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Abstract

In this thesis, we use an optimal linear shrinkage estimator for the

covariance matrix along with modern results on linear spectral statis-

tics to establish a new test for sphericity under the large-dimensional

asymptotics, namely when both the number of variables p and the

sample size n tend to infinity such that p/n → c > 0. Using similar

techniques, we also show that a previously established test based on

the Cauchy-Schwarz inequality remains usable under weaker assump-

tions than originally stated. We perform a Monte Carlo simulation

study to verify our results, to assess the quality of our new test, and

to see how well it performs compared to other tests.
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1 Introduction

With advances in data collection and storage, modern multivariate statistics
must increasingly often handle situations where the number of variables p is
comparable to the sample size n or possibly even exceeds it, as is the case
e.g. for DNA microarray data. This entails a large p × p covariance matrix
Σ along with a large inverse that in many applications nevertheless must be
accurately estimated, as when using the Markowitz mean-variance approach
to select an efficient portfolio from a large number of stocks (see [17]). There
is also a need for statistical hypothesis tests that perform well in this large-
dimensional setting, e.g. tests for sphericity of the covariance matrix; that is,
when Σ = σ2Ip is a scalar matrix for some unknown and unspecified constant
σ2 > 0.

In statistics at large, estimators and tests are often derived and have their
performance appraised under the assumption that the sample size n tends to
infinity, since this opens up for asymptotic techniques (see e.g. [10]). While
the usual estimator for Σ, the sample covariance matrix Sn, is unbiased and
consistent under the “standard asymptotics” where p is fixed and n→∞, it is
known to behave very differently under the “large-dimensional asymptotics”
(a.k.a. “general asymptotics” or “Kolmogorov asymptotics” or “Marchenko-
Pastur scheme”) where p = p(n) depends on n and p/n → c ∈ (0,+∞) as
n → ∞. Consequently, in the large-dimensional regime many classical tests
such as Hotelling’s T 2 test lose power (see [3]) and portfolio selection strate-
gies that depends on ”plug-in” estimators may underperform when these
depend on Sn or its inverse (see [7]). Moreover, Sn is singular and some
tests degenerate when p > n, e.g. the original likelihood ratio test (LRT) for
sphericity as originally established by Mauchly [19].

On the one hand, efforts have been made to develop new estimators
and tests under the large-dimensional asymptotics. In regard to testing
for sphericity, these efforts include the tests of Srivastava [23] and Fisher
et al. [9], both of which are based on the Cauchy-Schwarz inequality and
derived under the assumptions of Gaussian data and convergence of tr(Σi)/p
as n→∞ up to order i = 8 and i = 16. In search of a new well-conditioned
estimator for Σ, Ledoit and Wolf [11] studied linear shrinkage estimators—
in this context defined as linear combinations of Sn and Ip with coefficients
estimated from data—and found one that is optimal in the sense that it
asymptotically minimizes a Frobenius loss in quadratic mean; most impor-
tantly, this optimality is retained under the large-dimensional asymptotics.

4



To arrive at this result, Ledoit and Wolf [11] had to assume the existence of
the eighth moment of the data.

On the other hand, efforts have been made to introduce large-dimensional
“corrections” to already existing estimators and tests. Research in this direc-
tion includes the paper by Bai et al. [1] who modified the sphericity LRT to
account for p/n → c ∈ (0, 1) while simultaneously dropping the assumption
of normality (later amendments by Wang and Yao [24] removed a restrictive
assumption on the fourth moment of the data-generating model). Notably,
the approach used by these authors differs from those of the previous para-
graph in that they make heavy use of recent advances in random matrix
theory (RMT).

RMT rose to prominence with a series of papers in the 1950’s by famous
physicist E. Wigner in which he showed that certain classes of symmetric
matrices with random elements have, in the limit of increasing matrix size, a
non-random distribution of eigenvalues (see e.g. [25]). Later, in 1967, a sem-
inal paper by Marčenko and Pastur [18] established an integral equation for
the Stieltjes transformation of eigenvalue distributions arising in this manner;
importantly for statistical applications, the class of matrices under consid-
eration is wide enough to include sample covariance matrices. This result
was investigated further by several authors and subsequently re-established
under very general conditions in a 1995 paper by Silverstein [22].

Recently, Bodnar et al. [8] extended the optimal linear shrinkage estima-
tor (OLSE) of Ledoit and Wolf [11] to the case when the shrinkage target
is an arbitrary covariance matrix. Unlike Ledoit and Wolf [11], Bodnar et
al. [8] used the RMT to (1) get by with laxer assumptions on the mo-
ments, and (2) to show that the new estimator minimizes the Frobenius loss,
not just in quadratic mean, but almost surely. The new OLSE is written
Σ̂OLSE = α̂∗Sn + β̂∗Σ0 where Σ0 is the shrinkage target and α̂∗, β̂∗ are bona
fide estimators of the optimal coefficients. As we will later see, if one chooses
Σ0 = Ip/p then α̂∗, β̂∗ will be functions of tr(Sn)/p, tr(S2

n)/p where the lat-
ter pair of statistics can be regarded as the sample equivalents of tr(Σ)/p,
tr(Σ2)/p.

The aforementioned statistics have the useful property of being express-
ible in terms of the eigenvalues of Sn; indeed and more generally, tr(Skn)/p =
p−1

∑p
j=1 `

k
j where `1, . . . , `p are the eigenvalues. This makes them special

cases of statistics of the form p−1
∑p

j=1 f(`j) where f is a suitable function,
a.k.a. linear spectral statistics (LSS), a term coined in a 2004 paper by Bai
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and Silverstein [5]. In the same paper the authors prove that under the large-
dimensional asymptotics and some general conditions, a vector of LSSs will
converge in distribution to a multivariate Gaussian whose mean and covari-
ance functions are given by contour integrals of expressions containing the
Stieltjes transforms of certain limiting eigenvalue distributions. Although
this central limit theorem (CLT) does not assume Gaussian data, the mo-
ments still need to match those of a standard Gaussian up to order four,
rendering it very difficult to use anything but a Gaussian. This restriction
on the fourth moment was later removed by Pan and Zhou [20]. Moreover,
Wang and Yao [24] recently derived new, more explicit formulas for the mean
and covariance functions.

The last few years has seen the RMT taking on an increasingly important
role in the mathematical toolbox of the multivariate and/or large-dimensional
statistician, and the topic is very popular. Recent applications include: a
new method for deriving covariance matrix estimators that are optimal un-
der Stein’s loss [12], a CLT for LSSs of so-called separable sample covariance
matrices [2], new tests for the independence of two large-dimensional vec-
tors [6], a bootstrap procedure for LSSs [16], a family of rotation-invariant
tests for general linear hypotheses in a large-dimensional multivariate linear
regression model [14], an analytical (i.e. non-numerical) nonlinear shrinkage
estimator for large-dimensional covariance matrices [13], and a CLT for the
joint distribution of the m largest eigenvalues and trace of large-dimensional
covariance matrices in a generalized spiked population model [15].

The rest of this thesis is organized as follows. Section 2 presents the nec-
essary background material from the RMT including the important central
limit theorem for linear spectral statistics. In Section 3, we use the RMT to
prove our main results: (1) a new test for sphericity based on the OLSE of
Bodnar et al. [8], and (2) a re-establishment of the test of Fisher et al. [9]
under more general assumptions. In Section 4, we perform a Monte Carlo
simulation study to validate our theoretical findings and to investigate the
performance of our new test. Section 5 discusses these results and summa-
rizes the thesis. All proofs and calculations are relegated to the Appendix.
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2 Preliminaries

2.1 Notation and assumptions

The following notation and assumptions will be in effect throughout the entire
thesis. Let

• Xn;ij, n ≥ 1, i ≥ 1, j ≥ 1 be identically distributed real random
variables such that Xn;ij, i ≥ 1, j ≥ 1 are independent for each fixed n
and E(Xn;ij) = 0, E(X2

n;ij) = 1, E(X4
n;ij) <∞;

• β = E(X4
1;11)− 3 be the excess kurtosis;

• c ∈ (0,+∞) be a nonrandom number called the concentration;

• p = p(n) be positive integers such that cn := p/n→ c as n→∞;

• Xn be the p×n matrix having Xn;ij, 1 ≤ i ≤ p, 1 ≤ j ≤ n as elements;

• Σn be a nonrandom positive definite p× p matrix;

• Yn = Σ
1/2
n Xn;

• Sn = n−1YnY
T
n ;

• unless otherwise stated, all limits (in probability, distribution, etc.)
shall be taken as n→∞.

