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Abstract

An economic scenario generator can be described as a tool to sim-

ulate future scenarios of financial markets and provide a density fore-

cast containing relevant macro-economic and financial variables used

to make financial decisions. Economists are increasingly requiring the

possibility to incorporate their own subjective views on the future mar-

ket and in this thesis we study the entropy pooling approach, based on

work laid out by Atillo Meucci, which allows views to be incorporated

on general non-normal markets. The entropy pooling approach alter

the forecast density to satisfy the views, while minimizing the change

in the distribution, with regards to relative entropy.

We walk through the theoretical foundation of this method and

present an analytical solution with the assumption of normality. How-

ever, without the assumption of normality we need to resort to a

computational approach of the entropy pooling method. In the com-

putational approach, the forecast density is represented by simulated

sample points and the density is adjusted by assigning a weight to each

sample point. The computational approach, however, causes a loss in

convergence and we contribute to the current literature by propos-

ing a method to obtain a small set of sample points, with increased

convergence properties, which is useful in situations where significant

computational limitations are present.
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1. Introduction

An economic scenario generator (ESG) can be described as, in [PCC+16], as a
model or software tool used to produce simulations of future scenarios of the
financial market and economic variables. Historically, analytical methods have
been the standard in solving risk-management problems. However, analytical
methods are only tractable for problems where the underlying distributions are
known or can be estimated. A lot of the information gained about the economy
is obtained from empirical data. By using ESGs and simulation we are able to
overcome many restrictions which occurs with using more analytical methods
and allows for analysis of more complex dynamic financial systems. Due to
the complexity of the interaction of different risk factors in the market over an
extended time horizon, an ESG gives you a tool which is useful to understand
the range of possible outcomes and likelihood of different scenarios. For these
reasons, economic scenario generators have now become an important tool in
solving risk management problems. An ESG has many uses and the tasks range
from simulating the impact on European equities from a change in US inflation
rate to investigating how a portfolio allocation performs over time under different
financial landscapes.
Economists are increasingly demanding the possibility to impose their own
outlooks and beliefs on the dynamics of the future market and its development.
These subjective views can be stated in the shape of expected values, standard
deviations, correlations, tail dependency, expected annualized returns and more.
Furthermore, these views can be imposed on both short- and long-term horizons.
Views do not necessarily need to be subjective beliefs on the future, they can also
be expectations on the future, imposed by independent experts, which pension
companies and financial institutions must satisfy when calculating pension
projections and return expectations for their customers. This thesis will focus
on views being imposed in this context. The difference between personal views
and views imposed as a requirement is that one should factor in the confidence
the practitioner has in those views, while views imposed as a requirement can
be regarded with full confidence. More specifically, the type of views we aim to
satisfy are set by The Council for Return Expectations in Denmark [Rå20].
How views can be incorporated in the ESG may depend on the model used and
its applications. Ideally, we would like to optimize the parameters of our model
maximize the likelihood of the historical data while minimizing the deviance
from the imposed views. However, if this approach is tractable or not depends
heavily on the model and the shape of the views. Since there are typically
many parameters present in an ESG, analytical expressions for time-varying
moments are generally very complicated or may not even be possible to express
analytically. Therefore, to incorporate the views by adjusting the parameters in
the model it would require brute-force and full re-simulations at each step in the
optimization, which is computationally costly, or a solution which satisfies the
views which may not even exist.
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By allowing for views to be incorporated in the model we can take into account
how current macroeconomic events affects the future market. By incorporating
the views into the model we can also investigate how views imposed on e.g. a
five year horizon from now affects potential outcomes in 60 years.
In this thesis we investigate a method proposed by Meucci [Meu10], which
does not change the initial model at all. The method instead converts existing
simulated scenarios, from the ESG, to scenarios which satisfies the views. This
method generalises to all models which are capable of simulating future scenarios
and the idea is to assign a weight to each scenario which represents the probability
of obtaining that scenario assuming that the model would satisfy the views. The
weights need to be assigned so that the corresponding weighted set of scenarios
both satisfy the views while being as close as possible to the original set of
scenarios, produced by the ESG.
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2. Incorporating views using the entropy pooling approach

2.1 The entropy pooling approach

Meucci [Meu10] presents a method which incorporates views on the market
within a prior risk model calibrated to the historical data. This is a generalized
Bayesian approach referred to as the entropy pooling (EP) approach. The EP
approach is not dependent on the specific model to be used and supports any
arbitrary market model, referred to as the prior. Meucci’s entropy pooling
method blends the unadjusted model (prior) with subjective views to obtain a
posterior distribution, which can be used, for instance, for risk management and
portfolio optimization. As in the well–known Black-Litterman model [BL90], we
interpret the views as opinions that distorts the market, i.e., the prior distribution,
and the objective is to obtain the posterior in a way that this distortion imposes
the least extra spurious structure as possible. In case of the EP approach the
posterior distribution minimizes the relative entropy to the prior. The relative
entropy, also known as the Kullback-Leibner divergence, is a natural measure of
structure because of the information-theoretical properties of this measure. In
information theory, this measure can be interpreted as the information gained
when the prior is updated to the posterior, and statistically how easily the
posterior can be discriminated from the prior with statistical tests.
The idea behind the EP approach is to shift and adjust the probability mass in
the prior distribution so that the imposed views are satisfied. This can be done
non-parametrically, i.e., without any parametric assumptions, by representing
the prior and posterior in terms of pairs of weights and sample points. The
weights are probabilities, which paired with the sample points, represent the
posterior as a weighted histogram. This can also be done parametrically by
making assumptions on the prior and the posterior, such as assuming normality.
However, imposing views under the assumption of normality is already possible
in the Black-Litterman model but, according to Meucci [Meu06b], the main
problems of the Black-Litterman model is just that of the assumption of normality
on the market prior and the views, as well as estimating the parameters on the
prior from a non-normal distribution.

2.2 Theoretical foundation

Once again, the objective is to find a posterior distribution which is perfectly
aligned with our views while still being as close as possible to the unadjusted
density forecast, the prior. The distance between the posterior and the prior is
quantified by the relative entropy, defined as

ε
(
f̃ , f

)
=
∫
f̃(y)

[
ln f̃(y)− ln f(y)

]
dy, (1)

where f̃(y) denotes the posterior distribution and f the prior. In the discrete
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case the relative entropy is defined as

ε
(
f̃ , f

)
=
∑

f̃(y)
[

ln f̃(y)− ln f(y)
]
. (2)

However, it should be noted that the relative entropy is not a true measure of
distance since it is not symmetric, that is, ε

(
p, q
)
6= ε
(
q, p
)
.

Furthermore, let V be the set containing all possible distributions which satisfies
the constraints imposed by the views. The target posterior will thus be contained
in V , assuming V is non-empty. That is

f̃ ∈ V.

For example, given views consisting of some set values for expected values,
standard deviations and correlations, V would contain all possible distributions
which satisfies these constraints. The posterior f̃ , given by the minimum relative
entropy distribution, solves

f̃ = argmin
g∈V

ε
(
g, f
)
. (3)

The posterior follows f̃ granted that the practitioner has full confidence in his
views. If not, the posterior needs to be reduced towards the prior distribution
set by the market. This is achieved by opinion-pooling the prior model and the
full-confidence posterior by

f̃ c ≡ (1− c)f + cf̃ ,

where the pooling parameter c ∈ [0, 1] corresponds to the level of confidence
in the views. There are many different ways to specify confidence as described
in [Meu10]. For example, different confidence in individual views, or multiple
practitioners with equal or different levels in their views. However, our focus
will be on only the full-confidence posterior due to the context of views being
imposed according to requirements which must be satisfied.

