the later period, the third and fourth weeks had rather many reports, too.

Generally, the reporting delay seems to have become progressively longer
during the course of the pandemic. In Figure 6, we see the number of fatalities
reported for each combination of date and delay. Here, too, one sees that
fatalities occurred during the first half of 2020 were generally reported with a
shorter delay than those during the second half of 2020 and the first half of 2021.
The behaviour of the median and 95th percentile (computed over a rolling 21-
day period) is also indicative of this. Note that fewer fatalities occurred during
July until September, 2020, whence the 95th percentile is more “wobbly” during
this period (being computed from less data).

The diagonal high-frequency report streaks apparent in Figure 6 are due to
reporting being less frequent during the weekend and on Mondays, and more
frequent on other weekdays. This should be compared to the publication peri-
ods of Table 2, and the consequent frequency of reporting on certain weekdays
illustrated in Figure 4. In particular, since June 15, 2020, no reports occur on
the weekend, yielding while diagonal streaks in Figure 6.

A common practise in nowcasting is that one assumes a maximum delay. We
will give some reasons for this in section 3.1.1; An immediately visible reason is
the sparsity of data for longer delays, as is seen in Figure 6, where we also see
delay for which at least 95% of fatalities were reported. In Figure 7, we illustrate
the proportion of fatalities not yet reported 1, 2, 3, 4, 5 and 6 weeks after the
date of their occurrence, for fatalities reported before May 7, 2021 (which is 5
weeks after April 2, 2021), computed for a 21-day rolling period. Clearly, there
is some variation, but for the entire period, approximately (and frequently less
than) 2% of fatalities were reported with a delay longer than 5 weeks.
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Figure 4: Frequency histograms for the number of fatalities reported on each
weekday for different weeks.
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Figure 5: Empirical probability mass functions for the delay of two four week
periods during the first and second pandemic waves. The distributions have
been shifted in the x-axis direction such that the different distributions are
aligned with respect to the weekday of the report. In particular, the probability
mass function for the ith day of the week is shifted i− 1 steps to the right.
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Figure 6: Number of fatality reports for each combination of fatality date and
reporting delay, where 49+ signifies a delay of 49 days or more, and median and
95th percentiles for a rolling 21-day period around each fatality date.
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Figure 7: Proportion of fatalities that had not yet been reported after a delay of
x weeks, for fatalities reported before May 7, 2021, for a rolling 21-day period.
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3 Nowcasting

While the titular topic of this thesis is the evaluation of nowcasting methods,
the underlying methods themselves and the further underlying framework of
nowcasting on which they stand require an equally–if not even more–thorough
treatise. In this section, we do that. First, in section 3.1, we provide an intro-
duction to the “general” subject of nowcasting, noting that we confine generality
to count data reported on a discrete time scale. In particular, we introduce use-
ful notation that will be used throughout the thesis, define the structure of our
data, and clarify how this structure poses a mathematical problem well suited
for statistical model solutions. The notation used large follows Lawless (1994)
with some minor modifications. We reiterate the nowcasting model of Günther
et al. (2020a) in section 3.2, noting some minor modifications as to make it
(more precisely) applicable to the Swedish fatality data. Next, we attempt to
define the method of Altmejd et al. (2021b), noting that this is an approximate
description extrapolated from code rather than from a scientific article; The
paper, Altmejd et al. (2020), describes a model different from the one imple-
mented in the code, Altmejd et al. (2021b). Lastly, we provide a brief overview
of other points of view of the nowcasting problem in section 3.4. In particu-
lar, we reiterate the novel link to the removal method from ecology posed by
Altmejd et al. (2020), note its similarities with the more classical approach for
nowcasting count data of Lawless (1994), and briefly present the chain ladder
method stemmed from actuarial sciences.

But what is nowcasting? Until now, we have largely relied on the reader
to extrapolate its meaning and purpose from the etymological root of the word
nowcasting, which is a portmanteau of the words now and forecasting. Clearly,
this refers to predicting (or “forecasting”) the present state (“now”). The set
of situations for which nowcasting proves useful and necessary is thereof also
implied: When the present state is not fully observed, due to some reporting
delay. It has been pointed out [Höhle and an der Heiden (2014), McGough et al.
(2020), Günther et al. (2020a), Altmejd et al. (2020)], and we have seen (in Fig.
1), that the incidence of e.g. disease onsets and–in our case–fatalities may be
subject to reporting delays and thus require nowcasting. The more general
subject of nowcasting–however–is far more general, including applications in
meteorology, economics and actuarial science. Altmejd et al. (2020) further
provides a link to statistical methods from ecology, but the use of the word
nowcasting seems to be confined to the other mentioned fields.

3.1 General nowcasting problem for count data

In this section, we will describe the general discrete-time nowcasting problem for
count data, but we choose to use a phrasing only consistent with the nowcasting
of fatality counts subject to daily reporting delays, i.e. we refer to the discrete-
time increments as days and the counts that are reported as fatalities, noting
that these could be replaced with e.g. weeks and disease onsets, respectively,
without inducing any changes in the mathematical description of the problem.
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We are chiefly concerned with two closely related quantities, and their “para-
metric counterparts”, as it were:

• The daily number of fatalities, which we denote by

Nt = # fatalities occurred on day t.

This is the quantity we would ultimately like to estimate for t = 1, 2, . . . , T ,
where T represents the latest day for which data are available, i.e. T
corresponds to “now” or “today”. Obviously, T is known.

• The parametric counterpart of Nt is its mean, which we define by

λt = E[Nt] .

This parameter is particularly important in epidemiological nowcasting,
since one generally assumes there to be a dependence between the num-
ber of fatalities of subsequent days, i.e. . . . , Nt−1, Nt, Nt+1, . . . . This is
particularly true of infectious diseases, since fatalities thereof depend on
the number of cases in the population, which in turn influence the number
of new infections, which constitutes the number of future cases, some of
which cause fatalities, and so forth. In section 3.2.2, we define a model for
λt such that the dependence of the sequence N1, N2, . . . , NT is taken into
account in the modelling. That is, we let the dependence of N1, . . . , NT
be carried by the sequence of its means λ1, . . . , λT . We note that, at least,
Höhle and an der Heiden (2014) also include a dependency structure, while
not modelling for an infectious disease.

• The number of fatalities occurred with certain delays, which we denote by

ntd = # fatalities occurred on day t and reported on day t+ d,

i.e. ntd fatalities were reported with a delay of d days out of the Nt that
occurred on day t. The relationship between Nt and the set {ntd, d ≥ 0}
is, of course, that the former is the sum of the latter over d ≥ 0, as defined
in equation (3) in the next subsection. The attentive reader may relate
ntd to the number of “newly reported” fatalities for day t reported on day
t+ d, corresponding to the grey entries of Table 1 in section 2. But recall
that, due to the possibility of fatalities being de-classified as such, the
“newly reported” fatality count may actually be negative. The modelling
framework we use in this thesis does not allow for this, whence we opt to
define ntd ≥ 0, mapping negative “newly reported” fatality counts to zero.

• The parametric counterpart governing ntd is the distribution of the report-
ing delay. We will quantify this by the probability mass function, which
we denote as

ptd = P(delay = d | fatality occurred on day t).

As such, we allow for the possibility of the reporting delay to vary with
respect to the time of the fatality.
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This representation immediately conveys a mathematical problem suitably solved
by statistical modelling, since we assume the delays to stem from a probability
distribution determined by ptd. However, Nt may actually be assumed to be a
scalar integer-valued parameter (e.g. as in sec. 3.4.2).

Another notational tool that we use in sections 3.3 and 4.2, but not in our
main treatise, is the number of fatalities occurred on day t and reported on or
before day s ≥ t. We write this as

Nt(s) =

s−t∑
d=0

ntd. (1)

In particular, Nt = Nt(∞) = Nt(t+D), where the latter equality comes from the
assumption that there is a maximum delay D. We will introduce and motivate
this assumption in the next subsection.

3.1.1 Structure of data: The reporting triangle

Recall that T denotes the latest day for which data are available, i.e. “now” or
“today”. The essential problem of nowcasting is that fatalities have occurred
for t = 1, 2, . . . , T (where t = 1 denotes the first day at which a fatality was
occurred due to the disease and outbreak in question), but we do not know
their number, since their reporting to us is subject to delays. Consequently,
at time T , we do not observe Nt directly, but rather, we observe reports of
it at times t, t + 1, t + 2, . . . , T − 1, T , i.e. relative to time t, with delays d =
0, 1, 2, . . . , T − 1, T − t. As previously mentioned, we let ntd denote the number
of fatalities occurred on day t and reported with a delay of d days. At time T ,
we observe the set of ntd such that

{ntd : t+ d ≤ T}, (2)

with which the task of nowcasting is to infer

Nt =

∞∑
d=0

ntd =

T−t∑
d=0

ntd︸ ︷︷ ︸
Observed.

+

∞∑
d=T−t+1

ntd︸ ︷︷ ︸
Unobserved.

. (3)

An illustration of the structure of data is present in Table 3. This should be
compared to the example representation of the Swedish fatality data in Table
1 in section 2. The grey “new” entries in Table 1 correspond to ntd, but they
are ordered column-wise by the reporting day t + d instead of the delay (as in
Table 3), whence the columns of Table 3 corresponds to the diagonals of Table
1. In the chain ladder approach to nowcasting, one usually uses the partial sums
Nt(t + d) =

∑d
i=0 nti in stead of ntd to represent the data [Mack (1993)], but

otherwise the structure is identical.
A practice used by all epidemiological nowcasting methods encountered by

the author of this thesis in its preparation [Lawless (1994), Höhle and an der
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Reporting delay d
d = 0 d = 1 . . . . . . d = T − 1 d = T

F
at

a
li

ty
d

ay
t

t = 1 n10 n11 . . . . . . n1,T−1 n1,T
t = 2 n20 n21 . . . . . . n2,T−1

...
...

...
. . .

...
...

...
...

...

t = T − 1 nT−1,0 nT−1,1
t = T nT0

Table 3: Structure of data as defined by equation (2). The empty lower right tri-
angle of this table correspond to indices of t and d which are yet to be observed,
i.e. such that t+ d > T .