These choices are motivated in part by the random matrix theory and in part
by the intended statistical applications. For example, our assumptions on the
Xn;ij imply that the columns Xn;·1, . . . , Xn;·n of Xn are i.i.d. with zero mean
vector and identity covariance matrix, and so the columns Yn;·1, . . . , Yn;·n of
Yn are i.i.d. with mean vector

E(Yn;·1) = Σ1/2
n E(Xn;·1) = Σ1/2

n 0 = 0

and covariance matrix

Cov(Yn;·1) = Σ1/2
n Cov(Xn;·1)(Σ1/2

n )T = Σ1/n
n IpΣ

1/2
n = Σn.

The intended interpretation is therefore that the columns of Yn constitute a
random sample from some multivariate distribution D(0,Σn) and that Sn is
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the associated sample covariance matrix. Hence, in applications we assume
that Yn is observed and Sn computed, while Xn and Σn are unknown. In
contrast, the existence of the fourth moment is just a technical requirement
for the CLT on linear spectral statistics to hold.

Remark. Although the sample covariance matrix associated to an i.i.d. Gaus-
sian sample x1, . . . , xN ∼ N (µ,Σ) is usually defined as

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T ,

there always exists an orthogonal transformation of vectors that will trans-
form x1, . . . , xN into a new i.i.d. Gaussian sample y1, . . . , yN ∼ N (0,Σ) such
that yN =

√
Nx̄ and

S =
1

N − 1

N−1∑
i=1

yiy
T
i

(see Lemma 1.1 of [21]). Hence, by discarding yN and letting n = N − 1
we see that in the case of Gaussian data there is no loss of generality in
assuming that the covariance matrix can be computed using the formula
Sn = n−1YnY

T
n . If instead one does not assume Gaussian data but rather

only that y1, . . . , yn is an i.i.d. sample from some multivariate distribution
D(µ,Σn) then this argument does not work. Fortunately, if one additionally
knows that µ = 0 (as is the case for our “data” Yn;·1, . . . , Yn;·n), then there
is no need to estimate the mean and therefore no need to decrement n by
one to account for what would otherwise be a smaller number of degrees of
freedom. Thus, in our setting the formula

S =
1

n

n∑
i=1

yiy
T
i

is valid nonetheless, and Sn = n−1YnY
T
n retains its interpretation as the

sample covariance matrix.

Remark. One easy way to satisfy the moment requirements is to let Xn;ij be
standard Gaussians, in which case β = 0. It is however very difficult to find a
standardized non-Gaussian distribution that simultaneously satisfies β = 0.

We shall on occasion need an additional assumption on the rate of con-
vergence to the concentration, namely
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(A) cn = c+ o(1/n) or equivalently n(cn − c)→ 0 as n→∞.

This is a comparably tame and common assumption that will be used in
conjunction with the delta method in some of the proofs.

2.2 Random matrix theory

In this section and this section only we allow the fourth moment of Xn;ij to
be infinite. Recall that the empirical spectral distribution (e.s.d.) of a real
symmetric p× p matrix A with eigenvalues λ1, . . . , λp is the c.d.f.

FA(x) =
1

p

p∑
i=1

1(λi ≤ x), (1)

where 1(·) denotes the indicator function. One of the central concerns of
RMT is to understand the asymptotic behaviour of the (random) spectrum
of Sn; this includes computing the limit of F Sn if it exists, and for this limit
to exist we need the limit of FΣn to exist. Let for this purpose H be a
nonrandom c.d.f. with support on [0,+∞). It is then known that for each
z ∈ C+ = {z ∈ C : Im z > 0} the equation

m =

∫
1

τ(1− c− czm)− z
dH(τ)

has a unique solution m = mc,H(z) in the set {m ∈ C : −(1−c)/z+cm ∈ C+}
(see [22]) and there exists a unique c.d.f. F c,H such that z 7→ mc,H(z) is the
Stieltjes transform of F c,H ; that is,

mc,H(z) =

∫
1

λ− z
dF c,H(λ) for all z ∈ C+.

The fundamental result on the asymptotic behaviour of the spectrum of Sn
is

Theorem 2.1 ([22]). Assume that FΣn
d→ H. Then P(F Sn

d→ F c,H) = 1.

Remark. In its full generality, the result as stated in [22] holds under weaker
assumptions and allows for complex-valued Xn;ij, nonzero mean, and random
Σn, but we shall not need this stronger version.
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Recall that the Marchenko-Pastur law with parameter c > 0 is the prob-
ability distribution F c on R given by

dF c(x) =

(
1− 1

c

)
+

1(x = 0) +
1

2πcx

√
(b− x)(x− a)1(a ≤ x ≤ b) dx

where x+ = max{0, x}, a = (1−
√
c)2 and b = (1 +

√
c)2. (Note that F c has

an atom at x = 0 if and only if c > 1.) A special case of Theorem 2.1 is the
celebrated Marchenko–Pastur theorem, which is one of the few cases where
the limiting distribution F c,H has a known analytic expression:

Theorem 2.2 ([26]). Assume that Σn = Ip for all n. Then P(F Sn
d→ F c) =

1.

Remark. Since Σn = Ip implies Hn = χ[1,+∞) = H where χ[1,+∞) is the
indicator function (a.k.a. characteristic function) of the set [1,+∞), the
Marchenko-Pastur theorem is more or less equivalent to the statement that
F c,χ[1,+∞) = F c.

For later convenience we here introduce some notation. Any probability
measure F on R induces a functional L1(R, F )→ R by

f 7→ F (f) =

∫
f(x) dF.

This definition is equivalent to F (f) = EF [f(X)] where X is any random
variable with probability distribution F . In particular, if xr ∈ L1(R, F ) then
F (xr) is the rth raw moment of F . In the case that F is the Marchenko-
Pastur law we have the following explicit formula for these moments (see
Lemma 3.1 of [4]).

Proposition 2.3 ([4]). Let c > 0. Then

F c(xr) =
r−1∑
k=0

ck

k + 1

(
r

k

)(
r − 1

k

)
for all r = 1, 2, 3, . . .

In later proofs we shall need the first four moments; these are given by

Corollary 2.4. Let c > 0. Then

F c(x) = 1,

F c(x2) = 1 + c,

F c(x3) = 1 + 3c+ c2,

F c(x4) = 1 + 6c+ 6c2 + c3.
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2.3 Linear spectral statistics

As mentioned in the introduction, linear spectral statistics (of Sn) are func-
tionals of the form

1

p

p∑
i=1

f(`i) (2)

where f is a suitable function on [0,∞) and `1, . . . , `p are the eigenvalues of
Sn. Note that for sufficiently regular f one may use (1) to rewrite (2) as a
Riemann-Stieltjes integral:

1

p

p∑
i=1

f(`i) =

∫
f(x) dF Sn = F Sn(f).

In this thesis we shall only find use for LSSs of the form

ar :=
1

p
tr(Srn) =

1

p

p∑
i=1

`ri = F Sn(xr) (3)

where r is a positive integer, but for the sake of completeness we cover the
central limit theorem for LSSs in its general form.

Setting aside their ubiquity in multivariate statistics, LSSs have assumed
increasing importance in the past decade due to the discovery that they
possess a very general and powerful CLT. With a mind to formulating this

result, let Hn = FΣn , recall p/n = cn → c, and assume Hn
d→ H for some

c.d.f H. Because of Theorem 2.1, one then expects the (random) quantity
F Sn(f)−F cn,Hn(f) to be small for sufficiently large n, and is lead to wonder
about the rate at which it approaches zero. A natural guess is that this rate
is essentially 1/p, so that the sequence of random variables

Xn(f) := p {F Sn(f)− F cn,Hn(f)}

might converge in distribution; in particular, if Σn = Ip for all n then the
remark after Theorem 2.2 implies that F cn,Hn = F cn (the Marchenko-Pastur
law with parameter cn) and we expect

Xn(f) = p {F Sn(f)− F cn(f)} (4)

to converge in distribution. Indeed, we have the following
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Theorem 2.5 ([24]). Assume that Σn = Ip for all n. Let f1, . . . , fk be real-
valued analytic functions on [0,∞). The random vector {Xn(f1), . . . , Xn(fk)}
converges in distribution to a multivariate Gaussian vector (Xf1 , . . . , Xfk)
with mean function and covariance function

E(Xf ) = I1(f) + βI2(f),

Cov(Xf , Xg) = 2J1(f, g) + βJ2(f, g),

where

I1(f) = lim
r↓1

1

2πi

∮
|ξ|=1

f(|1 + hξ|2)

[
ξ

ξ2 − r−2
− 1

ξ

]
dξ,

I2(f) =
1

2πi

∮
|ξ|=1

f(|1 + hξ|2)
1

ξ3
dξ,

J1(f, g) = lim
r↓1
− 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

f(|1 + hξ1|2)g(|1 + hξ2|2)

(ξ1 − rξ2)2
dξ1dξ2,

J2(f, g) = − 1

4π2

∮
|ξ1|=1

f(|1 + hξ1|2)

ξ2
1

dξ1

∮
|ξ2|=1

g(|1 + hξ2|2)

ξ2
2

dξ2,

and h =
√
c.

