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Abstract

The purpose of this thesis is to investigate how the optimal div-

idend problem relates to insurance mathematics, in particular the

Cramér-Lundberg model. The optimal dividend problem will be stud-

ied for both restricted and unrestricted dividend rates. We will derive

optimal value functions for restricted and unrestricted dividend rates

when the reserve dynamics are governed by the Cramér-Lundberg

model and its approximation. In order to achieve this aim we will

assume that claim sizes are exponentially distributed, this will enable

us to find explicit solutions to the Hamillton-Jacobi-Bellman equa-

tions.
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Notation

Symbol Explanation
E Expected value operator.
∼ Distributed as.
∅ Empty set.
∈ Element relation.
∀ Universal quantifier.
∃ Existential quantifier.
∪ Union.
∩ Intersection
C1,2 Denotes differentiability class.
Po(λ) Denotes the Poisson distribution.
N(µ, σ) Denotes the normal distribution.
preim Denotes the pre-image of a function.

I Indicator variable.
max Maximum operator.
inf Infimum operator.



1 Introduction

Stochastic control theory is a branch of control theory which studies optimization
problems subject to dynamical systems with uncertainty. It has had quite wide appli-
cation in diverse fields such as operations research, finance, game theory and insurance.
Stochastic control heavily relies on probability theory and stochastic calculus as well
as deterministic control theory, for example dynamic programming [5].

Stochastic control theory has been widely applied in insurance mathematics and
actuarial science due to the stochastic nature of what is studied. When one considers
stochastic control in insurance settings, examples of control variables include premium
loadings, reinsurance policy, initial free reserves and dividend rates [14]. Of particular
importance is the stochastic control problem referred to as the optimal dividend
problem which has been important for insurance mathematics and is an active area of
research [4].

The optimal dividend problem seeks to find optimal dividends that maximize expected
discounted dividends given the stochastic nature of the risk reserves of a insurance
company, where the control variable is the dividend rate. In a non-life insurance setting
these reserves can be modelled by the Cramér-Lundberg model [12]. In this thesis we
will investigate the optimal dividend problem in continuous time for restricted and
unrestricted dividend rates i.e., dividends rates which are constrained to a specific
interval, and dividends rates which are allowed to vary in an unconstrained way. We
will then apply this within the context of the Cramér-Lundberg model, both for a
diffusion approximation of said model and without the approximation. In this context
we are interested in finding a so called optimal value function which is the supremum
of the expected total amount of discounted dividends as a function of initial capital.
Given certain regularity assumptions, then the optimal value function is the solution
to the Hamilton-Jacobi-Bellman equation(HJB equation). In general solving the HJB
is a rather difficult task, and solutions may not be unique, but many times one can
find so called ”weak solutions” or ”viscosity solutions”. However, we will in this
paper only focus on cases where the optimal value function is sufficiently regular such
that unique solutions can be found. Furthermore, if one has found a solution to the
HJB equation, it then remains to show that the solution is indeed the optimal value
function, this is done via a so called ”verification theorem”, from which it follows that
the solution to HJB equation is the optimal value function. Verification theorems
hence play an important role in the optimal dividend problem. Consequently, we will
consistently deal with different versions of it. We will in this thesis investigate the
HJB equations and verification theorems for the Cramér-Lundberg model, as well as
its diffusion approximation.
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1.1 Outline and purpose

The thesis will have the following structure:

• In Section 2 we will present definitions and results from probability theory,
stochastic calculus and stochastic control.

• In Section 3 we will present and prove important results for the optimal dividend
problem in continuous time in the context of insurance. In particular we will show
results for the diffusion model and the Cramér-Lundberg model for restricted
and unrestricted dividend rates.

In Section 2 we will present important definitions such as filtrations, Brownian motion,
Martingales, Itô’s lemma and the stochastic control problem. In Section 3 we will
present and prove results for optimal dividend problem in a diffusion setting, these
results will be connected to finding optimal solutions such as the optimal value function.
We will then investigate the Cramér-Lundberg model using a diffusion approximation
and without the approximation.

We will endeavour to make this thesis as self-contained as possible. However, some
mathematical details will be omitted and not explicitly mentioned. In order to achieve
this we will rely on several sources of information for the optimal dividend problem such
as the work done by Taksar and Asmussen[4], Asmussen and Steffensen[3, p.355-381],
and Jeanblanc et al [10],and Schmidli[14, p.69-97].
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2 Preliminaries

In this section we will introduce necessary definitions, lemmas and theorems from
probability theory, stochastic calculus and stochastic control. The results in this
section will play an important role in constructing and proving results for optimal
dividend problem formulated in Section 3 of this thesis. We will divide this section in
three subsections. The first subsection we will present definitions and results from
probability theory and stochastic processes, in the second we will present results from
stochastic calculus and in the third we will present results from stochastic control
theory in continuous time.

2.1 Probability theory and stochastic processes

In this subsection we will introduce fundamental definitions and results from probability
theory and stochastic process. In order to do this we will need to rely on concepts
from measure theory such as σ-algebras and filtrations. The results and definitions in
this section can be found in [11], [8], [14]. Some of definitions and results are included
in their entirety for the sake of completeness, hence some results will not be necessary
in order to appropriately define and solve the optimal control problem.

Remark 2.1 (Terminology and notation). Let Ω be a non-empty set called the sample
space and let 2Ω denote the power set i.e. the set of all subsets of Ω. Let the elements
of Ω be called the sample points, and let the subsets Ω of be called events.

Definitions 2.1-2.13 are defined in a quite similar way to [8, p.3-32]. These definitions
are used frequently when dealing with probability theory and stochastic calculus, and
will be important when defining the optimal dividend problem.

Definition 2.1 (σ-algebra). Let F ⊆ 2Ω be called a σ-algebra on the sample space Ω
if

1. ∅ ∈ F ;

2. A ∈ F =⇒ Ac ∈ F ;

3. A1, A2, A3 · · · ∈ F =⇒ ∪∞k=1Ak ∈ F .

Where Ac denotes the complement i.e. the set Ac := {ω ∈ Ω : ω /∈ A}.

Definition 2.2 (σ-algebra generated by an arbitrary family). The σ-algebra generated
by the arbitrary family O ⊂ 2Ω is

FO =
⋂
i

{Fi ⊂ 2Ω : O ⊂ Fi}

Where Fi are σ-algebras. In particular, this means that FO is the smallest σ-algebra
containing O.
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Definition 2.3 (Borel σ-algebra). Let Ω = Rd and let O = {Bx(R)}R>0,x∈Rd ⊂ 2Ω be
a collection of open balls with radius R centered at x, i.e. the set Bx(R) = {y ∈ Rd :
|x− y| < R}. The generated σ-algebra by O is the Borel σ-algebra denoted by B(Rd),
whose elements are called Borel sets.

Definition 2.4 (Probability measure). A probability measure is defined as a real-valued
function:

P : F → [0, 1],

which satisfies the following requirements:

1. P(Ω) = 1;

2. For an arbitrary family of disjoint sets {Ak}k∈N ⊆ F we have that:

P

(⋃
k∈N

Ak

)
=
∑
k∈N

P(Ak).

The sample space Ω together with the σ-algebra F and the probability measure P is
called a probability space i.e. (Ω,F ,P).

Definition 2.5 (Filtration). Given a probability space (Ω,F ,P), a filtration {F(t)}t≥0

is a family of σ-algebras such that:

• ∀ t ≥ 0 : F(t) ⊆ F ;

• ∀s ≤ t : F(s) ⊆ F(t).

The probability space equipped with a filtration i.e. (Ω,F , {F(t)}t≥0,P), is called a
filtered probability space.

Definition 2.6 (Stochastic variable). A function: X : Ω→ R, is called a stochastic
variable if

∀ U ∈ B(R) : preimX(U) ∈ F ,
where B(R) is the Borel σ-algebra and the preimage of the Borel set U under X is
preimX(U) = {ω ∈ Ω : X(ω) ∈ U}.
Definition 2.7 (σ-algebra generated by a stochastic variable). The σ-algebra generated
by the stochastic variable X is the family σ(X) ⊆ F given by:

σ(X) = {preimX(U) ∈ F : U ∈ B(R)}.

Definition 2.8 (Stochastic process). A stochastic process {X(t)}t≥0 is a family of
stochastic variables, where

∀t ≥ 0 : X(t) : Ω→ R.
Let X(t, ω) denote the value of X(t) for a fixed sample point ω. The continuous
ω-path of the stochastic process is defined as

γωX : R→ R,
t 7→ X(t, ω).

A stochastic process in discrete time is defined similarly where the set t ≥ 0 is changed
by some discrete index set I i.e. {X(t)}t∈I .
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Remark 2.2. Note that a stochastic process can be seen as a function of two variables.
However, for the sake of convenience we will just denote it as a function of the time-
parameter t, i.e. X(t).

Definition 2.9. Given a filtered probability space (Ω,F , {F(t)}t≥0,P), a filtration
{FX(t)}t≥0 generated by the stochastic process {X(t)}t≥0 is defined as

FX(t) = FO(t),

where O(t) = ∪0≤s≤tσ(X(s)). That is, FX(t) is the smallest σ-algebra containing the
σ-algebra generated by X(s) for all s ≤ t. Moreover, if ∀t ≥ 0 : FX(t) ⊆ F(t) then
{X(t)}t≥0 is said to be adapted to the filtration {F(t)}t≥0.

Remark 2.3. The filtration generated by the stochastic process can intuitively be
seen as the ”flow of information” of the stochastic process over time.