Heiden (2014), McGough et al. (2020), Günther et al. (2020a), Altmejd et al.
(2020)] is to introduce a maximum delay. The basic reason for doing so is
that fatalities with longer delays are generally more sparsely distributed, thus
yielding it impossible for them to be “estimated reliably”. [Höhle and an der
Heiden (2014)]. We let D denote the fixated maximum delay. Obviously, one
chooses D such that fatalities with a delay greater than d make up a negligible
proportion of the total number of fatalities, i.e. P(delay > D) ≈ 0. Subsequently,
the number of fatalities at day t becomes definable by a finite sum: Nt =∑D
d=0 ntd, which itself simplifies the modelling.
The reporting triangle will also get a different structure once a maximum

delay has been introduced. This is illustrated in Table 4. There is an open
question in how to define ntD, however: Should index D signify delays of D days
or longer, or simply delays of D days? In the former case, one might include
fatalities with observed delays greater than D days in the fatality counts ntD,
i.e. ntD =

∑T−t+1
d=D n′td, where n′td is the observed count without a maximum

delay, i.e. the “raw” counts observed by the nowcaster. But this would yield
ntD to have a different meaning for different t, whence we choose to define it as
ntd = n′td for d ≤ D, and ntd = 0 for d > D, thus assuming n′td to be irrelevant
for d > D.

A second modification of data included in several nowcasting models (e.g.
Höhle and an der Heiden (2014), McGough et al. (2020)) is to introduce a “mov-
ing window” over the temporal index t. This means that one only includes data
occurred at most m days before now. Thus, the upper rectangle of Table 4 would
be excluded from the data for t < T −m. A reason for including a moving win-
dow is that the delay distribution changes over time, and the reporting delay
of very distant fatalities might not be considered informative about the cur-
rent delay distribution. Introducing a moving window assumes the information
contained by {ntd, t < T −m} to be completely depreciated. Another reason
is that the practical implementation of some Bayesian nowcasting models (e.g.
the one of Günther et al. (2020a) presented in section 3.2) demands computing
power proportional to the dimension of data. These two reasons in conjunction
motivate the inclusion of a moving window.
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Reporting delay d
d = 0 d = 1 . . . . . . d = D − 1 d = D

F
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d
ay

t
t = 1 n10 n11 . . . . . . n1,D−1 n1,D
t = 2 n20 n21 . . . . . . n2,D−1 n1,D

...
...

...
. . .

...
...

t = T −D nT−D,0 nT−D,1 nT−D,D−1 nT−D,D
t = T −D + 1 nT−D+1,0 nT−D+1,1 nT−D+1,D−1

...
...

...
...

...
...

...
...

t = T − 1 nT−1,0 nT−1,1
t = T nT0

Table 4: Structure of data when modified as to include a maximum delay. The
upper rectangle of this table corresponding to t ≤ T −D is assumed to be fully
observed, while the lower rectangle (corresponding t ≥ T − D) has the same
structure as in Table 3.

In the application of Günther et al. (2020a) (see sec. 3.2), we choose D =
7 · 5 = 35 and m = 7 · 10 = 70, while Altmejd et al. (2020) choose D = 25;
It being unclear whether or not they use a moving window. During the period
from April 2 until December 1, 2020, 1.00% of fatalities were reported with a
delay longer than 35 days, while 1.91% were reported with a delay longer than
25 days (as observed by February 2, 2021, which is the earliest “now” with
which we perform nowcasting in section 5, cf. also Fig. 7).

3.2 Model of Günther et al. (2020a)

In this section, we present the model of Günther et al. (2020a), which constitutes
a hierarchical Bayesian model. As was mentioned in section 1, this model was
initially defined as to nowcast the number of daily COVID-19 disease onsets
in Bavaria. In section 3.2.1 we introduce the discrete hazard regression model,
which will be our only tool for testing different variations of the model on
the Swedish data. This model is used to estimate the probabilities ptd for
t = 1, 2, . . . T and d = 0, 1 . . . , D. We will also introduce a small modification in
considering days with zero reporting (cf. Tab. 2), but also note that this could
be handled approximately but arbitrarily well by the original model. In section
3.2.2, we define the model for the fatality counts.

3.2.1 Discrete hazard regression model

The discrete hazard function is defined by

htd = P(delay = d |delay ≥ d).
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One may equivalently define the delay distribution in terms of the discrete
hazard function, since the former is uniquely determined by the latter: Noting
that, for d ≥ 1,

ptd = P(delay = d |delay ≥ d, t)P(delay ≥ d |t)

= htd

∞∑
d′=d

ptd′ = htd

(
1−

d−1∑
d′=0

ptd′

)
, (4)

and that pt0 = ht0 we see that the delay distribution in terms of ptd can be
obtained from the set of discrete hazard functions htd in an iterative fashion.

Note that htd ∈ (0, 1) for d = 0, 1, . . . , D − 1. In other words, htd is not
constrained by htd′ for d′ 6= d, as opposed to ptd which necessarily sum to one
over d. Hence, the discrete hazard function is well suited to be modelled by linear
regression using the log-odds (or logit) link. The use of discrete hazard modelling
in epidemiological nowcasting originates from Höhle and an der Heiden (2014).
We let the linear predictor element of the model be denoted by

gtd = γd +WT
tdη, (5)

where γd is a delay-specific intercept, W td is a vector of k covariate effects
depending on time and delay, and η is the corresponding k-length vector of
coefficients. In equation (8), we elect to use a different representation of (5)
consistent with the covariate effects we actually use; This representation is less
general, though, and equation (5) suffices to clearly define the regression element
of the model.

Günther et al. (2020a) define htd = logit−1(gtd) for d = 0, 1, . . . , D − 1 and
htD = 1, the latter being due to the assumption of a maximum delay D inducing
all “remaining” fatalities to be reported on day t + D. But a particularity of
the Swedish fatality data is that, for more recent periods (cf. Tab 2 periods
II-IV), fatality counts are not reported every day. For non-reporting days, the
probability of reporting should be unequivocally zero, but since gtd is a real
number, htd = logit−1(gtd) maps to the open interval (0, 1), i.e. htd > 0 which
implies that ptd > 0 for all d ∈ {0, 1, . . . , D − 1}. To remedy this, we simply
introduce an indicator representing whether or not day t+ d is a reporting day:

Rtd = I{t+d is a reporting day}. (6)

We include this in the model for htd such that it fixates certain discrete hazard
probabilities to zero:

htd =


Rtd · logit−1(gtd) for d ∈ {0, 1, . . . , D − 1}
1 for d = D

0 otherwise.

(7)

We note that the definition htd = 1 for d = D ignores whether or not t+ d
is a reporting day, but in order for a maximum delay D to exist, the discrete
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hazard must evaluate to 1 for some d ≤ D. A more careful implementation
would be to define htd = 1 for the greatest d ≤ D such that t+ d is a reporting
day. However, since the maximum delay is supposed to be chosen such that
fatalities are sparsely reported with a delay of D, we deem the influence of a
more carefully chosen time-dependent maximum delay to be negligible, if one
chooses D large enough.

In applying this model to the Swedish data, we use one of the suggested
covariate effects used by Günther et al. (2020a)–namely–an effect of the weekday
of the reporting day. Considering only period IV of Table 2, this regression
element takes the form

gtd = γd + η1I{t+d is a Wednesday}

+ η2I{t+d is a Thursday}

+ η3I{t+d is a Friday}. (8)

Using this representation, it is clear to see how one could approximately in-
clude the domain knowledge of there existing days with no reporting that we
chose to quantify using an indicator Rtd. Suppose equation (8) included a
term η0I{t+d is not a reporting day}. Choosing a suitable prior on η0, e.g. η0 ∼
N (−C, 0.01), where C → ∞ would induce ptd = logit−1(gtd) → 0 for t+ d be-
ing a non-reporting day without the necessity for an indicator Rtd. In practise,
one would simply choose a “large” C, since software used for sampling from
the posterior (and predictive) distribution does not generally allow for infinite
parameters (such is the case for e.g. Stan [Stan Development Team (2019a)]).

We use an informative prior on γd, such that

γd ∼ N
(

logit(h̃d), 1
)
, (9)

where h̃d is obtained by h̃d = p̃d/(
∑D
d′=d p̃d′) (equivalent to the discrete hazard

function defined by p̃d), and

p̃d =
1 +

∑T−D
t=T−m ntd

D +
∑T−D
t=T−mNt

, (10)

i.e. p̃d is approximately the empirical delay as obtained by from the upper fully
observed rectangle spanned by t = T −m,T −D and d = 0, . . . , D (cf. Tab. 4),
but where each delay has been given an additional fatality in order to insure
that p̃d > 0. This is because p̃d = 0 would imply that h̃d = 0 which induces
logit(h̃d) to evaluate to negative infinity, which is (as just mentioned) practically
impossible in implementation.

The use of an informative prior for γd is not consistent with Günther et al.
(2020a), but it has been previously suggested in epidemiological nowcasting
literature (McGough et al. (2020) suggest it, but do not use it in their main
analysis); Our choice of doing so is however mainly motivated by the fact that
we would like to–somehow–include the domain knowledge that fatalities are
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generally reported “sooner rather than later”, as it were, consistently with our
fixation of maximum delay D. The easiest way to do this is to simply use an
informative prior based on observed data.

For the regression coefficients, we let ηi ∼ N (0, 0.25) consistently with the
parametrization of Günther et al. (2020a) (formally retrieved from their code
at Günther (2020b)).

We should note that the choice of prior for γd in equation (9) is not entirely
consistent with the regression model used in equation 8; Since we assume the
base level with respect to weekday to be Tuesday, i.e. we assume that gtd = γd
on Tuesdays, it would be more consistent to estimate (10) using only fatality
counts reported on Tuesdays. It is however consistent with the prior assumption
put on the regression coefficients that the reporting weekday has no effect, since
the prior mean of ηi is zero. Also, we will implement a version of the model
where we do not include reporting weekday effect, and in this case the prior on
γd as defined by equations (9) and (10) makes complete sense.

3.2.2 Fatality counts model

In this brief subsection, we define the model for ntd, from which Nt are defined
as the sum of ntd over d = 0, 1, . . . , D. With ptd defined in terms of htd by
equation (4), and λt denoting the expected value of Nt, the individual fatality
counts are distributed as

ntd | ptd, λt ∼ NegBin(ptd · λt, φ) . (11)

This thus constitutes our likelihood. We also define NegBin(0, φ) = 0 determin-
istically, as to incorporate the zero probability of reporting induced by their
being days on which no reporting is done. That is, when Rtd = 0 in equation
(6), then ptd = 0 whence ntd = 0 non-stochastically.

We parametrize the negative binomial distribution as per the build-in para-
metrization of the programming language Stan [Stan Development Team (2019a)]
(see sec. 5.1), where

Y ∼ NegBin(µ, θ)⇒ E[Y ] = µ,Var(Y ) = µ+
µ2

θ
. (12)

The dispersion parameter φ is put with an improper uniform prior on R+ (which
is possible in Stan).

