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Abstract

Monitoring of the population of brown bears is important for its
management and preservation. The primary aim is to estimate the size
of the population, distribution and trends within the population. The
size is currently estimated by using Capture-Recapture (CR) models
for closed populations.

In this thesis we propose a different model which has its roots in
the Spatially Explicit Capture-Recapture models which make use of
spatial information in data. The model consists of a spatial point
process model for the activity centres of bears and a temporal point
process model for the detection times of each bear. A measure of
search effort is obtained through the temporal point process. The
search effort is used to ensure the identifiability of the measure of
density. The model is fit with a Bayesian approach using Markov
Chain Monte Carlo sampling.

Results of a simulation study show that the proposed model works
well for estimation of the parameters of density and search effort.
An application to real data collected in the county of Västerbotten
during autumn 2019 yields a more narrow 95% credible interval of the
population size than the 95% confidence interval obtained by using
the current CR models. In addition, spatially varying estimates of
density, which are corrected for the spatial variation in search effort,
are produced.
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1 Introduction

Monitoring of low-density and elusive large carnivores, such as the brown bear, is important

for management and preservation of these species. The primary aim of the monitoring is to

estimate the population size, distribution and trends within the population in order to detect

change. These estimates may also be used to determine yearly hunting quota and in order to

preserve the desired population size the estimates are required to be as precise as possible.

Non-invasive Genetic Sampling (NGS) is a class of methods where DNA of individuals is

collected through sources such as hair, droppings and saliva. The collection is made in

a way which does not disturb the individuals by e.g. fixed detectors or area searches. In

Sweden, monitoring and population estimates of brown bear are mainly based on NGS of

bear droppings made by volunteers, since the method was introduced in 2001 (Bellemain

et al. 2005). Management in Sweden takes place at the county level and population estimates

are calculated each year in a different county, or counties, with established bear population.

Every five years an estimate of the national population size is calculated using estimates of

size and population trend in each county, see Jonas Kindberg et al. (2011) for calculations in

2008. The trend estimates are based on the Large Carnivore Observation Index which uses

effort-corrected observations of bear made by moose hunters (Jonas Kindberg et al. 2009).

The Swedish Museum of Natural History (SMNH) were given the task to estimate the

population size of brown bear in 2020, at county level, by using the currently established

method which is based on Capture-Recapture (CR) models for closed populations. In

conjunction with this, SMNH were interested in evaluating whether a new method and model

could be obtained and lead to improved usage of data and analysis. The model was desired to

make use of the spatial distribution of brown bears as well as be able to obtain and possibly

separate measures of density and search effort in order to correct for uneven sampling. The

aim of this masters’ thesis is thus to evaluate if a model with the desired properties can be

obtained, whether this model produces an estimate of the population size with good precision

and whether a correction for uneven sampling is meaningful.
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1.1 Background

CR methods are commonly used when the interest lies in estimating the total number of

individuals present in a population. The basic idea of CR models is to use detections of

individuals to model and estimate a capture probability p and the total population size N .

The earliest class of these models developed are closed population models which assume that

the population under observation is closed during the period of inventory, i.e. no individual

dies, is born or moves over the boundary of the region of inventory (Amstrup et al. 2005,

Ch. 1.2). Other classes such as open population models, where the population may change

during the period of inventory, have been developed but will not be discussed further in

this thesis (consult Amstrup et al. (2005) for more information). Detections of individuals,

more commonly named captures, can be made on a number k of sampling occasions during a

period of inventory which is limited in time. The captures of an individual i, consisting of a

first capture and possible additional recaptures, are assumed to occur independently in time

and space. On a sampling occasion j, j = 1, . . . , k, the number of captures nj is counted out

of which uj are a first capture and mj are recaptures, where m1 = 0. In the simplest case

with k = 2, which is the origin of CR methodology (Amstrup et al. 2005, Ch. 2.3), n1 = u1

individuals are captured on the first occasion. These n1 individuals constitute the unknown

proportion

n1

N
(1)

of the whole population N . On the second occasion n2 individuals are captured out of which

m2 are recaptured. The m2 individuals constitute the known proportion

m2

n2
(2)

of the n2 captured individuals on the second occasion. It is assumed that the two proportions

in Eq. 1 and Eq. 2 are approximately equal, i.e.

n1

N
≈ m2

n2
(3)
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which gives the so called Petersen-Lincoln estimator, (Amstrup et al. 2005, Eq. 2.1, p. 27), of

the population size N

N̂P = n1n2

m2
. (4)

To extend the field of CR methods, beyond the estimator in Eq. 4, a variety of models have

been developed for the case when k > 2. These can be divided into two groups, discrete-time

models and continuous-time models.

Discrete-time models, as described in Ch. 4.2 of Amstrup et al. (2005), assume that captures

can be made on a distinct number of occasions where the exact time of a capture is unknown

and at most one capture per individual during an occasion is allowed. These models include the

additional parameter Pij, i.e. the capture probability for individual i on sampling occasion j.

Variations in capture probability are considered and can originate from three sources: (1) time

effects, e.g. uneven sampling effort between occasions; (2) behavioural responses to captures,

e.g. individuals getting affected by their first capture; and (3) individual heterogeneity from

either observable factors, e.g. sex or age, or unobservable characteristics. There are a total

of eight models consisting of the so called null model with no variation and seven models

reflecting all possible combinations of the sources for variation. The simplest model M0,

assumes that the capture probability Pij is equal for all individuals on each occasion and

between occasions, i.e. Pij = p, and contains the two parameters (p,N) to be estimated.

Model Mt, t stands for time effect, assumes that the capture probability Pij is equal for all

individuals on each occasion but varies between occasions, i.e. Pij = pj, and contains the

k + 1 parameters (p1, . . . , pk, N). Model Mb, b for behavioural response, assumes that Pij
changes for individuals after their first capture, i.e. for any individual Pij = p until its first

capture and Pij = p̃ after its first capture, and contains the three parameters (p, p̃, N). Model

Mh, h for heterogeneity, assumes that Pij is unique for each individual but does not change

between occasions, i.e. Pij = pi, and thus contains the N + 1 parameters (p1, . . . , pN , N). The

remaining four models are Mtb assuming Pij = pj until first capture and Pij = p̃j after first

capture, Mth assuming Pij = piej where ej is a time effect, Mbh assuming Pij = pi until first

capture and Pij = p̃i after first capture and the most general model Mtbh assuming Pij = pij

until first capture and Pij = p̃ij after first capture.

6



Continuous-time models, as described in Ch. 4.3 of Amstrup et al. (2005), assume that

captures can be made at any time during a fixed period of length T where the exact time t

of a capture is recorded with one capture per occasion. These models include the additional

parameter λ∗
i (t), i.e. the capture rate of individual i in a small time interval around time t. As

for the discrete-time models, there are a total of eight models which reflect the three different

sources for variation of the capture rate. For example, the simplest model M0 assumes

λ∗
i (t) = λ and the most general model Mtbh assumes λ∗

i (t) = λiα(t) until first capture and

λ∗
i (t) = φλiα(t) after first capture where α(t) represents time effects as a function in (0, T ),

λi represents heterogeneity as a capture rate of individual i and φ represents the behavioural

response to the first capture.

