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Abstract

In nature, there exist many complex networks with structures rep-
resenting real system interactions and dynamics. Over the last two
decades, the study and use of complex networks have extensively in-
creased in many fields, such as biology, meteorology, neuroscience,
and social studies. In order to establish a comparison between com-
plex networks, a distance measure capturing the network structural
differences has to be established. Many different distance measures,
such as, the Hamming distance, have been proposed, although it is
worth noting that most of them focus on comparing the number of
nodes and edges between graphs rather than the structure and dy-
namics of the network. Amongst the research already initiated in the
context of spectral similarity measures, Shimada et al. (2016), intro-
duced in their paper ”Graph distance for complex networks” a new
graph distance called the spectral graph distance (SGD), defined in
terms of the unnormalized graph Laplacian along with its associated
eigenvectors. This thesis will investigate the statistical properties re-
lated to the spectral graph distance, both theoretically and by using
simulated graphs. An overview of related topics in graph theory and
network theory will also be presented.
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1 Introduction

Network theory has gained enormous amount of attention in previous years, primarily
as it has provided answers to practical questions in many fields concerned in the study
of natural systems phenomena. Throughout the last decade, complex networks, i.e.,
graphs with non-trivial topological features, have been a central topic of the research
effort. As a result, new concepts and measures to identify statistical properties on
the topology of complex networks have been proposed. Structural properties of com-
plex networks are commonly explained by the arrangement of its edges. A common
approach to understand the evolution of the underlying mechanism responsible for
the appearance of such properties, is to generate networks able to reproduce such
structural properties in a strictly controlled environment. Besides the study of struc-
tural properties, one of the many questions that can arise in network theory is how
to quantify similarities between networks as a mean to compare them. Extensive
research within different frameworks has already been initiated on the subject. For
instance, in the context of spectral graph theory, spectral similarity measures denote
a family of graph distances based on the spectra of the graph’s connectivity matrices.
The motivation for using the spectra derives from previous literature [1, 2], where it
has been shown that a link can be established between the spectra of connectivity
matrices and the structure and dynamics of a network. Following on this framework
of analysis, Shimada et al. [3] proposed a novel tool called the spectral graph distance,
defined by the empirical distribution function of the eigenvectors associated with the
unnormalized Laplacian matrix. Using this graph distance measure, they succeeded
in quantifying the structural distance between complex networks and benchmarked
the method using graphs sampled from the Watts-Strogatz model. The spectral graph
distance will be the main focus of this thesis.

1.1 Thesis outline

The outline of this thesis is as follows. Following an introductory overview of basic
concepts in graph theory and network theory Section 2 will introduce the subject
of matter of the thesis: the spectral graph distance. Two important types of simu-
lated networks will be presented - the random graphs and the small work networks -
along with different models to generate them - the Erdős-Rényi graph model and the
Watts-Strogatz model. Next, different approaches for constructing graphs from data
will be considered, the discussion leading to a review of graph matrices and the graph
Laplacians. To conclude Section 2, the theory behind the spectral graph distance, as
well as the technical aspects of the method will be presented. In Section 3, experi-
ments on simulated graphs are performed and discussed. Finally, Section 4 presents
the conclusions and Section 4.1 provides a general discussion on the spectral graph
distance (SGD) and an outlook for further studies.
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1.2 Objectives

The present work intends to provide a thorough introduction to the spectral graph
distance, a spectral similarity measure based on the graph Laplacian. The main
objective of this thesis project is to investigate the statistical properties of the graph
distance, theoretically and by performing experiments on simulated graphs, as well
as evaluating its performance and possible limitations and artifacts. An overview of
related topics is provided to the reader to motivate the method. Focus will be put on
general properties related to the different forms of defining the graph Laplacian, as
well as the connection between them. Different ways of imposing a graph structure
on the data will also be covered, in relation to fundamental concepts of graph theory
and network theory.

2 Theory

2.1 Graph and Graph Theory

Graph theory was first introduced in the 18th century, with Euler’s negative resolution
of the Seven Bridges of Königsberg problem. Since then, the study of graphs and their
mathematical properties have extensively increased. Graph theory is now widely used
in a great variety of areas, from computer science to linguistics. In epidemiology, for
instance, it is used to study infection contact patterns in a population; in biology, to
represent protein structures and model protein interaction; in linguistics, to analyse
language structures. This section will introduce some basic notation for defining
graphs in connection with some important graph properties.

2.1.1 Basic Notation of Graphs

A graph G = (N ,L) is defined by a finite set of nodes – or vertices – N , and links – or
edges – L, where the nodes represent the objects of the graph, and the links the pair-
wise connections between them. Two distinct nodes ni and nj in G, such that ni ∈ N
and nj ∈ N , are connected if there exists a link lij = (ni, nj) ∈ L connecting the two
nodes. The link is said to be directed if the link (ni, nj) is outgoing from ni and coming
to nj – meaning that the order of the nodes in the link is relevant, such that lij 6= lji.
It is said to be undirected if the link can be traversed in both directions – meaning
that the order of the nodes is not relevant, such that lij = lji. Links between nodes
may sometimes carry a weight, which is a numerical value that measures the strength
of the connection between each pair of nodes – such graphs are called weighted graphs.

The number of nodes N = |N | where | · | denotes the cardinality of a set, is referred
to as the size of G and the number of edges K = |L| is referred to as the order of G.
For determining an order in the set of nodes, these are usually identified by labeling
them with an integer index going from 1 to N . Nodes that are connected by a link
are said to be neighboring or adjacent.

2



Some of the most common ways of defining graphs given in [4] are the following:

Definition 2.1.1 (Undirected graph). An undirected graph G = (N ,L) consists of
two ordered sets N 6= ∅ and L. The elements of N = {n1, n2, ..., nN} are distinct and
are called the nodes, or vertices of the graph G. The elements of L = {l1, l2, ..., lK}
are distinct unordered pairs of distinct elements of N and are called links or edges.

Definition 2.1.2 (Directed graph). A directed graph G = (N ,L) consists of an
ordered pair of sets, N 6= ∅ and L. The elements of N = {n1, n2, ..., nN} are the
nodes of the graph G. The elements of L = {l1, l2, ..., lK} are distinct ordered pairs of
distinct elements of N and are called directed links.

Definition 2.1.3 (Weighted graph). A weighted graph G = (N ,L, ω) consists of
a set of nodes N = {n1, n2, ..., nN} 6= ∅, a set of links L = {l1, l2, ..., lK} and a weight
function ω : N ×N → R.

Fig. 1 draws three basic ways of defining graphs: the graph in (a) refers to an undi-
rected and unweighted graph; (b) to a directed and unweighted graph, where the
arrows indicate the direction of the links; and (c) to an undirected and weighted
graph, where the numerical values of the edges denote the weights.

(a) (b) (c)

Figure 1: Graphs examples: (a) undirected graph, (b) directed graph, and (c) weighted
graph

The number of links each node has or the pairwise reachability of distinct nodes pro-
vides local and global information about the graph. Throughout this thesis, unless
stated otherwise, only undirected and possibly weighted graphs will be considered.
Some basic notations in graph theory given in [4] are:

Definition 2.1.4 (Node degree). Given a graph G = (N ,L) with |N | = N, the
node degree deg(ni) = |{lij : lij ∈ L, 1 ≤ j ≤ N}| of a node ni ∈ N , 1 ≤ i ≤ N is the
number of links connected to node ni. In the case of a weighted graph G = (N ,L, ω)

the degree of a node ni is the sum of the edges weights between ni and the rest of
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nodes in the graph, written as:

deg(ni) =

N∑
j=1

ω(ni, nj)

.
Definition 2.1.5 (Subgraph). A subgraph of G = (N ,L) is a graph G′ = (N ′,L′)
such that N ′ ⊆ N and L′ ⊆ L. G′ is said to be a graph generated by N ′ if G′ contains
all links of G that join two nodes in N ′.

Definition 2.1.6 (Walk). Given a graph G = (N ,L). A walk W (ni, nj) from node
ni to node nj is a sequence alternating nodes and edges, that begins with ni and ends
with nj. Let (i0, i1, ..., ik) ∈ [1, |N |], be a sequence of indices such that i0 = i and
ik = j. Then let lp = (nip−1

, nip), andW (ni, nj) = (ni = ni0 , l1, ni1 , ..., lk, nik = nj)

A walk is usually indicated only by the sequence of traversed nodes: W (ni, nj) = (ni =

ni0 , ni1 , ..., nik = nj).