The definition of a Cadlag process will be important when defining various optimal
control problems, for example the optimal dividend problem relating to the Cramer-
Lundberg model in Section 3. The definition is inspired by [14, p.201].

Definition 2.10 (Cadlag process). A stochastic process {X(t)}t≥0 is said to be Cadlag
if the ω-path is right-continuous with left limits existing. That is,

• X(t−) = lims↑tX(s) exists;

• X(t+) = lims↓tX(s) = X(t)

A crucial part of the Cramér–Lundberg model is the stochastic process called the
Poisson process, which has the following definition [12, p.13].

Definition 2.11 (Poisson process). A Poisson process is a stochastic process {N(t)}t≥0

such that:

1. N(0) = 0;

2. For any u < v < s < t it holds that N(t) − N(s) and N(v) − N(u) are
independent, i.e. the property of independent increments.

3. ∀s < t : N(t)−N(s) ∼ Po(λ(t− s));

4. {N(t)}t≥0 is Cadlag.

Definition 2.12 (Brownian motion). A Brownian motion is a stochastic process
{W (t)}t≥0 such that:

1. W (0) = 0;

2. For any u < v < s < t it holds that W (t) − W (s) and W (v) − W (u) are
independent, i.e. the property of independent increments

3. ∀s < t : W (t)−W (s) ∼ N(0, t− s);
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4. ∀ω0 ∈ Ω; γω0
W : R→ R, is a continuous function of t

Remark 2.4. Brownian motion is sometimes referred to as the Wiener process.

The next definition will prove useful when defining properties of the Ito integral,
and the optimal control problem relating to the Cramer-Lundberg model. The next
definition follows from [8, p.63-64].

Definition 2.13 (Martingale). A stochastic process {M(t)}t≥0 which is adapted to
the filtration {F(t)}t≥0 is called a martingale if we have that:

E [M(t)|F(s)] = M(s), ∀ s ≤ t,

If instead
E [M(t)|F(s)] ≥M(s), ∀ s ≤ t,

the stochastic process {M(t)}t≥0 is called a sub-martingale. If

E [M(t)|F(s)] ≤M(s), ∀ s ≤ t,

the stochastic process {M(t)}t≥0 is called a super-martingale.

Remark 2.5. The intuition behind this definition of a martingale is that the future
expected value of a stochastic process given the information up to time s is the same
as value of the stochastic process at time s. For further technicalities see, [8, 63-64].

The next theorem will prove useful when dealing with verification theorems in Section
3. This result can be found in. [9, p.57].

Theorem 2.1 (Bounded convergence theorem). Let {Xn}n∈N be a sequence of stochas-
tic variables. If |Xn| ≤ K and Xn → X as n→∞, it then holds that:

lim
n→∞

E[Xn] = E
[

lim
n→∞

Xn

]
.

2.2 Stochastic calculus

In this section we will present results and definitions in stochastic calculus that will be
necessary in order to formulate and prove the results for the section on the optimal div-
idend problem. For this section we will rely on several sources, that is, the definitions
and results can be found in [11], [5], [8]. Throughout this section we will assume that
stochastic quantities are defined on the filtered probability space (Ω,F , {F(t)}t≥0,P).

The next definitions and results will be necessary in order to define the Itô integral and
Itô’s lemma, which will prove useful in relation to the verification theorems in Section
3. For a complete and rigours treatment and construction of the Itô integral, see[8,
p.73-82], however we will follow a construction similar to [15, p.126-136]. Before giving
a simple construction of the Itô integral, we will define a specific type of stochastic
process, this definition follows from[15, p.126].
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Definition 2.14 (Simple stochastic process). Let

0 ≤ t0 ≤ t1 · · · ≤ tn = T

be a partition of the interval [0, T ]. A stochastic process {∆(t)}t≥0 which is adapted to
the filtration {F(t)}t≥0 and is constant in t on each subinterval [tj, tj+1) is called a
simple stochastic process.

The general idea behind the Itô integral is to give a reasonable interpretation of the
following expression: ∫ T

0

∆(t)dW (t),

where {W (t)}t≥0 is a Brownian motion, and {∆(t)}t≥0 is a simple stochastic process.
The evident problem that one encounters with respect the expression above is that
the Brownian motion paths are not differentiable with respect to t [15, p.125-126].
We will now proceed with giving a simplified heuristic construction of the Itô integral.
First consider:

I(t) =
k−1∑
j=0

∆(tj)(W (tj+1)−W (tj)) + ∆(tk)(W (t)−W (tk)),

where tk ≤ t ≤ tk+1, and we can choose t = T . The stochastic process {I(t)}t≥0

described above is the Itô integral of a simple stochastic process {∆(t)}t≥0, that is

I(t) =

∫ t

0

∆(s)dW (s).

Moreover, it can be shown that the stochastic process above possesses the martingale
property(among other properties) i.e. that E[I(t)|F(s)] = I(s) [15, p.128]. Evidently,
we want to generalise the Itô integral for integrands other than the simple stochastic
process {∆(t)}t≥0. Let us consider a stochastic process {X(t)}t≥0 which is adapted to
the filtration {F(t)}t≥0, with the property

E
[∫ T

0

X(t)2dt

]
<∞,∀ T > 0.

In order to make sense of the expression∫ T

0

X(t)dW (t),

we need to approximate {X(t)}t≥0 by a simple stochastic process {∆n(t)}t≥0, where
0 ≤ t0 ≤ t1 · · · ≤ tn = T . It turns out that it is possible to choose a sequence of
processes {∆n(t)}t≥0, n ∈ N such that

lim
n→∞

E
[∫ T

0

|∆n(t)−X(t)|2dt
]

= 0.
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Since {∆n(t)}t≥0 is a simple stochastic process the Itô integral

In(T ) =

∫ T

0

∆n(t)dW (t)

is already defined for all t ≤ T , it can then be shown that the following integral∫ t

0

X(u)dW (u) = lim
n→∞

∫ t

0

∆n(u)dW (u)

inherits the properties of the Itô integral of simple stochastic processes, e.g. the
martingale property. However, further technical requirements are necessary in order
to assure that the above limit exists, see [8, p.78] and [15, p.134]. In particular, we
must have that In is a Cauchy sequence in L2(P) [13, p.28].

Remark 2.6. We will throughout this thesis utilise the differential form of the Itô
integral

I(t) = I(0) +

∫ t

0

X(u)dW (u),

that is, dI(t) = X(t)dW (t),[15, p.132].

We will now provide an theorem stating important properties of the Itô integral, in
particular the martingale property which will play an important role in Section 3. For
further details, see [11, p.91-99] and [8, p.74-82].

Theorem 2.2 (Properties of the Itô integral). Let {X(t)}t≥0 be a stochastic process
adapted to the filtration {F(t)}t≥0. Moreover, let {X(t)}t≥0 satisfy:

E
[∫ T

0

X(t)2dt

]
<∞,∀ T > 0.

Then the Itô integral

I(t) =

∫ t

0

X(t)dW (t)

have the following properties:

1. Linearity: for any stochastic processes {X(t)}t≥0 and {Y (t)}t≥0 adapted to the
filtration {F(t)}t≥0 which satisfies the condition above, then it holds that:∫ t

0

c1X(t) + c2Y (t)dW (s) = c1

∫ t

0

X(t)dW (s) + c2

∫ t

0

Y (t)dW (s).

for all c1, c2 ∈ R.

2. Martingale property: it holds that

E[I(t)|F(s)] = E[I(s)] = 0.

8



We will now give a definition of a stochastic differential equation, this will prove
important when defining the stochastic control problem. The following definition is
constructed from [11, p.126].

Definition 2.15 (Stochastic differential equation). Let {W (t)}t≥0 be a Brownian
motion. Consider the equation:

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t),

where the functions are defined as follows:

µ : R× R+ → R,
σ : R× R+ → R,

and {X(t)}t≥0 is an unknown stochastic process. An equation of this form is called
a stochastic differential equation(SDE). Furthermore, {X(t)}t≥0 is called a strong
solution to the stochastic differential equation if∫ t

0

µ(X(s), s)ds and

∫ t

0

σ(X(s), s)dW (s)

exists ∀t > 0, and

X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+

∫ t

0

σ(X(s), s)dW (s).

Remark 2.7. A solution to a stochastic differential equation is often called a diffusion
process. Furthermore, there are more general SDEs of the form

dX(t) = µ(t)dt+ σ(t)dW (t),

where µ(t) and σ(t) are assumed to be adapted stochastic processes, for further details
see [11, p.126], [8, p.83].

Remark 2.8. Note that we contrast ”strong” solutions with so called ”weak” solutions
which are solutions where strong solutions does not exist. That is, we can find solutions
to a SDE with less stringent conditions on the coefficients of the SDE [11, p.136].

Definition 2.16 (Brownian motion with drift). A stochastic process {X(t)}t≥0 is
called a Brownian motion with drift if it satisfies the following stochastic differential
equation:

dX(t) = µdt+ σdW (t),

where {W (t)}t≥0 is a Brownian motion µ and σ are given constants.

The next theorem will prove crucial when dealing with verification theorems and the
HJB equation, hence Itô’s Lemma plays an important role in stochastic control theory.
For further details on this theorem, see [11, p.105], [5, p.51-52].
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Theorem 2.3 (Itô’s lemma). Let f be a C1,2- function , and let {X(t)}t≥0 be a
stochastic process that satisfies the SDE:

dX(t) = µ(t)dt+ σ(t)dW (t)

then

df(t,X(t)) =

(
∂f

∂t
+ µ(t)

∂f

∂x
+
σ2(t)

2

∂2f

∂x2

)
dt+ σ(t)

∂f

∂x
dW (t).