A limitation of the closed population CR models mentioned above is that variation due to

spatial effects is not accounted for and density estimates reflecting variation in space cannot

be obtained. Due to this limitation David L Borchers and Murray G Efford (2008) presented

the Spatially Explicit Capture-Recapture (SECR) methods where a spatial component is

introduced into the, likelihood based, CR models above. This is accomplished by the concept

of activity centres of individuals, whose geographical locations are modelled by a spatial

point process. The capture probability of an individual is then modelled as a function of the

distance between a detector, i.e. a fixed location where animals can be captured/detected,

and its activity centre. This function is such that the probability of capture decreases

with increasing distance between a detector and an individuals activity center. Captures of

individuals at different detectors are thus modelled conditionally on their activity centres.

Since sampling processes for SECR methods do not always include fixed detectors, Murray

G. Efford (2011) modified the general SECR model and presented likelihood based SECR

methods for data collected through area searches. The region of inventory is divided into a

number of polygons and the capture probability of an individual is modelled as a function

of the quantitative overlap of a polygon and its home range. This modification was done

after Royle and Young (2008) introduced Bayesian SECR implementations for the Binomial

model complete-data likelihood, as described in D. Borchers and Fewster (2016), for the

same type of data. Complete-data likelihood refers to a likelihood as if all activity centres

in the population of interest were observed. The Bayesian SECR approach for Binomial
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model complete-data likelihood thus uses data augmentation where an unknown number of

unobserved individuals are included and a vector of binary variables is added to indicate

if an individual was observed or not. The number of unobserved individuals can be large,

which makes data augmentation costly in term of computational efficiency. Due to this, King

et al. (2016) developed a more efficient Bayesian implementation by using semi-complete-data

likelihood approach, i.e. likelihood as if activity centres of only captured individuals were

observed, for the Binomial model without data augmentation.

The NGS method used in Sweden, when collecting brown bear droppings for individual

identification, is a type of sampling process without fixed detectors. The collection of

droppings is mostly done by volunteers resulting in a type of data called opportunistic data

where search effort is often unknown. It is desirable that a large number of volunteers

participate, to get a good representation of the reality and large amount of samples for better

precision of estimates, and too demanding sampling regulations can reduce the number of

participants. Thus, opportunistic data are often less structured and come with sampling

bias. The bias can arise from different sources such as sampling method, effort, species and

habitats sampled (Dickinson et al. 2010), where variation in effort can arise from uneven

sampling intensity over time, uneven spatial coverage, uneven sampling effort per occasion

and uneven detectability (Isaac et al. 2014). Monitoring programs allowing any amount

of effort in sampling can result in over-reporting, under-reporting or failure to report all

observations. This can lead to conclusions of analysis which do not reflect the actual biological

patterns correctly and reflect the variation in effort instead (Dickinson et al. 2010). Further,

uneven spatial coverage can results in conclusions which reflect the spatial sampling bias

instead of the actual spatial differences (Dickinson et al. 2010). In the case of the collection

of brown bear droppings in Sweden, the problem with spatial sampling bias arises e.g. in

mountain areas which few volunteers visit. The result is that these areas are being subject

to sampling with less intensity than other areas. Thus, to avoid biased estimates there is

a need to account for variation in search effort and Bischof et al. (2019), (see also Bischof

et al. (2020)), developed such a model which provides an assessment of spatial variation in

detection.
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The CR models which are currently used in Sweden to estimate the population size of

brown bear are discrete-time models although the data collection with NGS methods is

made continuously during the period of inventory and not on a distinct number of sampling

occasions. In order for the collected data to suit the discrete-time models the period of

inventory is divided into smaller time intervals equivalent to distinct sampling occasions.

Multiple captures of a bear during one occasion, i.e. time interval, are registered as one

capture. This adaptation of data thus leads to information loss and possible sensitivity to how

the period of inventory is divided. The CR models which are used can account for variations

in sampling effort between occasions but not for spatial variations in sampling effort.

The model we propose can be though of as a modification of the Poisson model semi-complete-

data likelihood approach described in D. Borchers and Fewster (2016). Due to the lack

of fixed traps/detectors as well as fixed occasions in the process of data collection, this

approach is not applied directly. The activity centres can be seen as detectors which can

detect an individual several times, and in light of this the distance between activity centre

and detector is zero and will not be modelled. Locations of activity centres are modelled

with an inhomogeneous spatial Poisson process. Captures of individuals are modelled with

an inhomogeneous temporal Poisson process, through which a measure of search effort is

obtained. In this way, the spatial information in data is used as well as all capture information,

the information loss of the current methods is avoided and spatial variation in search effort is

accounted for. During the work on this thesis, a related approach by Zhang et al. (2020) has

appeared, where the detection probability is modelled as a function of the distance between

the activity centre and the detection locations. As in Zhang et al. (2020), the proposed

model is fit with a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods for

sampling. A simulation study is conducted to evaluate if the proposed model works well for

parameter estimation after which the model is applied to real data of brown bears collected

in the county of Västerbotten in 2019.
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2 Materials and methods

2.1 Data collection and structure

The collection of brown bear droppings for the inventory of the population is made yearly in

different areas of the 2/3 northernmost part of Sweden. These areas consist of one or several

counties with an established bear population and each county is responsible for the inventory

of the brown bear approximately every fifth year, resulting in a gap between inventories

in each county. The collection of droppings is made during the period between the 21st of

August and the 31st of October and is a voluntary contribution of people who go out in

the woods. This period is preferable for two reasons: (1) during this period of time a large

number of hunters and berry pickers are out in the woods; (2) bears are less mobile during

this period and eat a lot in the state of hyperphagia, before going into hibernation (Sahlén

et al. 2006). This results in a larger density of droppings and a larger amount of visitors in

the woods, which combined gives good conditions for a large amount of collections needed

for better precision of estimates. The estimation of population size thus depends strongly

on the amount of people participating in the collection. A more detailed description of the

method of inventory can be found in e.g. Naturvårdsverket & Rovdata (2014).

Those who go into the woods receive a sampling kit for collection of droppings. When a

dropping is found it is collected and the geographical location and coordinates as well as

time of collection are noted manually on a paper. After collection, the sample with the note

attached is sent directly to the SMNH for analysis. Each sample goes through an extraction

of DNA from which it can determined if the DNA comes from a bear or not. If bear-DNA

is confirmed the individual identity and possibly sex may or may not be determined. A

likely reason for not being able to determine individual identity and sex is that the DNA is

too decomposed, where the speed of decomposition depends on the diet of a bear and the

temperature to which the dropping has been exposed. Further, too decomposed DNA can be

a reason for not confirming bear-DNA in a sample. In order for a sample to be valid and

used for estimation of population size it thus needs to be collected in the right way with all

required information written down and needs to contain DNA intact enough to be confirmed

10



as bear-DNA and for individual identity to be determined. Thus, errors can occur already in

the collection and DNA-analysis phases.