Definition 2.1.7 (Path). A path is a walk in which there are no repeated nodes,
meaning that all nodes in the walk are different.

Graphs can also be classified depending on their structural properties, their order,
and their size. Let G = (N ,L) be an undirected graph of size N and order K. Some
examples are listed below:
• A regular graph is an undirected graph in which all nodes have the same degree.
• A complete unweighted graph is a special case of a regular graph, in which all

nodes in the graph have a degree of N − 1, meaning that every pair of distinct
nodes is connected by an edge.

• A connected graph - or single component graph - is a graph that for any pair of
nodes ni and nj such that ni ∈ N and nj ∈ N , there is a path from ni to nj .

• A sparse graph refers to a type of graph with low density, meaning that the
graph order K is small in comparison to the maximum order N(N − 1)/2 the
graph could possibly have.

2.1.2 Graph drawing

As introduced in [4], graph drawing is an important area in mathematics and computer
science concerned with the study of methods for graph visualization. The drawing of
a graph is a geometric representation of the graph in a plane. It is important to know
that the drawing of a graph is not the graph itself, as there can be many different
ways of drawing the same graph, with each nodes’ possible arrangement - also known
as layout - highlighting different aspects of the graph. A spring-based layout, for in-
stance, treats the graph as a physical system where the nodes act as repelling objects
and the edges as springs, attracting neighboring nodes in space, thereby facilitating
clustering. In a tree-like layout, nodes are arranged following a hierarchical structure
given a root node. In a circular layout, nodes are evenly spaced on a circle, and
the edges are usually drawn across the circle where nodes are ordered in such a way
that they are closer to their neighbors to minimize edges crossing. The readability of
the drawing of a graph tends to worsen as the graph size increases, making it more
pertinent for graphs of smaller size.
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2.2 Preliminary Network Theory

An important area of graph theory is network theory, which centers on the study of
networks. Networks are graphs that are used to depict and understand real-world
systems. A network can also be understood as an "instantiated" graph, with the
graph being a purely abstract object with a set of properties, whereas the network
defines a real setting where the graph object can be used. In a network, the mapping
of the real system is done by assigning attributes to the edges and nodes of the graph.
Graphs that represent real systems are called complex networks. Complex networks
are characterized by being objects where order coexists with disorder, meaning that
they are neither regular nor random. Complex networks share many particular fea-
tures, some of which describe the network locally, i.e., by the connectivity between
nodes or globally, i.e., by the global topology of the network. A network is said
to have small world properties when the nodes are highly clustered, and when the
average distance between the nodes is small. It is also said to have a scale-free dis-
tribution when the nodes’ degree distribution follows a power law, meaning that, in
the network, most of the nodes have a small degree and very few nodes have a high
degree, also known as hubs. Another important feature of complex networks is that
they tend to be large, in which case providing a global description of the network can
become an unfeasible task. As a result, describing the network by its local properties
is a more common approach. An illustrative example of a complex network is shown
in Fig. 2, where the authors of [5] studied a population of 62 bottlenose dolphins
living in the largest fjord in New Zealand to gain some understanding of dolphins’
complex social behavior. The nodes in the network represent dolphins, and the edges,
individuals pair-wise association occurring more often than expected by chance. Data
were collected over a period of 7 years by direct observation of interactions between
dolphins. The drawing in Fig. 2 was produced using a spring layout, where a visual
inspection is enough to identify two sub-communities of dolphins among the sample
population, where most of the links happen between dolphins of the same sex.

Figure 2: Bottlenose dolphins social network drawn using a spring-layout, nodes color in-
dicates sex: the female (pink), male (blue) and unknown (grey) dolphins. The size of the
nodes is proportional to each node degree.
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Some classical properties of real complex networks are the following:

Definition 2.2.1 (Degree distribution). Given a graph G = (N ,L) with number
of vertices |N | = N , the degree distribution is defined as:

pk =
Nk
N

Where Nk denotes the exact number of nodes with exactly k edges.

Definition 2.2.2 (Geodesic path). A geodesic path -or shortest path- from node ni
to node nj is the path with minimal number of edges. In the case of a weighted graph,
it refers to the path with minimal sum of weights assigned to the edges connecting the
nodes in the path.

Definition 2.2.3 (Geodesic distance). The geodesic distance between node ni and
node nj refers to the length of the geodesic path. In the case of a weighted graph, it
refers to the sum of weights assigned to the edges connecting the nodes in the geodesic
path.

Definition 2.2.4 (Clustering Coefficient). Given a graph G = (N ,L) of size
N = |N |. The clustering coefficient, or local clustering coefficient ci of a node ni ∈ N
is defined as:

ci =
|{ljk : nj , nk ∈Mi, ljk ∈ L}|

di(di − 1)/2

Where Mi = {vj : lij ∈ L ∨ lji ∈ L} refers to the set of neighbors, and di = |Mi| to
the number of neighbors of node ni. The graph clustering coefficient C is the average
of ci over all nodes in the graph:

C =
1

N

N∑
i=1

ci

Fig 3 (a) illustrates the concept of geodesic distance and geodesic path in a weighted an
undirected graph. The geodesic distance between vertices A and F is 10, and is simply
obtained by adding the weights of the edges connecting the nodes of the geodesic path
(F,D,E,C,A). On the other hand, the node clustering coefficient measures how the
neighbors of a given node are connected to one another. A common example for
understanding the concept of clustering coefficient is that of mutual friends: the
clustering coefficient captures the social phenomena that friends of an individual are
also likely to be friends. To further illustrate this notion, an unweighted graph of 5

nodes is presented in Fig. 3 (b); the blue lines represent the edges connecting the node
i to its neighbors, and the black lines, the edges connecting the node i’s neighbors.
Since the maximum number of mutual connections the neighbors of the node i can
have is 6, its clustering coefficient is 3/6 = 1/2.
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(a) (b)

Figure 3: Examples of: (a) geodesic path in a weighted graph, and (b) local clustering
coefficient on an undirected graph.

Different types of simulated graphs are commonly used for studying and understand-
ing properties of real-world systems in a controlled environment, mainly as they have
the ability to mimic properties found in such real networks. This section will cover
some aspects related to two important types of networks in network theory, namely
random graphs and the so-called small world networks. Explicit connections with the
main subject of this work will be made in Section 3.

2.2.1 Random graphs

A random graph is a type of graph whose structure is determined by a probability
distribution, generated according to a graph model. Typically, this type of graph is
constructed by randomly assigning, edges between pair of nodes to a set of isolated
nodes. The theory of random graphs was first introduced in the late 50s by Hungar-
ian mathematicians Paul Erdős and Alfréd Rényi in [6]. Their main study involved
using probability theory and graph theory for identifying the appearance of certain
properties that characterize such graphs. As of today, the Erdős-Rényi graph models
remain the most popular way for generating random graphs. These graph models
refer to two different procedures for generating random graphs, namely the uniform
random graphs and the binomial random graphs. The main idea of these models is
to consider not a single graph, but a collection of all possible graphs generated by
fixing a particular parameter (e.g. the number of nodes, or the node degree), with
both models sharing the possibility to be studied analytically. This thesis will cover
the binomial random graphs only.

2.2.1.1 Erdős-Rényi model: Binomial random graph

Define GERN,p to be a random graph model generated by a collection of undirected and
loop-less graphs with N labeled vertices, where each pair of nodes is connected inde-
pendently, by an edge with a probability p ∈ [0, 1]. The binomial random graph is
constructed by initially fixing a value of N and p. The pseudo-code of the algorithm
for sampling this type of random graph can be found in the Algorithms section B.1.
Some interesting properties of binomial random graphs are the following:
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• Given a particular graph G of order K, the sampling probability PG denotes
the probability of finding the graph G in the collection GERN,p such that:

PG(p) = pK(1− p)M−K (1)

Where M refers to the maximum number of edges a graph of size N can have,
i.e., M =

(
N
2

)
and 0 ≤ K ≤M .

• The probability of finding graphs with K edges in GERN,p is the following:

P (K) =

(
M

K

)
pK(1− p)M−K

Note that the probability that a graph sampled from GERN,p has K links, follows
a binomial distribution with parameters M and p, which is just the probabil-
ity of sampling a graph with exactly K edges inM independent Bernoulli trials.