A useful version of Itô’s lemma is the following. Moreover, we will provide a informal
heuristic proof of the following lemma.

Lemma 2.1. Let f be a C2 function and let {X(t)}t≥0 be a Brownian motion with
drift, it then holds that

df(X(t)) =

(
µf ′(x) +

1

2
σ2f ′′(x)

)
dt+ σf ′(x)dW (t),

where the integral form is

f(X(t)) = f(0) +

∫ t

0

(
µf ′(x) +

1

2
σ2f ′′(x)

)
du+

∫ t

0

σ
∂f

∂x
dW (u).

Heuristic Proof. Using the Taylor expansion we can approximate df(X(t)) in the
following way

df(X(t)) = f ′(x)dX(t) +
1

2
f ′′(x) (dX(t))2 +

1

6
f ′′′(x) (dX(t))3 · · · .

We then use dX(t) = µdt+ σdW (t), which gives us

df(X(t)) = f ′(x)(µdt+ σdW (t)) +
1

2
f ′′(x) (µdt+ σdW (t))2 + · · · .

By rearranging terms we see that

df(X(t)) = µf ′(x)dt+
1

2
σ2f ′′(x)dW (t)2+

σf ′(x)dW (t) +
1

2
f ′′(x)

(
µ2dt2 + 2µ dt σ dW (t)

)
+ · · ·

We then use the following relations dt2 = 0, dtdW (t) = 0 and dW (t)2 = dt, [15, p.105],
which gives us

df(X(t)) =

(
µf ′(x) +

1

2
σ2f ′′(x)

)
dt+ σf ′(x)dW (t),

note that the higher order terms of the Taylor expansion vanish, since (dX(t))3 =
σ2dt(µdt+ σdW (t)), etc. From Remark 2.7 we then get

f(X(t)) = f(0) +

∫ t

0

(
µf ′(x) +

1

2
σ2f ′′(x)

)
du+

∫ t

0

σ
∂f

∂x
dW (u).

This completes the proof.
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2.3 Stochastic control in continuous time

In this subsection we will introduce the stochastic control problem in continuous time
as well as important results and concepts that will be used in the next section it formu-
late the optimal dividend problem. In order to do this we will use the definitions and
results from the previous subsections on stochastic processes and stochastic calculus.
The definitions, results and notation in this subsection are formulated with respect to
[5, p.282-294] and [6].

We will now give a general formal definition of the optimal control problem in
continuous time. This will play a foundational role when defining the optimal dividend
problem in Section 3. The following definition is constructed from [5, p.283-284,287].

Definition 2.17 (Control problem).

max
u

J(t, x, u) = Et,x
[∫ T

t

F (s,Xu(s), u(s,Xu(s)))ds+ Φ(Xu(T ))

]
subject to dXu(s) = µ(s,Xu(s), u(s,Xu(s)))ds+ σ(s,Xu(s), u(s))dW (s),

X(t) = x,

u(s, y) ∈ U , ∀ (s, y) ∈ [t, T ]× R,

where U is some subset of R, referred to as a control constraint. Furthermore, the
functions are defined as :

F : R+ × R× R→ R
Φ : R→ R
µ : R+ × R× R→ R
σ : R+ × R× R→ R
u : R+ × R→ R.

Remark 2.9. We will throughout this thesis use the notation Et,x[·] := E[·|Xu(t) =
x, t < T ].

Remark 2.10. We shall only consider feedback or Markovian controls, meaning that
the u used at time t is a function of t and the state x of the controlled process at that
time. Moreover, note that the for the ”control law” u we have

u(t) := u(t,Xu(t)).

How these functions are interpreted depends on the context of application. In some
constructions the function F can be the utility function, in our case it will be interpreted
as the dividend rate. That is, we want to maximise our utility given the dynamics
modeled by a stochastic differential equation which can be ”steered” or ”controlled”.
We will now define what is meant by ”admissible strategies”. This will play an
important role when defining the restricted and unrestricted optimal dividend problems
in Section 3. For further details, see [5, p.283-284].

11



Definition 2.18 (Admissible strategies ). A ”control law” u is called admissible if
the following conditions hold:

• ∀t ∈ R+ : ∀x ∈ R : u(t, x) ∈ U , where U ⊆ R is the control constraint ;

• The stochastic differential equation:

dXu(s) = µ(s,Xu(s), u(s))ds+ σ(s,Xu(s), u(s))dW (s),

X(t) = x,

has a unique solution for all initial values.

The class of admissible strategies or ”control laws” is denoted by U .

Having defined admissible strategies, we can now define the optimal value function.
The primary focus of Section 3 will be to find such a function, hence, it will play a
crucial role in this thesis.

Definition 2.19 (Value function).

• The value function J is defined as:

J : R+ × R× U → R

J(t, x, u) = Et,x
[∫ T

t

F (s,XU(s), u(s))ds+ Φ(XU(T ))

]
,

given the dynamics in Definition 2.17.

• The optimal value function V is defined as follows :

V : R+ × R→ R
V (t, x) = sup

u∈U
J(t, x, u).

For the optimal control problems we will make certain assumptions. These assumptions
are ad hoc and can vary slightly depending on the context, however, they usually are
the following [6, p.10].

Assumption 1. For the control problem it holds that:

∃ û ∈ U : J(t, x, û) = V (t, x),

where û is called an optimal control law. That is, for the optimal control problem there
must exist a control law which solves the problem.

Assumption 2. The optimal value function V must be contained in some suitable
differentiability class, specifically we have that V ∈ C1,2.This is often referred to as
”regularity assumptions”.
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We will now state the Bellman optimality principle, this is an important result for
dynamic programming with respect to the Hamilton-Jacobi-Bellman equation. This
result can found in [6, p.11].

Theorem 2.4 (Bellman optimality principle). If û is an optimal control law on the
interval [t, T ], then û is optimal control law on all subinterval, i.e.

∀v ∈ [t, T ] : J(v, x, û) = V (v, x) =⇒ ∀n ≥ t : ∀s ∈ [n, T ] : J(s, x, û) = V (s, x).

In order to give a concise formulation of the Hamilton-Jacobi-Bellman equation we
will define the differential operator, which has the following definition[6, p.7].

Definition 2.20 (Differential operator). The differential operator Au is given by

Au = µ(t, x, u)
∂

∂x
+

1

2
σ(t, x, u)2 ∂

2

∂x2
.

We are now ready to state the Hamilton-Jacobi-Bellman equation in relation to the
stochastic control problem. The ”HJB” equation will play a crucial role throughout
this paper since it is the foundation of stochastic control problems in continuous time.
Here we will state the HJB equation as a partial differential equation, however, in the
next section we will consider it as an ordinary differential equation. The heuristic
proof is a slight elaboration of the argument found in [5, p.288-291]. The proof will
utilise Theorem 2.2-2.3 and Assumption 1-2.

Theorem 2.5 (Hamilton-Jacobi-Bellman equation). If Assumption 1-2 holds, then:

1. The optimal value function V satisfies the Hamilton-Jacobi-Bellman equation:

∂V

∂t
(t, x) + sup

u∈U
{F (t, x, u) +AuV (t, x)} = 0

V (T, x) = Φ(x).

2. If the control law is equal to the optimal control law i.e. u = û(t, x), it holds
that:

sup
u∈U
{F (t, x, u) +AuV (t, x)} = F (t, x, û) +AûV (t, x),

for all initial values (t, x) ∈ [0, T ]× R.

Heuristic Proof. We begin by considering the following control law u∗:

u∗(s, y) =

{
u(s, y), (s, y) ∈ [t, t+ h]× R
û(s, y), (s, y) ∈ (t+ h, T ]× R,

where h > 0(interpreted as an arbitrarily small number), u is some arbitrary control,
and û is the optimal control law from Assumption 1. That is, in interval [t, t+ h] we
use the arbitrary control and in (t+ h, T ] we use the optimal control law.
Given a fixed pair (t, x) ∈ (0, T )×R, we consider the ”strategies” of using the optimal
control law û or the control law u∗. We then compute J(t, x, û) and J(t, x, u∗), where

13



according to Definition 2.19, it must be the case that V (t, x) = J(t, x, û) ≥ J(t, x, u∗).

We begin by computing J(t, x, u∗). Let J1 and J2 denote functions in the two intervals
such that J1 + J2 = J(t, x, u∗). On the interval [t, t+ h], the value function J1 is the
following:

J1 = Et,x
[∫ t+h

t

F (s,Xu(s), u(s))ds

]
.

On the interval [t+ h, T ], the value function J2 is the following

J2 = Et,x [V (t+ h,Xu(t+ h))] ,

since Xu(t+ h) at time t+ h is a stochastic variable. We then see that

J(t, x, u∗) = Et,x
[∫ t+h

t

F (s,Xu(s), u(s))ds+ V (t+ h,Xu(t+ h))

]
.

We now again consider the inequality V (t, x) ≥ J(t, x, u∗), that is:

V (t, x) ≥ Et,x
[∫ t+h

t

F (s,Xu(s), u(s))ds

]
+ Et,x

[
V (t+ h,XU(t+ h))

]
, (2.2)

where equality holds if and only if u is optimal control law û. Given Assumption 2,
Ito’s lemma for the optimal value function V gives us

V (t+ h,Xu(t+ h)) = V (t, x)+∫ t+h

t

(
∂V

∂s
(s,Xu(s)) +AuV (s,Xu(s))

)
ds+

∫ t+h

t

σ
∂V

∂x
(s,Xu(s))dW (s).