After collection and analysis the individual identity, location and time of collection and

possibly sex for each collected dropping is known. The different locations (xl, yl) at which

a particular bears’ droppings have been found can be seen as being inside a circle with

centre at the mean of those scattered locations. For each observed bear j, an unique spatial

coordinate (xj, yj) is thus computed as the coordinate-wise arithmetic mean of the locations

of its droppings, i.e. (xj, yj) = 1
kj

∑kj

l=1(xlj, ylj), where kj is the number of locations at which

droppings of bear j have been found. This corresponds to our notion of an activity centre

(Royle et al. (2013), Ch. 1.5.3), the location where the bear is assumed to have its home.

The activity centre of a bear can replace the locations (xl, yl) as a detector which can observe

this bear several times. Each observed bear has one activity centre resulting in number of

observed activity centres equal to the number of uniquely observed bears m. As a result, kj
also corresponds to the number of times bear j has been observed during the whole search

period. The following information is thus available from the collected data:

• m - the number of bears observed at least once during the whole search period.

• kj - number of times bear j has been observed during the whole search period, j =

1, . . . ,m.

• (xj, yj) - geographical location of the activity centre of an observed bear j, j = 1, . . . ,m.

• tlj - recorded time of observation l of bear j, l = 1, . . . , kj, j = 1, . . . ,m.

2.2 Model

From the previous section we know that the data has spatio-temporal dimensions. The

geographical locations (x, y) of activity centres are limited by the region of inventory B,

i.e. the spatial dimension is limited to B ∈ R2. The recorded times of observations t of bears

are limited by the period of inventory [0, T ] of length T , i.e. the temporal dimension is limited

to [0, T ] ∈ R. In the following sub-sections we will describe the model of (x, y) and t in more

detail. The notations which will be used in the description are summarized below:
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• B - whole region of inventory.

• T - length of inventory period.

• Bi - sub-region i of B, i = 1, . . . , r.

• ai - area of sub-region i.

• N - the total number of bears in B.

• M - the number of bears observed at least once in B.

• M0 - the number of non-observed bears in B.

• Ni - the total number of bears, in sub-region i.

• Mi - the number of bears observed at least once in sub-region i.

• M0,i - the number of non-observed bears in sub-region i.

• Kj - number of observations of bear j, j = 1, . . .M .

• µ(x, y) - intensity of the point process model for locations (x, y) of activity centres.

• q(x, y) - probability of observing a bear at lest once at location (x, y) of its activity

centre.

• µi - intensity of the point process for locations of activity centres in sub-region i.

• qi - probability of observing a bear at least once at location of its activity centre in

sub-region i.

• λ∗
i (t) - intensity of the point process for observation times of a bear at its activity centre

in sub-region i.

2.2.1 Spatial Poisson process

We assume that the locations of activity centres of bears, observed and unobserved, in

the whole region of interest B constitute an inhomogeneous spatial Poisson process with

coordinate dependent intensity µ(x, y), corresponding to the average number of activity

centres per km2. If a bear with activity centre at (x, y) is observed at least once during the

search period T with probability q(x, y) and not observed at all with probability 1− q(x, y)

then, following standard results of thinning of a Poisson process (Illian et al. (2008), Ch.

6.2.1), the locations of activity centres of observed bears and the non-observed bears constitute

two independent inhomogeneous spatial Poisson processes with intensities µ(x, y)q(x, y) and
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µ(x, y)(1− q(x, y)) respectively.

Further, splitting the whole region of interest B into r disjoint sub-regions B1, . . . , Br and

letting µ(x, y) and q(x, y) be constant within regions, i.e. letting µ(x, y) = µi and q(x, y) = qi

for all (x, y) ∈ Bi, i = 1, ..., r, yields that locations of activity centres in sub-region i constitute

a homogeneous spatial Poisson processes with intensity µi. It follows that locations of activity

centres of observed and non-observed bears in sub-region i constitute homogeneous spatial

Poisson processes with intensities µiqi and µi(1 − qi) respectively. Note that all activity

centres in the whole region B constitute an inhomogeneous spatial Poisson process with

region dependent intensity. Since the sub-regions are disjoint the sub-regional processes are

independent.

In this sub-regional setting, the number of bears Ni in sub-region i follows a Poisson

distribution (Illian et al. (2008), Ch. 2.3.1), Ni ∼ Pois(µiai), where

µiai =
∫
Bi

µi dxdy. (5)

The number ai in Eq. 5 is the area of region i and µi is the average number of bears per km2

in region i. Following the same reasoning yields that the number of observed bears Mi in

sub-region i follows a Poisson distribution with parameter µiaiqi, i.e. Mi ∼ Pois(µiaiqi), and

the number of non-observed bears M0,i in sub-region i follows a Poisson distribution with

parameter µiai(1− qi), i.e. M0,i ∼ Pois(µiai(1− qi)), where qi can be seen as a measure of

search effort.

2.2.2 Temporal Poisson Process

The number of bears in a sub-region is unknown. What is known is the number of observed

bears, but without further information it can’t be deduced if the magnitude of this number is

primarily a consequence of the parameter µ or q, i.e. we do not know if the number of bears

observed primarily depends on the average number of bears per km2 or the search effort.

An attempt to resolve this issue is to make use of the times at which each bear has been

observed by modelling a temporal Poisson Process.
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We assume that the recorded times t of collection of droppings from a bear, with activity

centre (x, y) in sub-region i, constitute an inhomogeneous temporal Poisson process with

intensity λ∗
i (t), and that these processes of bears are independent. During the whole search

period T , the number of observations Kj of bear j, given that its activity centre (x, y) is in

sub-region i, follows a Poisson distribution (Ross (2014), Ch. 5.4.1), Kj ∼ Pois(λi), where

λi =
∫
T
λ∗
i (s) ds . (6)

In this setting, the number of observations of a bear is allowed to equal zero. Since we

do not observe bears for which the number of observations is zero, we have to modify the

Poisson distribution above by conditioning on the event Kj > 0. The number of observations

Kj of bear j, conditionally on the event that it has been observed at least once, follows a

Zero-Truncated Poisson distribution with parameter given by Eq. 6, Kj ∼ TruncPois(λi),

whose probability mass function is given by

p(kj|i) = p̃(kj|i)
1− p̃(0|i) , kj = 1, 2, . . . . (7)

The probability mass function p̃(kj|i) in Eq. 7 is of a Pois(λi) distribution. The expected

number of observations of a bear in region i, conditionally on the event that it has been

observed at least once, is thus λi/(1− e−λi).