• A complex network of order K and size N can be approximated by a binomial
random graph constructed with the value of p that maximizes the likelihood of
including such network. That is, the value of p that maximizes the log-likelihood
function of Eq. (1) with respect to p:

L(Gp) = logPG(p) = K log p+ (M −K) log(1− p)

The maximum likelihood estimator for p is:

∂L(Gp)

∂p
=
K

p
− M −K

1− p

set
∂L(Gp)

∂p
= 0

p̂ =
K

M
=

2K

N(N − 1)

Meaning that for a model constructed with p̂, all graphs will have on average
K edges.

• The degree distribution of a random graph G in GERN,p follows a binomial distri-
bution with parameters N − 1 and p, such that:

p(k) =
N̄k
N

=

∑N
i=1 P (deg(ni) = k)

N
= P (deg(ni) = k)

=

(
N − 1

k

)
pk(1− p)N−1−k

(2)

Where ni refers to the i:th node in G and k = 0, 1, 2, ..., N − 1. This equal-
ity holds since Definition 2.2.1 can be extended to the case of a collection of
graphs, in which N̄k denotes the average number of nodes with k edges in
GERN,p, and it can be written as the sum of the probability that each node in
the graph has k links. Since P (deg(ni) = k) is the same ∀i = 1, 2, ..., N then
N̄k = NP (deg(ni) = k), which means that pk has the same distribution as
P (deg(ni) = k). Note that for high values of N the binomial coefficient may
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produce an overflow error, as pk(1 − p)N−1−k will be a small value, while the
coefficient, a large one. In order to avoid this inconvenience, when N → ∞
and p → 0, Eq. (2) can be approximated by the Poisson distribution. Precise
statements and proofs of this are omitted.

• As N → ∞, the model GERN,p is almost surely connected if p ≥ lnN
N . To prove

this, first let G be a graph in the model GERN,p and define the sequence of depen-
dant random variable {Yi}1≤i≤N :

Yi =

{
1 if ni is isolated

0 otherwise

Where Yi indicates if the i:th node is isolated. Let the random variable XN be
the number of isolated nodes in G, so that XN = Y1 + Y2 + ...+ YN . Then, the
expected number of isolated nodes in G is:

E[XN ] =

N∑
i=1

E[Yi] =

N∑
i=1

(1− p)N−1 = N(1− p)N−1

Since the critical probability -or threshold- of having a connected component,
is given by lnN

N , consider p = c lnNN , where c is just a real-valued constant.
Consider the ratio:

e(N−1) ln(1−c
lnN
N )

eN ln(1−c lnN
N )

= 1− c lnN

N
→ 1 as N →∞

Then,

lim
N→∞

E[XN ] = lim
N→∞

NeN(−c lnN
N −c2 ln2 N

2N2 +O(c3 ln3 N
N3 ))

= lim
N→∞

Ne−c lnN = lim
N→∞

N1−c
(3)

Note that when c > 1 the expected number of isolated nodes goes to zero while
if c < 1 the expected number of isolated nodes goes to infinity.

Fig. 4 illustrates the critical probability for strong connectedness of simulated random
graph models in comparison with the true critical probability. In general, the esti-
mated critical probability has a good fit with respect to the theoretical true critical
probability c lnN/N , where in this case c = 2.
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Figure 4: Critical probability pc for which a random graph forms a connected component.
The black line refers to the observed critical probability computed by simulating an ensemble
of 100 random graphs per model. Each model was constructed for values of 0 ≤ p ≤ 1 with
a spacing of 0.02 and number of nodes N ≤ 300. The blue line refers to the true critical
probability c ln(N)/N where c = 2. The connectedness threshold for each model replicates
is set to 0.95.

2.2.2 Small-World networks

Small world networks refers to a type of graphs characterized by having independent
structural properties commonly observed in real-world systems, known as small world
effect and high clustering. Small world networks were first introduced by Duncan J.
Watts and Steven Strogatz in their paper [7] published in 1998. The authors presented
the Watts-Strogatz model (also known as W-S model), based on the idea that by
introducing randomness in a regular graph, small-world networks can be generated.
As such, a small-world network can be defined as a junction between a regular graph
with a high clustering, and a random graph with the small-world property. Ever since
Watts and Strogatz laid the basis on small-world networks, many other methods that
are able to generate networks with small-world properties have been proposed. In
this section, the focus will remain on the classical model established by Watts and
Strogatz.

2.2.2.1 Watts-Strogatz model

A Watts-Strogatz graph GWS
N,k,p = (N ,L) is an undirected graph that is generated by

randomly rewiring all the edges of a regular ring lattice of size |N | = N with prob-
ability p. A network from the W-S model is generated in a two-step process. First,
a regular network of N vertices and Nk/2 edges is constructed, where each node is
connected by an undirected edge to the k nearest neighbors. That is, each node is
connected to the m = k/2 right and left most near neighbors for a given value of
k, where k is an even positive integer. In the second step, each edge in the graph
is randomly rewired to a distinct node with probability p. In the case a node has
degree N − 1, the rewiring of the edges is ignored. The rewiring process is done in a
clockwise direction and is completed in m rounds, where each edge is only considered
once and in an ordered manner, meaning that the edges are rewired from the nearest
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to the farthest neighbor. In the first round for instance, only the edges connecting
to the nodes’ first right-most neighbors are rewired; in the second round, the second
right-most neighbors. The same process is repeated until completing the m rounds.
The pseudo-code of the algorithm for sampling a graph from the W-S model can be
found in the Algorithms Section B.2.

Fig. 5 illustrates the rewiring process in sparse and connected graphs generated with
the W-S model, where as the value of the rewiring probability p increases, the in-
troduction of randomness in the graphs also increases. When p = 0 the regular ring
lattice remains unchanged, while when p = 1 the graph reaches the limit of total ran-
domness as all edges in the graph are rewired. When p = 0.1 given the low rewiring
probability, the rewired regular graph remains almost unchanged, however, the few
rewired edges are enough to set the transition from a regular network to a small-world
network.

p = 0 p = 0.1 p = 1

Figure 5: Graphs generated by the W-S model, constructed with fixed values of N = 20,
k = 4 and increasing randomness.

The small world effect and clustering are two important qualitative properties that
generate small world networks. The small world effect refers to the concept in which
any node in a graph is connected to any other node in the same graph by a small path.
This concept is captured by the average path length -or characteristic path length-,
which for any network, represents the average of how far away any pair of nodes are in
the network. The average path length is a global property of a graph and is obtained
by taking the average of the geodesic distance (Definition 2.2.3) between all pairs of
nodes in a graph. The average path is expressed as:

2

N(N − 1)

N∑
i<j

γ(ni, nj)

where γ(ni, nj) denotes the shortest geodesic distance between the nodes ni ∈ N and
nj ∈ N , for i, j = 1, 2, ..., N . The concept of clustering refers to the idea that nodes
having common neighbors tend to be connected to each other rather than to distant
nodes. This concept is captured by the clustering coefficient, a graph local property
(Definition 2.2.4). Whenever the rewiring probability p = 0, the clustering coefficient
and the average path length are both high. The first follows since in regular net-
works, nodes are only connected to neighboring nodes and not further away nodes,
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while the second, since traversing the graph from one node to a more distant node will
require a longer path distance. On the contrary, in the limit of total randomization,
i.e., when p = 1, the random graph has a low clustering coefficient and low average
path length, mainly as nodes in the graph are randomly connected to the rest of
nodes in the graph. Intermediate values of p generate graphs of interest, as they are
able to produce structural properties found in small-world networks – that is a high
clustering coefficient and low average path length. The clustering coefficient and aver-
age shortest path length of a graph GWS

N,k,p, are denoted as C(p) and L(p), respectively.

The transition from a regular ring lattice with high clustering coefficient and shortest
average path length to a small-world network occurs with the introduction of short-
cuts -or long-range edges- in the graph. For small values of p the clustering coefficient
remains close to the one of a regular graph and only starts dropping for relatively
high values of p, meaning that the rewired edges do not introduce important local
changes on the graph’s structure as only a small number of edges are actually rewired.
On the contrary, the shortest path length drops rapidly starting at quite small values
of p, making the intermediate region prior to the drop of the clustering coefficient a
regime for small-world networks, this occurs mainly as it only takes a few number of
rewired edges to connect distant neighborhoods.