Using the martingale property from Theorem 2.2, we see that

Et,x
[
V (t+ h,XU(t+ h))

]
=

V (t, x) + Et,x
[∫ t+h

t

(
∂V

∂s
(s,XU(s)) +AuV (s,XU(s))

)
ds

]
If we then plug Et,x

[
V (t+ h,XU(t+ h))

]
into the inequality from 2.2, we obtain

0 ≥ Et,x
[∫ t+h

t

(
F (s,XU(s), u(s)) +

∂V

∂s
(s,XU(s)) +AuV (s,XU(s))

)
ds

]
If we divide the expression by h and let h→ 0, we get

0 ≥ F (t, x, u) +
∂V

∂t
(t, x) +AuV (t, x),

again equality holds if and only if u is the optimal control law û. This gives us the
desired result.
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Theorem 2.6 (Verification theorem). Given two function f(t, x) and g(t, x). If f
solves the Hamilton-Jacobi-Bellman equation:

∂f

∂t
(t, x) + sup

u∈U
{F (t, x, u) +Auf(t, x)} = 0

f(T, x) = Φ(x),

and if
sup
u∈U
{F (t, x, u) +Auf(t, x)} = F (t, x, g) +Agf(t, x),

where u = g(t, x), then it follows that:

1. The optimal value function V is equal to the solution f , that is:

V (t, x) = f(t, x);

2. The optimal control law û is equal to g, that is:

û(t, x) = g(t, x).

Proof. The proof can be found in [5, p.292-293]

Remark 2.11 (Logic behind the problem ). The logic behind stochastic control prob-
lem, Hamilton-Jacobi-Bellman equation and the verification theorem is the following:

1. Begin by formulating the optimal control problem.

2. Derive the Hamilton-Jacobi-Bellman equation for the problem , i.e. showing
that if V is the optimal value function and if V is sufficiently regular then V
solves the HJB equation.

3. If f solves the HJB equation then f = V i.e. the solution to the HJB equation
is the optimal value function. This is, the so called verification step of the
argument.

Remark 2.11 will prove highly important for the rest of this thesis, since it summarises
the general structure of Section 3 both for the restricted and unrestricted optimal
dividend problem. In fact, every argument will follow this logical structure.
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3 Optimal dividend problems in insurance

In this section we will present a version of a stochastic control problem, that is, the
optimal dividend problem. In the first subsection we will present and prove important
results for the optimal dividend problem for the case when the surplus or reserve
process is governed by a Brownian motion with drift. In the second subsection we will
present some relevant actuarial modelling, in particular the Cramér-Lundberg model
of the risk reserve. In the third and last subsection we will formulate the optimal
dividend problem in the context of the Cramér-Lundberg model for restricted and
unrestricted dividend rates. The results in this section are similar to results given in
[4], [10], [2, p.355-381] and [14, p.70-79].

3.1 Optimal dividend problem in a diffusion setting

In this section we will consider the problem of maximising the total discounted
dividends given that the reserve dynamics are governed by a stochastic differential
equation. In particular we will consider the case where the control variable i.e. the
dividends are restricted to a specific interval. The uncontrolled reserve dynamics
{X(t)}t≥0, i.e without dividends that we will consider in this section can be formulated
as a Brownian motion with drift. That is the uncontrolled reserve dynamics {X(t)}t≥0

satisfies the SDE:
dX(t) = µdt+ σdW (t),

where µ is the drift parameter and σ is the variance parameter. We will assume that
the controlled reserve dynamics {XU(t)}t≥0 satisfies the following SDE:

dXU(t) = (µ− u(XU(t))dt+ σdW (t),

where the function u(·) is the dividend rate which is adjusted by the decision maker.
The intuition behind this formulation is that the drift µ in the controlled setting is
reduced by the dividend rate. In this section this function is only allowed to vary
in [0, u0]. Moreover, we will also provide the general logic and intuition behind the
problem, which will apply for the rest of this section, see Remark 2.11. We will now
give a formal definition of the problem. This definition follows the structure found in
[5, p.283,287] and [3, p.367, 370].

Definition 3.1 (Restricted optimal dividend problem).

max
u(·)

J(x, u) = E
[∫ τ

0

e−δtu(XU(t))dt

]
subject to dXU(t) = (µ− u(XU(t))dt+ σdW (t),

X(0) = x,

u(·) ∈ [0, u0], u0 <∞, ∀ t > 0,

where {XU(t)}t≥0 is our controlled reserve process and {W (t)}t≥0 is the standard
Brownian motion given on the filtered probability space (Ω,F , {F(t)}t≥0,P) and
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(µ, σ) > (0, 0) are our drift parameter and variance parameter. The risk-free interest
rate is denoted by δ > 0 and the ruin time is denoted by τ = inf{t : XU(t) < 0}. The
control variable is denoted by U = (u(x))x≥0 i.e. the dividend rate. Furthermore, we
define our control law u as a function:

u : R→ [0, u0]

x 7→ u(x).

The aim of this optimization problem is therefore to find such a function that maximises
J(x, u).

Remark 3.1. Note that this control problem differs slightly from the control problem
defined in Definition 2.17, since the upper limit of integration in the value function is
a stochastic variable.

Remark 3.2. We will denote the optimal control by U∗ = (u∗(x))x≥0.Furthermore, U
is chosen in a set of admissible strategies, see Definition 2.18. We will assume tacitly
that dXU(t) = (µ− u(XU(t))dt+ σdW (t) has a solution for every (t, x), [3, p.356].

In order to find an optimal control (i.e a dividend rate which maximises expected total
discounted dividends) we will need to rely on the so called Hamilton-Jacobi-Bellman
equation[3, p.366-370]. The optimal value function V under some ad hoc regularity
assumptions will satisfy this ODE. The optimal value function is the solution to the
control problem stated in Definition 3.1, in this context V (x) is interpreted as the
maximal total discounted dividends. This function is defined as:

V (x) := sup
u∈[0,u0]

J(x, u).

In particular, we need to show that if V is the optimal value function and if V is
sufficiently regular in the sense of being differentiable, then V satisfies the Hamilton-
Jacobi-Bellman equation. Furthermore, we need to show that if f is a solution to
the Hamilton-Jacobi-Bellman equation, then V = f , i.e. the solution is equal to the
optimal value function, this result follows from the verification theorem. Hence, we
will have the following structure of argumentation:

1. Deriving the Hamilton-Jacobi-Bellman equation given the stochastic control
problem and certain regularity assumptions.

2. Show that if we found a solution to the Hamilton-Jacobi-Bellman then the
solution is the optimal value function i.e. the verification theorem.

3. Solving the Hamilton-Jacobi Bellman equation, whose solution is the optimal
value function which follows from the verification theorem.

We will now proceed with deriving the Hamilton-Jacobi-Bellman equation. In order to
formulate the Hamilton-Jacobi-Bellman equation we first need to define a differential
operator. The differential operator is defined as follows [2, p.367]:
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Definition 3.2 (Differential operator). Let f be a C2 function, then the differential
operator L u is defined as:

L uf(x) = (µ− u(x))f ′(x) +
1

2
σ2f ′′(x).

We will now state the Hamilton-Jacobi-Bellman equation for this problem. This
theorem can be found in[3, p.368].

Theorem 3.1 (Hamilton-Jacobi-Bellman equation). If the optimal value function V
is a C2 function, then the optimal value function satisfies the following equation:

0 = sup
0≤u≤u0

[L uV (x)− δV (x) + u] .

Proof. A proof can be found in [3, p.368], other sources are [4, p.3-4] and [14, p.98-
99].

First note that if x = 0 , we will have that V (0) = 0, since this would mean that
the company is bankrupt and no dividends can be paid out. From Theorem 3.1 and
Definition 3.2 we see that the Hamilton-Jacobi-Bellman equation takes the following
form:

0 = sup
0≤u≤u0

[
(µ− u)V ′(x) +

1

2
σ2V ′′(x)− δV (x) + u

]
= µV ′(x) +

1

2
σ2V ′′(x)− δV (x) + sup

0≤u≤u0
[u(1− V ′(x)] .

Furthermore, If V ′(x) > 1 then u(1 − V ′(x)) will be a strictly decreasing function
of u hence we get the optimal U∗ = 0. If V ′(x) < 1 then u(1 − V ′(x)) is a strictly
increasing function of u, hence we get the optimal U∗ = u0. That is if V ′(x) < 1 we
will have the maximum dividend rate u0. We then have the following equations:

0 =

{
µV ′(x) + 1

2
σ2V ′′(x)− δV (x), V ′(x) > 1

(µ− u0)V ′(x) + 1
2
σ2V ′′(x)− δV (x) + u0, V ′(x) < 1

The first equation is a homogeneous second-order linear ordinary differential equation.
The second equation is a non-homogeneous second-order linear ordinary differential
equation. Both of which have explicit solutions. Let us formulate the solutions as a
lemma [3, p.370]. The following lemma is inspired by [3, p.371] [4, p.4].

Lemma 3.1. The following linear ordinary differential equations:

0 = µf ′0(x) +
1

2
σ2f ′′0 (x)− δf0(x),

0 = (µ− u0)f ′(x) +
1

2
σ2f ′′(x)− δf(x) + u0,
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have the solutions given by:

f0(x) = C1e
θ1x + C4e

θ2x,

f(x) = C3e
θ3x + C4e

θ4x +
u0

δ
,

where:

θ1,2 = − µ

σ2
±
√
µ2

σ4
+

2δ

σ2
,

θ3,4 =
(u0 − µ)

σ2
±
√

(u0 − µ)2

σ4
+

2δ

σ2
.