2.3 Analytical solution for multivariate normal distributions

If a normal distribution is assumed for the prior, then the analytic solution for
the problem set up in Section 2.2 was derived in [Meu10], where the views were
set on equalities with regards to expected values and covariances. More general
views for this case, i.e when assuming normality, was studied later in [MAK13].
We will now demonstrate the EP approach, with the assumption of normality,
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with views on linear combinations on the variables with regards to expected
values and covariances.
Consider the multivariate normal prior

X ∼ N(µ,Σ),

where µ is a mean vector and Σ is a covariance matrix.
Furthermore, consider imposing views on the expectations and covariances of
arbitrary linear combinations QX and GX respectively, that is

V :
{

Ẽ[QX] = µ̃Q

C̃ov[GX] = Σ̃G,

where Q, G, µ̃Q, Σ̃G are conformable matrices and vectors. That is, if µ is a
n × 1 vector, then Q and G are matrices of size q × n and g × n respectively,
where q and g is the number of views on the expected values and covariances.
The resuting mean vector µ̃Q and covariance matrix Σ̃G are thus of size q × 1
and g × g respectively.
As shown in [Meu10], the posterior distribution is normally distributed with

µ̃ = µ+ ΣQT (QΣQT )−1(µ̃Q −Qµ), (4)

Σ̃ = Σ + ΣGT
(

(GΣGT )−1Σ̃G(GΣGT )−1 − (GΣGT )−1
)

GΣ. (5)

Note that if we let Q and G be identity matrices, then (4) and (5) simply reduces
to

µ̃ = µ+ ΣΣ−1(µ̃Q − µ) = µ̃Q,

Σ̃ = Σ + Σ
(
Σ−1Σ̃GΣ−1 −Σ−1

)
Σ = Σ̃G.

An example where this formula is applied is given in Section 3.1 and illustrated
in Figure 4, where the analytical solution is compared with the solution given
by the computational approach.
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3. Computational approach

3.1 Panel representation and linear constraints

As discussed in the previous section, an analytical solution to the optimization
problem can generally not be found, except for special cases, e.g. when assuming
normality. Moreover, we may not even have an analytical expression for the prior
distribution available. In general, one therefore needs to resort to a computational
approach.

sample
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M ×N
W
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t
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or
:

N
×

1

Figure 1: Illustration of the panel structure of the
sample points and the corresponding weight vector.

Assume that we can obtain a sample from the forecast distribution which is
represented by sample points Sij where i = 1, . . . ,M denote the variable and
j = 1, . . . , N denote the sample point. That is, N is the sample size. In the
prior distribution, each sample point is assumed to be equally relevant and thus
each sample point is assigned equal weight, wj = 1/N . An illustration of this
structure and of the sample points are shown in Figure 1. The panel data and
the weight vector then can be combined into corresponding weighted histograms.
To clarify, the weight is the same for each variable in the sample point.
Now also assume the the posterior distribution, f̃ , can be represented by the
same sample points, but with adjusted weights, w̃. The relative entropy between
the prior and the posterior can now we expressed as

ε
(
w̃,w

)
:=

N∑
j=1

w̃j
[

ln w̃j − lnwj
]
, (6)
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which is an approximation of the true relative entropy between f̃ and f , since
we only have samples of the forecast distribution available.
Also assume that the constraints which is introduced by the views can be
expressed as linear equalities or inequalities, that is

V = {w̃ : Aw̃ = a,Bw̃ ≤ b}. (7)

By this assumption, we obtain a convex optimization problem for the adjusted
weights w̃, with linear constraints, which can be written as


min

w̃
w̃T (log w̃ − log w),

w̃ > 0,
Aw̃ = a,

Bw̃ ≤ b,

(8)

where the first row in A and first element in a represent the constraint of the
sum of the weights:

N∑
j=1

w̃j = 1.

It is of importance that the imposed views can be written as linear constraints
since then the optimization problem can be solved very efficiently, as shown in
Section 3.2. However, the restriction of only allowing linear constraints on the
weights limit us to only impose views on statistics which can be expressed as
linear constraints. While we focus on views as linear constraints for efficiency
purposes, this is not a requirement.
It is common to have views on the expected value, variance and correlations
and it will now be shown how views on these statistics can be written as linear
constraints. That is, how to construct A and a in (7). More views which can be
written as linear constraints, e.g. the conditional value at risk, are discussed in
Section 6.
When the distribution is represented by sample points, the expected value of
the posterior distribution can be written as

E[X̃] = Sw̃,

where S is the matrix containing the sample points and X̃ is a random variable
which is represented by f̃ . We can now impose views on the expected values by
setting the mean vector to some value u by introducing the linear constraint
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Sw̃ = u. (9)

So in this case A = S and a = u. More generally, we can set constraints on the
expected value of a function of the view-adjusted forecast X̃ as

E[g(X̃)] = g(S)w̃,

where g : RM → RK , M ≥ K, and g is applied to each column of S.
The variance of X̃i can be expressed as

V ar(X̃i) = E[X̃2
i ]− E[X̃i]2 = (Si• ◦ Si•)w̃ − (Si•w̃)2,

where Si• denotes the matrix which only consists of the row i in S and ◦ denotes
element wise multiplication, known as Hadamard notation. To clarify, Si• is a
1×N matrix. This expression is clearly not linear in w̃, so to set the variance
to some value v, according to the view, we first need to fix the expected value
which gives the linear constraints

Si•w̃ = Si•w, (10a)
(Si• ◦ Si•)w̃ = (Si•w)2 + v, (10b)

where w is the vector of unadjusted weights all taking value 1/N . In this case
we fixed the expected value to be the same expected value as for the prior. If we
want to impose views on both the expected value and the variance for X̃i to fix
values u and v respecively, we write the constraints as

Si•w̃ = u, (11a)
(Si• ◦ Si•)w̃ = u2 + v. (11b)

In this case we construct A and a by stacking the constraints as

A =
(

Si•
Si• ◦ Si•,

)
and a =

(
u

u2 + v

)
.

The covariance between X̃i and X̃j is given by

Cov(X̃i, X̃j) = (Si• ◦ Sj•)w̃ − (Si•w̃)(Sj•w̃).
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Similarly as for the variance, we can write the view for the covariance as a linear
constraint by again first fixing the expected value. Setting the covariance to a
value c according to the views gives the constraints

Si•w̃ = Si•w, (12a)
Sj•w̃ = Sj•w, (12b)

(Si• ◦ Si•)w̃ = (Si•w)(Sj•w) + c. (12c)

Furthermore, by also fixing the variance we can also obtain a linear constraint
for the correlation. In this case we set the expected values and the variances to
be unchanged, compared to the prior. We set the correlation to some value v,
according to the views, by the following equalities

Si•w̃ = Si•w, (13a)
Sj•w̃ = Sj•w, (13b)

(Si• ◦ Si•)w̃ = (Si• ◦ Si•)w, (13c)
(Sj• ◦ Sj•)w̃ = (Sj• ◦ Sj•)w, (13d)
(Si• ◦ Sj•)w̃ = (Si•w)(Sj•w)

+ v
√

(Si• ◦ Si•)w − (Si•w)2
√

(Sj• ◦ Sj•)w − (Sj•w)2. (13e)

In order to give an idea on how the weights are adjusted, given different types
of views, consider the prior to be an uncorrelated bivariate standard normal
distribution, that is

X ∼ N (µ,Σ) , where µ =
(

0
0

)
and Σ =

(
1 0
0 1

)
.

We can see in Figure 2 that a view with increased mean for X1 results in larger
weights for large observations, increased variance of X1 and X2 results in larger
weights in the tails of each distribution and increased correlation results in larger
weights along the diagonal.
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Figure 2: Illustrations on how different views affect the
weight allocation for each scenario. Figure a) has a view
of increased mean, figure b) increased variance and figure

c) increased correlation. Darker color implies larger
weight.

In Figure 3 we can we see the difference between the prior and the posterior
distribution forX1, i.e. the weighted histogram with weights w (equally weighted)
and the weighted histogram with weights w̃. We can see the clear similarities in
the relative height of the bins in the two histograms, as a result of keeping the
distributions as alike as possible by minimizing the relative entropy. As expected
when imposing a view of a higher expected value, the positive outcomes are
assigned more weight. However, the posterior is not obtained by simply moving
the prior to the right. Instead, the probability mass are rearranged to represent
the views and keep the domain of the prior distribution. One problem which can
occur is if we want to impose extreme views, e.g. imposing a view of very high
expected value. The view might be outside the range of the existing scenarios
and thus a solution does not exist using the available scenarios. However, for the
example of imposing a view of large expected value, the posterior distribution
turns out to be approximately normally distributed, which was proved in [Sme16].
It was proved that all minimum relative entropy distributions with a large mean
are asymptotically normally distributed.
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Figure 3: Histograms of the prior and the posterior
distribution. In the prior distribution, each scenario is

weighted equally, i.e by w, and in the posterior
distribution each scenarios is weighted by w̃.