Since Watts and Strogatz defined small-world networks qualitatively, in application
the small-world network regime is found by comparing sampled graphs from the W-S
model with a randomized version of the same graph. There is not a unique way to
quantify the range of p for which the graph is a small-world network and certainly,
this range is not defined by a sharp bound. One method for identifying the small
world network regime was proposed in [8] where the authors introduced a small world
metric called the small world measurement ω based on the idea of comparing the
clustering coefficient C of a network to that of an equivalent ring lattice network
Clatt, and comparing the path length L to that of the randomized version of the same
network Lrand. The small world measurement is defined as the difference between
the ratios:

ω =
Lrand
L
− C

Clatt

Where ω ∈ [−1, 1]. Within this context, a network is said to be a small world net-
work, if ω is close to zero, i.e., whenever C ≈ Clatt and L ≈ Lrand. Fig. 6 plots
the clustering coefficient C(p) and shortest average path length L(p) for 0 < p < 1.
Both quantities are normalized by the clustering coefficient C(0) and shortest average
path length L(0) of a regular ring lattice, respectively. For each rewiring probability,
p and a fixed value of nodes N with degree k, the normalized clustering coefficient,
and average path length were obtained as an average of an ensemble of 50 graph re-
alizations. This figure demonstrates how randomly rewiring a very small percentage
of edges in a regular ring lattice results in a rapid decrease of the average path length
but marginal changes in the clustering coefficient.
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Figure 6: Watts and Strogatz’s small-world model. A regular ring lattice with number of
vertices N = 1000 and degree k = 10 was rewired at varying probabilities 0 ≤ p ≤ 1. 50
realizations per rewiring probability were considered. C(p) denotes the average clustering
coefficient and L(p) the average path length for a certain value of p. The x-axis represents
p in log-scale. The shaded area denotes the small-world network regime.

Another important property of the W-S model is that the mean degree is always con-
stant and the nodes in the graph always have at least k/2 edges. As a result, graphs
sampled from the W-S model do not have isolated vertices and they usually form a
connected component, meaning that in the limit of total randomness, the W-S model
does not produce graphs with local similarities to a random graph. As introduced
in [9], the degree of a node ni in a W-S model graph can be decomposed into two
parts: (i) the fixed number of untouched edges m = k/2, originally connected to the
rightmost neighbors, and (ii) any additional edges connected to the node, denoted as
ui. These additional edges can also be divided in two quantities: (i) the number of
connections left from the remainingm edges, denoted as u(1)i , where u(1)i ≤ m, and (ii)
all the additional edges in-going node ni, denoted as u(2)i . That is: deg(ni) = m+ui,
where ui = u

(1)
i + u

(2)
i .

The probability that the node ni maintains u(1)i connections from the remaining m
original leftmost neighbor edges, follows a binomial distribution, expressed as:

P (u
(1)
i ) =

(
m

u
(1)
i

)
(1− p)u

(1)
i pm−u

(1)
i where u

(1)
i ≤ m (4)

For graphs of high order, the probability of node ni having u
(2)
i additional coming

edges follows a Poisson distribution expressed as:

P (u
(2)
i ) =

(pm)u
(2)
i

(u
(2)
i )!

e−pm (5)

Hence, from Eq. (4) and Eq. (5), the degree distribution of the W-S model can be
written as:

p(k) =

min{k−m, m}∑
u(1)=0

(
m

u(1)

)
(1− p)u

(1)

pm−u
(1) (pm)k−m−u

(1)

(k −m− u(1))!
e−pm (6)
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Fig. 7 shows the degree distribution for k0 = 8 and various values of p. Note that
when p = 0 the degree distribution is a Kronecker delta function, and that for all
values of p the degree distribution is centered at k0. Also, as the value of p increases,
the degree distribution of the graph becomes wider. One of the main limitations of the
W-S model is that despite it manages to generate graphs with small-world properties,
the degree distribution of these graphs tend to be homogeneous. This aspect is not
commonly found in real-world systems, whose degree distribution commonly follows
a power-law.

Figure 7: Probability distribution of the node degree k for W-S model graphs: the different
markers correspond to the average observed degree distribution of 50 graphs, generated with
fixed values of N = 1000 and k0 = 8 and various values of p. The solid black line connecting
the markers refer to the theoretical probability distribution from Eq. (6) computed with the
same p of the overlying markers.

2.3 From data to Graph

Simulated graphs commonly used for studying real-world systems come in handy for
benchmarking a distance measure such as the spectral graph distance. The reason
behind this is that the structural properties of graphs generated from well-studied
graph models provide prior knowledge of the structure of the sampled graph. Such
is the case of the W-S model in [8]. Hence, having prior knowledge of the graph’s
structural properties serves as a mean to validate whether the spectral graph distance
is able to uncover these structural differences or not. As an alternative, it is also pos-
sible to construct graphs directly from data without using a predefined graph model.
This section will cover some of these approaches.

A data set is a collection of observations, where each observation (or data point)
carries quantitative and (or) qualitative information, often referred to as variables.
Quantitative variables refer to numerical variables that represent a measurement,
while qualitative variables to categorical values that differ in quality and not in quan-
tity. When mapping a dataset to a graph, each node in the graph represents a specific
observation in the dataset, while the edges and weights in the graph are determined
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by a similarity measure that measures the pairwise similarity between observations.
A link between two nodes in a graph is assigned if the similarity measure between
their corresponding observations in the dataset is positive, or if it meets a certain
condition, such as exceeding a threshold.

The use of a similarity measure to assign edges to a graph is the reason why these
graphs are often referred to as similarity graphs. There are different popular ap-
proaches, as well as similarity functions to construct graphs, all of them sharing the
common purpose of capturing local neighborhood relationships between nodes. In
the sense that when constructing a graph the main idea is not to provide information
about the location of the nodes in the graph, if not, to understand how nodes are re-
lated between each other. Such construction will allow to identify strong connections
between nodes. In order to introduce some of these approaches, certain notations need
to be established. Let the matrix X = (x1,x2, . . . ,xn) ∈ Rd×n represent a dataset
of n observations, each having d variables, where each column corresponds to an ob-
servation: xi = (xi1, xi2, ..., xid) for i = 1, 2, ..., n. Define an undirected and weighted
graph G = (N ,L, ω) to be the graph representation of X, where each observation
xi ∈ X corresponds to a node ni ∈ N . By convention, the set of links L ∈ G does
not include self-loops – or self-connectivity links – and whenever G is a complete and
weighted graph, the self-similarity measure is set to zero. There are many reasons
why self-loops are avoided when constructing a similarity graph, the more intuitive
follows from the main purpose of the similarity function, which is to measure pairwise
similarities between observations and not similarities with themselves. Some available
options to construct the graph G are introduced as follows.

2.3.1 Fully connected graph weighted by the Gaussian similarity

A fully connected graph is a complete graph with weighted edges connecting all pair
of nodes. The weights of the graph are non-negative values defined by a similarity
measure that models local neighborhoods. Among the many available similarity mea-
sures to construct graphs, the Gaussian similarity function is a popular and intuitive
similarity measure able to capture the underlying structure of the data, as it has been
previously shown in [1, 2, 10, 11]. The Gaussian similarity function is defined as:

ω(xi, xj) =

exp
(
− ||xi−xj ||2

2σ2

)
xi 6= xj

0 xi = xj

Where xi, xj ∈ X. Note that when xi and xj are a distinct pair of nodes, the sim-
ilarity function is a non-linear function of the Euclidean distance, where the width
parameter - or scale parameter - σ is instrumental for capturing the local structure
of the data, as it somehow defines the extent of the observations’ neighborhood. If
the separation of two observations xi, xj ∈ X is smaller than σ, then their connec-
tion will have a significant weight ω(xi, xj), as both points will reside in the same
neighborhood. However, as the distance between observations grows larger than σ,
the weights rapidly decrease to a value close to zero.

Different choices of σ will describe the underlying structure of the data in different
ways. A very large value of σ will entail strong links between nodes as the observations
will lay in the same neighborhood. On the contrary, as the value of σ gets close to
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zero, the connectivity links between nodes become very weak, possibly yielding to a
fully disconnected graph as the neighborhood extend neglects each observation near-
est neighbors. This means that whenever the value of σ is too large, or too small, the
similarity measure fails to capture the local geometric structure of the data. Ideally,
the parameter σ should be small enough to connect only neighboring points, in the
sense that if by one σ a point is not able to reach the nearest neighbor, it is a sign
that σ is too small.