We put a prior on {λt, t ≥ 0} originating with McGough et al. (2020), which
invented the “Bayesian smoothing” element for the mean process of Nt. The
mean process for {λt, t ≥ 0} is defined by letting {log (λt), t ≥ 0} constitute a
Gaussian process, whereby

log (λ0) ∼ N (0, 1)

log (λt) |λt−1 ∼ N
(
log (λt−1), σ2

)
for t ≥ 1

But since we use a moving window, indices t < T − m are not included. We
hence define the origin of the random walk by log (λT−m) ∼ N (logNT−m, 1).
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Also, we put a prior on σ proportional to N
(
0, 32

)
on the positive real axis

(i.e. σ is half-normal), consistent with the prior used by Günther et al. (2020a)
(again, formally retrieved from Günther (2020b)).

3.3 Method of Altmejd et al. (2021b)

In this section, we attempt to recapitulate the method of Altmejd et al. (2021b).
We refer to it simply as a method rather than a model, since we are not
privy to a written-down version of it using mathematical notation with text
of explanations–Only the source code is available. We mention immediately
that this method is a work-in-progress, and ask the reader to take note of the
date of code retrieval in the references. While the source code, by the nature of
programming languages, provide an exact description of the models algorithmic
proceedings, the work-in-progress nature of its implementation makes it diffi-
cult to decipher, because lines of code used in a previous version might (and
do) remain. For this reason, we ingress this section with the disclaimer that
the description of the method of Altmejd et al. (2021b) given here may contain
inaccuracies; Therefore this section is to be seen as an overview of their methods
than a complete description.

The method of Altmejd et al. (2021b) has two main steps. First, they
sample from the predictive distribution of Nt. We give an overview of what this
step constitutes in section 3.3.1. It turns out, however, that this distribution
is to variable in relation to data, when looking at the data from day to day,
whence a smoothing mechanism is implemented. This is done by a Gaussian
process separately from the initial sampling step. We give some more detail
on how this is done in section 3.3.2. Finally, they present a point estimate
and prediction intervals from this Gaussian process, which are made readily
available at Altmejd et al. (2021b). In section 3.3.3, we mention how this
enables us to extrapolate the predictive distribution, which in turn enables us
to comparatively evaluate it against our application of the model of Günther
et al. (2020a). In short, the point estimate gives us an approximate value for
the mean of the Gaussian process at time points t = T − 25, T − 24, . . . , T , and
the prediction intervals gives us approximate values for the diagonal elements
of the covariance matrix.

The fact that we can evaluate the method of Altmejd et al. (2021b) is suf-
ficient motivation that we do, since their results are made public at Altmejd
et al. (2021a), and deserve comparison to other methods. The intellectual cri-
tique that should accompany such an evaluative comparison is however made
difficult by their not existing a written-down model description, however.

Having pointed out the difficulty of extrapolating a mathematical method
from computer code, and that this section would have greatly benefited from a
written-down version of Altmejd et al. (2021b), we should also point out that
this section would have been impossible to produce were it not for the level of
transparency kept by Altmejd: The source code of the method is made publicly
available, and–as mentioned in section 2–the providence of keeping records of
past publications made by the Public Health Agency of Sweden [FHM (2020-
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21)], and making these records public, have made it tractable for others–the
author of this thesis included–to perform nowcasting for Swedish COVID-19
indicators (e.g. fatalities).

3.3.1 Sampling step

The sampling step is, from our point of view, somewhat of a “black-box”, albeit
slightly greyshly tinted, since we are able to extrapolate some important infor-
mation from the code. In particular, it is apparent that Altmejd et al. (2021b)
take into account the effect of the weekday of the reporting day, and whether or
not this day is a public holiday in Sweden. Non-reporting days in the Swedish
data consist of certain weekdays, e.g. Saturdays, Sundays and Mondays since
September 14, 2020 (cf. Tab. 2), and public holidays. As such, the effect of
certain days being non-reporting days are taken into account by the method.

It appears as though the method of Altmejd et al. (2021b) samples for the
number of daily fatality counts NT−d for each delay d ∈ {0, 1, . . . , 25} separately.
The sampling step consists of two sub-steps. First, a generalized additive model
is fitted to past, fully observed, data. Since a maximum delay of D = 25 is
assumed, data are fully observed for t < T − 25. Let Nt(t+ d) =

∑d
d′=0 ntd (as

per eq. (1)) denote the number of fatalities occurred on day t and reported with
a delay less than or equal to d. The model assumes that

Nt(t+ d) ∼ Binom
(
Nt, logit−1(ftd)

)
,

where

ftd = s(t) + β0I{t+d is a public holiday} +

7∑
i=1

βiI{t+d is the ith day of the week}, (13)

and s(t) is a spline based on the thin plate regression basis. (See e.g. Wolf (2017)
ch. 5.5.1 pgs. 215-221 for a treatise on thin plate regression splines.) Important
to note in (13) is that covariate effects are put in place as to account for the
reporting structure of Swedish data.

Let Nt(T ) = Nt(T − d + d) denoting the number of fatalities occurred on
day t and reported before time T . The total fatality counts NT−d are sampled
from

P(NT−d = N |Nt(T ), ftd) ∝ P(Nt(T ) = Nt(T ) |N, ftd) for N ∈ {0, 1, . . . , 200},

where the right hand side is the probability distribution of a binomial distri-
bution with size and probability parameters N and logit−1(ftd), respectively.
Note that the probability of the event {NT−d < Nt(T )} is zero. Also, no moti-
vation for the upper bound of 200 put on NT−d is given, but it appears to be a
compromise in order to obtain a tractable grid of values to consider for NT−d.
For comparison, the highest number of COVID-19 related fatalities recorded in
Sweden, as of May 7, 2021, was 121 on December 28, 2020.

For each NT−d, d ∈ {0, 1, . . . , 25}, 2000 samples are produced.
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3.3.2 Smoothing step

As mentioned in the preamble of this section, the predictive distribution pro-
duced by the samples is too variable in relation to the retrospectively observed
true fatality counts. In particular, it produces too wide prediction intervals,
and the day-to-day variation is also much larger than what is observed in data.
For this reason, Altmejd et al. (2021b) apply a smoother; the basic assumption
of which appears to be that the square root fatality counts

√
Nt are realiza-

tions of a Gaussian process. The process is defined in terms of its covariance
structure, which in turn is defined in terms of the Matérn covariance function
Cν(|ti − tj |;σ2, ρ), where |ti − tj | is the temporal distance between two fatal-
ity days. Since fatalities may occur on every day, this is simply the absolute
difference of indices (see eq. (14) below). The Matérn covariance function is de-
fined in terms of special functions–particularly the Gamma and modified Bessel
function–whence we refrain from defining it as to avoid a lengthy definition for a
function we use only once. We use a parametrization consistent with Wikipedia
(2021).

The (i, j)th element of the covariance matrix is given by

Σij = Cν(|i− j|;σ2, ρ) + σ̃2I{i=j}, (14)

where σ̃2 > 0 is a noise term added on the diagonal of the matrix. The parame-
ters ν, σ2, ρ and σ̃2 are estimated using maximum likelihood and fully observed
past data since April 2, 2020 (indexed by t = 1 below). The likelihood is defined
by (√

N1,
√
N2, . . . ,

√
NT−26

)T
∼ N

(
0,Σ(0)

)
,

where Σ(0) is the T − 26 × T − 26 covariance matrix corresponding to times
t = 1, 2, . . . , T − 26.

From the sampling step of section 3.3.1, the median and 95% equal-tailed

prediction intervals are kept. Let q
(t)
α denote the αth quantile of the samples

obtained for Nt. The smoothing step takes as its input a location and a scale
parameter defined in terms of the aforementioned quantiles by

y such that yi =

√
q
(T−i+1)
0.5

and

s2 such that s2i =


√
q
(T−i+1)
0.975 + 1−

√
q
(T−i+1)
0.025 + 1

2 · 1.96

2

.

With Σ denoting the 26 × 26 covariance matrix corresponding to times t =
T − 25, T − 24, . . . , T , the smoothing step concludes with producing

µ̂ = Σ
(
Σ + diag(s2)

)−1
y

Σ̂ = Σ−Σ
(
Σ + diag(s2)

)−1
Σ. (15)

The parameters σ̂ and Σ̂ represent the Gaussian process on which the squared
root of the mean fatality counts are defined.
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3.3.3 Deduction of predictive distribution

In this subsection, we briefly explain how we are able to obtain an approximate
version of the predictive distribution for the fatality counts Nt, consistent with
the code of Altmejd et al. (2021b) and corresponding public version of Altmejd
et al. (2021a).

For each “prediction day”, Altmejd et al. (2021b) provide point-estimates
and upper and lower prediction interval limits for their predictive distribution.

For now, assume the prediction day T to be fixed. Let Nt(T ) =
∑min{T−t,D}
d=0 ntd

denote the number of fatalities occurred on day t and reported to us before
now. The statistics provided are obtained from the parameters (µ̂, Σ̂) defined
in equation (15) by

PEt =
⌊
µ̂2
t + 0.5

⌋
(16)

LPIt =

⌊(
max

{
µ̂t − 2 · Σ̂tt,

√
Nt(T )

})2⌋
(17)

UPIt =
⌈
(µ̂t + 2 · Σ̂tt)2

⌉
(18)

We take this to mean that the predictive distribution is such that the proba-
bility density at n, say, should be evaluated as the probability of the interval√
n± 0.5 in the normal distribution parametrized by µ̂t, Σ̂tt if n > Nt(T ), and

that, from (17), n < Nt(T ) should be assigned a probability mass of zero,
and–we take it–that Nt(T ) should be assigned the probability in the interval
(−∞,

√
Nt(T ) + 0.5).

An approximate value for µ̂t is obtained simply by ignoring the rounding
of equation (16), i.e. such that µ̂t ≈

√
PEt. Using this approximate value, we

obtain an approximate value for Σ̂tt by reversing equations (17) and (18)

Σ̂tt ≈

{
min{(

√
UPIt − µ̂t)/2, (µ̂t −

√
LPIt)/2} if LPIt < Nt(T )√

UPIt − µ̂t)/2 otherwise.
(19)

As such, we obtain Σ̂tt simply by considering the distance between the point
estimate PEt to the limits of the prediction interval, LPIt and UPIt. Since
the floor and ceiling functions, respectively, are used in the definitions of these
limits (eqs. (17), (18)), this integer distance is greater than the corresponding
real distance, whence we take the minimum of the two distances in the first
case of equation 19. Also, when LPIt = Nt(T ), the lower limit is due to the
truncation induced by the observed fatality count, whence we use only the upper
prediction interval limit in this case.

We note that it is possible to obtain a grid of values for µ̂ and Σ̂ which satisfy
equations (15)-(18), thus quantifying the approximate nature of our deduction,
but since the error is rather small, we deem it unnecessary.