Remark. With appropriate modifications, this CLT even allows for complex-
valued Xn;ij and f1, . . . , fk. An even more general version that allows for
non-identity covariance matrices can be found in [20].

As an application of this CLT and their (at the time) newly discovered
formulas for the mean function and covariance function, Wang and Yao [24]
took fr(x) = xr, r = 1, 2 and obtained the following result.

Lemma 2.6 ([24]). Assume that Σn = Ip for all n. Then

p

{(
a1

a2

)
−
(

1
1 + cn

)}
d→ N (µ,Σ)

where

µ =

(
0

(1 + β)c

)
and

Σ =

(
(2 + β)c 2(2 + β)(c+ c2)

2(2 + β)(c+ c2) 4c2 + 4(2 + β)(c+ 2c2 + c3)

)
.
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We shall use this lemma together with the delta method to derive our
main result: a new test for sphericity. Later, we shall also consider a different
statistic that depends not only on a1, a2 but also a3, a4, and as such we need
an extended version of the lemma. Though the formulas in Theorem 2.5 for
the mean and covariances are analytically tractable, they still demand very
long computations (see the proof of Lemma 2.1 in [24]), and as the number of
additional parameters is 14 the author does not deem it within the scope of
this thesis to carry out these computations. Luckily, in the case β = 0 a pair
of general formulas (see below) was known already to Bai and Silverstein [5],
who were the first authors to prove a general CLT of this kind.

Proposition 2.7 ([5]). Assume β = 0. With notation as in Theorem 2.5,

E(Xr) =
1

4

(
(1−

√
c)2r + (1 +

√
c)2r
)
− 1

2

r∑
j=0

(
r

j

)2

cj

and

Cov(Xxr1 , Xxr2 ) = 2cr1+r2

r1−1∑
k1=0

r2∑
k2=0

(
r1

k1

)(
r2

k2

)(
1− c
c

)k1+k2

×
r1−k1∑
`=1

`

(
2r1 − 1− (k1 + `)

r1 − 1

)
×
(

2r2 − 1− k2 + `

r2 − 1

)
for all positive integers r, r1, r2.

Thus we shall be satisfied with the following lemma:

Lemma 2.8. Assume that β = 0 and Σn = Ip for all n. Then

p



a1

a2

a3

a4

−


1
1 + cn

1 + 3cn + c2
n

1 + 6cn + 6c2
n + c3

n


 d→ N (µ,Σ) (5)

with

µ =


µ1

µ2

µ3

µ4

 and Σ =


σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44


13



where

µ1 = 0,

µ2 = c,

µ3 = 3c(1 + c),

µ4 = c(6 + 17c+ 6c2)

and

σ11 = 2c,

σ22 = 4c(2 + 5c+ 2c2),

σ33 = 6c(3 + 24c+ 46c2 + 24c3 + 3c4),

σ44 = 8c(4 + 66c+ 300c2 + 485c3 + 300c4 + 66c5 + 4c6),

σ12 = 4c(1 + c),

σ13 = 6c(1 + 3c+ c2),

σ14 = 8c(1 + 6c+ 6c2 + c3),

σ23 = 12c(1 + 5c+ 5c2 + c3),

σ24 = 8c(2 + 17c+ 32c2 + 17c3 + 2c4),

σ34 = 24c(1 + 12c+ 37c2 + 37c3 + 12c4 + c5).

The presence of cn in the two preceding lemmas will later become an issue
when we try to apply the delta method. The purpose of including (A) in our
assumptions is to circumvent this issue by allowing cn to be replaced with c.

Lemma 2.9. Assume (A) and Σn = Ip for all n. Then the conclusions of
Lemma 2.6 and Lemma 2.8 hold with cn replaced by c.

2.4 Linear shrinkage estimators

In the terminology of Bodnar et al. [8], a general linear shrinkage estimator
(GLSE) of Σn is a linear combination

Σ̂GLSE = αnSn + βnΣ0 (6)

where αn, βn are real numbers (the “shinkage intensities”) and Σ0 is a p ×
p nonrandom symmetric positive definite matrix (the “shrinkage target”).

Consider now the problem of minimizing
∥∥∥Σ̂GLSE − Σn

∥∥∥
F

with respect to the
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shrinkage intensities, where ‖A‖F =
√

tr(AAT ) denotes the Frobenius norm
of a square real matrix A. (The idea is that under the large-dimensional
asymptotics the unmodified sample covariance matrix Sn can be a poor es-
timator for Σn in the Frobenius norm sense, whereas an appropriate choice
of shrinkage target and shrinkage intensities can make Σ̂GLSE a much better
estimate.) Bodnar et al. [8] solve this minimization problem to find the op-
timal shrinkage intensities, denoted α∗n, β∗n. We are here only interested in
the former; it is given by

α∗n =
tr(SnΣn) ‖Σ0‖2

F − tr(ΣnΣ0) tr(SnΣ0)

‖Sn‖2
F ‖Σ0‖2

F − (tr(SnΣ0))2
. (7)

Unfortunately, α∗n depends on the in applications unknown covariance matrix
Σn, and so it becomes necessary to find a bona fide estimator for this optimal
shrinkage intensity. To this end, Bodnar et al. [8] use the RMT to show that
α∗n is asymptotically equivalent (in a certain sense to be specified below) to
the nonrandom quantity

α∗ = 1−
c
p
(tr(Σn))2 ‖Σ0‖2

F

(‖Σn‖2
F + c

p
(tr(Σn))2) ‖Σ0‖2

F − (tr(ΣnΣ0))2
(8)

and that this quantity is in turn asymptotically equivalent to the bona fide
shrinkage intensity

α̂∗ = 1−
1
n
(tr(Sn))2 ‖Σ0‖2

F

‖Sn‖2
F ‖Σ0‖2

F − (tr(SnΣ0))2
(9)

which is a consistent estimator for α∗n. More specifically, α∗n, α∗ and α̂∗n are
asymptotically equivalent in the sense of the following

Theorem 2.10 ([8]). Assume that

(i) E(|Xn;ij|4+ε) < +∞ for some ε > 0;

(ii) FΣn
d→ H for some c.d.f. H;

(iii) the order of only a finite number of eigenvalues of Σn can depend on p,
and λmax(Σn) is at most of order O(

√
p);

(iv) supn tr(Σ0) < +∞.
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Then |α∗n − α∗|, |α̂∗ − α∗|, and |α∗n − α̂∗| all converge to zero a.s.

Remark. Assumption (i) replaces our previous assumption of E(X4
n;ij) < +∞.

Note also that we in our notation have suppressed the dependence of Σ0, α∗

and α̂∗ on n.

Similar results hold for the optimal and bona fide shrinkage intensities βn
and β̂n, and with this Bodnar et al. [8] suggest the following “optimal linear
shrinkage estimator” (OLSE) for Σn:

Σ̂OLSE = α̂∗Sn + β̂∗Σ0. (10)

The shrinkage target Σ0 may be chosen as desired to take into account prior
information or to speculate about the structure of Σn.
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3 Tests for sphericity

The covariance matrix Σn is said to be spherical (a.k.a isotropic) if it is a
scalar matrix; that is, if Σn = σ2Ip for some unspecified scalar σ2 > 0. A
common problem in multivariate statistics is to test for sphericity, i.e. to test

H0 : Σn = σ2Ip against HA : Σn 6= σ2Ip.

Note that the seemingly more general problem of testing H1 : Σn = Σ0 where
Σ0 is a given p× p covariance matrix can be reduced to a sphericity test by
first transforming the data as Ỹn = Σ

−1/2
0 Yn; this is because the covariance

matrix of Ỹn is

Σ̃n = Cov(Σ
−1/2
0 Yn) = Σ

−1/2
0 Cov(Yn)(Σ

−1/2
0 )T = Σ

−1/2
0 ΣnΣ

−1/2
0

and thus H1 : Σn = Σ0 holds if and only H̃0 : Σ̃n = Ip holds.

3.1 Description of the new shrinkage–based test

We shall now use the OLSE of Bodnar et al. [8] to establish our main result:
a new test for sphericity. Let us henceforth take Σ0 = p−1Ip in (6), so that
under H0 the problem of finding

arg min
αn,βn

∥∥∥Σ̂GLSE − Σn

∥∥∥
F

= arg min
αn,βn

∥∥αnSn + βnp
−1Ip − σ2Ip

∥∥
F

has the obvious solution α∗n = 0, β∗n = pσ2. Alternatively, under the afore-
mentioned shrinkage target, the optimal shrinkage intensity (7) reduces to

α∗n =
tr(SnΣn)− tr(Σn) tr(Sn)

‖Sn‖2
F − (tr(Sn))2

, (11)

(we have rescaled the fraction by a factor p2) which evidently is zero under
H0. (Note, however, that this relationship is an implication and not an
equivalence.) The asymptotic quantity in (8), too, vanishes under H0: First
of all, it is invariant under rescaling of Σn by a nonzero constant so we may
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without loss of generality assume Σn = Ip. Then

α∗ = 1−
c
p
(tr(Ip))

2 ‖p−1Ip‖2

F

(‖Ip‖2
F + c

p
(tr(Ip))2) ‖p−1Ip‖2

F − (tr(p−1Ip))2

= 1− c

(p+ cp)p−1 − 1

= 1− c

1 + c− 1

= 0.