The choice of σ will also depend on prior knowledge of the geometrical structure
and density of the data. A dataset is said to be inhomogeneous when the density
of the data changes from one region to another, and homogeneous when the density
is constant in all regions. If the dataset has more than one well-defined component
(or cluster) then a dataset can be characterized by being imbalanced or balanced. An
imbalanced dataset refers to a classification problem in which the data are not uni-
formly distributed between components, while a balanced dataset, the opposite. In
the case of a homogeneous dataset, a reasonable way of choosing σ is by computing
all observations’ k nearest neighbors’ distances and selecting a value of σ that is at
least the median (in order to avoid any outlier effect) of those distances multiplied
by a constant factor. In the case of an imbalanced and inhomogeneous dataset, the
more suitable option is to adapt σ according to the density in each region, i.e., using
more than one value of σ. Finding a "good" choice of the scale parameter σ is one of
the main challenges of using the Gaussian function, and even if there are other useful
options, besides the ones already presented in this thesis, these methods tend to be
computationally expensive. An example of such method is by choosing the value of
σ that gives the largest spectral gap, i.e., the smallest nonzero eigenvalue. As it has
been shown in [2], a large spectral gap can be associated to a pronounced separation
of strongly connected components in the data. However, this method will not only
require having prior information about the structure of the data, if not it will also
require solving the eigenvalue problem of the graph’s Laplacian matrix many times
until finding a suitable choice.

Fig. 8 illustrates how the scale parameter σ = 0.36 delimits the neighborhood of two
observations located in different regions of the two-dimensional dataset, where the
center of the circles represents the observations, while the radius σ, the neighborhood
extend. Each marked observation has a strong (weak) connective weight with the rest
of the neighbors lying inside (outside) the dotted circle delimited by σ. The dataset
shown in Fig. 8 is inhomogeneous and imbalanced in the number of observations; it
is composed of two small and dense clusters and a noisy, larger and less dense cluster.
Note that for the same σ the coverage is different in the two regions of the data. The
similarity measure is able to capture the underlying structure of the larger cluster,
but not for the small ones, as it creates strong connections between the observations
of the two small clusters. In this case, using two different values of σ is a way to
better capture the structure of the data.
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Figure 8: Example of the neighborhood coverage for two observations corresponding to a
two-dimensional imbalanced and inhomogeneous spherical data set.

2.3.2 k-nearest neighbor graphs

A different approach to construct a graph is by using the k-nearest neighbor method.
First, let G′ be an unweighted and directed graph, whose set of nodes is represented
by N ′ ∈ G′. The k-nearest neighbor method tries to connect a successor node ni ∈ N ′
to a distinct predecessor node nj ∈ N ′ by an edge, if and only if the distance between
ni and nj is among the k:th smallest distances between ni and the rest of nodes in
N ′. Generally, the edges in G′ can only be traversed in a single direction, meaning
that if nj is among the k-nearest neighbors of ni, the converse is not necessarily true.
As a result of this non-symmetric nearest neighbor relation, two different weighted
undirected graphs can be derived from G′:

k-NNG: The k-nearest neighbor graph is a weighted and undirected graph gener-
ated by assigning a two-ways direction edge between each node in the graph and its
corresponding k-nearest neighbors. In the case that the directed edge already had a
two-way relationship, and given the symmetric nature of the edges in the graph, all
duplicated edges are ignored.

Mutual k-NNG: In the mutual k-nearest neighbor graph two nodes ni and nj in N
are connected if and only if the node nj is among the k-nearest neighbors of ni, and
vice versa. The mutual k-NNG is the "mutually inclusive" version of the k-NNG.

After constructing either of the k-NNG’s, weights are assigned to the edges of the
graphs. This can be done by a similarity function such as the Gaussian similarity, or
by simply weighing all edges with a value of 1. Regarding the parameter k, its role is
to associate nodes in the graph that are considered to be "close" or "similar", without
depending on a distance scale. The choice of the parameter k will determine the graph
representation of the data. If the value of k is too small, so will the node’s degree,
meaning that the nodes in the graph will be connected to the few closest ones, result-
ing in an almost, if not totally disconnected graph. On the other hand, as the value of
k increases, connections between distant nodes will be allowed, until coinciding with
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a complete graph – in which case if the edges are weighted by a similarity measure,
the resulting graph could approach a fully connected graph. In the case where the
edges have a unit weight instead, the parameter k will fail to capture the underlying
structure of the data. A suitable value of k should be small enough that it allows the
graph to connect nearby nodes without generating disconnected components.

The main structural differences between the two graphs rely on the nodes’ degree
distribution and the connectedness of the graph. In the case of the mutual k-NNG,
the nodes’ degree is at most k, while in the case of the k-NNG, it is at least k, meaning
that the size of the k-NNG is generally larger than in the case of the mutual k-NNG.
Another important difference between the two similarity graphs is that the mutual
k-NNG does not produce nodes with high degree, and so the graph tends to have
more disconnected components, some of them composed of very few observations of
"noisy" or "isolated" observations. This is not usually the case with the k-NNG where
nodes with a larger degree than the average node degree - also referred to as hubs -
are more likely to appear.

2.3.3 Choosing a similarity graph

The matter of choosing a similarity graph strongly depends on the data, the pur-
pose of the graph, and the users’ preference, as on many occasions different similarity
graphs can serve the same purpose. Such is the case with graph-based clustering
methods as spectral clustering [2]. Note that both approaches, the fully connected
graph, and the neighborhood graphs, use a distance metric. The choice of this metric
should also be done according to the data representation. For instance, in the case
of high-dimensional data, using the Euclidean distance is not the best option given
that the pairwise distance between observations in the Cartesian coordinates becomes
almost uniform, failing to distinguish close and distant observations. Choosing a suit-
able value of the parameters σ and k is not an easy task, and can lead to different
representations of the data, where some of them manage to capture its local geometric
structure, and others do not. Also, unlike the fully connected graph, the k-nearest
neighbor graph with weights defined by a similarity measure might require defining
an additional parameter σ, which could turn into a more complicated problem. In
such cases, an alternative could be to assign weights using as similarity measure the
reciprocal of the Euclidean distance.

Fig. 9 illustrates three different similarity graphs generated from the spherical dataset
presented in Fig. 8, where (a) shows a fully connected graph with weights assigned
by the Gaussian similarity function (σ = 0.36), (b) a k-NNG (k = 4), and (c) a
mutual k-NNG (k = 4). In (a), given the choice of σ, the similarity measure could
not distinguish the local properties of the more dense region in the data, as it was
only able to generate two main strongly connected components. The mutual k-NNG
in (c) formed many small disconnected components of "noisy" or more "distant" ob-
servations in all regions on the data, caused by the small choice of the parameter k.
The k-NNG in (b) was the only similarity graph that succeeded in identifying the
three components in the data, which indicates that the method managed to capture
the underlying geometrical structure of the data in all regions.
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(a) Fully Connected Graph (b) k-NNG (c) Mutual k-NNG

Figure 9: Example of three similarity graphs built from an imbalanced and inhomogeneous
spherical dataset. The graph in (a) shows a fully connected graph with edges weighted by
the Gaussian similarity function with width of σ = 0.6. The graphs in (b) and (c) show a
k-NNG and a mutual k-NNG respectively, built with k = 4 and edges weighted with a value
of 1.

2.4 The Graph Laplacian and other Graph matrices

The spectral graph distance is a method rooted in spectral-graph theory, thereby,
with a close connection to the graph Laplacian. In this section, some basic matri-
ces derived from graphs are introduced, followed by presenting the different ways
of defining the graph Laplacian, namely, the unnormalized graph Laplacian and the
normalized graph Laplacians, as well as discussing some important properties related
to the spectrum of a graph in connection with each Laplacian form. Although the
spectral graph distance is defined in terms of the unnormalized Laplacian only, the
normalized Laplacian form is also presented in this section. The motivation is to pro-
vide the reader with a complete review of the different Laplacian forms, as a way to
establish a comparison between their properties, and outline artifacts likely to arise
in the unnormalized form and not in the normalized form. The material presented in
this section is required for the main subject of this thesis.