3.4 Other points of view

In this section, we give an overview of some other points of views on nowcasting,
which also stem from the structure of data as defined in section 3.1.1. First,
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in section 3.4.1, we present the chain ladder method, which is an ubiquity of
actuarial sciences in estimating the monetary reserve necessary to cover the costs
of occurred but not yet reported insurance claims. The number of insurance
claims follow exactly the same data structure as the daily fatality counts, while
the claims costs are generally assumed to have positive, real support. In section
3.4.2, we present the novel point of view posed by Altmejd et al. (2020), that
nowcasting of count data subject to reporting delay in discrete time can be
described as a special case of the removal method for estimating population
sizes from ecological statistics. We note, however, that we arrive at a likelihood
identical to that of Lawless (1994), whose treatise is epidemiological.

3.4.1 Chain ladder approach

The chain-ladder method is an approach to nowcasting that originates from
actuarial sciences, where it is used to estimate the cost of insurance claims for
accidents, or some other insurance claimable events, that have occurred but not
yet been reported. The necessity for nowcasting in this case stems for the fact
that insurance companies are obliged to keep reserves as to be able to make
payouts once the claims are reported. We use the terminology of Mack (1993),
whom we follow in this subsection, in referring to the time of an accident as
its accident year and the time of its reporting as its development year. These
are the analogues of the fatality day t and reporting delay d − 1 in days. The
“minus one” is due to one using ordinal numbers in referring to development
years, e.g. an accident reported in the same year of its occurrence is reported
during its first development year, while having a reporting delay of zero years.
The essential temporal structure of the data is hence identical to that of the
reporting triangle in Table 3, although its entries may be different; This data
structure is referred to as the “chain ladder”, supposedly since each columns
has the appearance of a chain ladder.

Let t = x, x + 1, . . . , T denote the accident year, where x refers to some
origin year and T is the current year, and let d = 0, 1, . . . , D denote the (d+1)th

development year. For instance, an accident occurred during 2014 and reported
during 2016 has a reporting delay of d = 2 years, and hence it is reported
during its third development year. The index (D + 1) corresponds to the the
latest available development year, or, as previously, D fixates a maximum delay.

But how are the entries in the chain ladder different from those in the re-
porting triangle? First, in the basic chain ladder method each entry represents
the cumulative claims costs of accidents occurred during year t and reported by
the (d + 1)th development year, which is a positive real value, i.e. it is not an
integer count. Second, the cumulatives of accident year t and development year
d+ 1 are entered for each instance of (t, d) rather than the claims costs specific
for accident year t and development year t. The former is analogous to Nt(t+d)
from equation (1) with respect to t and d, while the latter is analogous to ntd.

Let Ct(t+d) denote the total claims cost for accidents occurred during year t
and reported before or during development year d+1. The defining assumption
of the chain ladder method is that the mean cumulative claims cost for accident
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year t as reported by development year d + 1, conditioned on the past reports
for accident year t, is given by

E[Ct(t+ d) |Ct(t+ d− 1), Ct(t+ d− 2), . . . , Ct(t)] = fd−1E[Ct(t+ d− 1)] ,
(20)

where fd−1 > 1 is referred to as the development factor. The terminology of
development hence stem from the fact that the cumulative claims costs for a
certain accident year “develop” as more accidents are reported each development
year. From this assumption, point estimates for f0, f1, . . . , fD−1 are tractable,
and given by Mack (1993).

The total claims costs for accidents occurred during year t would hence be
written as Ct(t+D), and the task of the actuary is to estimate these quantities
for t = x, x + 1, . . . , T . Their tool for doing so are the estimated development
factors. At time T , Ct(s) is known for t ≤ s ≤ T , and–in particular–we know
Ct(T ) for t ≤ T . By using the law of total expectation, it can be shown that
equation (20) implies that

E[Ct(t+D) |Ct(T ), Ct(T − 1), . . . , Ct(t)] = fd−1fd−2 . . . fd−(T−t)E[Ct(T )] ,
(21)

which corresponds to a special case of Theorem 1 of Mack (1993). The condi-
tioning in the expectation on the left hand side of equation (21) corresponds to
what have been observed from accident year t until the current year T . Replac-
ing fi with estimates f̂i for i = d− 1, . . . , d− (T − t) yields an estimate for the
total claims cost for accident year t, Ĉt(t+D), say.

But equations (20) and (21) only provide point estimates for the total claims
costs. By including an assumption relating to the conditional variance similar
to the assumption on the mean (eq. (20)), and assuming that the total claims
cost from different accident years are independent of one another, Mack (1993)
derive estimates for the variance of the estimated total claims cost Ĉt(t+D).

While Mack (1993) is directly concerned with the claims costs, Mikosch
(2009) (ch. 11 sec. 2, pgs. 365-381) provide an approach wherein the number of
claims are instead considered, in parallel to the their costs. The assumptions
are however identical–replacing the letter C with the letter N–and the approach
for finding estimates for the development factors and total number of claims is
also identical, whence the consequent estimate N̂t(t + D), say, would take the
form of a real positive number, and strictly represent the mean number of claims
eventually reported.

3.4.2 Removal method and multinomial mixture approach

In this section, we follow section 2 of Altmejd et al. (2020) in linking epidemio-
logical nowcasting with the removal method, as it was defined by Pollock (1991).
We note–however–that the link posed by Altmejd et al. (2020) is rather tenuous
in that the traditional solutions to the removal method are not immediately
translatable to the epidemiological nowcasting problem; The problem formula-
tion will also need some modification. We deem, however, the novelty of the
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link worthy of reiteration. In the end of this subsection, we make some com-
ments on the more classical solutions to the removal method problem, as they
are summarised by Pollock (1991).

Recall that the discrete hazard function is defined as

htd = P(delay = d |delay ≥ d, fatality on day t) ,

and that the reporting delay in terms of ptd can be obtained from htd using the
iterative scheme laid out in equation (4) for t = 1, 2, . . . and d = 0, 1, 2, . . . , D.

Now let, for a moment, Nt represent the number of specimens of some species
within a confined geographical space not subject to any migration, births or
deaths, i.e. Nt, once realized, is a fixed count (which, obviously, is consistent
with its interpretation as the number of fatalities at day t). The index t bears no
meaning temporally in this setting; Let it denote e.g. the index of the geograph-
ical space in question. The removal method is a capture-retain procedure (as
opposed to capture-recapture procedures), in which on day d = 0, one catches
nt0 specimens out of the Nt available ones; on day d = 1, one catches nt1 speci-
mens from the Nt−nt0 remaining ones, and so fourth. In general, on day d one
catches ntd specimens from a remaining population of Nt −

∑d−1
d′=0 ntd′ . Conse-

quently, if one denotes the probability of capture on day d by htd this produces
a binomial likelihood:

nt0 |Nt, ht0 ∼ Binom(Nt, ht0)

nt1 |Nt, ht1, nt0 ∼ Binom(Nt − nt0, ht1)

...

ntd |Nt, htd, nt0, nt1, . . . , nt,d−1 ∼ Binom

(
Nt −

d−1∑
d′=0

ntd′ , htd

)
(22)

At this point, the basic removal method diverges from its basic epidemiolog-
ical counterpart, for one basic reason: In epidemiology, one generally assumes
that the true number of fatalities will be eventually (albeit approximately) ob-
served in full, and the reason for nowcasting is that one needs timely estimates
of the recent number of fatalities. But for an ecologist it might suffice with a
handful of samples constituting a small proportion of the total population. That
is, a “final day” D, when all remaining specimens are assumed to be caught,
does not exist, thus yielding the maximum delay of epidemiological nowcasting
not generally translatable. Thus we revert to the epidemiological jargon.

Assuming a maximum delay to be existent, we might continue (22) until its
final entry (note that htD = 1):

...

ntD |Nt, nt0, nt1, . . . , nt,D−1 = Nt −
D−1∑
d′=0

ntd′ w.p.1. (23)
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Putting (22) and (23) together yields a multinomial joint likelihood

(nt0, nt1, . . . , nt,D−1, nt,D)T |Nt, {htd, d = 0, 1, . . . , D − 1}
∼ Multinom

(
Nt, (pt0, pt1, . . . , pt,D−1, 1)T

)
, (24)

which is the basis for Höhle and an der Heiden (2014), and to which, together
with a (e.g. Poisson or negative binomial) distribution assumption on Nt, Stoner
and Economou (2019) refer to as the “multinomial mixture approach” to now-
casting. Lawless (1994) further lays out a frequentist framework to estimating
ptd, and thence estimate Nt, under the censoring induced by the structure of
data (see sec. 3.1.1), but we refrain from recapitulating his results, instead elect-
ing to mention ecological methods. Lawless (1994) also provides asymptotic
results as to the variance of his estimators valid for large Nt.

Pollock (1991) mentions three methods from ecology used to solve the prob-
lem. His preference is the numerical estimation of maximum likelihood esti-
mates, though, whence two methods remain. These are generally not (imme-
diately) applicable to epidemiological nowcasting. The simplest one relies on
only obtaining two samples, nt0 and nt1, say, and assuming the probability of
capture to be constant, i.e. the discrete hazard rate is constant h = ht0 = ht1.
Due to this assumption, a point estimate for Nt can be obtained by solving
h = nt0/Nt = nt1/(Nt − nt0), which yields N̂t = n2t0/(nt0 − nt1). The glaring
weakness of this method is that it fails whenever nt1 ≥ nt0, which–of course–is
a possibility when nt0 and nt1 are stochastic. The third method also assumes
a constant capture probability / discrete hazard rate. Let Nt(t + d − 1) =∑d−1
d′=0 ntd denote the number of specimens caught before day d. Noting that

the mean of ntd is a linear function of Nt(t+d−1) with an intercept depending
on Nt, formally

E[ntd |nt0, nt1, . . . , nt,d−1] = h (Nt −Nt(t+ d− 1)) ,

with Nt(t− 1) = 0, and Nt can be obtained by performing linear regression for
ntd as a function of Nt(t+d− 1). This would however also only provide a point
estimate for Nt. Pollock (1991) cite the simplicity of this method as it strength,
but recommend a maximum likelihood approach.
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4 Evaluation

The aim of this thesis is the evaluation of nowcasting methods, or–more specifi-
cally–comparatively evaluating the predictive performance of different methods
when applied to Swedish fatality data. To do so, we use several metrics, which
are defined and briefly motivated in this section. The particular choice of metrics
were heavily influenced by the equivalent choices of Günther et al. (2020a), as
we use largely an identical set of evaluative metrics, but also note that e.g. Höhle
and an der Heiden (2014) and McGough et al. (2020) also use similar sets of
metrics in comparing the predictive performance of epidemiological nowcasting
methods. In particular, they make use of proper scoring rules. We devote section
4.1 to introducing three such rules, and also define what propriety refers to with
respect to a scoring rule. In section 4.2, we define the more self-explanatory
evaluation metrics of prediction error and relative error, as well as coverage and
width of 100 · (1− α)% prediction intervals. These do not, however, constitute
“scoring rules” in the sense defined in section 4.1, and for this reason we simply
refer to them as generic evaluation metrics.