To demonstrate how well the computational approach works we recreate the
example displayed in [Meu10], which gives a comparison between the analytical
posterior and the numerical posterior. Consider the following:
Let

X ∼ N (µ,Σ) , where µ =
(

0
0

)
and Σ =

(
1 0.8

0.8 1

)
. (14)

Furthermore, let Q = (1, 0), G = (1, 0), µ̃Q = 0.5 and Σ̃G = 0.1. That is,
impose the views E[X1] = 0.5 and V ar(X1) = 0.1. The analytical solution is
obtained by inserting the numbers into (4) and (5) which results in

µ̃ =
(

0.5
0.4

)
and Σ̃ =

(
0.01 0.008
0.008 0.3664.

)
. (15)

In Figure 4 we can see that numerical approach follow the theoretical when we
go from the prior to the posterior, even with extreme views such as dividing the
standard deviation by a factor of 10.
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Figure 4: Numerical approach follows the analytical
solution for normal distributions.

3.2 Finding the solution to the optimization problem

When the matrix and vector pair A and a consisting of the collected equality
constraints and B and b the inequality constraints, the entropy minimization
reads as

w̃ = argmin
Ax=a
Bx≤b

( N∑
j=1

xj(ln xj − lnwj)
)
. (16)

We will later see that the required inequality constraint x ≥ 0 will be automati-
cally satisfied and therefore does not need to be specified.
However, since wj = 1/N for j = 1, ..., N we have that

N∑
j=1

xj(ln xj − lnwj) =
N∑
j=1

xj ln xj −
N∑
j=1

xj ln 1
N

=
N∑
j=1

xj ln xj + lnN,

where we used that
∑N
j=1 xj = 1. We see that minimizing
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N∑
j=1

xj(ln xj − lnwj)

is the same as minimizing

N∑
j=1

xj ln xj ,

commonly known as the negative entropy.
This is a convex optimization problem and these types of optimization problems
have been studied extensively. Various entropy optimization problems are shown
in Chapter 5 in [BV04] and we will solve this optimization problem accordingly
by deriving the Lagrange dual function making use of the conjugate function.
Let f0(x) denote the function we want to minimize and let f∗0 denote the
conjugate to f0, defined as

f∗0 (y) = sup
x∈dom f0

(
yTx− f0(x)

)
. (17)

In our case we have that f0(x) =
∑N
j=1 xj ln xj and we find the conjugate by

f∗0 (y) = sup
x∈dom f0

(yTx− f0(x))

= sup
x∈dom f0

 N∑
j=1

xjyj −
N∑
j=1

xj ln xj


=

N∑
j=1

sup
x∈dom f0

(xjyj − xj ln xj) .

(18)

Let g(xj) = xjyj−xj ln xj and x∗j = argmax
xj

g(xj). By the first order conditions

for xj we have

0 = g′(x∗j ) = yj − ln x∗j − 1 ⇐⇒ x∗j = eyj−1. (19)

Substituting this into (18) gives

f∗0 (y) =
N∑
j=1

yie
yj−1 − eyj−1 ln eyj−1 =

N∑
j=1

eyj−1. (20)
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We can now set up the Lagrangian

L(x, λ, ν) = xT ln x + λT (Bx− b) + νT (Ax− a)
= xT ln x + (BTλ+ AT ν)Tx− bTλ− aT ν.

(21)

and find the dual function using the conjugate function we derived above by

G(λ, ν) = inf
x

(
xT ln x + (BTλ+ AT ν)Tx− bTλ− aT ν

)
= −bTλ− aT ν + inf

x

(
xT ln x + (BTλ+ AT ν)Tx

)
= −bTλ− aT ν − sup

x

(
(−BTλ−AT ν)Tx− xT ln x

)
= −bTλ− aT ν − f∗0 (−BTλ−AT ν)

= −bTλ− aT ν −
N∑
j=1

e−BT
•jλ−AT

•jν−1,

(22)

where BT
•j and AT

•j denotes the transpose of the j-th column in the matrices
respectively.
The dual function can also be found by first identifying the first order conditions
for x, given by

∂L
∂x

= ln x + 1 + BTλ+ AT ν ≡ 0, (23)

with the solution given by

x(λ, ν) = e−BTλ−AT ν−1, (24)

as shown in [Meu10].
We can now derive the dual function as

G(λ, ν) = L(x(λ, ν), λ, ν)

=
(
e−BTλ−AT ν−1

)T (
−BTλ−AT ν − 1

)
+ (BTλ+ AT ν)T

(
e−BTλ−AT ν−1

)
− bTλ− aT ν

= −bTλ− aT ν −
(
e−BTλ−AT ν−1

)T
1.

(25)
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The optimal Lagrange multipliers are found by maximizing the dual function
numerically

(λ∗, ν∗) = argmax
λ≥0,ν

G(λ, ν). (26)

Note that the Lagrangian dual function G(λ, ν) should be maximized whereas
the Lagrangian should be minimized. The solution is finally be obtained by

w̃ = x(λ∗, ν∗). (27)

Important to note is that the optimization is performed for limited number of
parameters equal to the number of views and not directly on the weights, which
are the variables of interest. The number of weights, equal to the number of
simulated scenarios, could be very large and optimization may not be numeri-
cally feasible if performed directly on the weights. Instead, by performing the
optimization on the Lagrange multipliers we guarantee numerical feasibility. To
add to this, we can also compute the gradient of G(λ, ν) as

∂G(λ, ν)
∂λi

= −bi −
N∑
j=1
−Bije−BT

•jλ−AT
•jν−1,

∂G(λ, ν)
∂νk

= −ak −
N∑
j=1
−Akje−BT

•jλ−AT
•jν−1,

and the Hessian, given by

∂2G(λ, ν)
∂λ2

i

= −
N∑
j=1

B2
ije
−BT

•jλ−AT
•jν−1,

∂2G(λ, ν)
∂ν2

k

= −
N∑
j=1

A2
kje
−BT

•jλ−AT
•jν−1,

∂2G(λ, ν)
∂λiνk

= −
N∑
j=1

AkjBije
−BT

•jλ−AT
•jν−1.

The gradient and the Hessian is used to speed up the numerical optimization
of the dual function. With the gradient available we can find the minimum
using gradient descent and with the Hessian also available we can use Newton’s
method in optimization to even further increase the speed of the optimization.
The gradient and Hessian can also be written as
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G′(λ, ν) =
(
−b + B · x(λ, ν)
−a + A · x(λ, ν)

)
(30)

and

G′′(λ, ν) =
(
−B · ((x(λ, ν) · 1) ◦BT ) −B · ((x(λ, ν) · 1) ◦AT )
−A · ((x(λ, ν) · 1) ◦BT ) −A · ((x(λ, ν) · 1) ◦AT )

)
. (31)

16



4. Time dependent setting

4.1 Introducing scenarios

The EP approach presented in [Meu10] is sufficient if the practitioner is only
interested in a certain time point in the future. That is, how his views at
the h-step forecast affects the h-step forecast distribution. However, a natural
question which arises is, for example, how the views on the 5-step forecast affect
the 10-step forecast, or the 60-step forecast. It may also be desirable to have
views on multiple time periods at the same time.
Meucci and Nicolosi (2016) presents a theoretical foundation of a time-dependent
method of Meucci’s entropy pooling approach. This was later extended by [vdS19]
with a computational approach for the time-dependent setting.
In the time-dependent setting we, instead of sample points, consider scenarios

Sij(t),

where the time dimension is added. Previously each sample point had a corre-
sponding weight, but in the time-dependent setting the weights w̃j are assigned
to each scenario. That is, the weight for scenario j is the same for each variable
and for each time point t. An illustration of this representation is shown in
Figure 5. In this setting, the optimization problem remains the same as before,
i.e. the weights are determined by minimizing the relative entropy subject to
linear constraints. Notably, this method does not introduce any new scenarios,
only changing the weights of the existing scenarios, analogous to how no new
sample points were introduced in the one-period setting.
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Figure 5: Illustration of the structure of the scenarios
and the corresponding weight vector.
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Even though we now consider a time-dependent setting, the statistics we impose
views on should be written as functions of samples, as in the one-period setting.
This method still supports all linear constraints that can be written as Aw̃ = a
and Bw̃ ≤ b. As an example, suppose that the following view is imposed: the
mean of variable i at time point t = 5 is v. The corresponding constraint is
thereby written as Si•(5)w̃ = v.