2.2.3 Combining the processes

From the spatial Poisson process above we have that the probability of observing a bear,

with activity centre in sub-region i, at least once is qi which is the same as the probability of

that bear having at least one observation during the whole search period, that is 1− p̃(0|i) =

1− exp(−λi). The spatial and temporal Poisson processes are thus combined through the

equality

qi = 1− exp(−λi) (8)
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where 1 − qi = exp(−λi) therefore is the probability of not observing a particular bear in

sub-region i which is the probability of that bear having zero observations during the whole

search period. Thus, the temporal process contains information on parameter qi through the

equality in Eq. 8, which together with the spatial process ensures the identifiability of the

parameter of interest µi.

2.2.4 Spatial dependencies

In some cases, the number of observed bears and the number of their captures can be small in

some sub-region(s) and it can be meaningful to introduce dependencies between sub-regions.

This is done in order to reflect the assumption that neighbouring sub-regions tend to have

more similar values of bear density and search effort than sub-regions far apart from each

other.

This can be done by first noting that µi and λi, i = 1, . . . , r, can be represented as linear

models with linear predictor consisting of smooth functions of spatial covariates si, i = 1, . . . , r,

which in our case are the sub-regions so that si ∈ {1, . . . , r}. For simplicity we will only show

the concept for parameters µi. In light of Generalised Additive Models (GAMs) (S. N. Wood

2017), the smooth function f(si) in region i is related to µi through a log-link function, i.e.

log(µi) = f(si) + εi, (9)

where εi ∼ N(0, σ2). The function f(si) is often denoted simply as a regression coefficient,

say αi, so that f(si) = αi is the spatial coefficient of region i (Ludwig Fahrmeir et al. 2013,

Ch. 8.2.4). In this way we get the matrix formulation of Eq. 9 as follows

log(µ) = Xα+ ε, (10)

where X is the model matrix with Xij = 1 if i = j and 0 otherwise.

Further, in order for neighbouring regions to have similar estimates of µi and thus similar
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estimates of αi we introduce the penalty

J(α) = αTSα, (11)

where Sii = ni where ni is the number of neighbouring regions of region i, Sij = Sji = −1

if region i and j are neighbours and Sij = Sji = 0 if they are not. The penalty in Eq. 11

is used to form a penalized least squares criterion as described in Ch. 4.2.2 of S. N. Wood

(2017) and Ch. 8.2.4, p.522-523 of Ludwig Fahrmeir et al. (2013). This penalty is a sum of

squared differences between parameters α of neighbouring regions, and minimizing the sum

is the same as minimizing the differences between parameters of neighbouring regions.

The penalty in Eq. 11 is employed to reflect a prior belief, and can also be expressed in a

Bayesian way by setting an (improper) Gaussian distribution prior, i.e. a prior which does

not integrate to one, on the vector of spatial parameters α as

α ∼ N(0, τS−1) (12)

where the matrix S is sparse and does not have full rank, and τ is a precision parameter

(S. N. Wood (2017), Ch. 5.8.1). This type of Gaussian distribution is called an (intrinsic)

Gaussian Markov Random Field (GMRF), with precision matrix S containing the conditional

independence structure which reflects the neighbourhood information in a vector. The

precision parameter τ controls the degree of smoothness in the field. For more general theory,

definitions and construction of GMRFs consult Rue and Held (2005) as well as Ludwig

Fahrmeir et al. (2013) (Ch. 8.2.4).

2.2.5 Prior distributions

In the Bayesian approach the parameters µi and λi are assumed to be random variables

and need to be assigned probability distributions to reflect prior beliefs about them. These

distributions are called prior distributions, or simply priors. Priors can have different forms

depending on convenience and prior information available (Carlin and Louis 2008, Ch. 2.2).
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Conjugate priors, where the prior is conjugate with the data likelihood, lead the posteriors to

belong to the same family of distributions as themselves and are often more computationally

convenient. In our case with Poisson and Zero-Truncated Poisson likelihoods, we choose the

gamma priors G(a, b) and G(c, d), with mean a/b and c/d as well as variance a/b2 and c/d2,

for the parameters µi and λi.The gamma prior for the parameter µi of the Poisson likelihood

is conjugate but not for the parameter λi since its posterior is not a gamma distribution. The

values of a, b, c and d are chosen to reflect prior beliefs about the possible values of µi and λi.

Prior belief that parameters of neighbouring regions have more similar values than non-

neighbouring ones are incorporated by using GMRF priors instead of the gamma priors. In

that case, we set the GMRF prior N(0, τS−1) on the vector of spatial parameters α from

the linear model of log(µ) in Eq.10. Following the same reasoning as for log(µ) in section

2.2.4, we let log(λ) = Xβ + ε, and set the GMRF prior N(0, ρS−1) on the vector of spatial

parameters β, where ρ is a precisions parameter in the same way as τ . Further, priors are set

on the precision parameters τ and ρ of the GMRFs, which are called hyperpriors and are

most commonly gamma distributions. For more details about Bayesian implementation and

applications of GMRFs consult L. Fahrmeir and Kneib (2011) (Ch. 5).

2.3 Computation

The model with the sub-regional setting was fit in R (R Core Team 2020) using the package

‘rjags’ (Plummer 2019), an interface from R to JAGS, which uses Bayesian MCMC. The

Poisson distribution was written using the built in distribution available in the JAGS language

and the Zero-Truncated Poisson distribution, which is not a standard distribution in JAGS,

was written using the zero-trick (Lunn et al. (2012), Ch. 9.5.1).

The GMFR was constructed using the function jagam (S. N. Wood 2016) in the package

‘mgcv’ (S. Wood 2019), for GAMs, in a similar way as the package ‘secrgam’ (D. L. Borchers

and D. Kidney 2014) does to fit regression spline models using the package ‘secr’ (M. Efford

2020), for SECR models. The function jagam returns JAGS model code with appropriate

priors as well as the model and precision matrix which are parametrized in accordance with
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S. N. Wood (2017) (Ch. 1.8.1, 5.4.1).

Inference about model parameters was made from a sequence of dependent samples generated

from the posterior distribution. Inference about the number of non-observed bears was made

from a sequence of dependent samples generated from the posterior predictive distribution

(Carlin and Louis (2008), p.26).
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3 Results

3.1 Simulation study

In order to evaluate if the suggested model works well for parameter estimation and if the

proposed separation of µ and q works we conduct a simulation study. The value of µ is chosen

from {1, 4} and the value of λ is chosen from {2, 4}. This creates 4 different sub-regions

with (µ1, λ1) = (1, 2), (µ2, λ2) = (1, 4), (µ3, λ3) = (4, 2) and (µ4, λ4) = (4, 4). The area of

each region is set to 100 km2. This corresponds to an expected number of individuals equal

to 100 and 400 for regions with µ = 1 and µ = 4 respectively and an expected number of

observations of one individual approximately equal to 2.31 and 4.07 for regions with λ = 2

and λ = 4. Thus, the expected number of observed individuals is approximately equal to

86.47 and 98.17 in the regions with µ = 1 as well as 345.87 and 392.67 in the regions with

µ = 4. A larger value of search effort increases the expected number of observed individuals,

even though the underlying expected number of individuals is the same.