Evaluation of any probabilistic nowcasting method, or of any probabilistic
forecast, relies on two things: First, we need a probability distribution quan-
tifying our uncertainty of the prediction. Second, we need the true value as it
realizes. In order to avoid confusion with quantities from section 3, we opt to
use a different notation in this section; This also allows us to drop the tempo-
ral subscript, and underlies the fact that the contents of this section are not
stemmed from the field of nowcasting.

With some minor modifications and additions, we follow the notation of
Czado et al. (2009), which is our primary source on proper scoring rules. Let
X denote a non-negative integer valued stochastic variable, and let x denote its
realization. Before knowing its realization, we produce a probabilistic forecast
of it quantified by the infinite length vector P , such that P(X ≤ i) = Pi for
i = 0, 1, 2, . . . . It will prove convenient to also define the infinite length vector
p by P(X = i) = pi for i = 0, 1, 2, . . . . Also, let x̂(P ) denote a point estimate for

X based on P , e.g. the mean or median, and let q
(P )
z denote the zth quantile of

P . Finally, let Q and q be the counterparts of P and p, but for a probabilistic
forecast that is (possibly) different from P .

We should also point out that we define the scoring rules and other evaluation
metrics in terms of a single instance of X, and correspondingly as argument
the single tuple (P , x). In implementation, however, we report “averages over
suitable sets of probabilistic forecasts” [Czado et al. (2009)], stemmed from the
full set of predictions we produce. We specify more precisely how this is done
in subsection 4.3, once we have introduced all the evaluation metrics. For the
reader’s convenience, we give a specific example here, though: In implementing
the model of Günther et al. (2020a) and the method of Altmejd et al. (2021b),
by their design we produce D = 35 and D = 25, respectively, probabilistic
forecasts corresponding to the random variables NT , NT−1, . . . , NT−D. But we
might be more interested in the latest, predictions, i.e. those for NT , . . . , NT−7,
since these are more informative with respect to the current trend. Hence, we
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might compute average scores for our predictions over NT , . . . , NT−7 in order to
comparatively assess the ability of the methods to predict recent fatality counts.

4.1 Scoring rules

A scoring rule is, paraphrasing the first paragraph of section 3 of Czado et al.
(2009), a function taking as its arguments a probabilistic forecast, i.e. a predic-
tive distribution, and its subsequent realized value, and returning a numerical
value, a “score”, that makes the predictive distribution comparable to alterna-
tive predictive distributions. We follow Czado et al. (2009) in “take[ing] scoring
rules to be negatively oriented penalties that a forecaster wishes to minimize”,
i.e. a lesser score is better.

Let S(P , x) generically denote a score assigned to P when x is the real-
ized value, and let S(P ,Q) = EQ[S(P , X)] denote its expected value when
the distribution of X is determined by Q. For the remainder of this section,
we let Q represent “the forecaster’s best judgement” [Czado et al. (2009)], or–
heuristically–the true distribution of X, were the task to guess its distribution.
A scoring rule is defined to be proper if

S(Q,Q) ≤ S(P ,Q), (25)

which corresponds to equation (4) of Czado et al. (2009). This means that,
on average, quoting Q will produce at least an as good score as quoting P ,
if S is proper and the distribution of X is determined by Q. In other words,
the forecaster is incentivized to quote the truest distribution, to the best of his
or her knowledge. A scoring rule is strictly proper if a strict inequality holds
for equation (25), meaning that the best predictive distribution is unique, i.e.
S(Q,Q) = S(P ,Q) only if Pi = Qi for all i ≥ 0.

A subtlety of probabilistic forecasting apparent from the careful wording of
Czado et al. (2009) of Q being “the forecasters best judgement” is that the
task of forecasting is not simply to guess the distribution of X, but to quantify
one’s own uncertainty with respect to the outcome of X, as indicated by past
experiences (i.e. data). Certainly, a source of this uncertainty is the innate
stochasticity of X, but it is not the only source, since data from which we
infer P are subject to stochasticity as well. Consequently, when we use the
heuristic of referring to Q as the “true” distribution X, we are referring to its
distribution from the forecaster’s point of view, as opposed to that of an entity
that impossibly knows the true randomness of future events.

As an example of an extreme case making the distinction less subtle, sup-
pose there are 101 different coins, which are flipped one after another. For the
forecaster, the coins are indistinguishable from one another. The first 100 coins
are unbiased, such that the probability of them turning up heads equals that
of them turning up tails. But the 101st coin is weighted such that it always
turns up heads. Having observed the first 100 coin flips turn up 50 heads and
50 tails in no particular order, what should our probabilistic forecast be? Since
the 101st coin is indistinguishable from the first 100 coins, it is arguable that the
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forecaster should quote P(heads) = 0.5, this this is their best judgement based
on data, even if P(heads) = 1 would produce a better score. Better yet would,
of course, be to realize that the first 100 coin flips contain no information as for
the outcome of the 101st coin flip, and this would be the realization of the entity
that knowns the true randomness of future events, but such an entity does not
generally exist.

4.1.1 Squared and absolute error score

We begin with a well-known and well-used scoring rule: the square error score.
It is defined by

SES(P , x) =
(
x− x̂(P )

)2
,

for a point estimate x̂(P ) based on P . The intuition behind this scoring rule
is very straight-forward: a prediction inducing a point estimate close to the
realized value is preferable. If the point estimate is taken to be the expected
value of X induced by P , i.e. x̂(P ) = EP [X], the squared error score is proper.
Suppose, as before, that Q is the best predictive distribution of X. Computing
the difference between the expected squared error score of P and Q under
probability law Q yields, after some algebra,

SES(P ,Q)− SES(Q,Q) = EQ[(X − EP [X])2]− EQ[(X − EQ[X])2]

= EQ[X2]− 2EQ[X]EP [X] + EP [X]2

− EQ[X2] + 2EQ[X]EQ[X]− EQ[X]2

= EQ[X]2 + EP [X]2 − 2EQ[X]EP [X]

= (EQ[X]− EP [X])
2 ≥ 0, (26)

from which we see that the squared error score satisfies equation (25), when the
point estimate is taken to be the mean. We note, however, that the difference in
the last line of (26) does not imply a strict inequality, since there exist P and Q
such that EQ[X] = EP [X] where Pi 6= Qi for some i ∈ {0, 1, . . . }. For example,
p = (1/3, 1/3, 1/3, 0, . . . )T produces a mean of 1, as does q = (0, 1, 0, 0, . . . )T.
Hence, the squared error score, while being proper, is not strictly proper.

Another well-known and well-used scoring rule is the absolute error score,
defined as the square root of the squared error score

AES(P , x) =
√

SES(P , x) =
∣∣∣x− x̂(P )

∣∣∣ .
The advantage of the absolute error score is that it conveys the order of the
error.

4.1.2 Log-score

A score that is always strictly proper is the log-score, defined by

logS(P , x) =

{
− log px if px > 0

−∞ if px = 0.
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As is pointed out by Höhle and an der Heiden (2014), this score is “very
intuitive–the higher the probability of the [predictive] distribution for the [re-
alized] value the better”. The fact that logS(P , x) = ∞ if px = 0 is somewhat
problematic, though, since we will evaluate the average scores over several in-
stances of X. If the predictive distribution assigns a probability of zero for
either of these instances, the corresponding log-score will be evaluated to infin-
ity, whence the average score will also be evaluated to infinity. This problem is
exaggerated when our knowledge of the predictive distribution is obtained from
sampling (see sec. 5.1), whereby no samples may be obtained for certain low-
probability outcomes, yielding an erroneously exact zero probability for those
events. This might be construed as a weakness of the log-score.

In Figure 8 we see an illustration of the log-score when applied to a predic-
tive distribution corresponding to a negative binomial distribution with mean
parameter µ = 12 and dispersion parameter φ = 25, and a realized value of
x = 13. The simplicity of the log score is visually apparent, as well.

In ensuring the strict propriety of the log-score, we provide a link to the
KullbackLeibler divergence DKL(Q ‖P ) between two probability distributions:

logS(P ,Q)− logS(Q,Q) = EQ[− log pX ]− EQ[− log qX ]

= EQ[log (qX/pX)]

= DKL(Q ‖P ) ≥ 0.

The Kullenback-Leibler divergence equals zero if and only if P = Q (e.g. thm.
2.6.3 of Cover and Thomas (2006), p. 28 ), whence the log-score is indeed strictly
proper.

4.1.3 Ranked probability score

Lastly, we introduce the ranked probability score. According to Czado et al.
(2009), this score is also strictly proper. It is defined by

RPS(P , x) =

∞∑
i=0

(
Pi − I{x≤i}

)2
. (27)

In contrast to the log-score, the ranked probability score takes into account
the entire probability distribution P , not just its value at its realized value.
Also, it does not evaluate to infinity, whence averaging over several instances
of predicted quantities does not suffer as much from one of them being partic-
ularly inaccurate. In the bottom right panel of Figure 8, we see an illustra-
tion of the contributions to the ranked probability score from each instance of
i ∈ {0, 1, . . . , 30}, transformed by the squared root, i.e.

∣∣Pi − I{x≤i}
∣∣. Clearly, a

sharper predictive distribution, yielding a steeper slope of the cumulative den-
sity function, would produce lesser individual contributions to the sum, and
thus producing a better score; As would having the realized value fall closer
to the median. Czado et al. (2009) note that the ranked probability score is a
generalization of the absolute error: if the predictive distribution were a point
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Figure 8: Top: Probability mass function and cumulative density function of
a NegBin(µ = 12, φ = 25)-distributed random variable (parametrized as in eq.
(12)), an indicated realization of x = 13 (red). Bottom: Log-score and square
root contributions to the ranked probability score induced by such a predictive
distribution and realized value (blue).

estimate, i.e. Pk = 1 for some k ∈ {0, 1, . . . }, then the contributions to the
summand of equation (27) are 1 for the |k − x| instances between k and x, and
zero otherwise.

4.2 Other evaluative metrics

We use four other metrics, which do not constitute proper scoring rules, but are
yet informative. We use a similar notational convention in that metric(P , x)
takes as its arguments a predictive distribution P and a realized value x, except
for the width of prediction intervals, which does not require a realized value.

4.2.1 Error and relative error

In this sections, we define two metrics measuring the divergence of a point
estimate x̂(P ) based on the predictive distribution P , e.g. its median. We define
the simple error by

err(P , x) = x̂(P ) − x,

which should not be confused with the absolute error,
∣∣x̂(P ) − x

∣∣ = |err(P , x)|.
The latter is a scoring rule in that it has the property that lesser values are
preferable (by our definition of scoring rules in section 4.1), while the former
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is not. Rather, a simple error close to zero is preferable. The motivation for
considering the simple error is that it may indicate whether the predictive distri-
bution is positively or negatively biased. For instance, if the average simple error
is greater that the realized value for several instances of its implementation, one
might suspect a positive bias in the predictive distribution.