Two important matrices that capture structural information of a graph are the ad-
jacency and degree matrices. For an undirected unweighted graph of size N , the
adjacency matrix W is a symmetric N ×N matrix whose element Wij equal one if
there is an edge connecting vertices ni and nj , and zero otherwise. In the case where
the graph is weighted, the elements of the adjacency matrix are the edges’ weights,
commonly assigned by a similarity measure. In both cases, the diagonal elements
of the adjacency matrix is zero-valued, due to the absence of self-connectivity links.
Moreover, the degree matrix D is a N ×N diagonal matrix obtained from the adja-
cency matrix. Its diagonal elements are given by the nodes’ degree, i.e., the row or
column sum of the adjacency matrix, where the degree of node i, defined in Section
2.1.4 is given by the sum of the i:th row or i:th column of the matrix W. The diagonal
matrix provides information on how connected each node is to the rest of the nodes
in the graph. The two matrices are formally defined as:
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Definition 2.4.1 (Adjacency and Degree Matrix). Given a graph G = (N ,L, ω)

of size |N | = N , nodes ni, nj ∈ N , and node degree deg(ni):

The adjacency matrix W of G is a N ×N matrix with elements:

Wij =

{
ω(ni, nj) if (ni, nj) ⊂ L
0 otherwise

The degree matrix D of G is a N ×N diagonal matrix with diagonal elements:

di = deg(ni)

The graph Laplacian or Laplacian matrix is the matrix representation of a graph.
This matrix is one of the most studied matrices in graph theory, as well as one of
the fundamental concepts of spectral graph theory, extensively discussed by Chung in
[12]. Its use in different contexts and applications mainly originates from the ability
to relate the structure of a graph with its Laplacian matrix spectrum, as done in [1, 2].

Any positive semi-definitem×m matrix M is characterized by havingm non-negative
real-valued eigenvalues associated withm real eigenvectors. The positive semi-definite
property of a matrix provides that all its eigenvalues are non-negative, while the sym-
metric property allows to find orthonormal eigenvectors. The algebraic multiplicity of
the eigenvalue λi, i = 1, 2, ...,m refer to the number of times the eigenvalue appears
as a root of the characteristic polynomial i.e., det(λiI −M) where I is the identity
matrix. The algebraic multiplicity of eigenvalues is an important property, commonly
used in the graph partitioning method, namely, spectral clustering [2], as the algebraic
multiplicity of the smallest eigenvalue of the Laplacian matrix is known for determin-
ing the number of connected components in the graph. The three types of graph
Laplacian are now introduced:

2.4.1 The unnormalized Graph Laplacian

Given a graph G = (N ,L, ω) of size N , whose adjacency matrix and degree matrix
(Definition 2.4.1) are denoted by W and D, respectively. The unnormalized graph
Laplacian of G is:

L = D−W (7)

With elements:

Lij =

{
di i = j

−ω(ni, nj) i 6= j

L is a N × N symmetric and positive semi-definite matrix with precisely N non-
negative real eigenvalues associated with N orthonormal eigenvectors. From Eq. (7),
it is clear that the symmetry of L follows directly from the symmetry of D and W,
such that LT = L. Moreover, the positive semi-definite property of L follows from
the fact that for all vectors f ∈ RN the quadratic form fTLf is non-negative. The
proof is shown below:
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fTLf = fT (D−W)f

= f21

n∑
j=1

ω1j + . . .+ f2n

n∑
j=1

ωnj −
(
f1

n∑
j=1

fjωj1 + . . .+ fn

n∑
j=1

fjωjn

)
=

n∑
i=1

f2i

n∑
j=1

ωij −
n∑
i=1

fi

n∑
j=1

fjωji =
1

2

n∑
i,j=1

ωij(f
2
i + f2j − 2fifj)

=
1

2

n∑
i,j=1

ωij(fi − fj)2 ≥ 0

(8)

Eq. (8) shows that L is a positive semi-definite matrix. Hence, it follows that L has
N non-negative real-valued eigenvalues. From Eq. (7) it is clear that by construction
the row or column sum of the elements of L is always zero. Therefore, L has at least
one zero eigenvalue associated with the one-constant eigenvector 1 = (1, 1, 1, ..., 1, 1).
The aforementioned follows since 1L1 = 0.

2.4.2 The normalized Graph Laplacians

There are two main forms of defining the normalized graph Laplacians; that is, the
symmetric and random walk graph Laplacian. Although both matrices are closely
related, they offer a different perspective on the same problem. The matrices are
defined as follows:

2.4.2.1 Symmetric Graph Laplacian

Given a graph G = (N ,L, ω) of size N , the symmetric graph Laplacian of such graph
is:

Lsym = D−1/2LD−1/2 = D−1/2(D−W)D−1/2

= D−1/2DD−1/2 −D−1/2WD−1/2
(9)

With elements:

Lsymij =

1 i = j

−ω(ni,nj)√
didj

, i 6= j and (ni, nj) ⊂ L

Where I denotes the identity matrix, L the unnormalized graph Laplacian, W the
adjacency matrix with elements Wij = ωij = ω(ni, nj); i, j = 1, ..., N , and D the
diagonal matrix with diagonal elements d1, .., dN , all of them derived from the graph
G. Lsym is aN×N symmetric, positive semi-definite matrix withN non-negative real-
valued eigenvalues, associated with N orthonormal eigenvectors. The positive semi-
definite property of Lsym, follows since the quadratic form f ′Lsymf for all f ∈ RN is
non-negative. The proof is shown below:
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f ′Lsymf = f ′If − f ′D−1/2WD−1/2f

=

n∑
i=1

f2i −
n∑
i=1

fi√
di

(
n∑
j=1

fj√
dj
ωji

)
=

n∑
i=1

f2i

n∑
j=1

ωij

di
−

n∑
i,j=1

fifj

(
ωij√
di
√
dj

)

=

n∑
i,j=1

f2i
ωij
di
− fifj

(
ωij√
di
√
dj

)
=

1

2

n∑
i,j=1

ωij

(
f2i
di

+
f2j
dj
− 2

fifj√
di
√
dj

)

=
1

2

n∑
i,j=1

ωij

( fi√
di
− fj√

dj

)2
≥ 0

2.4.2.2 Random Walk Graph Laplacian

A discrete time random walk on a graph, is a finite Markov chain where each node in
the graph represents a state in the Markov chain state space. Such Markov chain is
described by an N × N transition probability matrix, or transition matrix P, whose
elements Pij = p(j|i) denote the conditional probability of moving to state j from
state i, for i, j = 1, ..., N .

Given a graph G = (N ,L, ω) of size N , the random walk graph Laplacian is defined
as:

Lrw = D−1L = D−1(D−W)

= I−D−1W = I−P
(10)

With elements:

Lrwij =

{
1 i = j

−ω(ni,nj)
di

, i 6= j and (ni, nj) ⊂ L

From Eq. (10), it is clear that the introduction of the transition matrix P in the defi-
nition of the random walk Laplacian Lrw, provides a meaningful interpretation. Note
that the rows in the transition matrix P describe a probability distribution where each
element in the matrix is determined by the conditional probability p(j|i) =

ω(ni,nj)
di

.
This probability is proportional to the connectivity weight between node ni and node
nj , meaning that the stronger (weaker) the connection between nodes, the higher
(lower) the transition probability. Another connection between the two matrices is
that the spectrum of Lrw and P will differ only by a constant factor of 1, meaning
that the pair (λ, u) is an eigenvalue and eigenvector of Lrw if and only if the pair
(1− λ, u) is an eigenvalue and eigenvector of P.

Moreover, there exists a close relationship between the spectrum of Lsym and Lrw,
in the sense that λ is an eigenvalue of Lrw with eigenvector v if and only if λ is an
eigenvalue of Lsym with eigenvector w = D1/2v. Eq. (11) shows this relationship.
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Lsym w = λw

(I−D−1/2WD−1/2)D1/2v = λD1/2v

(I− λ)D1/2v = D−1/2Wv

(I−D−1W)v = λv

Lrw v = λv

(11)

In general, Lrw is not a symmetric matrix, since P needs not be symmetric, given
that p(j|i) 6= p(i|j). From Eq. (11) it follows that since Lsym and Lrw share the same
spectrum, Lrw has N non-negative eigenvalues associated with N non necessarily
orthogonal eigenvectors, as Lrw is not symmetric. As a final remark, Eq. (12) verifies
that solving the generalized eigenvalue problem of L provides the eigenvalues and
associated eigenvectors of Lrw.