For each region we simulate m1, . . . ,m100 realisations of M from the corresponding Poisson

distribution. For each of these realisations of M we simulate k1, . . . , kmi
, i = 1, . . . , 100,

realizations of K from the corresponding Zero-Truncated Poisson distribution. How values

from a Zero-Truncated Poisson distribution were simulated can be seen in Dalgaard (2005).

This amounts to 100 sets for each sub-region consisting of a value m for the number of bears

observed and m values of k for the number of observations of each of the m bears observed.

The proposed model was fit to the simulated data with a G(1, 1) prior set on all parameters.

For each of the simulated data sets we ran three parallel chains of the MCMC sampling for

11,000 iterations and removed the 1000 first as burn in, resulting in 10,000 samples from the

posterior distributions in each chain. The posterior means and medians, of the 100 obtained

posterior distributions for each parameter in the 4 sub-regional setting, as estimators of the

model parameters were evaluated using the frequentist approach of RMSE, relative bias and

coverage of the 95% credible intervals (Morris et al. 2019). The results are displayed in the

Table 1 where it can be seen that the posterior means and medians estimates are practically
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unbiased with low values of RMSE. The coverage of credible intervals is overall roughly 95%,

with not substantial smaller/larger values. It can thus be concluded that the proposed model

works well for estimation of the proposed separated parameters of bear density and search

effort.

Table 1: Simulation results with RMSE and relative bias of the posterior means and medians
of the parameters. Proportion of 95% Credible intervals which include the data generating
parameter values is displayed under Coverage.

Means Medians

Mean RMSE Rel. Bias Mean RMSE Rel. Bias Coverage

Region 1
λ1 = 2 1.985 0.1837 -0.0076 1.981 0.1843 -0.0096 0.92
µ1 = 1 1.019 0.0958 0.0187 1.014 0.0948 0.0141 0.99

Region 2
λ2 = 4 3.981 0.1785 -0.0048 3.978 0.1787 -0.0055 0.97
µ2 = 1 1.006 0.1026 0.0058 1.002 0.1025 0.0019 0.93

Region 3
λ3 = 2 2.003 0.0837 0.0013 2.002 0.0837 0.0008 0.98
µ3 = 4 3.980 0.2347 -0.0050 3.975 0.2350 -0.0062 0.91

Region 4
λ4 = 4 4.005 0.0934 0.0012 4.004 0.0934 0.0010 0.98
µ4 = 4 3.976 0.1843 -0.0059 3.972 0.1850 -0.0069 0.97

3.2 Application

The current method, used by SMNH 2020 for estimation of the population size of brown bear

in the county of Västerbotten, is based on CR models for closed populations. This is the

method that was used by the Scandinavian Brown Bear Research Project the previous times

the inventory of brown bear was conducted in this county in 2014 (J. Kindberg and Swenson

2015) and 2009 (J. Kindberg and Swenson 2010). Inventory was also made in this county

2004 (J. Kindberg and Swenson 2006), where the population estimate was calculated using

open population models. This estimate was further re-calculated using closed population

models during the inventory in 2009. There is a variety of different closed population models

which can incorporate time effects, behavioural responses and heterogeneity of individuals

as sources for variation in the capture probability Pij (Amstrup et al. (2005), Ch. 4). The

models which are currently considered are discrete-time models, as described in Section

1.1, which incorporate time effects t as well as possibly heterogeneity h and gender-effects

sex. Heterogeneity is incorporated through separating individuals into two classes, the
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easy captured and the elusive, and is denoted as h2. The different models are thus: Mt,

with temporal variation in Pij; Mt∗sex, with temporal variation in Pij for each sex; Mth2,

with temporal and heterogeneity variation in Pij; Mth2∗sex, with temporal and heterogeneity

variation in Pij for each sex. The considered models are fitted and ranked according to their

Akaike’s Information Criterion (AIC) values, where the model with smallest AIC, i.e. highest

rank, is chosen. The model with highest rank for the inventory in Västerbotten 2019 was

Mth2 and resulted in an estimate of 516 brown bears with a 95% confidence interval of 416-640

bears, (Åsbrink et al. 2020).

In order to demonstrate how the proposed model would perform on a real data set, we apply

it to the data set of brown bear droppings collected in the county of Västerbotten during

autumn 2019. This is the data set which was used to estimate the size of the brown bear

population in Västerbotten during the spring of 2020 at SMNH, see Åsbrink et al. (2020)

for full report. The data is available in the database Rovbase (www.rovbase.se), a joint

Swedish-Norwegian database on large carnivore findings, and consists of 792 samples in

which the individual identity of bears could be determined. This amounts to 73% of the

total number of samples in which bear-DNA was found (1080 samples) and 64% of the total

number of samples that were analysed for DNA (1240 samples). Out of the 792 samples 359

unique individuals were identified.

As stated in the background, Section 1.1, the collection of brown bear droppings in Sweden

is made continuously during the inventory period and not during pre-specified occasions.

Therefore, the data has to be adapted by dividing the inventory period into smaller time

intervals equivalent to occasions. The present way is to divide the inventory period in

calendar weeks, which resulted in a loss of approximately 20% (Åsbrink et al. 2020) of the

792 samples in the data set from Västerbotten in 2019. The proposed model avoids this loss

of information and uses all samples of an individual as well as the spatial information given

by the coordinates of samples. The data is modified by aggregating samples for each unique

bear and calculating the arithmetic mean of the coordinates, resulting in a total number

of observations and an activity centre. In this way, the time of collection of each sample is

discarded and the interest lies in the number of observations during the whole search period.
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The proposed model uses a division of the region of inventory into a number of smaller disjoint

regions. A simple and straightforward choice of sub-regions in the county of Västerbotten are

its municipalities, resulting in 15 sub-regions of different sizes. The coordinates of borders and

areas of municipalities are taken from Statistiska Centralbyrån. Using the border coordinates

of municipalities, it can be determined to which of them the activity centres belong. The

municipalities and the distribution of activity centres from the inventory in Västerbotten 2019

are displayed in Figure 1. Two of the activity centres are located just outside the southern

border of Västerbotten, and these are manually registered as belonging to the municipality

nearest to them. As can be seen, the number of activity centres tends to be smaller in the

northern and coastal parts of Västerbotten and larger in the southern and inland parts. In

addition, Table 2 displays the number of activity centres in each municipality, where the index

is set manually and does not correspond to the national index, and Figure 2 displays the

frequency of the number of observations of each observed bear in the different municipalities.

As can be seen, municipalities Malå and Umeå only have one observed bear with only one

capture each. Overall, number of observation of each bear tends to be small, with median of

2 and mean of 2.2 observation per bear, and a higher value is desired for better precision of

estimates.

Table 2: Number of unique individuals observed during autumn 2019 in each of the munici-
palities of Västerbotten together with the index of each munucipality, area and number of
observed individuals per km2.