By combining one or both of these observations with Theorem 2.10 we im-
mediately obtain

Proposition 3.1. Under H0, α̂∗ → 0 a.s.

Remark. The factor p−1 in the shrinkage target is just a necessity for condi-
tion (iv) in the theorem and holds no greater importance.

This suggests that one could conduct a test of H0 by computing the bona
fide shrinkage intensity α̂∗ with the intention of rejecting H0 if α̂∗ deviates
too much from zero. To determine how large this deviation would have to
be in order to be considered statistically significant we shall prove a CLT for
α̂∗. The technical tools that enable this result are the previously stated CLT
for LSSs along with the delta method. In the formulation of the result, recall
that β = E(X4

n;ij)− 3 is the excess kurtosis.

Theorem 3.2. Assume (A). Under H0,

T =
pα̂∗ − (1 + β)

2

d→ N(0, 1).

We have therefore established the following approximate test of H0 at
significance level γ ∈ (0, 1):

Reject H0 if and only if T > zγ, where zγ is the upper 100γ% critical value
of the standard Gaussian distribution, i.e., P(N(0, 1) > zγ) = γ.

We will call our new test the shrinkage test (ST) for sphericity.
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3.2 A strengthening of the test of Fisher et al.

For our second result we shall use the RMT to strengthen the sphericity test
of Fisher et al. [9] in the sense that a certain CLT of theirs will be shown to
hold under a weaker set of assumptions than that of the original paper. First,
we give a brief explanation of how their test is derived: By conjugating both
sides of H0 : Σn = σ2Ip with a matrix whose columns form an eigenbasis
of Σn we may assume without loss of generality that Σn is diagonal, say
Σn = diag(λ1, . . . , λp). Then H0 holds if and only if λ1 = · · · = λp = σ2.
The key insight is now that given any positive integer r the Cauchy-Schwarz
inequality yields(

p∑
i=1

λri

)2

=

(
p∑
i=1

1 · λri

)2

≤

(
p∑
i=1

12

)(
p∑
i=1

λ2r
i

)
= p

p∑
i=1

λ2r
i

with equality if and only if the vectors (1, . . . , 1)T and (λ1, . . . , λp)
T are col-

inear; that is, if and only if H0 holds. As a result the quantity

1 ≤ ψr =
p
∑
λ2r
i

(
∑
λri )

2 =
p−1 tr(Σ2r

n )

(p−1 tr(Σr
n))2

can be said to measure the deviation from sphericity in the sense that H0 is
true if and only ψr = 1. Thus, if one knows the asymptotic distribution of ψr
one also obtains a test for H0. Srivastava [23] and Fisher et al. [9] consider
the cases r = 1 and r = 2 respectively.

Although a natural candidate estimator for ψ2 is its sample counterpart

p−1 tr(S4
n)

(p−1 tr(S2
n))2 =

a4

a2
2

,

this naive estimator happens to be inconsistent under the large-dimensional
asymptotics and so will not do (more on this below). As an alternative,
Fisher et al. [9] show that if one additionally assumes that

(a) the Xn;ij are standard Gaussians, and

(b) p−1 tr(Σi
n)→ a0

i ∈ (0,+∞) for i = 1, 2, . . . , 16,

then the estimator

ψ̂2 =
â4

â2
2
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is a consistent estimator of ψ2, where

â2 =
n2

(n− 1)(n+ 2)

1

p

(
tr(S2

n)− 1

n
(tr(Sn))2

)
is an unbiased and consistent estimator of p−1 tr(Σ2

n), and

â4 =
τ

p

(
tr(S4

n) + b tr(S3
n) tr(Sn) + c∗(tr(S2

n))2 + d tr(S2
n)(tr(Sn))2 + e(tr(Sn))4

)
is an unbiased and consistent estimator of p−1 tr(Σ4

n), where

τ =
n5(n2 + n+ 2)

(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)
,

b = − 4

n
, c∗ = − 2n2 + 3n− 6

n(n2 + n+ 2)
, d =

2(5n+ 6)

n(n2 + n+ 2)
, e = − 5n+ 6

n2(n2 + n+ 2)
.

Remark. If condition (b) of Fisher et al. and conditions (i)-(iv) of The-
orem 2.10 all hold, then Theorem 3.2 of Bodnar et al. [8] implies that
a2

a.s.→ a0
2 + ca0

1. On the other hand, ψ2 → a0
4/(a

0
2)2, and thus we expect

a4/a
2
2 to be an inconsistent estimator for ψ2 since the limit of the denomi-

nator of the former depends on c while the limit of the denominator of the
latter does not.

Fisher et al. [9] then proceed to derive the unconditional (read: regardless
of whether H0 is true or not) asymptotic distribution of their estimator, and
as a special case they obtain a CLT for ψ̂r under H0, which may then be
used as basis for a test of H0. Therefore, given that one is only interested in
the testing aspect, our contribution shall be to show that the assumptions
(a)-(b) are unnecessarily strong by using the RMT to re-establish the CLT
under an arguably much weaker set of conditions. This more general CLT is
stated in the following

Theorem 3.3. Assume (A) and β = 0. Under H0,

TF = n
ψ2 − 1√

8(8 + 12c+ c2)

d→ N(0, 1).

Remark. While we consider this result valuable in that it does not require
(b), we do feel obliged to point out that it is very hard to find non-Gaussian
Xn;ij such that Xn;ij is both standardized and have excess kurtosis β = 0,
and therefore one might in practice be forced to assume (a).
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3.3 The corrected likelihood ratio test

For the sake of comparison in our simulation study we also include a third
test for sphericity, the corrected likelihood ratio test (CLRT), though we shall
have nothing new to prove about it. Originally derived in 1940 by Mauchly
[19] for multivariate Gaussian samples, the likelihood ratio test statistic for
H0 is

Vn = det(Sn) ·
(
p−1 tr(Sn)

)−p
.

Note that Vn is degenerate when p > n since Sn is singular in this case, so
the likelihood ratio test should not be used when the number of variables
exceeds the sample size. A classical result says that under the standard

asymptotics (read: p is fixed) and when H0 holds, −n log Vn
d→ χ2(f), a chi-

square distribution with degree of freedom f = 1
2
p(p+1)+1. After observing

that
1

p
log (det(Sn)) =

1

p

p∑
j=1

log `j

is a linear spectral statistic, Wang and Yao [24] use Theorem 2.5 to prove the
following CLT which serves as a large-dimensional correction of the likelihood
ratio test.

Theorem 3.4 ([24]). Assume that c ∈ (0, 1). Under H0,

TL = − log Vn + (p− n) log
(

1− p

n

)
− p d→ N(µ, σ2

1)

where

µ = −1

2
log (1− c) +

1

2
βc

and
σ2

1 = −2 log (1− c)− 2c.

Remark. With appropriate modifications to the mean and variance this CLT
is also valid for complex-valued Xn;ij (see [24] for details).

Wang and Yao [24] point out that the asymptotic variance of TL depends
on c through a factor − log (1− c) and thus blows up when c approaches 1; as
such, their prediction was that the power will break down when c is close to
1. This phenomenon was indeed observed in their Monte Carlo simulations,
and their conclusion was that in general the CLRT may be preferable to
other statistics only when the ratio p/n is much lower than 1.
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4 Simulation study

We conduct a Monte Carlo simulation study in RStudio to investigate how
the size and power of our new test, the shrinkage test (ST), compares to
existing tests; namely, the test of Fisher et al. [9]—which henceforth will be
referred to as the Cauchy-Schwarz test (CST)—and the corrected likelihood
ratio test (CLRT). The following conventions shall be used throughout:

• T , TF , and TL denote the test statistics of the ST, the CST, and the
CLRT, respectively.

• Since under H0 all three statistics are invariant under rescaling of σ2,
we assume without loss of generality that σ2 = 1.

• For each simulated value, the Monte Carlo sample size (a.k.a. the
number of repetitions) is set to N = 104.

• We use a pre-set significance level equal to γ = 0.05.

Remark. Given a statistical hypothesis test of a null hypothesis H0 vs. an
alternative hypothesis H1, the size is the probability of falsely rejecting the
null hypothesis (a.k.a. the probability of making a type I error), i.e.

Size := P(test rejects H0 | H0),

while the power is the probability of correctly rejecting the null hypothesis
(a.k.a. the probability of not making a type II error), i.e.

Power := P(test rejects H0 | H1).

In addition, the test is said to be consistent if the power approaches 1 as the
sample size tends to infinity.