4.2 Effective number of scenarios

In the computational approach, extreme views may result in large weights for
only some of the scenarios while other scenarios are assigned very small weights.
A natural question needs to be addressed: how does the changing of weights affect
the statistical significance of statistics derived from the re-weighted scenarios?
In this section we define the effective number of scenarios, see [Meu12], as a
measure on how much the statistical significance is affected as the weights are
adjusted.
First, let Ñ denote the effective number of scenarios, to be defined below. In the
simple case where all scenarios are equally weighted, w̃j = 1/N, j = 1, ..., N , we
rely on all N available scenarios equally, that is Ñ = N . However, in the extreme
case where one scenario is assigned all weight and the remaining scenarios are
assigned zero weight, any statistic computed relies only on one scenario, i.e.
Ñ = 1.
Meucci defines the effective number of scenarios (ENS) as the exponential of the
entropy of the weights

Ñ = e
−
∑N

j=1
w̃j ln w̃j . (32)

The entropy measure is a natural choice due to it’s interpretation. It is a measure
of the concentration of the probability mass in the weights and in information
theory the entropy can be described as the uncertainty of the possible outcomes
of a random variable. The effective number of scenarios will be a value between
1 and N . If the adjustment made to the density forecast is small, the measure
will be close to N . If the adjustment is extreme the effective number will be
closer to 1, granted that the adjustment needed to satisfy the view is possible.
Depending on the application, the minimum effective number of scenarios varies.
For example, an effective number of 50 might be sufficient to estimate the mean
of the adjusted forecast distribution, but is likely to be insufficient to give an
estimate of the 99.5% value at risk which is accurate.
A tempting idea would be to increase the lower bound of the weights to a constant
larger than zero, with the idea is that the weights would have a lower variation,
i.e higher entropy. If this was the case we would gain more effective number of
scenarios while sacrificing accuracy, with regards to the relative entropy. However,
increasing the lower bound of the weights has the opposite effect. Scenarios
with high weights are assigned even more weight and therefore have an even
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higher impact than before. In fact, the optimization problem which yields the
maximum effective number of scenarios is equivalent to the minimization of the
relative entropy, since

Ñ ≡ e−
∑N

j=1
w̃j ln w̃j = e

−
∑N

j=1
w̃j ln w̃j−w̃j lnwj+w̃j lnwj

= e
−ε(w̃,w)+

∑N

j=1
w̃j ln 1

N = e−ε(w̃,w)+ln 1
N = 1

N
e−ε(w̃,w),

(33)

where we used that the
∑N
j=1 w̃j = 1 and wj = 1

N . We see that minimizing
ε(w̃,w) also minimizes Ñ .
To illustrate the importance of the effective number of scenarios we simulate
1000 uncorrelated bivariate Gaussian random walks to act as our scenarios. In
Figure 6a we can see the deciles of the marginal distribution over time for the
first variable, where the imposed view adjusted the correlation between the two
vaiables to 0.1 at time point 120 and in Figure 6b the correlation was adjusted
to 0.7. In Figure 6b the variance for the second marginal distribution was also
adjusted to 0.75 from 1. For a), the effective number of scenarios for the forecast
distribution declined from 1000 to 997.7 and for b) to 92.7. Although, for b),
the view is rather unrealistic but the example clearly showcases the importance
of the effective number of scenarios. We can see that the deciles of the forecast
distribution fluctuate significantly more over time in b) and therefore are less
reliable. For statistics such as percentiles and other statistics sensitive to a low
number of sample points, e.g. value at risk, the effective number of scenarios is
too low.
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Figure 6: Deciles for the marginal distribution of a
bivariate Gaussian random walk when the correlation is
adjusted from 0 to 0.1 in a) and to 0.8 in b), as well as

the variance of the corresponding second marginal
distribution from 1 to 0.75.
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4.3 Discrete weights

When one has obtained the weights which minimizes the relative entropy, the
weights have to be taken into account in every application thereafter, e.g. when
calculating expected future cash flow or optimal investing strategies. However,
many calculations in portfolio allocation applications and risk management are
made with the assumption of equally weighted scenarios. It is therefore desirable
to be able to produce a density forecast which can be represented by scenarios
which are equally weighted rather than modifying each application to take the
weights into account. If such representation can be obtained, the scenarios can
be used as previously in each application, without the need of adjusting the
computations to account for the weights.
The objective is to convert the weights w̃j , j = 1, ..., N , to discrete integer weights
ŵj . Instead of summing up to one, the discrete weights sum to a specified integer
N̂ . The multivariate posterior density forecast can then be represented by a
scenario set Ŝik(t), where k = 1, ..., N̂ , i.e. containing N̂ scenarios, where each
scenario S•j(t) are copied ŵj times. In this representation some of the scenarios
are identical but each scenario has the same weight. Thus, the scenario set Ŝik(t)
is suitable for calculations where equally weighted scenarios is assumed.
Ideally, one could modify the optimization problem and include the constraint
that the weights should be integers which sums to N̂ . However, this introduces
some problems. First, it might not be possible to satisfy all constraints with
integer weights. Secondly, integer programming problems are NP-hard and fast
solvers does not exist [PS13]. The integer weights thus need to be approximated,
which in turn sacrifices some accuracy with regards to satisfying the views, i.e.
the views are no longer guaranteed to be satisfied exactly.
The weights w̃ can be converted to discrete weights ŵ by first rounding N̂w̃j to
the nearest integer. However, the resulting weights after the rounding does not
necessarily sum up to N̂ as specified. Thus, if the weights ŵ sum to a number
less than N̂ , increase the weight ŵj , with the largest negative rounding error,
by 1 and repeat until the weights sum to N̂ . Likewise, if the weights ŵ sum
to a number greater than N̂ , decrease the weight ŵj , with the largest positive
rounding error, by 1.
It should be emphasized that converting the weights to discrete weights may
decrease the effective number of scenarios and make the constraints no longer
be satisfied exactly. However, with a sufficiently large N̂ this effect is small. In
fact, ŵ/N̂ → w̃ as N̂ →∞.
To demonstrate the importance of the choice of N̂ , consider a sample of size
5000 from the standard normal distribution, as our prior. Imposing a view for
the expected value to be 1 leads to an effective number of scenarios of 3039,
using the continuous weights ŵ. In Figure 7 we can see the effective number of
scenarios when using ŵ for different choices of N̂ , in the lower axis. We see that
we, in this example, need N̂ to be roughly 4 times larger than N to converge to
the original effective number of scenarios.
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Figure 7: Effective number of scenarios for different
choices of N̂ when converting continuous weights into

discrete integer weights.

A heuristic is suggested in [vdS19] which tries to satisfy the equality constraints
as well as possible when using integer weights. The algorithm is provided in
Algorithm A1. However, if it is possible, the continuous weights should be used in
the succeeding applications of the scenarios to obtain the most accurate results.
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5. Small set of scenarios with high effective number of scenarios