Another measure of the divergence of the point estimate is the relative error,
defined by.

relErr(P , x) = x̂(P )/x− 1.

The main advantage of the relative error as opposed to the simple error is that
it is not dependent on the order of X, which may have an overly great influence
on the simple error when averaging over several instances of X if either of these
are of a significantly higher order than other instances.

4.2.2 Width and coverage of prediciton intervals

Another non-score metric is the coverage of 100·(1−α)% equal-tailed prediction
intervals. Following the convention used throughout this section of defining
evaluation metrics using a single instance of the predictive distribution P and
its realized value x, we define the coverage for a single instance as well. Thus,

coverageα(P , x) = I{
q
(P )

α/2
≤ x≤ q(P )

1−α/2

}.
is equal to 1 if x is contained by the 100 · (1 − α)% equal-tailed prediction
interval induced by P . This metric is however rather meaningless when applied
to a single instance. When averaged over several instances of X, however, it
carries meaning: The average coverage of a 100 · (1−α)% should, obviously, be
close to (1− α).

The last evaluation metric we use is only useful in conjunction with the
average coverage, the width of equal-tailed prediction intervals, defined by

widthα(P ) = q
(P )
1−α/2 − q

(P )
α/2.

Clearly, one would prefer a narrow width, but only while keeping an average
coverage close to (1 − α). In particular, the width does not take into account
the realized value.

4.3 Practical implementation of evaluation

As mentioned in the preamble of this section, in practice, we evaluate the
probabilistic forecasts of the different nowcasting methods using average scores
over several instances of predictive distributions and realized values. Let P =
{P (1),P (2), . . . ,P (J)} denote a set of probabilistic forecasts for the random
variables X(1), X(2), . . . , X(J), and suppose these random variables are known
to in retrospect have realized as X = {x(1), x(2), . . . , x(J)}. The order of these

sequences are not generally important, but it is important to distinguish P (i)

to be the forecast of X(i), which has realized as x(i) for all i ∈ {1, 2, . . . , J}.
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As such, we have J probabilistic forecasts for J realized values. We define
the average score of a scoring rule, or other evaluative metric, S over a subset
J ⊆ {1, 2, . . . , J} of the available forecast-realized value pairs by

avgSJ (P,X ) =
1

|J |
∑
i∈J

S(P (i), x(i)) (28)

where |J | is the size of the subset J .
We may compute several average scores for (P,X ) over different subsets

J . For instance, in section 5, we choose J such that it includes forecasts for
NT−d for specific delays d ≥ 1, such that we may investigate whether certain
nowcasting methods perform better than others in predicting the number of
daily fatalities for recent days relative to now. For example, it is preferable to
produce more accurate nowcasts for recent days than for more past days. If we
were to only consider the average score over J = {1, 2, . . . , J}, such detailed
advantages in performance would be obscured by the averaging. In fact, in
section 5 we do not even present the average scores over all instances for which
we produce nowcasts, since fatality counts NT−d for days far in the past are,
firstly, more completely reported and, second, less informative with respect to
the current trend in fatality counts.
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5 Results

In this section, we perform a comparative analysis of the model of Günther
et al. (2020a) and the method of Altmejd et al. (2021b) from sections 3.2 and
3.3, respectively. We implement the nowcasting methods for a “now”, denoted
by T in section 3, consisting of reporting days between February 2 and March
2, 2021. We do not implement the nowcasting methods on non-reporting days,
since, by definition, no new data are available on these days. This results in 17
instances of T .

Since the discrete hazard regression element of the model of Günther et al.
(2020a) allows us to easily adapt some variations of it, we do so. In Table 5,
we give names to, and briefly describe, the methods we implement; The latter
three are variations of the model of Günther et al. (2020a). First, however, we
make a slight modification to all of these variations, related to the Public Health
Agency’s publication pattern during February 2 until March 2, 2020.

By the definition of the Public Health Agency’s current publication schedule
outlined in Table 2, fatalities are not reported with a delay of zero since August
11. In other words, pt0 = ht0 = 0 for t ≥ 2020-08-11. We choose to incorporate
this domain knowledge when implementing the model of Günther et al. (2020a).
Formally, we may do so by modifying the definition of Rtd given by equation
(6) such that it induces a zero probability for zero delay:

Rtd = I{d>0} · I{t+d is a reporting day}. (29)

In practice, however, we simply removed the first column of the reporting trian-
gle (cf. Tab. 4), as well as the corresponding discrete hazard regression intercept,
γ0. This is equivalent to defining Rtd by equation (29).

• Altmejd refers to the method of Altmejd et al. (2021b), as extrapolated
from their publicly available data (see sec. 3.3.3).

• Günther main refers to the model of Günther et al. (2020a) when not
including a covariate effect corresponding to the weekday of the reporting
day. This corresponds to simply letting gtd = γd in equation (5).

• Günther weekday refers to the model of Günther et al. (2020a) when
including a covariate effect for the weekday of the reporting day, wherein
γd is defied by equation (8).

• Günther näıve refers to a näıve implementation of the model of Günther
et al. (2020a), where we do not take into account that certain days are
not weekdays. This corresponds to letting Rtd = 1 for all d > 0. As such,
we still include the domain knowledge of zero day delay reports being
impossible.

Table 5: Names and descriptions of the implemented methods.

38



5.1 Implementation

The variations of the model of Günther et al. (2020a) were implemented using
Stan [Stan Development Team (2019a)] using the RStan interface [Stan Devel-
opment Team (2019b)] for the R programming language [R Core Team (2021)].
All computations, and production of figures and (some) tables were done using
the R programming language.

Stan is a programming language that implements a Markov chain Monte
Carlo posterior sampler for Bayesian inference. In implementing Günther et al.
(2020a), for each instance of T , we run 4 chains for 3 500 iterations each, where
the samples from the first 1000 iterations of each chain are discarded as burn-
ins. Hence, we produce 10 000 samples for each instance of T . Each sample
consists of a set of parameters, and a set of predicted fatality counts {ntd, t <
T, 1 ≤ d ≤ D s.t. t+ d > T}, drawn form the predictive distribution defined by
the parameter set and likelihood (eq. (11)). The syntax of Stan produces these
fatality counts by pseudo-random number generation.

5.2 Main comparative results

In this section, we compare the method of Altmejd et al. (2021b) presented in
section 3.3 with the variations of Günther et al. (2020a) presented in section
3.2; the variations being defined in Table 5. In particular, we present average
scoring rules computed over suitable instances of probabilistic nowcasts, and
determine which, if any, of the methods outperform the others. We will see that
the Günther Main and Weekday methods outperform Altmejd, which in turn
outperforms Günther Näıve.

5.2.1 Overview

Before delving into these main results, we presents some more general illustrative
results with respect to the actual nowcasts. As was illustrated in Figure 1 in
section 1, the necessity of nowcasting stems from the fact that the observed daily
fatality counts at a time when the pandemic is ongoing understates the true
daily fatality counts, due to a reporting delay, and the purpose of nowcasting
is to provide a fatality curve that is closer to reality. In Figure 9, we illustrate
the Altmejd and Günther Main nowcasting methods implemented for “now”
being either February 2, 10, 18 or 26 in 2021. We see that, for all these dates,
the nowcasts perform rather similarly with respect to the median estimate, but
that the Altmejd method has a narrower 95% prediction intervals. We also see
that the nowcasts seem to manage rather well since the true number of fatalities
generally fall within the 95% confidence intervals. We note, however, that this is
indistinguishable for longer delays, since the prediction intervals are very narrow
there.

Figure 9 only provides glimpses of the nowcasts, however. To illustrate the
outcome of all the 17 considered instances of T , we turn to Figure 10. In this
figure, instead of illustrating the entire sequence of predicted fatality counts for
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each T , i.e. NT−D, NT−D+1, . . . , NT−1, we instead consider only four instances
of this sequence for each T , namely NT−1, NT−4, NT−7, NT−14. That is, for each
of the 17 instances of T , we look at the predicted number of fatalities 1, 4, 7
and 14 days before T . Included are again 95% equal-tailed prediction intervals,
indicated by error bars, the observed number of fatalities as reported by day T
indicated by crosses ×, and the retrospective true number of fatalities indicated
by a dotted line. Our conclusion from looking at Figure 9 that the Altmejd
method produce narrower prediction intervals is again apparent in Figure 10,
but for a delay of 14 days, or even 7 days, we see less of a difference in the width
of the prediction intervals.

We excluded the Günther Weekday model from Figure 9 and Figure 10,
since it produces an almost identical median of the nowcasting distribution,
and almost identical prediction intervals. We shall see in section 5.2.2 that the
Günther Weekday model produces almost identical values to Günther Main in
all evaluative measures that we consider in this thesis. Also, the Günther Näıve
model produces very wide prediction intervals, obscuring the difference between
the Altmejd and Günther Main models, whence it was also excluded from Figure
9 and Figure 10.

5.2.2 Summary results of evaluation

Now, let us turn to our main results. We compute average scores, simple and
relative errors, and coverage and width of 95%, 80% and 50% equal-tailed pre-
diction intervals for three subsets of the predictive distributions for the fatality
counts produced by the nowcasts. For each instance of T , these subsets can be
written as {NT−1, NT−2, . . . , NT−δ} where δ ∈ {7, 14, 21}. In other words, we
compute the average when including predictions made one, two and three weeks
into the past relative to T . In general, we are more interested in more recent
fatality counts, since they serve as an indication of the current trend in the daily
number of fatalities. Also, as is seen in Figure 9 and Figure 10, predictions made
for dates further back in time relative to now are less uncertain, since a greater
proportions of fatalities occurred then have already been reported.

The results relating to the average scores as well as simple and relative errors
are presented in Table 6.

One may immediately be struck by the fact that the average log-scores eval-
uate to infinity for all models when including predictions from at least 14 days in
the past. The reason for this is in fact rather straight-forward, once one recalls
the peculiarity of the Swedish data presented in section 2 that fatalities may be
de-classified as such. We made no attempts in section 3.2 in accounting for this,
nor do Altmejd et al. (2021b), but Altmejd et al. (2020) do point out that it
might be reasonable to do so. At any case, both methods yield a lower bound
for the predicted fatality count on day t, corresponding to the observed fatality
count on day T , since, according to the models, the eventually observed num-
ber of fatalities on day t can only be greater than the number observed on day
T . Thus, if sufficiently many de-classifications occur such that the eventually
observed number of fatalities on day t is less than the number observed on day
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Figure 9: Nowcasts for the Altmejd and Günther Main for four different in-
stances of T . The coloured lines correspond to the median of the predictive
distribution, and the filled ribbons correspond to 95% equal-tail prediction in-
tervals. The observed number of fatalities observed on day T is indicated by a
black solid line, whereas the retrospective true number is indicated by a dotted
line (using data as of May 7, 2021).