Moreover, we have that θ2 < 0 < θ1 and θ4 < 0 < θ3.

Proof. The solutions to the characteristic polynomials

0 = θ2 + 2
µ

σ2
θ − 2δ

σ2
,

0 = θ2 + 2
µ− u0

σ2
θ − 2δ

σ2
,

are given by:

θ1,2 = − µ

σ2
±
√
µ2

σ4
+

2δ

σ2

θ3,4 =
(u0 − µ)

σ2
±
√

(u0 − µ)2

σ4
+

2δ

σ2
.

We can clearly see that θ2 ≤ 0 and θ4 ≤ 0. Hence, f0(x) = C1e
θ1x + C4e

θ2x is the the
solutions to the first ODE. The homogeneous solution to the second ODE is given by
fh(x) = C3e

θ3x + C4e
θ4x, and the particular solution is given by fp(x) = u0

δ
. Hence,

the solution to the second ODE is given by f(x) = fh(x) + fp(x). This proves the
lemma.

Now we can proceed to the second step, i.e. the verification step. The proof is a slight
elaboration of the second part of the proof found in [3, p.371] and [4, p.6]. The proof
will rely on Definition 3.1, Theorem 2.1-2.2, Lemma 2.1 and Theorem 3.1.

Remark 3.3. We will throughout this thesis use the notation x ∧ y = min{x, y}.

Theorem 3.2 (Verification theorem). Suppose that f(x) is a C2 function which is an
increasing, bounded and positive solution to the HJB equation

0 =

{
µf ′(x) + 1

2
σ2f ′′(x)− δf(x), f ′(x) > 1

(µ− u0)f ′(x) + 1
2
σ2f ′′(x)− δf(x) + u0, f ′(x) < 1
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with f(0) = 0, then it follows that f(x) = V (x), i.e. the solution is the optimal value
function, and the optimal control law is given by:

U∗ =

{
0 for f ′(x) > 1

u0 for f ′(x) < 1.

Proof. Let U be an arbitrary control law. Since f is C2, and XU(0) = x, it follows
from Lemma 2.1, i.e. Ito’s lemma that:

e−δ(τ∧t)f(XU(τ ∧ t)) = f(x) +

∫ τ∧t

0

e−δsσf ′(XU(s))dW (s)

+

∫ τ∧t

0

e−δs
[
(µ− u(s))f ′(XU(s)) +

1

2
σ2f ′′(XU(s))− δf(XU(s))

]
ds

≤ f(x) +

∫ τ∧t

0

e−δsσf ′(XU(s))dW (s)−
∫ τ∧t

0

e−δsu(s)ds.

Furthermore, as in Theorem 2.5, equality holds if and only if U = U∗, that is, if U is
the optimal control law. We then rearrange terms and take the expectations on both
sides of the equation:

E
[
e−δ(τ∧t)f(XU(τ ∧ t))

]
+

E
[∫ τ∧t

0

e−δsu(s)ds

]
− E

[∫ τ∧t

0

e−δsσf ′(XU(s))dW (s)

]
≤ f(x).

Since f ′ is a bounded function, this implies that

E
[∫ T

0

(
e−δsσf ′(XU(s))

)2
ds

]
<∞, ∀T > 0.

Hence, from Theorem 2.2, i.e. the martingale property of the Ito integral, it follows
that:

E
[
e−δ(t∧τ)f(XU(t ∧ τ))

]
+ E

[∫ t∧τ

0

e−δsu(s)ds

]
≤ f(x).

If the ruin-time is less than t, i.e. τ < t then XU(τ) = 0 which implies that
e−δτf(XU(τ)) = 0. Since f is a bounded function, it follows from Theorem 2.1 that:

lim
t→∞

E
[
e−δ(t∧τ)f(XU(t ∧ τ))

]
= E

[
lim
t→∞

e−δ(t∧τ)f(XU(t ∧ τ))
]

= 0.

It then follows that

E
[∫ τ

0

e−δsu(s)ds

]
≤ f(x).

If U = U∗we get that:
V (x) = f(x).

This completes the proof.
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We are now ready to formulate a theorem stating the optimal value function under
the condition that u0 ≤ −δ/θ4. We will show that the value function has the desired
properties i.e being bounded, V ′(x) < 1 ∀x , since we are interested in the case when
u = u0, and V (0) = 0. We know that V (x) needs to be bounded since we must have
that:

0 ≤ V (x) ≤
∫ ∞

0

e−δsu0ds =
u0

δ

We are now ready to formulate and prove the existence of an optimal value function
for the case when u0 ≤ −δ/θ4. The proof of the next theorem will be a version of
proofs found in [3, p.372] and [4, p.5]. The proof will rely on Theorem 3.1-3.2 and
Lemma 3.1.

Theorem 3.3. Assume that u0 ≤ −δ/θ4. Then the optimal value function is given
by

V (x) =
u0

δ
(1− eθ4x) (3.2)

and the optimal control law is given by U∗ = u0.

Proof. First we need to show that the solution to HJB equation from Theorem 3.1
is an increasing, bounded and positive solution. Consider the solution to the HJB
equation in Lemma 3.1:

f(x) = C3e
θ3x + C4e

θ4x +
u0

δ
.

It is clear that we need C3 = 0, otherwise f would not be bounded, since θ3 > 0.
Furthermore, we need that f(0) = 0, this condition gives us C4 = −u0/δ. Hence we
get

f(x) =
u0

δ
(1− eθ4x).

We can clearly see that:

θ4 < 0 =⇒ lim
x→∞

f(x) =
u0

δ
.

Moreover, we can see that f(x) is an increasing solution, since

θ4 < 0 =⇒ f ′(x) = −θ4
u0

δ
eθ4x > 0.

If f(x) is a increasing function and f(0) = 0 it follows that f ≥ 0. Furthermore, we
need to verify that f ′(x) < 1 for all x > 0, in order for the solution to satisfy the HJB
equation with the control law u0. We can see that:

θ4 < 0 =⇒ f ′′(x) = −u0

δ
θ2

4e
−θ4x < 0, ∀x ≥ 0.

This shows that the function is concave, which implies that f ′(x) is a decreasing
function. Hence, f ′(x) attains it maximum at x = 0, that is f ′(0) = −θ4

u0
δ
> 0.

Furthermore, we can see from the condition u0 ≤ −δ/θ4 that:

0 < −θ4
u0

δ
≤ −θ4

−δ/θ4

δ
= 1.

21



Hence,

f(x) =
u0

δ
(1− eθ4x).

is a increasing, bounded positive solution to the equation

0 = (µ− u0)f ′(x) +
1

2
σ2f ′′(x)− δf(x) + u0.

It then follows from Theorem 3.2 that:

f(x) = V (x).

This completes the proof.

We will now formulate a theorem for the case when u0 > −δ/θ4. The proof is an
elaboration of the proof found in [3, p.372] and [4, p.5]. The proof will rely on Theorem
3.1-3.2 and Lemma 3.1.

Theorem 3.4. Assume that u0 > −δ/θ4. Then the optimal value function is given
by:

V (x) =

{
K1(eθ1x − eθ2x) for 0 ≤ x ≤ x0,

u0/δ −K2e
θ4x for x > x0,

where the optimal control law is given by

U∗ =

{
0 for x < x0

u0 for x > x0.

The constants are given by:

K1 =
1

(θ1eθ1x0 − θ2eθ2x0)

K2 =
1

θ4eθ4x0

x0 =
1

θ1 − θ2

log
1− Aθ2

1− Aθ1

> 0,

where A = u0
δ

+ 1
θ4

.

Proof. From Lemma 3.1 we can see that the following functions satisfy the HJB
equation:

f(x) =

{
K1(eθ1x − eθ2x) for 0 ≤ x ≤ x0,

u0/δ −K2e
θ4x for x > x0

since, we can can choose C1 = K1, C2 = −C1, C3 = 0(again to insure that the function
is bounded) and K2 = −C4. Again we see that

lim
x→∞

f(x) =
u0

δ

22



hence, the solutions is bounded. Moreover, we can see that u0/δ −K2e
θ4x is concave

since θ4 < 0, as in Theorem 3.3. We can also see that K1(e
θ1x − eθ2x) is concave

by taking the second derivative, and observing that (θ1/θ2)
2 ≤ 1. Furthermore, the

solution f is C2, however we need to demonstrate that this still holds at x0. That is,
we need to show that f ′′(x0−) = f ′′(x0+). From the HJB equation

0 =

{
µf ′(x) + 1

2
σ2f ′′(x)− δf(x), f ′(x) > 1

(µ− u0)f ′(x) + 1
2
σ2f ′′(x)− δf(x) + u0, f ′(x) < 1.

We see that

f ′′(x0−) =
2

δ2
(δf(x)− µ)

f ′′(x0+) =
2

δ2
(δf(x)− (µ− u0) + u0)

We hence see that f ′′(x0−) = f ′′(x0+). Since f(x) is concave and C2, it follows that
the derivative is decreasing, this implies that there exists exactly one x0 > 0 with
f ′(x0) = 1, such that: {

f ′(x) ≥ 1 for 0 ≤ x ≤ x0,

f ′(x) ≤ 1 for x > x0.