5.1 The weighted sampling method

Situations may occur in practice where the number of scenarios representing
the posterior distribution has limitation due to computational time. That is, we
need the posterior distribution to be represented by K ≤ N scenarios. However,
applying the EP method to a set of scenarios of size K results in a lower effective
number of scenarios compared to using N scenarios. In practice there are
also limitations in how low the effective number of scenarios can be to reach
convergence in some applications, as discussed in Section 4.2. To clarify, we have
an upper limit in the number of scenarios representing the posterior distribution
and a lower limit in effective number of scenarios. In some cases, both limitations
can not be satisfied simultaneously when applying the EP method as described
previously. Our goal is to find a set of scenarios of size K, representing the
posterior, with an effective number of scenarios as close to K as possible. The
idea, inspired by importance sampling [KM53], is to make use of weighted
sampling using the weight vector from the EP approach.
Let N be the number of scenarios representing the prior and let K ≤ N be
the upper limit of the number of scenarios representing the posterior. Perform
the EP approach as previously and obtain the weight vector w̃ of size N × 1.
Now, sample K scenarios from the N available scenarios with replacement,
where the probability for scenario j to be drawn is equal to the corresponding
weight w̃j . The resulting set of K scenarios now consist of equally weighted
scenarios representing the posterior. However, since randomness is introduced,
the views will no longer be satisfied exactly but are satisfied on average since we
sample from a distribution which satisfies the views exactly by construction. The
posterior obtained from the weighted sampling will thus still satisfy the views in
expectation. We now need to show that this representation of the posterior has
better convergence properties than simply performing the EP approach using
K scenarios. We refer to the posterior obtained from weighted sampling as the
weighted sampling posterior and the posterior represented by the weight vector
as the EP posterior.
Since there are possibilities of repetitions of scenarios due to sampling with
replacement, the effective number of scenarios is not necessarily equal to K,
even though in this representation all scenarios are equally weighted. We can
compute the effective number of scenarios in the weighted sampling posterior by
letting the number of repetitions of each scenario correspond to the weight used
in the computation of the effective number of scenarios (32), e.g. if a scenario is
repeated twice, the corresponding weight is 2/K. This gives the effective number
of scenarios as
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Weighted sampling posterior EP posterior
Prior N K

Posterior K K
ENS K̃WS K̃

Table 1: Number of scenarios in the representation of
the prior and posterior in the weighted sampling and

standard representation as well as the effective number of
scenarios for both methods.

exp

−
N∑
j=1

xj
K

ln
(xj
K

) , (34)

where xj is the number of repeated draws of scenario j. In fact, the distribution
of the of the number of repetitions is given by the multinomial distribution,
conditioning on the weights w̃.
To clarify the number of scenarios represented in the prior and posterior for
each method see Table 1. Note that while K̃ is deterministic conditioned on the
scenarios, K̃WS is a random variable due to the weighted sampling.

It can easily be argued that when N = K we have that

E[K̃WS ] = K̃,

since scenario j in the weighted sampling posterior have expected number of
repetitions Kw̃j , which is the expected value of the multinomial distribution.
Inserting xj = Kw̃j in (34) yields K̃. Furthermore, when letting N → ∞ the
probability of having repeating scenarios in the weighted sampling posterior tend
to zero and thus E[K̃WS ]→ K, since all scenarios are equally weighted and no
repetitions are present. This argument assumes that when N →∞ the number
of non-zero weights also tend to infinity, which is the case for most applications
in practice.
It is of importance that the sampling is made with replacement to obtain a set
of scenarios representing the posterior. Consider the simple case where N = K.
In this case, sampling without replacement would make the weights w̃ irrelevant
since we would always end up with the same set of scenarios, the prior scenarios.
Sampling without replacement would introduce a bias towards the prior and the
obtained posterior would therefore not satisfy the views.
As an example we again consider the bivariate Gaussian random walk as in
Figure 6. We impose drastic views to obtain a low effective number of scenarios
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to better illustrate the advantage of the weighted sampling method. The setting
for this example is shown in Table 2 together with the resulting effective number
of scenarios. We can see that we have achieved a significant increase in effective
number of scenarios in the weighted sampling posterior than in the EP posterior.
We can also visualize this effect by plotting the deciles over time for both methods,
which can be found in Figure 8. We see that the deciles fluctuate less in the
weighted sampling case which showcases the improved convergence properties
when using this method.

Weighted sampling posterior EP posterior
Prior N = 10000 K = 1000

Posterior K = 1000 K = 1000
ENS K̃WS ≈ 688 K̃ ≈ 174

Table 2: Effective number of scenarios for the weighted
sampling method and the standard method. In this

example the posterior is represented by 1000 scenarios for
both methods.

0 100 200 300 400 500 600 700

80

60

40

20

0

20

40

60

80

a)
0 100 200 300 400 500 600 700

80

60

40

20

0

20

40

60

80

b)

Figure 8: Deciles of the posterior scenarios using the EP
method a) and the weighted sampling method b).

The advantage of using the weighted sampling method is, as we have shown, the
increased convergence properties. However, another advantage is that it is not
necessary to incorporate the weight vector in the evaluations of the posterior
scenarios and the scenarios can be used directly, without the need to change
the computations to account for the weight vector, as in the case with discrete
weights.
The disadvantages are that it is not possible to compute the exact relative
entropy between the prior and the posterior since they are represented by sets
of scenarios with different sizes. However, this can be approximated by using

24



the histograms of both distributions, where the data in both histograms are
grouped into the same bins. Then, the probability mass in each bin is used in
the computation of the relative entropy. Another disadvantage is that the views
are not satisfied exactly, as in the EP approach, and are instead only satisfied in
expectation.

Weighted sampling posterior EP posterior EP posterior
Prior N = 10000 K = 10000 K = 5000

Posterior K = 5000 K = 10000 K = 5000
ENS K̃WS ≈ 1365 K̃ ≈ 1767 K̃ ≈ 901

Table 3: Effective number of scenarios for the weighted
sampling method and the standard method. In this

example the posterior is represented by 1000 scenarios for
both methods.

To further demonstrate these methods, consider the same example given by
(14) and (15). The resulting effective number of scenarios for different choices
of N and K, for the weighted sampling method and the regular EP method
are given in Table 3. We see that the weighted sampling method increase the
effective number of scenarios significantly when comparing the two cases where
the posterior distribution is represented by 5000 scenarios. We can also see
the effective number of scenarios with the EP approach when keeping all 10000
scenarios also in the posterior. Furthermore, we can see the respective histograms
in Figure 9, and see that the weighted sampling posterior correctly follows the
EP posterior as well as the analytical solution. In Figure 10 we take a closer
look at the posterior of X2 in the case where the posterior is represented by 5000
scenarios using both methods.
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Figure 10: Posterior for the EP approach and the
weighted sampling approach. The EP posterior is
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number of scenarios is 901. The weighted sampling
posterior is represented by 5000 scenarios and the
resulting effective number of scenarios is 1365.
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6. More views

So far we have shown how to impose views on the mean, variance and correlations
as linear constraint, which is only a small subset of possible features which the
practitioner can impose views on. Examples of other possible views which can
be expressed in terms of linear constraints includes views on:

• Median.

• Mean, variance and correlations between cumulative returns over a certain
time horizon.

• Mean, variance and correlations between geometrically and arithmetically
annualized returns over a certain horizon.

• Value at risk and conditional value at risk.

• Tail behaviour and tail codependence between variables.

• Marginal distributions, by matching moments up to a given order.

• Copula.

In this section we showcase how to impose views on geometrically annualized
returns, views on the conditional value at risk as well as discuss how to take
rebalancing into account when the views are set.

6.1 Include rebalancing in views

A common procedure in portfolio management is to realign the weightings of
the assets in the portfolio to keep a desired level of asset allocation or risk. For
example, assume an asset allocation of 50% stocks and 50% bonds. If the stocks
perform well and increase to a weighting of 75% in the portfolio, the investor
may decide to sell stocks and buy bonds to retain the original asset allocation of
50% stocks and 50% bonds. This procedure is called rebalancing.
It is therefore desirable to be able to impose views on how the portfolio performs
in the future, when including the rebalancing process. This can easily be done
by introducing a new variable corresponding to the total value of the portfolio
where each future scenario for this new variable is constructed by applying the
rebalancing procedure to all scenarios.

6.2 Views on geometrically annualized returns

Suppose we want to be able to state views on the geometrically (or arithmetically)
annualized returns over some specified horizon. To be aligned with the computa-
tional approach we need to be able to express the views as linear constraints
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and to express this constraint as linear we first need to convert the scenarios to
annualized returns.
First, the return for variable i and scenario j over the time horizon T0 to T is
expressed by Sij(T )

Sij(T0) . Thus, we can set the expected return over the horizon to a
value u, according to the view, by

(Si•(T )� Si•(T0)) w̃ = u,

where � denotes the Hadamard division (element-wise). For ease of notation, let

Ri•(T0, T ) = Si•(T )� Si•(T0)

denote the return over the period (T0, T ). Furthermore, the geometrically
annualized return for variable i and scenario j, over the horizon, is given by
Rij(T0, T )1/(T−T0) and thus we can set the view of the annualized return, to a
value u, by

Ri•(T0, T )w̃ = u(T−T0). (35)

Notice that it is of importance which operation we do first, annualize or averaging.
That is, the difference between the annualized average return

(Ri•(T0, T )w)1/(T−T0) (36)

and the average annualized return

Ri•(T0, T )1/(T−T0)w. (37)

To motivate the choice of the former, consider the example where we have two
variables and two scenarios. The first variable has over a two-year horizon the
returns 1.2 and 0.8 respectively for each scenario and the second variable has 1.1
and 0.9.
Using the former, (Ri•(T0, T )w)1/(T−T0), we get for the two variables the annu-
alized return

(
1.2 + 0.8

2

)0.5
= 1,(

1.1 + 0.9
2

)0.5
= 1
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while when using Ri•(T0, T )1/(T−T0)w we get

1.20.5 + 0.80.5

2 = 0.9949,

1.10.5 + 0.90.5

2 = 0.9987.