T , the probability of the realized value is, by definition, zero, whence the log-
score evaluates to infinity. While the instances of observable de-classifications
are rather rare (cf. Fig. 3), it suffices that only one of the instances of T include
a de-classification as to induce the average score to evaluate to infinity. We
mention finally that, since we defined ntd ≥ 0 in section 3.1, even if we observe
a de-classification in the “raw” data, we do not incorporate this in the observed
fatality count.

The other evaluation metrics do not suffer from the scourge of de-classifications,
producing comparable numbers for all instances of model and δ. The squared
error score was computed using two different point estimates, while the abso-
lute, simple and relative errors were computed using only the median point
estimate. We see that the Günther Main and Weekday models produce very
similar results, which are in turn better than those produced by Altmejd, expect
for the relative error, where all three methods perform similarly. They perform
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Figure 10: Nowcasts for NT−d, where T is varied over reporting days between
2 February and 2 March, 2020, for d ∈ {1, 4, 7, 14}. The retrospective true
number of fatalities is indicated by a dotted line (using data as of May 7, 2020),
and the observed count for each T are indicated by ×.
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Model d ≤ logS RPS SES1 SES2 AES2 err2 relErr2

Altmejd 7 4.09 6.97 151.77 146.37 12.10 8.02 0.25
14 ∞ 6.46 123.30 119.65 10.94 7.71 0.21
21 ∞ 4.81 85.37 82.88 9.10 5.57 0.15

G. Main 7 3.61 5.67 124.46 107.34 10.36 6.88 0.25
14 ∞ 5.07 93.32 80.74 8.99 6.17 0.19
21 ∞ 3.89 65.32 56.62 7.52 4.62 0.14

G. Weekday 7 3.58 5.60 121.71 104.42 10.22 6.79 0.24
14 ∞ 5.01 91.61 79.09 8.89 6.11 0.19
21 ∞ 3.85 64.19 55.45 7.45 4.56 0.14

G. Näıve 7 4.23 13.98 914.18 567.96 23.83 20.07 0.66
14 ∞ 11.76 661.81 406.97 20.17 16.55 0.49
21 ∞ 8.94 461.59 283.10 16.83 12.52 0.35

11 using the mean of the predictive distribution

12 using the median of the prediction distribution

Table 6: Average scores, error and relative error for the nowcasting methods,
applied for T varying over reporting days in the period from February 2 until
March 2, 2021. For each instance of T , averages are computed over t ∈ {T −
1, T−2, . . . , T−δ}, where δ ∈ {7, 14, 21}, indicated by the second column above.

Model d ≤ Coverage Width
95% 80% 50% 95% 80% 50%

Altmejd 7 0.76 0.55 0.32 27.61 17.75 9.42
14 0.69 0.46 0.25 22.93 14.83 7.85
21 0.75 0.55 0.36 17.55 11.45 6.16

Günther Main 7 0.95 0.78 0.50 39.62 25.53 13.37
14 0.87 0.66 0.42 31.22 20.15 10.56
21 0.88 0.69 0.45 23.45 15.18 7.95

Günther Weekday 7 0.95 0.79 0.48 39.59 25.56 13.32
14 0.87 0.67 0.40 31.22 20.15 10.53
21 0.87 0.70 0.43 23.44 15.18 7.93

Günther Näıve 7 0.99 0.77 0.35 116.63 70.90 35.89
14 0.91 0.66 0.30 94.37 57.02 28.71
21 0.90 0.67 0.33 71.30 42.93 21.58

Table 7: Coverage and average width of 50%, 80% and 95% equal-tailed predic-
tion intervals for the nowcasting methods, applied for T varying over reporting
days in the period from February 2 until March 2, 2021. For each instance of T ,
averages are computed over t ∈ {T − 1, T − 2, . . . , T − δ}, where δ ∈ {7, 14, 21},
indicated by the second column above.
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similarly for the relative error, because the relative error of the Altmejd method
is less for more recent instances of T , and greater for earlier instances, whereas
the relative error of the Günther Main and Weekday methods is more constant
for all instances of T . This can be seen in Figure 12, and we provide more detail
relating to this in section 5.2.3.

Notably, all methods seem to have a bias toward greater fatality counts, since
the simple and relative errors are greater than zero. This may be because the
data used for the likelihood encompass the end-of-year holiday period, during
which the reporting was generally later (cf. Fig. 6 and 7), and having not taken
this into account yield the nowcasting models to expect late reporting also for
the predicted fatality counts.

It is immensely apparent that one should take into account that certain
days are not reporting days, since the Günther Näıve model performs worse by
any metric. In particular, since it assumes the by-definition-zero instances of
ntd for t + d being a non-reporting day to be zero due to randomness, it over-
estimates the variation of the data, and thereby produce very wide predictive
distributions for the fatality counts Nt. This is clearly seen in Table 7, where
the average width of the 50% prediction intervals of the Günther Näıve model
is greater than the average width of 95% prediction intervals of the Altmejd
method, which produces the narrowest prediction intervals. These turn out to
be too narrow, however, since their coverage is less than what is intended for all
instances of δ. The Günther models that take into account that there exist non-
reporting days perform remarkably well with respect to the coverage metric. In
particular, for δ = 7, they are almost spot-on. Averaging over longer delays,
i.e. for δ ∈ {14, 21}, produces slightly too narrow prediction intervals, but still
they are rather close to their intended coverage. Note that the Günther Näıve
model, while producing very wide 50% prediction intervals, does not manage
to have these encompass the realized value, with a coverage only barely above
0.30.

5.2.3 Detailed results of evaluation

The results of Table 6 and Table 7 are rather summary. Let us have a look at
the performance of the nowcasting methods when we average over more specific
subsets, in order to evaluate the performances of the nowcasting methods for
specific delays d ∈ {1, 2, . . . 35} and specific instances of today T varying over
reporting days from March 2 until February 2, 2021.

Let us begin with specific delays. In Figure 11 we average over the different
instances of T for each instance of delay d ∈ {1, 2, . . . , 35} separately. Doing so
allows us to evaluate the performance of the methods specific to how far back
in time the prediction is done. Note that the log-score evaluates to infinity for
delays equal to or greater than 14 days, due to the aforementioned reasons.
Unsurprisingly, all metrics, except the log-score, indicate that the models per-
form better for predictions of fatality counts further back in time, since a larger
proportion of these fatalities have already been reported.

There is however a noticeable upward “bump” around delays of d ∈ {9, 10, 11}.
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Figure 11: Log-score, ranked probability score, as well as absolute and rela-
tive error when using the median as point estimate for different models and
delays. For each instance of delay ∈ {1, 2, . . . , 35}, the score is computed for the
17 instances of “now” consisting of reporting days between 2 February and 2
March, 2021. Note that the “Günther Main” and “Günther Weekday” models
are generally not distinguishable from one another in this figure, and that the
“Altmejd” model has a maximum delay of D = 25, whereas the Günther models
have a maximum delay of D = 35.

This is particularly noticeable for the log-score of the Altmejd method, which
produces its worst scores for these instances of d. While higher scores and errors
are generally correlated with earlier dates, when the daily fatality counts were
greater relatively to more recent dates, we have not found any other systematic
cause of the bump. Higher scores are generally correlated to higher fatality
counts, since the predictive distribution is wider for high fatality counts (cf.
Figs 9 and 10). We note, however, that in the Altmejd log-score case, there
are a few outliers, consisting of non-averaged log-scores of approximately 10.
In particular, for now being February 2, 2021, the Altmejd method produces
log-scores slightly above 10 for the forecasts for January 22 and 24, 2021. This
can be seen in the top left panel of Figure 9, where the Altmejd forecast greatly
overestimates the number of fatalities occurred during these dates.
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Figure 12: Log-score, ranked probability score, as well as absolute and relative
error when using the median as point estimate for different models and delays.
For each instance of T consisting of reporting days between February 2 and
March 2, 2020, the average score is computed over delays of either less than 7
or less than 14.

We note that the “bump” is not an as distinguished feature for the average
scores and errors of the Günther Main and Weekday methods, however.

In Figure 12 we instead average over {NT−1, NT−2, . . . , NT−δ} for δ ∈ {7, 14},
similarly to Table 6 and 7, but for each instance of T separately. We see that
the relative error is relatively constant for different T , while the other measures
make seem the model to perform better for later instances of T . But if we
compare this with Figure 9 and Figure 10, we may notice that later instances
of T are subject to fewer fatality counts, which necessarily produce sharper
predictive distributions, since we are concerned with count data. Furthermore,
we see in Figure 12 that the performance of the Günther Näıve model seems
to be dependent on the weekday of T , since Tuesdays systematically produces
lower scores than the other weekdays. This may be because Tuesdays is the first
reporting day of the week, following a three-day hiatus.

We also note that for δ = 14, the average log-score evaluates to infinity for all
models for “now” being February 24. This is due to the observed fatality count
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for February 10, as of February 24, constituting a delay of 14 days, was 28, but
the fatality count for February 10 as of May 7 is 27, due to a de-classification on
March 2. Additionally, the Günter Weekday model fails to produce any sample
with the true number of fatalities on January 24 for “now” being February 4,
corresponding to a delay of 11 days, despite the true fatality count being higher
that the observed fatality count, yielding an infinite log-score for this instance.
For comparison, the Günther Main model produces a single sample with the
true value for this instance. The reason for this is that very few fatalities that
occurred on January 24 were reported with a delay of 12 days or longer, and
since 2 fatalities were furthermore observably de-classified as being COVID-19
related. Thus, the nowcasting models produce particularly high over-estimations
for the number of fatalities for this instance of T and delay. Specifically, in the
fully observed upper rectangle of the reporting triangle used for this instance
of T , 47.4% of fatalities were reported with a delay of 12 days or more, but the
difference between the true fatality count (51) for January 24 and the observed
count by February 2 (49) only constitutes 3.92% of the true count.