Furthermore, the C2 property it implies that

f(x0−) = f(x0+), f ′(x0−) = 1 = f ′(x0+)

which gives us the following equations

K1(eθ1x0 − eθ2x0) =
u0

δ
−K2e

θ4x0

K1(θ1e
θ1x0 − θ2e

θ2x0) = 1

−K2θ4e
θ4x0 = 1

Let A = u0
δ

+ 1
θ4

we can then see that

eθ1x0 − eθ2x0
θ1eθ1x0 − θ2eθ2x0

= A,

If we solve this equation for x0 we get

x0 =
1

θ1 − θ2

log
1− Aθ2

1− Aθ1

.

In order to ensure that x0 > 0, we will now need to demonstrate that Aθ1 < 1, if we
rearrange we attain

u0

δ
<

1

θ1

− 1

θ4

.
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In order to demonstrate this, first note the inequality
√
a2 + b− a < b/2a for a, b > 0,

from this inequality and Lemma 3.1 we see that

θ1 = − µ

σ2
+

√
µ2

σ4
+

2δ

σ2
=

√
µ2 + 2δσ2 − µ

σ2
<
δ

µ
,

θ4 =
(u0 − µ)

σ2
−
√

(u0 − µ)2

σ4
+

2δ

σ2
>

δ

µ− u0

From this we see that
1

θ1

− 1

θ4

>
µ

δ
+
u0 − µ
δ

=
u0

δ

which shows that Aθ1 < 1, hence x0 > 0. Therefore, f is an increasing, bounded and
positive solution to the HJB equation. From Theorem 3.2 it then follows that

f(x) = V (x),

this completes the proof.

3.2 The Cramér-Lundberg model

We begin by examining the Cramér-Lundberg model of risk reserve R(t). This model
was first introduced by Swedish actuary Filip Lundberg in 1903, and forms the
backbone of modern non-life insurance mathematics. We will in this section use the
probability space (Ω,F , {F(t)}t≥0,P) on which all stochastic quantities are defined.
We will now give this model a formal definition. The following definition can be found
in [12, p.18] and [14, p.220].

Definition 3.3 (Cramér-Lundberg model). The risk reserve {R(t)}t≥0 is given by

R(t) = x+ ct−
N(t)∑
k=1

Yk,

where c is the premium rate, x is the initial capital and {N(t)}t≥0 is a Poisson process
with intensity λ, and the claim occurrence times are denoted by T1 < T2 . . . .., and
T0 = 0. The claim sizes are denoted by Yk has a distribution function denoted by G(y)
with G(0) = 0. Furthermore, N, Y1, Y2, . . . are independent.

For further details on the Cramér-Lundberg model, see for example [12, p.13-21].
We will now introduce a diffusion approximation of the Cramér-Lundberg model i.e.
approximating R(t) by a Brownian motion with drift. This is a necessary step in order
to replicate the pattern of the results presented in the previous subsection. We need
the Cramér-Lundberg model to be in the form of a Brownian motion with drift . The
general idea behind this approximation is to define a sequence of reserve processes as
is defined in Definition 3.3 which converge weakly to a Brownian motion with drift.
We will not dwell on the technicalities of this approximation, for further information
see[1, p.4]. The following result can be found in [3, p.355-356].
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Lemma 3.2 (Cramér-Lundberg diffusion approximation). Given the assumptions of
independence defined in Definition 3.3, and some technical conditions, then the risk
process {R(t)}t≥0 can be approximated as follows

dX(t) = (c− λµG)dt+

√
λµ

(2)
G dW (t),

where µG and µ
(2)
G are the first and second moment of G(y).

3.3 The Cramér-Lundberg model and optimal dividends

We begin by considering the restricted optimal dividend problem for the Cramér-
Lundberg model. That is, we want to maximise total discounted dividends given the
reserve dynamics described by the Cramér-Lundberg model. We can consider this
problem in two ways:

1. We assume that the reserve R(t) as defined in definition 3.3 can be approximated
as a diffusion given by Lemma 3.2.

2. We consider the problem directly without approximating R(t).

In the first case we consider the case where the basic idea is to define a sequence of
reserve processes which converge weakly to a Brownian motion with drift as in Lemma
3.2. We can then directly use the results given by Theorem 3.3 and Theorem 3.4 in
Section 3.1. The only difference being that we change the parameters in Definition 3.1

to µ = c− λµG and σ =

√
λµ

(2)
G . That is, we consider the controlled reserve process

as the following

dXU(t) = (c− λµG − u(XU(t)))dt+

√
λµ

(2)
G dW (t),

where the parameters are given as in Definition 3.3. If we assume that c > λµG, then
we see that we have the same optimal value function for the diffusion approximation
as in Theorem 3.3.

V (x) =
u0

δ
(1− eθ4x), if u0 ≤ −δ/θ4,

where θ4 is given by

θ4 =
u0 − (c− λµG)√

λµ
(2)
G

−
√

(u0 − (c− λµG))2

λµ
(2)
G

+
u0

δ
,

The roots θ1, θ2 and θ3 are given by the same argument i.e. by changing the parameters.
Furthermore, in Theorem 3.4 and its associated assumptions once again we have the
same optimal value functions, that is:

V (x) =

{
K1(eθ1x − eθ2x) for 0 ≤ x ≤ x0,

u0/δ −K2e
θ4x for x > x0,

, if u0 > −δ/θ4.
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The second case is substantially more difficult. However, we can find explicit solution
given certain assumptions [3, p.374, 375]. Moreover, the verification step in this case
will rely on martingale arguments [14, p.VIII], in contrast to the previous section
where we used Ito’s lemma.

We begin by giving a formal definition to the version of the optimal dividend problem
where we do not approximate The Cramér-Lundberg model . This definition is
inspired by [14, p.69], and uses notation from [5, p.287]. As before, the set of
admissible strategies is constrained to the interval [0, u0].

Definition 3.4 (Restricted optimal dividend problem:Cramér-Lundberg model).

max
U(·)

V U(x) = E
[∫ τ

0

e−δtU(t)dt

]
subject to XU(t) = x+ ct−

N(t)∑
k=1

Yk −
∫ t

0

U(s)ds,

X(0) = x,

U(t) ∈ [0, u0], u0 <∞, ∀ t > 0,

where the coefficients are the same as in the Cramér-Lundberg model defined in
Definition 3.3. Furthermore, {U(t)} denotes the dividend rate process which is adapted
and u0 denotes the maximum dividends rate.

We will now make a assumption which will simplify the arguments somewhat, in
particular with respect to differentiability, see [14, p.71].

Assumption 3. We will assume that the dividend rate u0 is less than the premium
rate c, i.e. u0 < c.

As before we have that the optimal value function given by:

V (x) = sup
U(t)∈[0,u0]

V U(x).

We now want to demonstrate that the optimal value function has the desirable
properties of being continuous and bounded. Before formulating the lemma, we need
to define Lipschitz continuity, the following definition is constructed from [7, p.4].

Definition 3.5 (Lipschitz continuity). A function F : R→ R is said to be Lipschitz
continuous if there exists a positive constant K such that

|F (x)− F (y)| ≤ K|x− y|, ∀x, y ∈ R,

where K is known as the Lipschitz constant.

Lemma 3.3. The optimal value function V (x) is increasing, Lipschitz continuous.
Moreover, V (x) is bounded i.e.

V (x) ≤ u0

δ
.
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Proof. The proof that V (x) is bounded is identical to the argument in Section 3.1.
The rest of the proof can be found in [14, p.70-71].

We will now state the Hamilton-Jacobi-Bellman equation for the problem, which will
be necessary in order to derive the optimal value function. However, from Assumption
3, we will only consider the case when u0 < c which implies that the optimal value
function is continuously differentiable [14, p.71].

Theorem 3.5. If optimal value function V (x) is continuously differentiable, then
V (x) satisfies the Hamilton-Jacobi-Bellman equation:

sup
0≤u≤u0

[
(c− u)V ′(x) + λ

[∫ x

0

V (x− y)dG(y)− V (x)

]
− δV (x) + u

]
= 0, (3.4)

where G(y) with G(0) = 0 is the cumulative distribution function of Y i.e the claim
size distribution.

Proof. The proof is omitted, it can be found in [14, p.71-74].

As in Section 3.1, note that u is equal to either u = u0 when V ′(x) < 1 or u = 0 when
V ′(x) > 1 [14, p.74]. This follows from the fact that the HJB equation is linear in u.
We hence get the following equations:

0 =

{
cV ′(x) + λ

[∫ x
0
V (x− y)dG(y)− V (x)

]
− δV (x), V ′(x) > 1

(c− u0)V ′(x) + λ
[∫ x

0
V (x− y)dG(y)− V (x)

]
− δV (x) + u0, V ′(x) < 1.

We will now need to proceed with the verification step. That is, we want to show that
if f(x) is a solution to the HJB equation then f(x) is the optimal value function i.e.
f(x) = V (x). The proof will be a heuristic proof, for a more rigorous proof see [14,
p.75-76]. Moreover, this proof will utilise martingale arguments, this distinguishes
this verification theorem from Theorem 3.2.

Theorem 3.6 (Verification theorem). If f(x) is a increasing, bounded and positive
solution to the HJB equation:

sup
0≤u≤u0

[
(c− u)f ′(x) + λ

[∫ x

0

f(x− y)dG(y)− f(x)

]
− δf(x) + u

]
= 0,

then f(x) = V (x), and an optimal control law is given by:

U∗(x) =

{
0, for V ′(x−) > 1
u0, for V ′(x−) < 1

Heuristic Proof. Let U be an arbitrary control law. From [14, p.75], we have that the
process {M ′(t)}t≥0 with

M ′(t) =

N(τ∧t)∑
i=1

(f(XU(Ti))− f(XU(Ti−)))e−δTi

−λ
∫ τ∧t

0

e−δs

(∫ XU (s)

0

f(XU(s)− y)dG(y)− f(XU(s)

)
ds
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is a martingale. From the fundamental theorem of calculus we see that:

f
(
XU(Ti−)

)
e−δTi − f

(
XU(Ti−1)

)
e−δTi−1 =∫ Ti−

Ti−1

[
(c− U(s)) f ′

(
XU(s)

)
− δf

(
XU(s)

)]
e−δs ds.