4.1 Size

Since each statistic T , TF , TL is asymptotically standard Gaussian under H0,
our criterion for rejection shall naturally be T > zγ, where zγ as before is
the upper 100γ% critical value of the standard Gaussian distribution. As
estimator for size we use the attained significance level (ASL), which Fisher
et al. [9] define as

ASL(T ) =
(#T > zγ)

N
.
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Thus, if Theorem 3.2 indeed is true and n is taken sufficiently large, we expect
to see the outcome ASL(T ) ≈ γ under H0. For the sake of comparison we
also simulate the ASL of TF , and, whenever it is applicable (read: c < 1),
the ASL of TL.

Remark. More precisely, if we for the sake of argument assume that the ap-
proximation T ∼ N(0, 1) holds exactly, then P(T > zγ) = γ and consequently
N ·ASL(T ) ∼ Bin(N, γ), so in this case we can construct an exact confidence
interval for ASL(T ) at confidence level 1− γ = 0.95, namely(

Q(γ/2;N, γ)

N
,
Q(1− γ/2;N, γ)

N

)
≈ (0.0458, 0.0543),

where q 7→ Q(q;N, γ) is the quantile function of Bin(N, γ). So, for all suf-
ficiently large n we expect T to fall within the above confidence interval
approximately 95% of the time.

Firstly, we simulate the ASL for all three statistics under H0 and stan-
dard Gaussian Xn;ij on a grid of values of n and c. Tables 1-3 provide the
results, and although these seem to confirm the asymptotic normality of T ,
we observe that the rate of convergence appears much slower for c close to
zero. In comparison, the statistics TF and TL appear to converge at a much
faster rate across the board, and especially TF seems to be well-approximated
by a standard Gaussian even for as low sample sizes as n = 50.

Secondly, to investigate the impact of non-Gaussian data and nonzero
excess kurtosis, we simulate the ASL for all three uncorrected statistics under
H0 (meaning we substitute β = 0 in the formulas for these statistics even
if E(X4

n;ij) − 3 6= 0). More specifically, we simulate t-distributed Xn;ij with
10 degrees of freedom, so that β = 1. Tables 4-6 provide the results for the
same grid of values of n and c as before, and we observe that even though β
is rather small in magnitude, all values are significantly worse than the case
with standard Gaussian Xn;ij.

Thirdly, we simulate the ASL under H0 for the corrected versions of T
and TL under t-distributed Xn;ij with 10 degrees of freedom to see if the
corrections are indeed working as they should. (Since the author is are not
aware of any existing corrected version of TF we do not include this statistic
in our considerations.) Tables 7-8 provide the results and appear to show that
the statistics are indeed converging in distribution to a standard Gaussian
as the sample size tends to infinity and that the rate is comparable to the
situation with standard Gaussian data, if perhaps slightly slower.
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Finally, we compute kernel density estimates for T and plot these along-
side their corresponding large-dimensional asymptotic approximation: the
standard Gaussian density. We use the same values for the concentration c
as before, but this time we choose the dimension p adaptively and by hand
until the ASL is deemed close enough to γ to proceed. The results are shown
in Figure 1, and we observe that although the central parts of the density
estimates appear somewhat non-Gaussian in the sense that the peaks are a
bit uneven with mass slightly off to the side, it does seem like the general
shapes of the densities closely match that of a standard Gaussian.
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Table 1: ASL(T ) under Gaussian Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8 c = 1.5 c = 2 c = 5

n = 50 0.0044 0.0231 0.0335 0.0413 0.0363 0.0464
n = 100 0.0171 0.0376 0.0407 0.0435 0.0443 0.0489
n = 150 0.0252 0.0402 0.0427 0.0433 0.0466 0.0521
n = 200 0.0308 0.0369 0.0440 0.0516 0.0501 0.0499

Table 2: ASL(TF ) under Gaussian Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8 c = 1.5 c = 2 c = 5

n = 50 0.0452 0.0479 0.0489 0.0529 0.0507 0.0492
n = 100 0.0514 0.0568 0.0547 0.0537 0.0548 0.0486
n = 150 0.0522 0.0529 0.0556 0.0488 0.0513 0.0546
n = 200 0.0575 0.0501 0.0544 0.0559 0.0508 0.0495

Table 3: ASL(TL) under Gaussian Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8

n = 50 0.0628 0.0564 0.0566
n = 100 0.0529 0.0548 0.0523
n = 150 0.0529 0.0535 0.0513
n = 200 0.0506 0.0475 0.0473

Table 4: Uncorrected ASL(T ) under t-distributed Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8 c = 1.5 c = 2 c = 5

n = 50 0.0147 0.0720 0.0885 0.1057 0.1107 0.1220
n = 100 0.0588 0.0982 0.1067 0.1222 0.1222 0.1227
n = 150 0.0783 0.1067 0.1163 0.1211 0.1231 0.1241
n = 200 0.0923 0.1122 0.1116 0.1257 0.1242 0.1267
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Table 5: Uncorrected ASL(TF ) under t-distributed Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8 c = 1.5 c = 2 c = 5

n = 50 0.0926 0.1032 0.1003 0.0892 0.0850 0.0772
n = 100 0.1193 0.1157 0.1085 0.0947 0.0929 0.0749
n = 150 0.1241 0.1126 0.1082 0.0935 0.0845 0.0750
n = 200 0.1255 0.1150 0.1032 0.0913 0.0877 0.0721

Table 6: Uncorrected ASL(TL) under t-distributed Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8

n = 50 0.1140 0.1100 0.0912
n = 100 0.1220 0.1049 0.0915
n = 150 0.1206 0.1110 0.0938
n = 200 0.1248 0.1079 0.0882

Table 7: Corrected ASL(T ) under t-distributed Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8 c = 1.5 c = 2 c = 5

n = 50 0.0021 0.0202 0.0311 0.0409 0.0450 0.0475
n = 100 0.0131 0.0331 0.0400 0.0480 0.0457 0.0494
n = 150 0.0197 0.0372 0.0403 0.0490 0.0476 0.0482
n = 200 0.0294 0.0405 0.0444 0.0512 0.0496 0.0478

Table 8: Corrected ASL(TL) under t-distributed Xn;ij.

p = cn c = 0.2 c = 0.5 c = 0.8

n = 50 0.0633 0.0581 0.0543
n = 100 0.0597 0.0517 0.0515
n = 150 0.0532 0.0537 0.0540
n = 200 0.0574 0.0488 0.0495
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Figure 1: The large-dimensional asymptotic approximation of the density of
T together with kernel density estimators for T .
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4.2 Power

Next, we simulate the power of all three tests under various realizations
of H1 with a mind to seeing how the ST compares to the other two tests
and under what conditions the former might be preferable (if at all). For
the sake of simplicity we let Xn;ij be standard Gaussian in all our power
simulations. This leaves us with the issue of deciding (1) what criterion to
use for rejection, and (2) what non-spherical covariance matrix to use for H1.
Concerning (1), we have seen in our simulations of the ASL that the rate at
which T converges in distribution to a standard Gaussian (as n→∞) under
H0 is strongly dependent on the concentration constant c, and it is natural to
presume that similar differences in rates of convergence are present also under
H1. Thus, using T > zγ as the criterion for rejection may be problematic,
and we have instead opted to use the same two-step procedure as Srivastava
[23] and Fisher et al. [9]:

1. Under H0, simulate a Monte Carlo sample from T and use this sample
to compute an estimate T̂γ for the critical value of T at significance
level γ, i.e. the real number Tγ satisfying P(T > Tγ | H0) = γ.

2. Under H1, simulate a new Monte Carlo sample from T and use this
sample to compute the frequency

(#T > T̂γ)

N
,

which is then taken as an estimator of the power.

(We shall use the R function quantile with default options to compute the
critical value in step 1.)

Remark. The author’s understanding of this procedure and why it may be
preferable is that it essentially uses an exact test for H0, since if we ignore
the estimation uncertainty present in T̂γ then P(T > T̂γ) = γ and thus
P(test rejects H0 | H0) = γ. This is in contrast to the approximate test
based on the limiting distribution of T , since then P(T > zγ | H0) = γ only
holds in the limit and thus P(test rejects H0 | H0) ≈ γ. Of course, if n is large
enough that T is well-approximated by a standard Gaussian, then T̂γ ≈ zγ
and so these two methods of computing the power will give approximately
the same value.
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Concerning (2), a number of different scenarios for H1 will be investigated.
We start by considering the case where the empirical spectral distribution
of Σn remains approximately the same for all n; more specifically, let Σn be
diagonal with equal proportions of eigenvalues 0.8, 1, and 1.5. (That is, one
third of the diagonal elements are equal to 0.8, one third are equal to 1, and
one third are equal to 1.5, and if p is not a multiple of three then we include
or exclude one additional element 1.5 compared to the number of 0.8s and
1s.) Table 9 presents the simulated powers under this Σn for a grid of values
of n and c. We observe that all three tests appear to be consistent, but that
the ST has higher power than both other tests for all considered choices of
parameters; moreover, when n is fixed and c increases, the power of the ST
increases slightly while the powers of the other two tests decrease slightly.