Municipality Id. Number of
observed ind. Area (km2) Number/km2

Nordmaling 1 13 1230.67 0.01056
Bjurholm 2 24 1306.73 0.01837
Vindeln 3 13 2630.14 0.00494
Robertsfors 4 3 1292.32 0.00232
Norsjö 5 8 1739.13 0.00460

Malå 6 1 1598.21 0.00063
Storuman 7 41 7298.88 0.00562
Sorsele 8 16 7366.62 0.00217
Dorotea 9 43 2764.44 0.01555
Vännäs 10 2 529.51 0.00378

Vilhelmina 11 49 8047.19 0.00609
Åsele 12 79 4223.45 0.01871
Umeå 13 1 2316.68 0.00043
Lycksele 14 62 5518.12 0.01124
Skellefteå 15 4 6802.34 0.00059
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Figure 1: The county of Västerbotten with its municipalities coloured according to the
number of observed individuals per km2. Black dots respresent the activity centers of bears
observed during the collection period in autumn 2019.

The proposed model was fit to the data with a G(1, 1) prior, where the mean and variance is

1, set on all 15 parameters µ and a G(2, 1) prior, where the mean and variance is 2, set on

all 15 parameters λ. These prior distributions are relatively informative especially for the

parameters λ, since the probability of these parameters being > 4 is apriori very small, but

can be seen as reasonable first assumptions considering that the number of observations of

a bear and the number of observed bears per km2 tends to be small. Three parallel chains
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Figure 2: Frequency of the number of observations of each observed bear in the different
municipalities of Västerbotten.

of the MCMC sampling were run for 50,000 iterations and the 25,000 first were removed as

burn in, resulting in 25,000 samples from the posterior distributions in each chain. Visual

investigations of trace plots and potential scale reduction factor R̂ (Brooks and Gelman 1998;

Gelman and Rubin 1992) were made as convergence checks for all parameters that were

monitored, i.e. for N and µi, λi, M0,i, i = 1, . . . , 15. All R̂ values were < 1.1 as desired for

convergence and all trace plots showed good mixing with low autocorrelation within chains.

Summary of the posterior statistics, including mean, standard deviation, median and 95%

credible intervals, of the monitored parameters is presented in Table 3 and trace as well as

density plot for N can be seen in Figure 6 in Appendix B. The posterior distribution of N is

skewed and has a long right tail with small mass, where values as large as 5000 bears appear.

This results in a moderate but skewed 95% credible interval with slightly high upper bound.

This skewed distribution is arising from the posterior distributions of parameters µ in the

two municipalities Malå and Umeå, which can be seen in Figures 7, 8 in Appendix B. The

uncertainty in these two municipalities is due to the small number of observed bears. Also,

posterior correlation between N and µ in municipalities Malå and Umeå are large compared

with correlations with the remaining parameters. Thus, the uncertainty in the posterior

distribution of N is mostly due to the small number of observed bears in Malå and Umeå.
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Table 3: Summary of the estimation results when fitting the proposed sub-regional

model to the bear data collected in the county of Västerbotten during autumn 2019.

Credible Interval

Mean SD Median 2.5% 97.5%

N 481.612 95.741 468.000 434.000 607.000

µ1 0.013 0.004 0.013 0.007 0.021

M0,1 2.153 1.934 2.000 0.000 7.000

λ1 2.128 0.431 2.103 1.361 3.046

µ2 0.022 0.004 0.021 0.014 0.031

M0,2 3.355 2.335 3.000 0.000 9.000

λ2 2.199 0.328 2.185 1.599 2.883

µ3 0.006 0.002 0.006 0.003 0.009

M0,3 1.218 1.320 1.000 0.000 5.000

λ3 2.649 0.469 2.624 1.800 3.640

µ4 0.003 0.002 0.003 0.001 0.007

M0,4 0.135 0.409 0.000 0.000 1.000

λ4 3.903 1.025 3.820 2.149 6.130

µ5 0.005 0.002 0.005 0.002 0.009

M0,5 0.333 0.636 0.000 0.000 2.000

λ5 3.550 0.652 3.512 2.382 4.943

µ6 0.008 0.034 0.003 0.000 0.046

M0,6 10.585 53.946 2.000 0.000 71.000

λ6 0.812 0.742 0.598 0.027 2.751

µ7 0.008 0.001 0.008 0.005 0.010

M0,7 13.952 5.960 13.000 5.000 28.000

λ7 1.428 0.217 1.419 1.028 1.880

µ8 0.004 0.001 0.003 0.002 0.006

M0,8 8.766 5.670 8.000 1.000 23.000

λ8 1.172 0.315 1.148 0.629 1.857

µ9 0.026 0.005 0.026 0.018 0.037

M0,9 28.250 11.063 27.000 11.000 54.000

λ9 0.976 0.185 0.965 0.646 1.367

µ10 0.007 0.005 0.006 0.001 0.019

M0,10 0.885 1.637 0.000 0.000 5.000

λ10 1.980 0.907 1.855 0.591 4.087

µ11 0.009 0.001 0.008 0.006 0.012

M0,11 19.175 7.299 18.000 8.000 36.000

λ11 1.315 0.193 1.306 0.962 1.718

µ12 0.021 0.002 0.021 0.017 0.027

M0,12 10.751 4.144 10.000 4.000 20.000
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Table 3: Summary of the estimation results when fitting the proposed sub-regional

model to the bear data collected in the county of Västerbotten during autumn 2019.

(continued)

Mean SD Median 2.5% 97.5%

λ12 2.153 0.182 2.149 1.808 2.522

µ13 0.006 0.033 0.002 0.000 0.037

M0,13 12.768 77.468 2.000 0.000 82.000

λ13 0.813 0.758 0.595 0.023 2.801

µ14 0.013 0.002 0.013 0.010 0.017

M0,14 9.255 3.944 9.000 3.000 18.000

λ14 2.082 0.204 2.076 1.698 2.497

µ15 0.001 0.000 0.001 0.000 0.002

M0,15 1.032 1.519 1.000 0.000 5.000

λ15 2.082 0.721 2.008 0.894 3.692

As an attempt to resolve this issue, spatial dependencies between neighbouring municipalities

are introduced by replacing the gamma priors with GMRF priors. The function jagam

returns model and precision matrices from a parametrized model, with an intercept which

is independent of the remaining spatial parameters. The proposed model is fit to the data

with a N(0, (0.00096)−1) and N(0, (0.017)−1) prior set on the intercept parameters denoted

by α1 and β1 in the parametrizations of the linear models log(µ) and log(λ) respectively.

A G(0.05, 0.005) prior is set on the two precision parameters τ and ρ. All these priors

are returned by the function jagam and not chosen manually. Three parallel chains of the

MCMC sampling are run for 50,000 iterations, after an adaptation period of 10,000 iterations,

and the 25,000 first are removed as burn in, resulting in 25,000 samples from the posterior

distributions in each chain. Trace plots show good mixing and R̂ values were below 1.1 and

close to 1 for all monitored parameters, as desired for convergence. The summary of posterior

statistics is presented in Table 4. The issue with the slightly high upper bound of the credible

intervals is resolved and the posterior distribution of N is close to having zero skewness

with difference between mean and median being less tha)n 1. The two posteriors of N , one

obtained with gamma priors and one with GMRF priors respectively, are displayed in Figure

3. The estimated number of brown bears in the whole county of Västerbotten is 446 (median)

with a 95% credible interval of 420-480 bears.
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Table 4: Summary of the estimation results when fitting the proposed sub-regional

model with GMRF-spline to the bear data collected in the county of Västerbotten

during autumn 2019.