We can rewrite this as

f
(
XU(Ti−)

)
e−δTi − f

(
XU(Ti−1)

)
e−δTi−1 =∫ (Ti∧τ∧t)−

Ti−1∧τ∧t

[
(c− U(s)) f ′

(
XU(s)

)
− δf

(
XU(s)

)]
e−δs ds.

If we consider the sum in the martingale above as a telescoping sum we can rewrite
{M ′(t)}t≥0 as

M ′(t) = f
(
XU(τ ∧ t)

)
e−δ(τ∧t) −

∫ τ∧t

0

(
(c− U(s))f ′(XU(s))

+λ

∫ XU (s)

0

f(XU(s)− y)dG(y)− (λ+ δ)f(XU(s))

)
e−δs ds,

If U = U∗ (where we denote XU∗ = X∗ and V U∗ = V ∗) we know from the HJB
equation and the optimal control law U(x) as is given above that:

M ′(t) = f (X∗(τ ∗ ∧ t)) e−δ(τ∧t) +

∫ τ∧t

0

U∗(s)e−δs ds,

recall that {M ′(t)}t≥0 is a martingale. By taking the expected value:

E
[
f (X∗(τ ∧ t)) e−δ(τ∧t) +

∫ τ∧t

0

U∗(s)e−δs ds

]
,

then we letting t→∞, which shows that

lim
t→∞

E
[
f (X∗(τ ∧ t)) e−δ(τ∧t)

]
= 0,

since f is a bounded function and f(X(τ)) = 0, as in Theorem 3.2, this follows from
Theorem 2.1. Hence, we have that:

f(x) = E
[∫ τ∧t

0

U∗(s)e−δs ds

]
= V U∗(x).

Moreover , for any arbitrary control law U we have that

f(x) ≥ E
[
f
(
XU(τ ∧ t)

)
e−δ(τ∧t) +

∫ τ∧t

0

U(s)e−δs ds

]
.
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Again, if we let t→∞ we have that

f(x) ≥ V U(x).

Which given the optimal control law U = U∗ gives us

f(x) = V (x),

this completes the proof.

Now that we have stated the HJB equation and proved the verification theorem, we
can now proceed to solve the HJB equation, such that the solution has the required
properties such as being bounded, increasing etc. For this type of problem there tend
to be no explicit solutions. However, for the special case when the distribution of the
claim sizes are exponential, one can find explicit solutions for this optimal control
problem.

We will now solve the HJB equation. We will do this by formulating its solutions
as a theorem. The proof will follow from Theorem 3.5 and the verification theorem
Theorem 3.6, with the addition of solving the HJB equation for the special case. The
proof relies primarily on the following sources [14, p.77-79], and [3, p. 381].

Theorem 3.7. If G(y) = 1− e−αy, i.e. the claim sizes are exponentially distributed
Yi ∼ Exp(α), and if f is an increasing bounded and positive solution to HJB equation

0 =

{
cf ′′(x)− (λ+ δ − αc)f ′(x)− αδf(x), f ′(x) > 1

(c− u0)f ′′(x)− (λ+ δ − α(c− u0))f ′(x)− αδf(x) + αu0, f ′(x) < 1,

then f(x) = V (x) and the optimal value function is given by:

V (x) =


eθ1x− (λ+δ)/c−θ1

(λ+δ)/c−θ2
eθ2x

θ1eθ1a− (λ+δ)/c−θ1
(λ+δ)/c−θ2

θ2eθ2a
for x < a

u0
δ

+ 1
θ4
eθ4(x−a), for x ≥ a,

where,

a =
1

θ1 − θ2

log

[
(λ+ δ)/c− θ1

(λ+ δ)/c− θ2

(
1− θ2S

1− θ1S

)]
, S =

u0

δ
+

1

θ4

where the roots to the characteristic polynomials are given by:

θ1,2 =
λ+ δ − αc

2c
±

√(
λ+ δ − αc

2c

)2

+
αδ

c
,

θ3,4 =
λ+ δ − α(c− u0)

2(c− u0)
±

√(
λ+ δ − α(c− u0)

2(c− u0)

)2

+
αδ

c− u0

.
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Proof. From Theorem 3.5 we attain the HJB equation sup0≤u≤u0 H(x, u) = 0, given
that G(y) = 1− e−αy, where

H(x, u) = (c− u)f ′(x) + λαe−αx
∫ x

0

f(y)eαydy − λf(x)− δf(x) + u

We can see that if f ′(x) < 1 then u = u0 and if f ′(x) > 1 then u = 0, that is, the
same argument we used in Section 3.1. For this case we get:

d

dx
λαe−αx

∫ x

0

f(y)eα(y)dy = λαf(x)− λα2e−αx
∫ x

0

f(y)eαydy

= λαf(x) + α [(c− u)f ′(x)− λf(x)− δf(x) + u] .

d

dx
H(x, u) = (c− u)f ′′(x) + α [(c− u)f ′(x)− δf(x) + u]− (λ+ δ)f ′(x).

In the first step we use the product rule, and in the second step we use the equality
from the HJB equation. By rearranging terms for the cases where f ′(x) > 1 and
f ′(x) < 1 we get the following ordinary differential equations:

0 =

{
cf ′′(x)− (λ+ δ − αc)f ′(x)− αδf(x), f ′(x) > 1

(c− u0)f ′′(x)− (λ+ δ − α(c− u0))f ′(x)− αδf(x) + αu0, f ′(x) < 1.

Where the roots to their characteristic polynomials are:

θ1,2 =
λ+ δ − αc

2c
±

√(
λ+ δ − αc

2c

)2

+
αδ

c
,

θ3,4 =
λ+ δ − α(c− u0)

2(c− u0)
±

√(
λ+ δ − α(c− u0)

2(c− u0)

)2

+
αδ

c− u0

.

We can see that θ2 < 0 < θ1 and θ4 < 0 < θ3. The solutions to the ordinary differential
equations are the following:

f(x) =

{
Aeθ1x +Beθ2x f ′(x) > 1
u0
δ

+ Ceθ3x +Deθ4x, f ′(x) < 1.

As in the proof of Theorem 3.4 we see that we must have that C = 0, since otherwise
the function f would not be bounded. Moreover, if we plug in f(x) into the original
HJB equation H(0, 0) = 0, we then get

B = −(λ+ δ)/c− θ1

(λ+ δ)/c− θ2

A.

Now, consider a point a where f ′(a) = 1, that is, we get equations:

Aθ1e
θ1a +Bθ2e

θ2a = 1,

Dθ4e
θ4a = 1.
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Hence, we get D = e−θ4a/θ4, and

A =
1

θ1eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 θ2eθ2a

As in Theorem 3.4, we can see that f(x) is concave. Because f(x) is concave and
differentiable it holds that there exists exactly one point a such that f ′(a) = 1.
Differentiability follows in a similar way as in Theorem 3.4. Hence we get:

f(x) =


eθ1x− (λ+δ)/c−θ1

(λ+δ)/c−θ2
eθ2a

θ1eθ1x− (λ+δ)/c−θ1
(λ+δ)/c−θ2

θ2eθ2a
for x < a

u0
δ

+ 1
θ4
eθ4(x−a), for x ≥ a.

By solving f ′(a−) = f ′(a+) for a, i.e.

eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 e

θ2a

θ1eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 θ2eθ2a

=
u0

δ
+

1

θ4

,

we get:

a =
1

θ1 − θ2

log

[
(λ+ δ)/c− θ1

(λ+ δ)/c− θ2

(
1− θ2S

1− θ1S

)]
.

Where S = u0
δ

+ 1
θ4

, in particular, as in Theorem 3.4, we will have that a > 0 if
θ1S < 1 and θ1 < (λ+ δ)/c. It then follows from Theorem 3.6 that f(x) = V (x). This
concludes the proof.

Having investigated the case for restricted dividends we will now investigate the
optimal dividend problem for the case when we have unrestricted dividends. For the
unrestricted case i.e. when 0 ≤ u(t) ≤ ∞. The unrestricted case is substantially more
difficult. Hence, the analysis presented will be rather heuristic and not very rigorous.

The definition and the goal of the problem is however not very different. The results
presented are influenced by [4, p.7-14] and [14, p.79-94].
We will now give a formal definition of the problem. The following definition is inspired
by [14, p.79] and uses notation from [5, p.287].

Definition 3.6 (Unrestricted optimal dividend problem:Cramér-Lundberg model).

max
D(·)

V D(x) = E
[∫ τ−

0−
e−δtdD(t)

]
subject to XU(t) = x+ ct−

N(t)∑
k=1

Yk −D(t),

where the coefficients are the same as in the Cramér-Lundberg model defined in the
previous section. Furthermore, {D(t)}t≥0 denotes the accumulated dividend process
which is an increasing adapted Càdlàg process and τ is the ruin time. Moreover,
{XU(t)}t≥0 denotes the controlled reserve process.
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Remark 3.4. When dealing with the unrestricted optimal dividend problem we will
not use Assumption 3, for reasons that we become apparent in Theorem 3.8.