Now suppose that we invested 1 unit in each variable. After two years the value
would still be 1 unit on average, for both variables. It is reasonable to assume
that the average annualized return therefore would be equal for both variables
over this horizon, which is the motivation for using the first method.
Furthermore, we can add views on the variance of the annualized return by
first considering the variance of the unanualized return. If v is the view of the
variance of the annualized return over the horizon (T0, T ), then (T − T0)v is the
variance of the return over the horizon (T0, T ).
Let X denote a random variable of the annualized return over the period (T0, T )
and let Y be the corresponding random variable of the return. We can set the
second moment of Y written in terms of E[X] = u and V ar(X) = v as

E[Y 2] = E[Y ]2 + V ar(Y )

=
(
E[X](T−T0)

)2
+ (T − T0)V ar(X)

= u2(T−T0) + (T − T0)v.

We see that E[Y 2] is determined by the mean and variance of X and we can use
this to express the linear constraint to set the variance of X. We can write the
constraints as

Ri•(T0, T )w̃ = u(T−T0), (40a)
(Ri•(T0, T ) ◦Ri•(T0, T )) w̃ = u2(T−T0) + (T − T0)v. (40b)

With similar arguments as above we can express the view on the correlation
of the annualized return between two variables to a value c, by the following
constraints

Ri•(T0, T )w̃ = u
(T−T0)
i , (41a)

Rj•(T0, T )w̃ = u
(T−T0)
j , (41b)

(Ri•(T0, T ) ◦Ri•(T0, T )) w̃ = u
2(T−T0)
i + (T − T0)vi, (41c)

(Rj•(T0, T ) ◦Rj•(T0, T )) w̃ = u
2(T−T0)
j + (T − T0)vj , (41d)

(Ri•(T0, T ) ◦Rj•(T0, T )) w̃ = u
(T−T0)
i u

(T−T0)
j + c · (T − T0)√vi

√
vj . (41e)
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6.3 Views on CVaR

Views on conditional value at risk (CVaR), also known as the expected shortfall
(ES), is not possible to state as a linear constraint on the posterior, however a
method to impose views on CVaR, and the value at risk (VaR), is proposed by
Meucci in [MAK12].
The view on the CVaR is stated as

Ẽ[X|X ≤ q̃γ ] = ṽγ , (42)

where ṽγ is the (1 − γ)-CVaR of the view of the posterior, where γ ∈ (0, 1).
Furthermore, q̃γ denotes the γ-quantile of the posterior

∫ q̃γ

−∞
f̃(x)dx = γ. (43)

The quantile q̃γ is known as the value at risk. As previously stated, it is not
possible to map the above constraint into a linear constraint since we do not
know a-priori the value of the VaR. That is, we do not know how many scenarios
which is falling below the VaR-quantile in advance. Thus, our objective is to
find VaR, or the number of scenarios below the VaR-quantile, while having the
minimum relative entropy between the posterior and the prior.
Assume that the scenarios for the variable of interest i, are sorted so that
Si1 ≤ . . . ≤ SiN and that the prior weights wj are rearranged accordingly.
Furthermore, for s ∈ {1, ..., N}, define the vectors of weights w̃(s) by

w̃(s) = argmin
ω∈Cs

ε(ω,w), (44)

where Cs are the constraints given by

Cs =
{

Si1ω1 + . . . Sisωs = γ · ṽγ
ω1 + . . .+ ωs = γ.

(45)

Since these constraints are linear in ω we can now proceed as previously as
described in Section 3.1. The pairs consisting of Sij and w̃(s)

j now represent the
minimum relative entropy posterior which satisfies the view of VaR equal to q̃γ
and CV aR equal to ṽγ . The problem is now finding the ideal choice of s, which
is done with regards to the relative entropy. We choose that s which among all
w̃(s) display the least amount of distortion overall, compared to the prior. In
other words, s is chosen such that w̃(s) gives the minimum relative entropy of
all possible choices of s. That is, let w̃ = w̃(s̃) where
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s̃ = argmin
s∈{1,...N}

ε
(

w̃(s),w
)
. (46)

In practice, it is computationally intensive to compute all terms in (46) to find
the ideal choice of s. Fortunately, the relative entropy ε

(
w̃(s),w

)
is a concave

function of s and the computation can therefore be made more efficient compared
to computing the relative entropy for all choices of s. The algorithm used is a
discrete counterpart to the well known Newton-Raphson method. First, define
the empirical derivative of the relative entropy as

Dε
(

w̃(s),w
)

= ε
(

w̃(s+1),w
)
− ε

(
w̃(s),w

)
. (47)

Then initialize a value s ∈ {1, . . . , N} as the largest integer which satisfies

w1 + . . . ws ≤ γ, (48)

where w1, . . . , wN are the prior weights.
The Newton-Raphson method is then applied by iterating the following steps
until convergence is reached

s̄ = RoundToClosestInteger

s−
Dε
(

w̃(s),w
)

D2ε
(

w̃(s),w
)
 (49a)

s = s̄. (49b)

Numerical studies shows that typically only few iterations are required to reach
convergence [MAK12].
We consider the same example given by Meucci to visualize the effect imposing
views on the CVaR has on the posterior distribution. Let the prior be a sample
from the standard normal distribution and impose the view Ẽ[X|X ≤ q̃0.2] = −2,
which is a view on the 80%-CVaR. After finding the s which minimizes the
relative entropy between the prior and posterior, we obtain the weight vector
representing the posterior. The resulting histogram illustrated in Figure 11
shows the effect of the CVaR view on the posterior.
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Figure 11: Histograms of the prior and posterior where
the imposed view on the 80%-CVaR was set to −2.

The issues with imposing views on the VaR and the CVaR is that the views are on
the tails of the distribution where the scenarios are sparse, and without enough
scenarios these views may not be possible to cover. This obviously depend on
the value of γ, and values of γ close to 0 or 1 can show to be problematic.
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7. Case study

7.1 The model

Since the methods studied in this thesis are not model dependent the model
used in this case study will not be specified in detail. However, the model used
in this case study is a model which is used in the industry. The model originates
from the Vector Autoregressive Moving Average (VARMA) model, which is a
commonly used and studied model and a more extensive formulation of this
model can be found in [RD13]. The focus will be on the EP approach and not
the model generating the scenarios and thus we only briefly describe the VARMA
model as background for this case study.
Consider modelling a multivariate time series {xt}, where et ∈ RM . A VARMA(p, q)
process is given by the following recursion

xt = Φ0 + Φ1xt−1 + . . .+ Φpxt−p + et + Θ1et−1 + . . .+ Θqet−q, (50)

where et = xt − x̂t denotes the forecast error, or innovation. It is assumed that
the innovations are serially independent and normally distributed, et ∼ N (0,Σt),
where Σt ∈ RM×M . The parameters of the model Φ0, . . . ,Φp,Θ1, . . . ,Θq are
estimated through least squares and how this is done can be read about in [RD13].
When the parameters are estimated, future paths can be simulated by applying
the recursion above. We will not go into detail about how p and q are chosen,
as well as checking that the stability and invertibility conditions are satisfied,
which can also be read about in [RD13].