For our next few scenarios for H1 we will again follow the lead of Fisher et
al. [9] and consider two types of “near spherical” covariance matrices; more
precisely, let

Σθ = diag(θ, 1, 1, . . . , 1) for θ > 0

and

ΣΘ =

(
Θ 0T

0 I

)
where

Θ = diag(0.75, 1.25, 1.75, 2.25, 2.75, 3.25).

Firstly, we simulate the powers under Σn = Σθ for θ = 3 and θ = 4 on the
same grid of values of n and c as previously. Tables 10-11 present the results,
and we observe that the ST appears to be consistent, at least for c < 1, but
also that the rate of convergence rapidly drops off with increasing c, and for
c > 1 the power almost seems to be plateauing. In general, when c < 1 the
ST performs much better than the CLRT and slightly more worse than the
CST. When c > 1, the ST performs worse than the CST with the difference
being more pronounced for larger c.

Secondly, we simulate the power under Σn = ΣΘ on the same grid of
values of n and c. The results are found in Table 12, and we observe that the
power appears to behave essentially the same as in the previous situation. In
general, when c is close to 0, the ST performs comparably to the CST while
the CLRT performs comparably or worse. When c > 1, the CST once again
dominates, but the difference is less pronounced compared to the case with
Σn = Σθ.
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Thirdly, we investigate how the powers of T and TF under Σn = Σθ

behave as functions of θ by simulating these powers on a grid of values of θ.
Figure 2 provides the results for n = 50, c = 3, and θ ∈ (0, 8], and it appears
that the CST outperforms the ST for all values of θ.

(Note that we have excluded the case with concentration c = 5 in our
power simulations. This is because the time it took to simulate the ASL
suggests that the power under n = 200, c = 5, p = cn = 1000 would take a
very long time to simulate.)
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Table 9: Simulated power under diagonal Σn with spectrum {0.8, 1, 1.5}.
p = cn c = 0.2 c = 0.5

T TF TL T TF TL

n = 50 0.4463 0.3252 0.4233 0.5044 0.3092 0.3671
n = 100 0.9055 0.8067 0.8557 0.9393 0.7453 0.8316
n = 150 0.9966 0.9814 0.9932 0.9994 0.9614 0.9906
n = 200 1.0000 0.9995 1.0000 1.0000 0.9991 0.9995

p = cn c = 0.8 c = 1.5 c = 2

T TF TL T TF T TF

n = 50 0.5079 0.2726 0.2745 0.5090 0.2175 0.5431 0.1966
n = 100 0.9532 0.6793 0.6612 0.9589 0.5227 0.9624 0.4601
n = 150 0.9994 0.9236 0.9374 0.9998 0.8333 0.9998 0.7525
n = 200 1.0000 0.9945 0.9951 1.0000 0.9662 1.0000 0.9270

Table 10: Simulated power under Σn = Σθ with θ = 3.

p = cn c = 0.2 c = 0.5

T TF TL T TF TL

n = 50 0.9307 0.9566 0.8076 0.7477 0.8409 0.3567
n = 100 0.9915 0.9981 0.9119 0.8550 0.9631 0.3724
n = 150 0.9977 0.9997 0.9442 0.8980 0.9907 0.3903
n = 200 0.9994 1.0000 0.9623 0.9276 0.9962 0.4056

p = cn c = 0.8 c = 1.5 c = 2

T TF TL T TF T TF

n = 50 0.5847 0.7332 0.1597 0.3312 0.4818 0.2559 0.3743
n = 100 0.6725 0.8834 0.1593 0.3486 0.6126 0.2691 0.4494
n = 150 0.6948 0.9298 0.1656 0.3730 0.6588 0.2752 0.4883
n = 200 0.7202 0.9620 0.1689 0.3753 0.7048 0.2570 0.5169

31



Table 11: Simulated power under Σn = Σθ with θ = 4.

p = cn c = 0.2 c = 0.5

T TF TL T TF TL

n = 50 0.9939 0.9970 0.9684 0.9661 0.9886 0.6746
n = 100 1.0000 1.0000 0.9965 0.9947 0.9996 0.7282
n = 150 1.0000 1.0000 0.9998 0.9983 1.0000 0.7544
n = 200 1.0000 1.0000 0.9998 0.9999 1.0000 0.7695

p = cn c = 0.8 c = 1.5 c = 2

T TF TL T TF T TF

n = 50 0.9007 0.9599 0.3100 0.7042 0.8529 0.5650 0.7613
n = 100 0.9619 0.9959 0.3310 0.7810 0.9614 0.6361 0.8930
n = 150 0.9846 0.9996 0.3300 0.8269 0.9838 0.6767 0.9453
n = 200 0.9907 0.9998 0.3292 0.8435 0.9932 0.6769 0.9656

Table 12: Simulated power under Σn = ΣΘ.

p = cn c = 0.2 c = 0.5

T TF TL T TF TL

n = 50 0.9928 0.9608 0.9899 0.9835 0.9736 0.8424
n = 100 1.0000 1.0000 1.0000 0.9995 0.9998 0.9391
n = 150 1.0000 1.0000 1.0000 1.0000 1.0000 0.9636
n = 200 1.0000 1.0000 1.0000 1.0000 1.0000 0.9667

p = cn c = 0.8 c = 1.5 c = 2

T TF TL T TF T TF

n = 50 0.9439 0.9344 0.4675 0.7724 0.7888 0.6597 0.6755
n = 100 0.9915 0.9978 0.5312 0.8644 0.9403 0.7410 0.8268
n = 150 0.9971 0.9998 0.5658 0.9026 0.9785 0.7552 0.8980
n = 200 0.9991 1.0000 0.5786 0.9233 0.9888 0.7550 0.9282
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Figure 2: Simulated powers of T and TF as θ increases.
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5 Discussion

5.1 Performance of the new test

From our simulations we conclude the following:

• T is asymptotically standard Gaussian under H0, thus confirming our
Theorem 3.2.

• However, the rate of convergence may be slow in comparison to that of
statistics associated with other tests, especially when c is close to zero.

• The exact ST does well at detecting non-sphericity when the number
of non-identity elements is proportional to p and outperforms both the
CST and the CLRT in this setting.

• Under near-spherical covariance matrix, the exact ST outperforms the
CLRT but is outperformed by the CST.

Restricting ourselves to the three tests considered in this thesis, it would
therefore seem that the choice lies mostly between our new shrinkage test
and the CST. We shall discuss some additional pros and cons of these two
tests before giving our verdict.

The ST enjoys an important computational advantage compared with
the CST, namely that the former uses fewer linear spectral statistics than
the latter (2 vs. 4): Computing Sn is unavoidable and requires O(p2n)
operations, but each additional linear spectral statistic ar we use (assuming
ar = p−1 tr(Srn) is computed as it is written and we store the intermediate ma-
trices Srn) requires an additional matrix multiplication and O(p3) additional
operations to compute. When p is very large this leads to the CST taking
significantly more time to execute compared to the ST, which could make the
latter preferable. (Of course, in principle one could numerically compute the
eigenvalues `1, . . . , `p of Sn and use these to compute each ar = p−1

∑p
i=1 `

r
i

using only O(p) operations, but this method might be too numerically un-
stable to rely on for testing purposes.)

On the other hand, a demerit of the ST and a possible explanation for
its low power in certain circumstances is its relative “detachment” from the
hypothesis it purports to test: To begin with, in the derivation of the test
itself we technically only have that the sphericity hypothesis H0 : Σn = σ2Ip
implies a second auxiliary hypothesis H ′0 : αn = 0, where the latter is what
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we actually test. (Indeed, (11) shows that αn = 0 if and only if tr(SnΣn) =
tr(Sn) tr(Σn) which can happen even if Σn is not spherical.) Secondly, since
we cannot compute αn directly, we have to settle for approximating it using
the bona fide estimate α̂∗, and though we know that the distance between
these quantities converges to zero almost surely, this method still introduces a
further degree of separation between H0 and our test statistic. In comparison,
the CST takes advantage of an if-and-only-if–relationship between the null
hypothesis H0 and the auxiliary hypothesis ψ2 = 1. Furthermore, both
the numerator and denominator of ψ̂2 are computed using estimators that
are unbiased under Gaussian data, which may improve the accuracy of the
estimation and the quality of the test in certain cases. In theory the CST
can also extract (in a vague sense) more information from data than the ST
since the former uses more linear spectral statistics than the latter.

With these considerations in mind, we conclude that the (approximate)
ST can indeed be preferable to other tests, and we recommend that it be
used when (1) c is large and/or n is large, and (2) one suspects that the true
covariance matrix is non-spherical but not necessarily near-spherical.