Credible Interval

Mean SD Median 2.5% 97.5%

N 446.945 15.283 446.000 420.000 480.000

µ1 0.011 0.003 0.011 0.006 0.018

M0,1 1.593 1.514 1.000 0.000 5.000

λ1 2.229 0.384 2.210 1.541 3.037

β1 0.700 0.068 0.701 0.560 0.828

α1 -5.255 0.107 -5.252 -5.470 -5.054

µ2 0.019 0.004 0.019 0.013 0.028

M0,2 2.832 2.022 3.000 0.000 8.000

λ2 2.245 0.293 2.230 1.711 2.863

β2 0.114 0.240 0.117 -0.373 0.575

α2 -0.309 0.508 -0.292 -1.363 0.619

µ3 0.005 0.001 0.005 0.003 0.008

M0,3 1.120 1.197 1.000 0.000 4.000

λ3 2.590 0.382 2.570 1.890 3.403

β3 -0.419 0.143 -0.416 -0.701 -0.148

α3 0.315 0.184 0.313 -0.039 0.676

µ4 0.002 0.001 0.002 0.001 0.005

M0,4 0.097 0.331 0.000 0.000 1.000

λ4 3.703 0.956 3.605 2.119 5.821

β4 0.021 0.110 0.022 -0.193 0.239

α4 1.255 0.153 1.254 0.950 1.552

µ5 0.005 0.002 0.004 0.002 0.008

M0,5 0.409 0.703 0.000 0.000 2.000

λ5 3.156 0.590 3.107 2.152 4.448

β5 0.096 0.261 0.111 -0.463 0.583

α5 -1.626 0.523 -1.583 -2.767 -0.739

µ6 0.002 0.001 0.002 0.000 0.004

M0,6 0.609 1.026 0.000 0.000 3.000

λ6 1.817 0.632 1.763 0.734 3.249

β6 -0.001 0.106 -0.003 -0.203 0.215

α6 0.721 0.168 0.722 0.388 1.048

µ7 0.007 0.001 0.007 0.005 0.010

M0,7 12.933 5.351 12.000 4.000 25.000

λ7 1.458 0.199 1.450 1.087 1.867

β7 0.189 0.219 0.197 -0.271 0.598

α7 -1.979 0.395 -1.960 -2.814 -1.259

µ8 0.003 0.001 0.003 0.002 0.005
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Table 4: Summary of the estimation results when fitting the proposed sub-regional

model with GMRF-spline to the bear data collected in the county of Västerbotten

during autumn 2019. (continued)

Mean SD Median 2.5% 97.5%

M0,8 6.276 3.935 6.000 1.000 16.000

λ8 1.362 0.284 1.347 0.846 1.960

β8 0.083 0.135 0.080 -0.175 0.354

α8 1.145 0.226 1.148 0.701 1.579

µ9 0.024 0.004 0.023 0.016 0.033

M0,9 22.695 8.607 22.000 9.000 43.000

λ9 1.085 0.181 1.075 0.758 1.463

β9 0.223 0.147 0.223 -0.072 0.515

α9 -0.190 0.266 -0.186 -0.725 0.324

µ10 0.005 0.003 0.005 0.001 0.012

M0,10 0.306 0.617 0.000 0.000 2.000

λ10 2.375 0.620 2.310 1.340 3.768

β10 0.558 0.252 0.560 0.052 1.042

α10 -1.231 0.556 -1.193 -2.416 -0.257

µ11 0.008 0.001 0.008 0.006 0.011

M0,11 17.779 6.537 17.000 7.000 33.000

λ11 1.359 0.178 1.353 1.027 1.725

β11 0.414 0.189 0.413 0.051 0.791

α11 -0.330 0.345 -0.322 -1.039 0.307

µ12 0.021 0.002 0.021 0.017 0.026

M0,12 11.281 4.224 11.000 4.000 21.000

λ12 2.101 0.176 2.097 1.770 2.462

β12 -0.184 0.350 -0.156 -0.971 0.429

α12 -1.359 0.586 -1.304 -2.666 -0.348

µ13 0.001 0.001 0.001 0.000 0.003

M0,13 0.382 0.714 0.000 0.000 2.000

λ13 2.348 0.648 2.298 1.216 3.804

β13 -0.350 0.145 -0.348 -0.640 -0.077

α13 0.186 0.188 0.185 -0.190 0.557

µ14 0.013 0.002 0.012 0.009 0.016

M0,14 9.043 3.756 9.000 3.000 17.000

λ14 2.056 0.182 2.052 1.714 2.428

β14 -0.431 0.205 -0.425 -0.857 -0.048

α14 -0.697 0.262 -0.692 -1.219 -0.188

µ15 0.001 0.000 0.001 0.000 0.002

M0,15 0.591 0.902 0.000 0.000 3.000

λ15 2.545 0.590 2.503 1.500 3.832

β15 -0.650 0.174 -0.649 -1.004 -0.317

α15 1.345 0.202 1.347 0.943 1.738
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Table 4: Summary of the estimation results when fitting the proposed sub-regional

model with GMRF-spline to the bear data collected in the county of Västerbotten

during autumn 2019. (continued)

Mean SD Median 2.5% 97.5%

τ 5.989 2.892 5.449 1.975 13.087

ρ 60.699 36.673 52.507 14.956 153.788
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Figure 3: Posterior distributions of N. Left plot with gamma priors. Right plot with GMRF
priors.

Concerning density and search effort, in Figure 4 we see the municipalities coloured according

to the posterior means of µ and λ. The separation of density and search effort is meaningful,

municipality Åsele (12) which had largest number of collected droppings in total and per

km2 does not have the largest estimate of density which is corrected for the search effort.

Municipality Dorotea (9) has largest estimate of density when corrected for the low search

effort. Overall, density is estimated to be higher in the southern and more inland parts of

Västerbotten and search effort is estimated to be higher in the parts closer to the coast. In

addition, the posterior standard deviations of µ and λ are displayed in Figure 5, where we

can see that the posterior is widest for µ in Dorotea (9) where the mean is largest and widest

for λ in Robertsfors (4) where the mean is largest, i.e. posterior means of these parameters

are less precise than other.
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Figure 4: Municipalities in Västerbotten coloured according to the values of posterior means
of µ (top) and λ (bottom).
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Figure 5: Municipalities in Västerbotten coloured according to the values of posterior standard
deviations of µ (top) and λ (bottom).
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4 Conclusions and discussion

In this thesis, we have developed and evaluated a spatial and temporal point process model,

for Swedish NGS data of brown bear droppings collected in a fixed large region. The

current method used in Sweden does not utilize the spatial information in data and leads to

information loss in samples when dividing the search period into calendar weeks (Åsbrink

et al. 2020). Existing SECR models are not directly applicable to the data in Sweden since the

collection process does not comprise of fixed sampling occasions and fixed traps or detectors.