7.2 Imposing views

In this case study we consider six variables, or risk factors, consisting of returns
for different bonds, equities and real estate. The views to be imposed are on the
same form as the ones imposed by Danish requirements [Rå20], which are views
on the mean, standard deviation and correlations of annualized returns over a
time horizon. That is, we impose the views described in Section 6.2 and do this
on a 5-year horizon. The views are summarized in Table 4 and Table 5. It should
be mentioned that while the scenarios are generated from real data and a model
which is used in the industry, the numbers in the views are manually chosen and
not stated by any official document. The views are chosen to be similar to the
returns, standard deviations and correlations exhibited in the prior scenarios.
That is, no drastic views are introduced.
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Return Standard Deviation
1 Government and Mortgage Bonds −0.2% 0.6%
2 Investment Grade Bonds 0.9% 0.8%
3 High Yield Bonds 1.5% 0.7%
4 Global Equities 4.9% 13.5%
5 Private Equity 8.7% 52.0%
6 Real Estate 5.1% 7.8%

Table 4: Views on the means and standard deviations
of annualized returns for years 1-5.

Correlations
1 2 3 4 5 6

1 Government and Mortgage Bonds 0.9 0.6 0.1 0.0 0.1
2 Investment Grade Bonds 0.7 -0.1 0.0 0.1
3 High Yield Bonds -0.1 0.0 0.0
4 Global Equities 0.5 0.2
5 Private Equity 0.1
6 Real Estate

Table 5: Views on the correlations of annualized returns
for years 1-5.

The prior consisted of 5000 scenarios of monthly returns over 60 years. After
carrying out the EP approach the resulting effective number of scenarios was 2642,
which is roughly half the effective number of scenarios in the prior, which can be
considered a significant decrease. Next, the weighted sampling method, discussed
in Section 5, was applied to obtain a posterior consisting of 1000 scenarios. This
smaller set of scenarios had an effective number of scenarios of 716, which is
a higher percentage of effective number of scenarios, relative to the number of
scenarios in the posterior, than simply using the EP approach. However, the
posterior when using the weighted sampling method does not satisfy the views
exactly, as in the case of the EP approach, but only on average. An effective
number of scenarios of 716 was large enough for the posterior to converge to
the values set by the views with regards to the average annualized returns and
their standard deviations. However, the effective number of scenarios was not
sufficiently large for the correlations to converge to the views, and thus the
posterior does not satisfy those views well. The values of the average annualized
returns, standard deviations and correlations for the prior, views and posterior,
in this case study, can be found in Table A1 and Table A2.
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7.3 Curse of clashing views

Even though the values in the views were close to the value exhibited in the
prior, the resulting effective number of scenarios was low, compared to the prior.
This is due to an effect which we choose to refer to as the curse of clashing views.
This is an effect which often occurs when imposing a large number of different
views. The curse of clashing views occurs when a combination of views, which
individually are easily satisfied, are hard to satisfy when combined.
As an example, consider two highly positively correlated variables. We impose a
view of increased mean for the first variable and a decreased mean for the second
variable. When carrying out the EP approach on each view individually, the
effect on the effective number of scenarios is low, however when the views are
imposed simultaneously the effect on the effective number of scenarios is high.
This is due to the high correlation of the two variables which causes the two
views to clash with each other.
This was something that was also observed in this case study. Let V1, . . . , V6
denote the views on the annualized returns for the six variables respectively,
which was stated in Table 4. That is, V1 denotes the view that Government
and Mortgage Bonds have an annualized average return of −0.2 over a 5-year
horizon.
In Figure 12 we can see the loss in effective number of scenarios when imposing
the views individually and the loss when imposing the combined views. To
clarify, when a view is imposed individually, we apply the EP approach with
only that view. We can see that when imposing V1, V2 and V3 individually,
the sum of the respective loss in effective number of scenarios is around 600.
However, when imposing all three views, V1, V2 and V3, at the same time results
in a significantly higher loss of effective number of scenarios, at around 1200.
This is an effect of the curse of clashing views between V3 and V1 or V2, or the
combination of all three.

V1 V1, V2 V1, . . . , V3 V1, . . . , V4 V1, . . . , V5 V1, . . . , V6
0

200

400

600

800

1000

1200

1400
Loss in Efffective Number of Scenarios

Combined views
Sum of individual views

Figure 12: Loss of effective number of scenarios when
the EP approach is applied separately (blue) or when all

views are combined (blue).
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7.4 Results

We checked above how well the views were satisfied and we also need to check
how close we are to the historical data and the prior scenarios. We know that the
EP approach uses the relative entropy as a measure of closeness and minimizes
this between the prior and the posterior. However, we want to make sure that
we keep other properties such as higher moments, e.g. skewness and kurtosis,
as well. Since the effective number of scenarios is rather low for the posterior
we can not obtain reliable estimates of skewness and kurtosis and we instead
have to resort to “eye”-tests, that is, to investigate how properties have changed
using plots.
By plotting the quantiles of the prior and posterior against each other, in a
QQ-plot, we get some intuition on how similar the prior and posterior are,
for some property. For example, we can see in Figure 13 the quantiles of the
normalized annualized returns over a 10-year horizon, for Global Equities, which
we imposed views on, but also US Equities, which we did not impose any views
on. It is important to also check variables which do not have any views since
these are affected too and if some important property of this variable is lost
when the EP approach is applied one may need to consider adding a view which
keeps that property. We observe that for both Global Equities and US Equities
the QQ-plots display an approximately straight line indicating that the posterior
distribution has kept the properties of the prior distribution and has not become
heavier or light tailed, or more or less skewed.
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Figure 13: QQ-plots of annualized returns over a
10-year horizon for Global Equities and for US Equities.

In Figure 14 and Figure 15 see the simulated log returns in the prior and
posterior distribution of Global Equities and US Equities, where the colors
indicate quantiles of the scenarios over time. We can also see the mean of
annualized returns over rolling windows of different horizons, for each scenario,
and the respective standard deviation. That is, for each scenario we compute
the annualized return over a set horizon from now. Then, the annualized return
is computed again over the same horizon length, but moved one month forward.
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Lastly, the mean of the rolling window returns is computed for each scenario and
for different lengths of the window. This way we can see how the EP approach
affects returns for different horizons. We see that the difference between the
prior and the posterior is minimal in both figures.
It should be mentioned that the blue line in the bottom figures is computed
from the historical data and the reason why the historical data deviates from the
generated scenarios is because views already has been incorporated in the model
generating the scenarios. That is, the scenarios is not generated from a pure
VARMA model and views has been incorporated using other methods. The fact
that the EP approach can be added on top of other methods imposing views
makes it powerful. Furthermore, by combining multiple methods to add views
we can reduce some of the issues with the EP approach, namely the decrease of
the effective number of scenarios. For example, if views on the means can already
be satisfied in the generation of the scenarios, the loss in effective number of
scenarios will be lower compared to incorporating the views of the means when
applying the EP approach.

Prior Posterior

Figure 14: Simulated log-returns of Global Equities,
mean of rolling windows of annualized returns for each

scenario and the respective standard deviation. Black line
in top figures represent one scenario and blue line in in

bottom figures represents historical data.
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Prior Posterior

Figure 15: Simulated log-returns of US Equities, mean
of rolling windows of annualized returns for each scenario
and the respective standard deviation. Black line in top
figures represent one scenario and blue line in in bottom

figures represents historical data.
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8. Discussion and conclusion