5.2 Future work

What follows are some of our suggestions for future work based on the content
and findings of this thesis.

• Include the ST in an empirical study, say applied to financial data.

• Use the RMT to find the asymptotic distribution of pα̂∗ under the
alternative hypothesis (given that this is possible, that is).

• Derive a generalization of the CST test statistic to the case with non-
zero excess kurtosis β.

An additional observation we would like to make is that we have relied on
the formulas in Proposition 2.7 to provide us with the asymptotic means and
covariances of the random variables ar when β = 0, and the existence of these
formulas, along with the simple appearance of the expressions for the means
and covariances in Lemma 2.6, lead us to believe that it should be possible
to use Theorem 2.5 to derive generalizations of these formulas to arbitrary
β. Such formulas could prove useful in future applications of this CLT, since
the case fr(x) = xr is bound to appear often.
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5.3 Summary

This thesis is dedicated to the problem of testing the covariance matrix for
sphericity in the large-dimensional setting. Using recent central limit the-
orems on linear spectral statistics of large-dimensional sample covariance
matrices, and an optimal linear shrinkage estimator for large-dimensional
covariance matrices, we derive the asymptotic distribution of a bona fide
optimal linear shrinkage intensity and use this to establish a new test for
sphericity. Monte Carlo simulations reveal that the new test performs better
than an existing test based on the likelihood ratio, while depending on the
nature of the alternative hypothesis it may perform better or worse than a
different existing test based on the Cauchy-Schwarz inequality. Moreover, we
generalize the latter test to non-Gaussian data and weaker assumptions on
the covariance matrix.
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Appendix

Proof of Corollary 2.4. Using Proposition 2.3 we find that the first four mo-
ments of the Marchenko-Pastur law F c are

F c(x) =
1

1
· 1 · 1

= 1,

F c(x2) =
1

1
· 1 · 1 +

c

2
· 2 · 1

= 1 + c,

F c(x3) =
1

1
· 1 · 1 +

c

2
· 3 · 2 +

c2

3
· 3 · 1

= 1 + 3c+ c2,

F c(x4) =
1

1
· 1 · 1 +

c

2
· 4 · 3 +

c2

3
· 6 · 3 +

c3

4
· 4 · 1

= 1 + 6c+ 6c2 + c3.

Proof of Lemma 2.8. Theorem 2.5 gives that {Xn(x), Xn(x2), Xn(x3), Xn(x4)}
converges in distribution to a multivariate Gaussian vector (Xx, Xx2 , Xx3 , Xx4).
For each r = 1, 2, 3, 4 we have upon combining (4) with (3) that

Xn(xr) = p {ar − F cn(xr)}

where F cn(xr) is the rth raw moment of the Marchenko-Pastur law with
parameter cn and is therefore given by Corollary 2.4. It remains to compute
the parameters µi = E(Xxi) and σij = Cov(Xxi , Xxj) for 1 ≤ i, j ≤ 4. The
parameters µ1, µ2, σ11, σ22, σ12 may immediately be obtained by taking β = 0
in Lemma 2.6, so it suffices to compute µ3, µ4, σ13, σ14, σ23, σ24, σ33, σ34, σ44
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using Proposition 2.7. The two means are

µ3 =
1

4

(
(1−

√
c)6 + (1 +

√
c)6
)

− 1

2

((
3

0

)2

+

(
3

1

)2

c+

(
3

2

)2

c2 +

(
3

3

)2

c3

)
=

1

4

(
2 + 30c+ 30c2 + 2c3

)
− 1

2

(
1 + 9c+ 9c2 + c3

)
= 3c(1 + c),

µ4 =
1

4

(
(1−

√
c)8 + (1 +

√
c)8
)

− 1

2

((
4

0

)2

+

(
4

1

)2

c+

(
4

2

)2

c2 +

(
4

3

)2

c3 +

(
4

4

)2

c4

)
=

1

4

(
2 + 56c+ 140c2 + 56c3 + 2c4

)
− 1

2

(
1 + 16c+ 36c2 + 16c3 + c4

)
= c(6 + 17c+ 6c2),
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while the first of the covariances is

σ13 = 2c4

0∑
k1=0

3∑
k2=0

(
1

k1

)(
3

k2

)(
1− c
c

)k1+k2

×
1−k1∑
`=1

`

(
1− (k1 + `)

0

)(
5− k2 + `

2

)

= 2c4

3∑
k2=0

(
1

0

)(
3

k2

)(
1− c
c

)k2
×

1∑
`=1

`

(
1− `

0

)(
5− k2 + `

2

)

= 2c4

3∑
k2=0

(
3

k2

)(
1− c
c

)k2
· 1 ·

(
0

0

)(
6− k2

2

)

= 2c4

3∑
k2=0

(
3

k2

)(
6− k2

2

)(
1− c
c

)k2
= 2c4

(
1 · 15 + 3 · 10 · 1− c

c
+ 3 · 6 ·

(
1− c
c

)2

+ 1 · 3 ·
(

1− c
c

)3
)

= 6c[5c3 + 10c2(1− c) + 6c(1− 2c+ c2) + (1− 3c+ 3c2 − c3)]

= 6c[5c3 + 10c2 − 10c3 + 6c− 12c2 + 6c3 + 1− 3c+ 3c2 − c3]

= 6c(1 + 3c+ c2).

The remaining covariances can be obtained in a similar fashion and as such
we omit their computations.

Proof of Lemma 2.9. Let r ∈ {1, 2, 3, 4}. Writing

p {ar − F c(xr)} = p {ar − F cn(xr)}+ p {F cn(xr)− F c(xr)} ,

we see by Slutsky’s theorem that it suffices to show that the rightmost quan-
tity converges to zero. For each positive integer k the polynomial xk− ck has
a root at x = c and hence the factor theorem yields a polynomial pk(x) with
coefficients depending only on k and c such that xk − ck = (x− c)pk(x). Let
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us also define p0(x) ≡ 0. It follows by Proposition 2.3 that

F cn(xr)− F c(xr) = (cn − c)
r−1∑
k=0

pk(cn)

k + 1

(
r

k

)(
r − 1

k

)
.

Since the above sum is bounded in n (owing to cn being convergent and
therefore bounded) we need only multiply both sides with p = cnn and use
(A).

Proof of Theorem 3.2. Recall that the shrinkage target is Σ0 = p−1Ip. To
use the RMT we first need to express α̂∗ in terms of linear spectral statistics:

α̂∗ = 1−
1
n
(tr(Sn))2 ‖p−1Ip‖2

F

‖Sn‖2
F ‖p−1Ip‖2

F − (tr(Snp−1Ip))2

= 1−
1
n
(tr(Sn))2p−1

‖Sn‖2
F p
−1 − (p−1 tr(Sn))2

= 1−
p
n
(p−1 tr(Sn))2

p−1 tr(S2
n)− (p−1 tr(Sn))2

= 1− cn
a2

1

a2 − a2
1

where ar = p−1 tr(Srn), r = 1, 2 are LSSs with fr(x) = xr, respectively.
We shall now use the delta method. Let us for this purpose introduce the
function g(x1, x2) = x2

1/(x2 − x2
1) and write

α̂∗ = 1− cng(a1, a2).

UnderH0, Sn = n−1σ2XnX
T
n . It is easy to see that g(a1, a2) is invariant under

rescaling of Sn by a positive constant, so we may without loss of generality
assume that σ2 = 1, which under H0 is equivalent to Σn = Ip. Then the
conditions of Lemma 2.9 are satisfied and we have

p

{(
a1

a2

)
−
(

1
1 + c

)}
d→ N (µ,Σ) (12)

where

µ =

(
0

(1 + β)c

)
(13)
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and

Σ =

(
(2 + β)c 2(2 + β)(c+ c2)

2(2 + β)(c+ c2) 4c2 + 4(2 + β)(c+ 2c2 + c3)

)
. (14)

By multiplying both “sides” of (12) with p−1 and using Slutsky’s theorem

we obtain a1
p→ 1, a2

p→ 1 + c and hence

g(a1, a2)
p→ g(1, 1 + c) =

12

(1 + c)− 12
=

1

c
.

Together with (A) this implies that the second term in

pα̂∗ = p {1− cg(a1, a2)}+ cnn(c− cn)g(a1, g2)

converges in probability to zero, and by Slutsky’s theorem it therefore suffices
to show that the first term converges in distribution to N(1+β, 4). As already
mentioned we have g(1, 1 + c) = 1/c, so the delta method yields

p {g(a1, a2)− 1/c} d→ N(Jµ, JΣJT ).

where

J = ∇g(1, 1 + c)

=

(
2x1x2

(x2 − x2
1)2
,− x2

1

(x2 − x2
1)2

) ∣∣∣∣
(a1,a2)=(1,1+c)

=

(
2(1 + c)

c2
,− 1

c2

)
.