The proposed model takes the spatial information into account and does not require an

arbitrary division of the search period into weeks. The loss of information which is present

when using the current method is thus avoided. In addition, a measure of search effort can

be obtained and separated from the density. This enables a correction of density by the

spatial variation in search effort when estimating the population size. The model accounts

for the uneven search effort in space in order to better reflect the true collection process and

distribution of brown bears. By dividing the search area into sub-regions the need to calculate

continuous coordinate dependent intensities of the point processes was removed. The model

was formulated with an approach similar to the Poisson model semi-complete-data likelihood,

as described in D. Borchers and Fewster (2016), which allows Bayesian implementations

without data augmentation and without the need to specify prior assumptions on the total

population size parameter N . Different prior distributions were set on density and detection

rate through which assumptions about spatial dependencies between sub-regions could be

incorporated as spatial covariates in a linear function.

A simulation study showed that the model works well for parameter estimation and that

the measures of density and search effort can be separated. Application of the model on the

data of brown bear from the county Västerbotten in 2019, with prior assumptions about

spatial dependencies between municipalities, yielded a narrow 95% credible interval of 420-480

bears compared with the 95% confidence interval of 416-640 bears which was obtained when

using the current method (Åsbrink et al. 2020). The separation of density and search effort

as well as effort corrected density estimates showed to be meaningful. In addition, spatial
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dependencies were useful when dealing with sub-regions in which counts were low.

Even though the proposed model yielded a more precise estimate of the total population size

N than the one obtained by using the current models, there still remains a problem with the

bears which move close to the border of the region of inventory. When a bear moves outside

the county of inventory as well as in the county of inventory, it is not obvious to which county

inventory this bear should be counted. The current way is to count all captured individuals

as belonging to the county in which inventory is made. This can result in overestimation of

the number of bears in the areas close to the border. Also, possibly not all droppings are

collected from bears which cross county borders. This affects the model since these bears

seem to have a smaller probability of recapture. A possible solution to this problem is to

impose weights such that each bear counts as a fraction depending on where in the county the

bear has its activity centre, e.g. a bear with activity centre close to the boundary is counted

as half a bear. The fractions can be estimated based on e.g. a bivariate normal distribution

fit to each bears capture locations. This is however beyond the scope of this thesis, but is an

interesting problem for further research.

The approach with modelling density and detection rate as linear functions gives the ability

to incorporate a variety of different covariates, such as sex in the case where it is interesting

to keep track of the ratio between number of female and male bears. Other covariates that

possibly can explain the variation in capture probability, such as distance from detection

location to nearest road (Bischof et al. 2019) or other geographical parameters, can be of

interest. This flexibility may have a potential influence on what is recorded during collection

of droppings in future brown bear inventories.

The model which we have proposed and evaluated provides a relatively simple and flexible

improvement to the current models used to estimate population size. It uses all capture

information as well as spatial information in the data and produces effort corrected spatially

varying estimates of density from which the number of unobserved bears is estimated. We see

no apparent obstacle for this model to be applied to data from previous inventories in other

counties with established brown bear population, and we recommend further explorations of

this model and approach.
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A Model code

#################################################

# JAGS model with Gamma priors

#################################################

BearModel <- "model{

## Poisson

for (i in 1:length(m)) {

# Link between q and lambda

q[i] <- 1-exp(-lambda[i])

# Distribution of number of observed ind. in region i

m[i] ~ dpois(mu[i]*q[i]*a[i])

}

## Trunc-Poisson

C <- 10000

for (j in 1:length(k)) {

L[j] <- lambda[r[j]]ˆk[j]/((exp(lambda[r[j]])-1)*exp(logfact(k[j])))

tau[j] <- -log(L[j]) + C

zeros[j] ~ dpois(tau[j])

}

## Posterior predictive

for (i in 1:length(m)) {

# Posterior predictive of number of ind. in region i

n[i] <- m0[i]+m[i]

# Posterior predictive of number of non-observed ind. in region i

m0[i] ~ dpois(mu[i]*a[i]*(1-q[i]))

}

# Posterior predictive of number of ind. in total

N <- sum(n)

## Priors

for (i in 1:length(m)) {

mu[i] ~ dgamma(s1,r1)

lambda[i] ~ dgamma(s2,r2)

}

}"
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#################################################

# JAGS model with GMRF

#################################################

BearModelGMRF <- "model{

## Linear predictors

mu.log <- X_mu %*% alpha

lambda.log <- X_lambda %*% beta

## Poisson

for (i in 1:length(m)) {

# Link functions to linear predictors

lambda[i] <- exp(lambda.log[i])

mu[i] <- exp(mu.log[i])

# Link between q and lambda

q[i] <- 1-exp(-lambda[i])

# Distribution of number of observed ind. in region i

m[i] ~ dpois(mu[i]*a[i]*q[i])

}

## Trunc-Poisson

C <- 10000

for (j in 1:length(k)) {

L[j] <- lambda[r[j]]ˆk[j]/((exp(lambda[r[j]])-1)*exp(logfact(k[j])))

theta[j] <- -log(L[j]) + C

zeros[j] ~ dpois(theta[j])

}

## Posterior predictive

for (i in 1:length(m)) {

# Posterior predictive of number of ind. in region i

n[i] <- m0[i]+m[i]

# Posterior predictive of number of non-observed ind. in region i

m0[i] ~ dpois(mu[i]*a[i]*(1-q[i]))

}

# Posterior predictive of number of ind. in total

N <- sum(n)

## Priors

# Parametric effect prior: 1/32ˆ2

for (i in 1:1) { alpha[i] ~ dnorm(0,0.00096) }

# Parametric effect prior: 1/7.7ˆ2

for (i in 1:1) { beta[i] ~ dnorm(0,0.017) }
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# priors for s(kod):

K_alpha <- S_alpha[1:14,1:14] * tau[1]

alpha[2:15] ~ dmnorm(zero_alpha[2:15],K_alpha)

K_beta <- S_beta[1:14,1:14] * rho[1]

beta[2:15] ~ dmnorm(zero_beta[2:15],K_beta)

# smoothing parameter priors:

for (i in 1:1) {

tau[i] ~ dgamma(.05,.005)

eta[i] <- log(tau[i])

rho[i] ~ dgamma(.05,.005)

kappa[i] <- log(rho[i])

}

}"

B Complementary plots
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Figure 6: Trace and density plots of posterior samples from the proposed model for parameter
N.
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Figure 7: Trace and density plots of posterior samples from the proposed model for parameter
µ in municipality Malå.
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Figure 8: Trace and density plots of posterior samples from the proposed model for parameter
µ in municipality Umeå.
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