8.1 Issues and advantages of the entropy pooling approach

There are four main issues with the EP approach which has been discussed.
Firstly, the posterior is restricted to being expressed by the prior scenarios which
makes the method not suitable for imposing views where the concentration of
scenarios in the prior is low, and it is not even possible to impose views outside
the range of the prior views. This is not a problem considering the analytical
solution discussed in theoretical solution discussed in Section 2, however, since
one most often needs to resort to the computational approach in practice, this
becomes an issue. The solution to most of the issues with this method is to
generate a large number of scenarios as the prior, which would also solve this
issue. With a large number of prior scenarios, the range of the scenarios is wider,
which makes the posterior more flexible.
Secondly, the EP approach can significantly decrease the effective number of
scenarios, which is the biggest issue with this method. The effective number
of scenarios is a crucial number which needs to be considered when applying
this method. A low effective number of scenarios can be detrimental and may
result in a useless posterior. With a limited number of scenarios or limitations
in computational time the effective number of scenarios may simply be too low
for the desired application.
Thirdly, when imposing many views, the possibility of a large effect of the curse
of clashing views occurring increases. This can have a very large impact on the
effective number of scenarios or the views may not even be possible to satisfy
with the available scenarios. This effect can be hard to predict in practice and if
this effect occurs depend both on the available scenarios and the views.
Lastly, the computational approach is restricted to linear constraints to guarantee
computational feasibility and while, as has been shown, many views which are
natural to impose can be written as linear constraints, we are still limited by
this restriction.
The EP approach can also be considered somewhat of as a “black-box” since
we lose the interpretability of the parameters in the original model after the EP
approach is applied. Properities and assumptions made in the original model
may also be lost when the EP approach is applied. Therefore, a method which
instead adjusts the parameters in the model would keep the interpretability and
the motivation for why that model was chosen still holds, compared to the EP
approach. However, depending on the flexibility of the model and the views
it may not even be possible to find a set of values for the parameters which
makes the model satisfy all views, and some tolerance for how well the views
are satisfied may need to be introduced. There may also be a problem with
a decreasing number of free parameters in the model when imposing further
views. This method might be feasible for a low number of simple views but
becomes exceedingly more complicated when imposing more views and more
complex views, e.g. correlations. This is the major advantage of the EP approach,
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more complex views such as correlations can be incorporated with ease and the
optimization is performed over only a limited number of parameters, equal to
the number of views.
To summarise, the EP approach should be used carefully and should mainly be
used for fine tuning and not for drastic views, if a very large number of prior
scenarios is not available. The prior scenarios are generally not flexible enough
to satisfy more extreme views, with a realistic number of scenarios. However,
since the EP approach is applied on the scenarios, we can combine it with
other methods which incorporates views in the model, prior to applying the EP
approach, to overcome some of the issues with the EP approach.
Meucci [Meu10] presents a table to showcase the capabilities of the EP approach
compared to other methods in Black and Litterman [BL90], Almgren and
Chriss [AC06], Qian and Gorman [QG01], Pezier [Pez07], Meucci [Meu09], and
the COP approach in [Meu06a]. This table is presented in Table 6.

BL AC QG P M COP EP
Normal market and linear views X · X X X X X

Scenario analysis · · X X X X X
Correlation stress-test · · X X X · X

Trading desk: non-linear pricing · · · · X X X
External factors: macro, etc. · · · · X X X

Partial specifications · · · X · · X
Non-normal market · · · · · X X

Multiple users · · · · · X X
Non-linear views · · · · · · X

Trading desk: costly pricing · · · · · · X
Lax constraints: ranking · X · · · · X

Table 6: Comparison of the capabilities of different
methods incorporating views, as shown in [Meu10].

8.2 Transforming views

In most situations, it is desirable or necessary to transform the time series data
to remove trends and to satisfy assumptions of the model. Vast majority of
models assume that the amount of variability is constant in time. This causes a
problem if the views are stated in the pre-transformed context since the views
therefore also needs to be transformed to be used in the model. However, this is
not a problem in the EP approach.
Two commonly used transformations are differencing and the log-transformation.
The dth differencing operator applied to a time series xt creates a new time
series yt = xt − xt−d. This method is used to remove the dependence on time,
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like trends and seasonality. As an example, if the practitioner has views Vt of
the expected value of variables before the difference transform is applied, then
the transformed views, denoted V ∗t , can be written V ∗t = Vt − Vt−d.
This introduces the problem of incorporating views into the model since the
views also needs to be transformed, which can be challenging. Consider the
following example, suppose than there are views imposed in the 5-step ahead
forecast, it is not obvious how the views also could be transformed if views for
the 1- to 4-step ahead forecast is not available.
One of the advantages of the EP approach is that transformations of views are
not required. Assume that a transformation has been applied to some input
variable in the model, then the scenarios generated by the ESG will also be in
the transformed context. Since the EP approach is only applied on the scenarios,
we can first apply the inverse transform on the scenarios before we carry out the
EP approach with the imposed views.

8.3 Conclusion

We described the theoretical foundation as well as the computational approach
to the EP approach, which is a framework to incorporate views on the forecasted
expected value, variance and correlations, as well as other more complicated
views. It was showcased for both the one-period setting as well as the time-
dependent setting, where scenarios were introduced. It was also shown that if
the views can be written as linear constraints the computation of the weights is
extremely efficient. We also contributed to the current literature with a method
to obtain a posterior represented by a small set of scenarios for situations where
computational limitations are present, while maintaining a high effective number
of scenarios. The EP approach has some clear advantages compared to other
methods which also incorporates views on the market with the main advantage
being that the method can be applied without assuming normal markets.
The EP approach was first introduced by Meucci in 2010 and is thus a relatively
new method, with areas for future research. The list of views which can be
written as linear constraints can be further extended as well as finding efficient
methods for views which can not be written as linear constraints. The area
which needs most attention is to find ways to deal with the issues regarding
the loss of effective number of scenarios, where an idea would be to sacrifice
some accuracy, with regards to satisfying the views, to gain effective number of
scenarios.
While it is desirable that the posterior only contains scenarios which are present
in the prior, and thus only contains scenarios generated by the original model in
the ESG, this is the reason for the loss in effective number of scenarios. It would
therefore be desirable to obtain a posterior which we can sample from directly.
However, the posterior can not be expressed analytically, but it may be possible
to approximate the posterior.
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Appendices
Algorithm A1: Heuristic from [vdS19] to convert w̃ to discrete weights.
input :Continuous weights w̃ obtained after solving the optimization

problem.
The required sum of the discrete weights N̂ .

output :Discrete weights ŵ.
1 Round w̃ to discrete weights: ŵ ← RoundToClosestInteger(N̂w̃).
2 while weights ŵj do not sum to N̂ do
3 Increase/decrease weight ŵj with largest negative/positive rounding

error.
4 for number_iterations <= max_iter do
5 if ||Aŵ − a|| < max_tol then
6 return ŵ
7 Select an equality constraint ks where constraint k is selected with

probability

|(Aŵ − a)k)|∑
|(Aŵ − a)k)| .

8 Randomly select the number of weights to decrease/increase
n_changes from [1, ...,max_changes].

9 for number_tries <= max_tries do
10 Use weighted random sampling without replacement with weights

exp(Aks•)

to select n_changes weights ŵj that have not been increased
already by an amount max_diff . Use weighted random
sampling without replacement with weights

exp(−Aks•)

to select n_changes weights ŵj that have not been decreased
already by an amount max_diff .

11 if increase/decrease of the selected weights by 1 decreases error
||Aŵ − a|| then

12 Increase/decrease the selected weights with 1.
13 return ŵ
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Prior View Posterior
Return S.d. Return S.d. Return S.d.

1 −0.1662% 0.6094% −0.2% 0.6% −0.1946% 0.5929%
2 0.9371% 0.6732% 0.9% 0.8% 0.9041% 0.7655%
3 1.3303% 0.8416% 1.5% 0.7% 1.5013% 0.7170%
4 4.7789% 14.1169% 4.9% 13.5% 4.7361% 13.2114%
5 9.3845% 46.7171% 8.7% 52.0% 8.2847% 53.3697%
6 5.9072% 9.2510% 5.1% 7.8% 5.0877% 7.7389%

Table A1: Prior, views and posterior values of the
means and standard deviations of annualized returns for

years 1-5.
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Correlations

Prior
1 2 3 4 5 6

1 0.8907 0.6256 0.0538 -0.0447 0.1011
2 0.7443 -0.0908 -0.052 0.0457
3 -0.1327 -0.0480 -0.0301
4 0.4497 0.1408
5 0.0958
6

Views
1 2 3 4 5 6

1 0.9 0.6 0.1 0.0 0.1
2 0.7 -0.1 0.0 0.1
3 -0.1 0.0 0.0
4 0.5 0.2
5 0.1
6

Posterior
1 2 3 4 5 6

1 0.8236 0.5563 0.0876 0.0014 0.1358
2 0.6657 -0.1263 -0.0111 0.1541
3 -0.1236 -0.0275 0.0259
4 0.4639 0.1851
5 0.0928
6

Table A2: Prior, views and posterior values of the
correlation between annualized returns for years 1-5.
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Figure A1: Weight vector w̃ obtained in the case study.
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Figure A2: Discrete weights obtained from the weighted
sampling method in the case study.
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