From (13) we get

Jµ = −1 + β

c
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and from (14) we get

JΣJT = J

(
(2 + β)c 2(2 + β)(c+ c2)

2(2 + β)(c+ c2) 4c2 + 4(2 + β)(c+ 2c2 + c3)

)
1

c2

(
2(1 + c)
−1

)
= J

1

c

(
(2 + β) 2(2 + β)(1 + c)

2(2 + β)(1 + c) 4c+ 4(2 + β)(1 + c)2

)(
2(1 + c)
−1

)
= J

1

c

(
0
−4c

)
= J

(
0
−4

)
=

4

c2

which gives

p {g(a1, a2)− 1/c} d→ N

(
−1 + β

c
,

4

c2

)
We therefore only need to multiply the quantity on the left hand side by −c
and apply Slutsky’s theorem to obtain

p {1− cg(a1, a2)} d→ N(1 + β, 4)

and the proof is done.

Proof of Theorem 3.3. Our strategy shall as before be to use the RMT to-
gether with the delta method. As ψ̂2 is easily seen to be invariant under
rescaling of Sn by a positive constant we may as in the previous proof as-
sume Σn = Ip without loss of generality, so Lemma 2.9 is applicable. Multiply
both “sides” of (5) (the version that has c instead of cn) with p−1 and apply
Slutsky’s theorem to obtain

a1
p→ 1,

a2
p→ 1 + c,

a3
p→ 1 + 3c+ c2,

a4
p→ 1 + 6c+ 6c2 + c3.

(15)

We start by considering â2 which we rewrite as

â2 = A
(
a2 − cna2

1

)
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where

A :=
n2

(n− 1)(n+ 2)
.

Then (15) implies

â2
p→ 1 · ((1 + c)− c · 12) = 1.

We next introduce the function

g2(x1, x2) = x2 − cx2
1

along with the random variable a′2 = g2(a1, a2) = a2 − ca2
1. Similarly to â2

we have a′2
p→ 1. Consider now the decomposition

n(â2 − 1) = n(AA−1â2 − A−1â2 + A−1â2 − a′2 + a′2 − 1)

= n(A− 1)A−1â2 + n(A−1â2 − a′2) + n(a′2 − 1)

= t1 + t2 + n(a′2 − 1).

We show that t1 = n(A− 1)A−1â2 and t2 = n(A−1â2− a′2) each converges in
probability to a constant: Firstly,

n(A− 1) = − n(n− 2)

(n− 1)(n+ 2)
→ −1

and hence t1
p→ −1 where we have used A→ 1 and â2

p→ 1. Secondly,

t2 = n((a2 − cna2
1)− (a2 − ca2

1)) = n(c− cn)a2
1

p→ 0

where we have used (A) and a1
p→ 1. In total we hence have

n(â2 − 1) = n(a′2 − 1)− 1 + op(1)

where op(1) denotes a term that converges to zero in probability. We proceed
to investigate â4 in a similar fashion by first rewriting it as

â4 =
τ

p
(tr(S4

n) + b tr(S3
n) tr(Sn) + c∗(tr(S2

n))2 + d tr(S2
n)(tr(Sn))2 + e(tr(Sn))4)

= τ(a4 + pb · a3a1 + pc∗ · a2
2 + p2d · a2a

2
1 + p3e · a4

1)

= τ(a4 +Ba3a1 + Ca2
2 +Da2a

2
1 + Ea4

1)
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where

B := pb = −4cn

C := pc∗ = −2n2 + 3n− 6

n2 + n+ 2
cn

D := p2d =
10n2 + 12n

n2 + n+ 2
c2
n

E := p3e = − 5n2 + 6n

n2 + n+ 2
c3
n.

We have

τ =
n7 + n6 +O(n5)

n7 + 7n6 +O(n5)
→ 1

and

B → −4c =: B0,

C → −2c =: C0,

D → 10c2 =: D0,

E → −5c3 =: E0.

which together with (15) implies

â4
p→ (1 + 6c+ 6c2 + c3)− 4c(1 + 3c+ c2)− 2c(1 + c)2 + 10c2(1 + c)− 5c3

= 1.

We next introduce the function

g4(x1, x2, x3, x4) = x4 +B0x3x1 + C0x
2
2 +D0x2x

2
1 + E0x

4
1

= x4 − 4cx3x1 − 2cx2
2 + 10c2x2x

2
1 − 5c3x4

1

along with the random variable a′4 = g(a1, a2, a3, a4). Similarly to â4 we have

a′4
p→ 1. Consider now the decomposition

n(â4 − 1) = n(ττ−1â4 − τ−1â4 + A−1â4 − ã4 + ã4 − 1)

= n(τ − 1)τ−1â4 + n(τ−1â4 − ã4) + n(ã4 − 1)

= t3 + t4 + n(ã4 − 1).
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We show that both t3 = n(τ − 1)τ−1â4 and t4 = n(τ−1â4− ã4) each converge
in probability to a constant. Firstly,

n(τ − 1) =
−6n7 +O(n6)

n7 +O(n6)
→ −6

and hence t3
p→ −6. Secondly, we may decompose t4 further as

t4 = n(B −B0)a3a1 + n(C − C0)a2
2 + n(D −D0)a2a

2
1 + n(E − E0)a4

1

where, due to (A),
n(B −B0) = 4n(c− cn)→ 0

and

n(C − C0) = n

(
2c− 2n2 + 3n− 6

n2 + n+ 2
cn

)
= n

(
2c− 2cn + 2cn −

2n2 + 3n− 6

n2 + n+ 2
cn

)
= 2n(c− cn) + n

(
2− 2n2 + 3n− 6

n2 + n+ 2

)
cn

= o(1)− n(n− 10)

n2 + n+ 2
cn

→ −c

and

n(D −D0) = n

(
10n2 + 12n

n2 + n+ 2
c2
n − 10c2

)
= n

(
10n2 + 12n

n2 + n+ 2
c2
n − 10c2

n + 10c2
n − 10c2

)
= n

(
10n2 + 12n

n2 + n+ 2
− 10

)
c2
n + 10n(c2

n − c2)

=
2n(n− 10)

n2 + n+ 2
c2
n + 10n(cn − c)(cn + c)

→ 2c2
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and

n(E − E0) = n

(
5c3 − 5n2 + 6n

n2 + n+ 2
c3
n

)
= n

(
5c3 − 5c3

n + 5c3
n −

5n2 + 6n

n2 + n+ 2
c3
n

)
= 5n(c3 − c3

n) + n

(
5− 5n2 + 6n

n2 + n+ 2

)
c3
n

= 5n(c− cn)(c2 + ccn + c2
n)− n(n− 10)

n2 + n+ 2
c3
n

→ −c3.

These limits together with (15) imply

t4
p→ 0− c(1 + c)2 + 2c2(1 + c) · 12 − c3 · 14

= −c.

We may thus write

n(â4 − 1) = n(a′4 − 1)− 6− c+ op(1).

Summarizing the proof so far, we have introduced two new random variables
a′2, a′4 and proved that

n

{(
â2

â4

)
−
(

1
1

)}
= n

{(
a′2
a′4

)
−
(

1
1

)}
−
(

1
6 + c

)
+ op(1). (16)

If we define g : R4 → R2 by g = (g2, g4)T , then (a′2, a
′
4)T = g(a1, a2, a3, a4).

Let

J := ∇g(1, 1 + c, 1 + 3c+ c2, 1 + 6c+ 6c2 + c3)

=

(
−2c 1 0 0

−4c(1− c)2 2c(−2 + 3c) −4c 1

)
.

Then Lemma 2.9 along with the delta method yields

p

{(
a′2
a′4

)
−
(

1
1

)}
d→ N (Jµ, JΣJT ) (17)
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where µ, Σ are as in Lemma 2.8. A straightforward matrix calculation that
we omit for brevity gives

Jµ =

(
c

c(6 + c)

)
.

Thus, upon multiplying the left hand side of (17) with 1/cn = n/p and using
Slutsky’s theorem we obtain

n

{(
a′2
a′4

)
−
(

1
1

)}
d→ N

{(
1

6 + c

)
,

1

c2
JΣJT

}
.

Evidently the asymptotic mean in this CLT is equal to the negative of the
constant vector in the right hand side of (16), and hence another application
of Slutsky’s theorem yields

n

{(
â2

â4

)
−
(

1
1

)}
d→ N (0, c−2JΣJT ).

Let us write ψ̂2 = h(â2, â4) where h(y2, y4) = y4/y
2
2. We have h(1, 1) = 1 and

J1 := ∇h(1, 1) = (−2, 1)

and so another application of the delta method yields

n{ψ̂2 − 1} d→ N(0, c−2(J1J)Σ(J1J)T ).

Some final matrix calculations which we again omit for brevity give

c−2(J1J)Σ(J1J)T ) = 8(8 + 12c+ c2)

and the proof is complete.
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