Notably, the Altmejd method outperforms the Günther methods during the
last 5 instances of T by the metrics of Figure 12, corresponding to February
23 until March 2, 2021. For this reason, we look at this period a little closer.
In Table 8 we present the evaluation metrics computed for said instances of
T . Here we only compare Altmejd to Günther Main. The scoring rules of the
top panel of Table 8 only confirm what we see in Figure 12, that the Altmejd
method performs better. But the absolute error in conjunction to the simple
error shows something more subtle: The average absolute error of the Altmejd
method is rather close to the average absolute error of the Günther method, but
the average simple error of the Altmejd method is, relatively, much less than
the simple error of the Günther method. Hence, while both methods apparently
still produce a positively biased median point estimate for the number of daily
fatalities, the Altmejd method produces a noticeably less biased estimate. In
our implementation of the Günther Main model, we used a moving window of
m = 70 days. This includes the end-of-year holiday period for which we found a
noticeable increase in the reporting delay. For the latest implemented instance
of “now”, March 2, 2021, at that time reported data for fatalities occurred on
or after December 22, 2021, and later are used. It may be that the Altmejd
method–somehow–puts less weight on so temporally distant fatalities, e.g. by
a narrower moving window m < 70. As previously mentioned (in sec. 3.1.1),
we did not find a moving window equivalent in the code from Altmejd et al.
(2021b), however.

Since the daily fatality counts were generally decreasing during the consid-
ered instances of “now”, e.g. on a weekly scale, these five instances roughly
correspond to the instances of “now” for which the daily fatality counts were
the least. This may also be a part of the reason for it performing better during
this period of time. The Altmejd method generally produces sharper predictive
distributions compared to the Günther methods, and the log-score and ranked
probability score give better scores to shaper predictive distributions. In the
lower panel of Table 8, we see that, again, the Altmejd method produces too
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Model d ≤ logS RPS SES1 SES2 AES2 err2 relErr2

Altmejd 7 3.16 3.20 33.19 32.31 5.68 1.11 0.11
14 ∞ 2.76 24.83 24.24 4.92 1.30 0.08
21 ∞ 2.06 17.13 16.72 4.09 1.01 0.06

G. Main 7 3.35 4.03 59.52 49.26 7.02 4.29 0.25
14 ∞ 3.40 42.11 35.09 5.92 3.43 0.18
21 ∞ 2.57 29.22 24.31 4.93 2.62 0.13

11 using the mean of the predictive distribution

12 using the median of the prediction distribution

Model d ≤ Coverage Width
95% 80% 50% 95% 80% 50%

Altmejd 7 0.91 0.77 0.54 21.74 13.94 7.40
14 0.89 0.73 0.46 17.06 11.10 5.87
21 0.90 0.76 0.55 12.64 8.30 4.51

G. Main 7 0.94 0.80 0.60 31.86 20.43 10.71
14 0.87 0.74 0.54 24.30 15.63 8.24
21 0.89 0.78 0.56 18.01 11.68 6.18

Table 8: Evaluation metrics for the Altmejd and Günther Main nowcasting
methods, applied for T varying over reporting days in the period from February
23 until March 2, 2021. This corresponds to the last five instances for which
the nowcasting methods are implemented. For each instance of T , averages are
computed over t ∈ {T − 1, T − 2, . . . , T − δ}, where δ ∈ {7, 14, 21}, indicated by
the second column above.

narrow prediction intervals, and that the Günther Main prediction intervals
have a more accurate coverage.

Lastly, we take a look at the performance of 95%, 80% and 50% equal-tailed
prediction intervals for the different nowcasting methods, when considering spe-
cific delays as was done in Figure 11. This is illustrated in Figure 13. In the
lower panel, we see the widths of the prediction intervals, which consistently
behave in agreement with our conclusions about the prediction intervals in our
discussion relating Table 7 in the last paragraph of section 5.2.2. Note that
we only average over 17 instances for each delay, here. For all methods, there
appears to be an downward “bump” somewhere between a delay of 7 and 14
days. This could be compared with the upward bump for similar delays in Fig-
ure 11, and in this case we have not found any particular systematic reason for
the decline in coverage either.

5.3 Conclusion

In this section, we have come to three main conclusions. First, we have found
that the model of Günther et al. (2020a), when appropriately modified for
Swedish fatality data, performs better than the method of Altmejd et al. (2021b)
by almost every measure. In particular, the Günther Main and Weekday models
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Figure 13: Top: Coverage of 50%, 80% and 95% equal-tailed prediction intervals
with respect to delay for different models. Bottom: Average width of 50%, 80%
and 95% prediction intervals with respect to delay for different models. For each
instance of delay ∈ {1, 2, . . . , 35}, the score is computed for the 17 instances of
“now” consisting of reporting days between 2 February and 2 March, 2021.
Note that the “Günther Main” and “Günther Weekday” models are generally
not distinguishable from one another in this figure, and that the “Altmejd”
model has a maximum delay of D = 25, whereas the Günther models have a
maximum delay of D = 35.

produce surprisingly accurate prediction intervals.
Our second conclusion is, however, perhaps our most apparent conclusion:

One should take into account that certain days are not reporting days. The
Günther Näıve model performed worse than all other models.

The third conclusion relates to the realization that the Altmejd method per-
forms better for the five most recent instances of “now” we considered. We found
that the Günter methods consistently produced positively biased forecasts, due
to the data for the likelihood including the end-of-year holiday period of 2020,
for which reporting delays were generally longer, while the bias of the Altmejd
method decreased as a function of “now”. It may hence be prudent to take into
account that the reporting distribution changes over time.
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6 Discussion

In this thesis, we have seen that nowcasting methods may produce good esti-
mates for the number of daily COVID-19 related fatality counts in Sweden. In
particular, we found that the method of Günther et al. (2020a), when accounting
for non-reporting days, produces probabilistic distributions with a surprisingly
accurate coverage of the prediction intervals. An ensemble of proper scoring
rules accompanied by other evaluative metrics have proved informative in com-
paring different nowcasting methods to one another for the period of “now”
varying from February 2 until March 2, 2021.

The fact that certain days incur no new fatality reports, due to the publishing
pattern of the Public Health Agency, proved important to take into account;
However, additionally taking the reporting weekday into account offered barely
noticeable improvements in terms of the accuracy of the nowcasts.

However, we considered a rather narrow slice of time, with our retrospective
“now” only spanning over the course of one month. We noted that the method
of Altmejd et al. (2021b) performed better in terms of scoring rules during the
latter five “nows”, out of 17 considered. This coincides with the period during
which the daily fatality counts were the least. It might be the case that the
method of Altmejd et al. (2021b) is better at nowcasting counts of low order
compared to the method of Günther et al. (2020a). If we had evaluated the
nowcasting methods for a broader slice of time, then we would perhaps be
able to say something more definite about this. However, computer run-times
of approximately 40 minutes per model per instance of “now” prompted us
to consider only 17 instances of “now”. We would also have benefited from
a written-down version of the Altmejd method by its authors, Altmejd et al.
(2021b), as to more properly investigate the reason for the better performance
of the method for these instances of “now”.

6.1 Possible improvements

We noted that all of the nowcasting methods produced positively biased now-
casts for all instances of T , and concluded that this is due to the data used for the
inference included the end of December and beginning of January, during which
several public holidays occur, and the reporting delay was observably longer
during this period. It is possible to include a more general time-of-reporting el-
ement in the discrete hazard regression model of Günther et al. (2020a), which
might have had remedied this bias. For instance, Günther et al. (2020a), in their
implementation, use a linear spline with break points every two weeks as a time-
of-reporting effect. The time between break points is another model parameter
to be considered, however, and unfortunately we did not have time to include
an implementation modified for the Swedish fatality data. Particularly, break
points every two weeks is likely to be too often, since the daily fatality counts
are only assumed to be fully observed after a delay of five weeks. As such, a
hastening in the reporting delay would not be “noticed”, and instead would be
attributed in the model to a higher number of daily fatalities. Another, simple,
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option would be to add a categorical effect for the reporting period during the
end of December and beginning of January.

A particularity of the Swedish data is that fatalities that had previously
been classified as being COVID-19 related can be de-classified as such. We did
not take this into account in our implementation of Günther et al. (2020a),
nor do Altmejd et al. (2021b) in their method. A straight-forward way of
taking this into account would be to add some negatively oriented binomial
noise to the fatality counts reflecting that each fatality has a probability of
being de-classified as COVID-19 related. That is, having predicted Nt fa-
talities in the original model, e.g. that of Günther et al. (2020a), one would
quote N ′t ∼ Binom(Nt, 1− pdC) as the final predictive distribution, where pdC
is the probability of eventual de-classification. The rarity and long delay of
de-classifications, however, poses a challenge with reliably estimating pdC.

We mentioned in section 2 that the data set collected from FHM (2020-21)
by Altmejd et al. (2021b) contains other indicators as to describe the dynamics
of the COVID-19 outbreak and its impact in the population. These indicators
include the number of daily newly confirmed cases of COVID-19 and new admis-
sions to the intensive care unit (ICU) related to COVID-19. Since an increase,
or decrease, in the number of daily COVID-19 related fatalities is necessarily
preceded by a corresponding increase, or decrease, in the number of cases of
COVID-19, and since a proportion of COVID-19 related fatalities occur in ICU
admission, it might be possible to incorporate these other indicators in the now-
casting model for fatalities, as to more accurately and quickly notice changes in
the current trend.

6.2 Closing remarks

The Public Health Agency of Sweden publishes the time series for the daily
number of COVID-19 related fatalities that have been reported to them at the
time of publishing by the date of their occurrence. Bergholtz et al. (2020) argue
that, because there is a delay in reporting, and since the most recent days are
the most under-reported, this time series will always have it appear as though
the number of daily fatalities is currently decreasing. As we saw in Figure 1,
this is certainly the case, and it may give the wrong impression as to the current
trend of the number of daily fatalities. Bergholtz et al. (2020) further argue that
it would be better to report the time series for the number of daily COVID-19
related fatalities by the date of reporting. The number of fatalities reported per
reporting occasion depends greatly on the weekday of the report, however, as
we saw in Figure 4. Hence, some kind of smoothing would be necessary in this
case, such as the 7-day average fatality count. This may be a good indicator
for the current trend if the reporting delay is relatively short, e.g. with most
fatalities being reported with a delay of a week or less, but we saw in section
2.2 that this is not generally the case. For example, during the period from
September 14, 2020 until only 37.4% of fatalities were reported with a delay
of one week or less. Also, a proper interpretation would require the reporting
delay to be relatively stable over time, which we have seen is also not generally
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the case.
Nowcasting offers an alternate way of presenting the current trend in the

daily number of COVID-19 related fatalities, while still publishing the time
series for the number of daily COVID-19 related fatalities by the date of their
occurrence. Nowcasting does not rely on the reporting delay being short to
provide timely estimates for the current number of daily fatalities, and the
model of Günther et al. (2020a) provides the possibility to incorporate changes
in the reporting delay distribution in the nowcasting model. As such, nowcasting
may be more informative as to the current trend in the number of daily COVID-
19 related fatalities. However, since the nowcast is a prediction, it includes an
uncertainty, which may be a challenge to communicate to the public.
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