Lrw v = λv

(D−1L)v = λv

Lv = λDv

(12)

2.4.3 Choosing the Graph Laplacian

The choice of the graph Laplacian is a fundamental question in related methods to
spectral graph theory. The authors of [2] offer a discussion of different aspects to
consider before choosing a Laplacian form. One of such considerations is that when-
ever the degree distribution of the graphs is regular the Laplacian choice is not very
important, as all Laplacians will be very similar. If the degree distribution is broadly
distributed, then the authors of [2] advocate for using the normalized Laplacian over
the unnormalized Laplacian. A reason for this choice is that for high order eigenvalues
of the unnormalized Laplacian, it can happen that some of the associated eigenvectors
are almost constant vectors, such that, except for a single component, most elements
of the eigenvectors take small values close to zero. While this issue only affects the un-
normalized Laplacian, it can lead to undesirable effects, as detailed in [2] and Section
3. Besides, unlike the unnormalized Laplacian, the spectrum of the normalized Lapla-
cian is not influenced by the graph size, which is more convenient when comparing
graphs of different sizes. Finally, when it comes to choosing between the symmetric
and random walk Laplacian, the symmetric Laplacian might be a better option, es-
sentially by its symmetric nature and as it presents computational advantages when
solving the eigenvalue problem.
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2.5 Similarity between graphs: Matrix Distances and Spectral
Distances

How to define similarities between graphs? Although it is a common problem in the
field of graph theory, there is no unique definitive answer to the question, as the no-
tion of similarity itself can be captured in different ways. A common approach for
expressing differences between graphs is by means of a distance function. Formally,
a distance function is defined as such:

Definition 2.5.1 (Distance function). A distance function, or metric on a setM
is a function d : M×M → R≥0. For all x, y, z ∈ M the distance function satisfies
the following axioms:

• d(x, y) = 0 ⇐⇒ x = y the distance from a point to itself is always zero

• d(x, y) = d(y, x) is symmetric

• d(x, z) ≤ d(x, y) + d(y, z) satisfies the triangle inequality

In graph theory, there are many definitions of graph distances [13], and while they
are often referred to as distance functions, many of them do not satisfy all axioms
in Definition 2.5.1. In [14], the authors propose to classify graph distances in two
main categories: the matrix distances and the spectral distances. The matrix dis-
tances are a set of distances based on a direct comparison of graph matrices. These
types of distances require node-to-node correspondence, and their main objective is
to provide a global generalization of individual nodes’ properties, as for instance by
comparing edges perturbation between a pair of graphs. Due to this requirement,
matrix distances can only detect changes at a local level, making them more suitable
for comparing graphs differing in volume rather significantly. To address the problem
of graph similarity, a different approach is to use spectral methods rooted in spectral
graph theory. Spectral distances are a set of graph distances based on comparing the
spectrum of graph matrices (see the ones introduced in Section 2.4). Recent stud-
ies presented in [15, 16] have shown that the spectrum of graph matrices manage to
capture global structure of the graphs such as clustering structures, and thus provide
new insights on the structure of complex networks. Nevertheless, as discussed in [17],
there are reasons to advise against the choice of the spectrum as a graph representa-
tion, mainly as it can be too coarse. As a result, different graphs may end up with the
same spectrum, also said to be co-spectral (with the exact same eigenvalues), raising
doubts about the reliability of the method. In that respect, one of the novelties of
the spectral graph distance is that, unlike many other spectral distances, it considers
eigenvectors, thus mitigating the problem of co-spectrality.

This section will first introduce the Hamming distance, a matrix distance based on
comparing the adjacency matrices of a pair of graphs, and then present the theory
behind the main subject of this thesis: the spectral graph distance for complex net-
works. The motivation for introducing the Hamming distance is to then establish, in
the Results 3 section, a comparison of the ability of both the spectral distance and
the matrix distance to capture structural differences between graphs.
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2.5.1 Hamming Distance

The Hamming distance between two graphs G and G′ of equal size N is defined as:

H(G,G′) =
1

N(N − 1)

∑
i,j

|Aij −A′ij | (13)

Where A and A′ denotes the N × N adjacency matrix of each graph. The Ham-
ming distance displays how distant two graphs are based on the differences between
their edges, meaning that it only captures local information of edges perturbation.
Although the Hamming distance can be adapted for comparing graphs of different
sizes (by adding isolated nodes to the smaller graph), it is best suited for comparing
graphs of the same size.

2.5.2 Spectral Graph Distance (SGD)

Shimada et al. first introduced the spectral graph distance in their 2016 publication
[3]. Their main goal was to establish a graph distance that would be able to quantify
dissimilarities between networks by comparing their Laplacian matrices, the Lapla-
cian being chosen for the ability of its eigenvectors to describe aspects of the global
structure of the network. Before diving into the complete definition of the SGD, some
key concepts will be first introduced. Thus this section will start by commenting on
the distribution of the elements of an eigenvector, and continue with the introduc-
tion of the empirical cumulative distribution function, and of the Kruglov distance, a
distribution-distribution distance that is considered as it was used to define the SGD.
Certain notations will also be established.

Define the network G(i) of size N (i) and order K(i), whose unnormalized Laplacian
matrix eigendecomposition is L(i) = V(i)Λ(i)(V(i))T , where Λ(i) is a N (i) ×N (i) di-
agonal matrix with diagonal elements given by the ordered eigenvalues 0 = λ

(i)
1 ≤

λ
(i)
2 ≤ ... ≤ λ

(i)

N(i) . The matrix V(i) is a N (i) × N (i) matrix whose columns are the
eigenvectors associated with the eigenvalues in Λ(i). That is, v (i)

r is the r:th eigenvec-
tor located in the r:th column of V(i) associated with the r:th eigenvalue Λ

(i)
rr = λ

(i)
r

of L(i); for r = 1, 2, ..., N (i). Similarly, define a second network G(j) of size N (j)

and order K(j) with corresponding N (j) ×N (j) unnormalized Laplacian matrix L(j)

with a diagonal N (j) × N (j) eigenvalues matrix Λ(j), associated with a N (j) × N (j)

eigenvectors matrix V(j).

The central idea behind the SGD is to reflect how distant two graphs are based on
the difference between the distribution of the elements of their eigenvectors (seen as
different realizations of an underlying real-valued random variable). Let ρ(i)r and ρ(j)r
be the probability distribution of the r:th eigenvector in V(i) and V(j), respectively.
The distance between ρ

(i)
r and ρ

(j)
r can be obtained by directly comparing the dis-

tribution functions, or by comparing their cumulative distribution function (CDF),
denoted as %(i)r and %

(j)
r . In [3], the authors suggest comparing their empirical cu-

mulative distribution function (eCDF). The reason behind this choice is that directly
comparing distribution functions will require estimating the probability distributions
analytically, which can be problematic. Mainly since it will require building a his-
togram and introduce an additional parameter: the bin size, while in the case of the
eCDF, it can be directly calculated from the elements of the eigenvectors. The em-
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pirical cumulative distribution function is defined as such:

Definition 2.5.2 (Empirical cumulative distribution function). Let {Xi}1≤i≤N
be a sequence of independent and identically distributed random variables with a com-
mon distribution function. The empirical cumulative distribution function (eCDF) is
defined as:

%(x) =
|{i ≤ N ;Xi ≤ x}|

N

Note that comparing distribution functions allows comparing eigenvectors of different
lengths, enabling the method to compare graphs of different sizes. It is also important
to consider that, in order to compare the eCDFs of eigenvectors corresponding to
a distinct pair of graphs, one needs to first ensure that the exact range of values
is the same for all eigenvectors. Thus the authors of [3] suggest performing a re-
scaling (or min-max normalization) on the eigenvectors, so that the minimum and
maximum element value for all eigenvectors are respectively zero and one. The re-
scaling function z : R→ [0, 1] is defined as:

z(v) =
v −min(v)

max(v)−min(v)
(14)

For calculating the distance between the re-scaled eigenvectors distribution the au-
thors of [3] suggest to use the Kruglov distance, defined as:

Definition 2.5.3 (Kruglov distance). Let P be the set of all cumulative distribution
functions. The Kruglov distance is a distance on P defined as:

∞∫
−∞

f(%(X ≤ x)− %′(X ≤ x)) dx

Where %, %′ ∈ P , and the function f : R≥0 → R≥0 is any even strictly increasing
function.