The idea behind letting the dividend process D being Càdlàg is to prevent the
possibility of paying out a large amount leading to ruin. We prevent this by not taking
dividends at the time of ruin into account, that is, we view the process {XU (t)}t≥0 as
the post-dividend process.
As in the previous section we define the optimal value function as

V (x) := sup
D∈U

V D(x),

where U is the set of admissible strategies. The intuition behind this problem is to
consider the problem as defined in Definition 3.4 and letting u0 →∞.
The optimal value function in the context of the unrestricted optimal dividend problem
is obtained as a limit of the optimal value function for the restricted problem, see
Definition 3.4. The following theorem demonstrates this fact [14, p.81].

Theorem 3.8. If Vu(x) is the optimal value function for the optimal dividend problem
in Definition 3.4, when u0 = u, then

lim
u→∞

Vu(x) = V (x).

We can now state the Hamilton-Jacobi-Bellman equation for the unrestricted problem.
The idea behind this theorem is to consider the HJB equation as in Theorem 3.5 and
letting u0 →∞ [14, p.82].

Theorem 3.9 (Hamilton-Jacobi-Bellman equation). If certain regularity assumptions
are fulfilled, then the optimal value function V (x) satisfies the Hamilton-Jacobi-Bellman
equation:

max

{
cV ′(x) + λ

∫ x

0

V (x− y)dG(y)− (λ+ δ)V (x), 1− V ′(x)

}
= 0,

where G(y) with G(0) is the cumulative distribution function of Y .

Proof. The proof is rather complicated and is therefore omitted, a proof can be found
[14, p.82-84].

When investigating the case when x = 0 we see that cV ′(0) = (λ+ δ)V (0) from inside
the maximum operator in the HJB equation above. Moreover, for V ′(x) = 1 we have
that V (0) = c/(λ+ δ).
We will now present a so called barrier strategy, The definition of which is derived from
[14, p.91]. This strategy will later be applied in the end of this section when deriving
the optimal value functions when the claim sizes are exponentially distributed.

Definition 3.7 (Barrier strategy). A strategy is called a barrier strategy at x0 if
D(0) = (x− x0)+and ∆D(t) = cIX(t)=x0 .

32



Remark 3.5. The notation used here is defined as follows x+ = max{x, 0}.

We will now investigate a verification theorem for the barrier strategy. The following
result can found in[14, p.86-87, 91-92].

Theorem 3.10. Let f(x) be the solution to the equation

cf ′(x) + λ

∫ x

0

f(x− y)dG(y)− (λ+ δ)f(x) = 0

with f(0) = 1, the optimal value functions of the barrier strategy at x0 is then given by

Vx0(x) =
f(x)

f ′(x0)
, if x ≤ x0

Vx0(x) =
f(x0)

f ′(x0)
+ x− x0, if x > x0

Proof. The proof relies on similar martingale arguments as in Theorem 3.6, the proof
can be found in [14, p.92]

Remark 3.6 (Construction of the optimal value function). Note that one can construct
a optimal value function V (x) in the context of Theorem 3.8 from:

Vx0(x) =
f(x)

f ′(x0)
, if x ≤ x0

Vx0(x) =
f(x0)

f ′(x0)
+ x− x0, if x > x0.

Where then

V (x) =

{
f(x)
f ′(a)

, for x ≤ a
f(a)
f ′(a)

+ x− a, for x > a.

Where a is the barrier. For further details, see [14, p.92].

We are now ready to solve the Hamilton-Jacobi-Bellman equation under the assumption
that the claim sizes are exponentially distributed. Given the solution to HJB it follows
from the verification theorems that the solution is the optimal value function. We will
get different solutions depending on the barrier and the parameters connected to the
Cramér–Lundberg model. We will formulate this as a theorem. The proof is inspired
by [14, p.93-94]. We will now rely on Definition 3.6, Theorem 3.8-3.10, Definition 3.7,
and Remark 3.6.

Theorem 3.11. If G(y) = 1− e−αy, i.e. the claim sizes are exponentially distributed
Yi ∼ Exp(α), and if f solves

max

{
cf ′(x) + λ

∫ x

0

f(x− y)dG(y)− (λ+ δ)f(x), 1− f ′(x)

}
= 0,
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then f(x) = V (x), i.e. the barrier strategy at a then yields:

V (x) =


eθ1x− (λ+δ)/c−θ1

(λ+δ)/c−θ2
eθ2x

θ1eθ1a− (λ+δ)/c−θ1
(λ+δ)/c−θ2

θ2eθ2a
, x < a

αc−λ−δ
αδ

+ x− a, x ≥ a.

where

θ1,2 =
λ+ δ − αc

c
±

√(
λ+ δ − αc

c

)2

+
αδ

c
,

a =
1

θ1 − θ2

log

[
(λ+ δ)/c− θ1

(λ+ δ)/c− θ2

(
1− θ2K

1− θ1K

)]
,

and K = αc−λ−δ
αδ

.

Proof. If we consider the HJB equation from Theorem 3.9:

max

{
cf ′(x) + λ

∫ x

0

f(x− y)dG(y)− (λ+ δ)f(x), 1− f ′(x)

}
= 0.

We see that if f ′(x) > 1 we get the HJB equation:

cf ′(x) + λ

∫ x

0

f(x− y)dG(y)− (λ+ δ)f(x) = 0,

Moreover, as in Theorem 3.7 we have an a such that f(x) > 1 for x < a and f ′(a) = 1.
In particular, if G(y) = 1− e−αy we get the HJB equation:

cf ′(x) + λαe−αx
∫ x

0

f(y)eαydy − (λ+ δ)f(x) = 0. (3.6)

We can rewrite this in a similar way as in the proof of Theorem 3.7:

cf ′′(x)− (λ+ δ − αc)f ′(x)− αδf(x) = 0.

The solution to this homogeneous ODE is given by

f(x) = C1eθ1x + C2eθ2x.

Hence, we get the same solution as in Theorem 3.7 when f(x) > 1, i.e.

f(x) =
eθ1x − (λ+δ)/c−θ1

(λ+δ)/c−θ2 e
θ2x

θ1eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 θ2eθ2a

If rearrange Equation 3.6 when f ′(x) = 1, then we define v(x) = f(x), we see that:

v(x) =
c

λ+ δ
+

λα

λ+ δ
e−αx

∫ x

0

f(y)eαydy,
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by taking the derivative we see that

1 = − λα2

λ+ δ
e−αx

∫ x

0

f(x)eαx +
λα

λ+ δ
f(x).

Moreover, from above we have that

λα

λ+ δ
e−αx

∫ x

0

f(y)eαydy = v(x)− c

λ+ δ
.

Hence, we have that

1 = −α
(
f(x)− c

λ+ δ

)
+

λα

λ+ δ
f(x),

which implies that

f(a) =
αc− λ− δ

αδ
.

By solving

eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 e

θ2a

θ1eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 θ2eθ2a

=
αc− λ− δ

αδ

for a, we get

a =
1

θ1 − θ2

log

[
(λ+ δ)/c− θ1

(λ+ δ)/c− θ2

(
1− θ2K

1− θ1K

)]
,

where K = αc−λ−δ
αδ

. Having solved the HJB equation and calculated f(a), it follows
from Theorem 3.10 that:

Va(x) =
f(x)

f ′(a)
=

eθ1x − (λ+δ)/c−θ1
(λ+δ)/c−θ2 e

θ2x

θ1eθ1a − (λ+δ)/c−θ1
(λ+δ)/c−θ2 θ2eθ2a

x < a,

Va(x) =
f(a)

f ′(a)
+ x− a =

αc− λ− δ
αδ

+ x− a, x > a.

From Remark 3.6 it then follows that

V (x) =


eθ1x− (λ+δ)/c−θ1

(λ+δ)/c−θ2
eθ2x

θ1eθ1a− (λ+δ)/c−θ1
(λ+δ)/c−θ2

θ2eθ2a
, x < a

αc−λ−δ
αδ

+ x− a, x ≥ a.

This proves the theorem.
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4 Concluding remarks

The argument which has been constant throughout this thesis is the general logic
behind the optimal control problem. That is, the following logical structure:

1. Formulate the stochastic control problem i.e. the optimal dividend problem;

2. Derive the HJB equation i.e. we want to show the following: if V is sufficiently
regular and if V is the optimal value function then V satisfies the HJB equation;

3. Derive the verification theorem, i.e. we want show that if f is a solution to the
HJB equation then f = V ;

4. Solve the HJB equation, whose solution we then know through the verification
theorem is the optimal value function.

Both the restricted and the unrestricted problems we have studied in this thesis
follow this logic. In providing evidence for this claim, we have relied on ad hoc
regularity assumptions relating to the optimal value function. This might be viewed
as a limitation, since these assumptions could be too constricting. However, general
results regarding optimal dividends might still be of importance. Moreover, in the
case of the Cramér–Lundberg model we can only find explicit solutions in the case of
exponentially distributed claim sizes, or at least with sufficiently differentiable claim
size distributions. However, this is quite an unrealistic assumption for claim size
distributions.
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tioner. https://people.kth.se/~tranberg/5B1200.existens.pdf, 2017 (ac-
cessed April 19, 2021).

[8] Simone Calogero. Stochastic calculus, financial derivatives and pde’s. http://www.
math.chalmers.se/~calogero/Lecture_Notes11.pdf, 2017 (accessed April 19,
2021).

[9] Allan Gut. Probability: a graduate course, volume 75. Springer Science & Business
Media, 2013.
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