Given that the main purpose of the Kruglov distance is to capture the area between a
pair of CDFs, a simple choice of the function f in Definition 2.5.1 is the absolute value
function. The Kruglov distance between the distributions ρ(i), ρ(j) can be written as:

d(ρ(i), ρ(j)) =

∫ ∞
−∞
|%(i)(x)− %(j)(x)| dx, (15)

Let P be the set of all CDFs, then ∀ρ(i), ρ(j), ρ(k) ∈ P :

(i) d(ρ(i), ρ(j)) ≥ 0

(ii) d(ρ(i), ρ(j)) = 0 ⇐⇒ ρ(i) = ρ(j)

(iii) d(ρ(i), ρ(j)) = d(ρ(j), ρ(i))

(iv) d(ρ(i), ρ(j)) ≤ d(ρ(i), ρ(k)) + d(ρ(k), ρ(j))

Property (i) holds since the absolute value function is a non-negative function, (ii)
holds since d(ρ(i), ρ(j)) = 0 implies that the absolute value function is zero, and this
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can only happen if and only if ρ(i) = ρ(j), (iii) is trivial, finally, (iv) holds since
∀ρ(i), ρ(j), ρ(k) ∈ P , and by using the triangle’s inequality:

d(ρ(i), ρ(j)) =

+∞∫
−∞

|%(i)(x)− %(k)(x) + %(k)(x)− %(j)(x)| dx

≤
+∞∫
−∞

|%(i)(x)− %(j)(x)|+ |%(j)(x)− %(k)(x)| dx

= d(ρ(i), ρ(k)) + d(ρ(k), ρ(j))

(16)

The spectral graph distance between two networks G(i) and G(j) is finally defined as:

D(G(i), G(j)) =
1

Mij − 1

Mij∑
r=2

d(ρ(i)r , ρ(j)r ) (17)

Where Mij is the cut-off value; Mij = min(N (i), N (j)). The SGD in Eq. (17) is
a weighted sum of the Kruglov distances between the distribution of the Mij − 1

eigenvectors associated with the smallest non-zero eigenvalues. Since the eigenvector
associated with the zero-value eigenvalue is always constant, it does not provide in-
formation about the structure of the graph. For this reason, it is not included in the
sum in Eq. (17).

2.5.2.1 Properties of the SGD

The spectral graph distance is not a distance per se. Note that two eigenvectors
having the same CDF does not necessarily result in them being equal i.e., whenever
D(G(i), G(j)) = 0 =⇒ ∀r ∈ [2,Mij ] : ρ

(i)
r = ρ

(i)
r 6=⇒ G(i) = G(j). As mentioned

in [14], this can be problematic if one aims to perform a rigorous analysis on the
distance. However, in practice, finding two graphs where D(G(i), G(j)) = 0 is unlikely
to happen. Nevertheless, the SGD satisfies certain properties of a distance function
(Definition 2.5.1). Let G be the set of all undirected and unweighted connected
graphs and P the set of all distribution functions. Then, for all pairs of graphs
G(i), G(j) ∈ G, some properties can be considered: The SGD is (i) non-negative
D(G(i), G(j)) ≥ 0, since for all probability distributions ρ(i), ρ(j) ∈ P, the Kruglov
distance d(ρ(i), ρ(j)) is non-negative, then Eq. (17) must also be non-negative, and
(ii) symmetric D(G(i), G(j)) = D(G(j), G(i)) since for any ρ(i), ρ(j) ∈ P it holds that
d(ρ(i), ρ(j)) = d(ρ(j), ρ(i)) which implies that D(G(i), G(j)) = D(G(j), G(i)).

2.5.2.2 The sign ambiguity of the eigenvectors of the graph Laplacian

Given a network G of size N , the eigendecomposition of its unnormalized Laplacian
matrix L = VΛVT , is given by the diagonal eigenvalue matrix Λ and the associated
eigenvector matrix V. The matrix V is an orthogonal matrix, whose eigenvectors are
unique up to a constant factor ±1, which means that there are 2N possible forms of V.
Although the sign of the eigenvectors does not influence the information they convey,
it does influence the Kruglov distance. Depending on which sign of the eigenvector
is chosen, the result of the Kruglov distance might differ. In order to circumvent this
artifact, the authors of [3] suggest rewriting the spectral graph distance in such a way
that the evaluation of the Kruglov distance in terms of the eigenvectors is minimized
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with respect to the sign of the eigenvectors. As a result, the spectral graph distance
in Eq. (17) between two graphs G(i) and G(j) can be re-written as:

D(G(i), G(j)) =
1

Mij − 1

Mij∑
r=2

{
min

s,l∈{−1,1}
d[ρ(z(s · v (i)

r )), ρ(z(l · v (j)
r ))]

}
(18)

Where s, l determine the sign of the eigenvectors prior to the re-scaling. As shown in
Appendix A.1, the SGD in Eq. (18) can be simplified to:

D(G(i), G(j)) =
1

Mij − 1

Mij∑
r=2

{
min{d(ρ(v (i)

r ), ρ(v (j)
r )), d(ρ(v (i)

r ), ρ(− v (i)
r )}

}
(19)

Fig.10 illustrates how the chosen signs of the eigenvectors affect the evaluation of
the Kruglov distance to the spectral graph distance. Note how the "flipping" the
eigenvector v (j)

r (prior to re-scaling) results in a reduction of the grey area between
the two cumulative distributions. Hence, according to the minimization problem in
Eq. (19), the solution to the distance between the r:th eigenvector of both graphs is
given by the representation in Fig. 10 (b).

(a) (b)

Figure 10: Cumulative distribution distance for different choices of sign of the re-scaled r:th
eigenvectors v (i)

r , v (j)
r of a pair of graphs G(i) and G(j), where (a) illustrates the distance

between %(z(v (i)
r )) and %(z(v (j)

r )), and (b) the distance between %(z(v (i)
r )) and %(z(−v (i)

r )).
The grey areas of both plots denote the Kruglov distance of the r:th eigenvector d(ρ(i)r , ρ

(j)
r ).

2.5.2.3 Limitations and artifacts of the SGD

Previous literature related to graph-based methods [1, 2] in spectral graph theory
established that the eigenvectors and eigenvalues associated with the Laplacian ma-
trix manage to capture meaningful information about the structure of the data. In
that regard, and unlike the matrix distances, the spectral graph distance has the
advantage of reflecting the information captured by the Laplacian matrix. However,
certain aspects of the SGD still need to be taken into consideration; to begin with,
the SGD does not consider the relative weights of the eigenvectors, as all eigenvectors
in Eq. (17) contribute equally. Hence, the sum of the Kruglov distances is somewhat
problematic: as previously discussed in [2], different eigenvectors carry a different
amount of variability. Furthermore, the spectral graph distance assumes that the
eigenvectors are uncorrelated, as the sum in Eq. (17) does not include cross terms.
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The SGD also requires correspondence between the eigenvectors, so that comparison
between eigenvectors is established in accordance to their associated eigenvalues. An-
other important aspect is related to the size difference between graphs: although the
method is able to compare eigenvectors of different sizes, the risk of losing information
from high order eigenvectors corresponding to a larger graph still exists. Generally,
this issue will become a problem if one of the graphs is considerably smaller than
the other; otherwise, it will not have an important effect, as high order eigenvectors,
given their low variability, often do not provide much information about the structure
of the graph; this is further explained in [2]. Finally, the use of the unnormalized
Laplacian in defining the SGD is another aspect to consider: as discussed in Section
2.4.3 and [2, 18], it might happen that high order eigenvectors of the unnormalized
Laplacian behave like a delta function, which can lead to an increase of the SGD.
This may become a source of artifact in the computation of graph similarity through
this measure. This last point will be discussed more in-depth in Section 3.

3 Results

In order to evaluate the performance of the SGD, this section will present the results
obtained from different experiments on graphs sampled from the Watts-Strogatz (W-
S) model introduced in Section 2.2.2. The experiments will be performed by compar-
ing an ensemble of graphs with a reference graph generated by fixing certain parame-
ters. In this context, the measure of performance is considered to be the ability of the
graph distance to uncover the fixed parameter used to generate reference graphs, as
a way of showcasing the power of the method to capture structural properties. The
SGD between the reference graphs and the rest of graphs will also be compared to
the Hamming distance introduced in Section 2.5.1, and the degree distribution dis-
tance (DDD). The degree distribution distance can be easily obtained by calculating
the Kruglov distance in Eq. 15, between the CDF of the graph’s degree distribution
(Definition 2.2.1). The motivation for these comparisons is to (i) show if the SGD
outperforms the matrix distance, and (ii) try to uncover if there exists any specific
structural property (e.g. degree distribution) that could dominate the SGD.

The SGD was implemented in the Python Programming Language. Graphs were
constructed using the NetworkX library, and the solution to the eigenvalue problem
of the Laplacian matrix was obtained by using the SciPy library.

3.1 Watts and Strogatz model

This section will present the results of the following experiments:
(i) A reference graph G(k0) is generated from the W-S model with a fixed reference

node degree k0 and compared with a set of graphs, each generated for varying
value of k, while fixing the number of nodes N and the rewiring probability p.

(ii) A reference graph G(p0) is generated from the W-S model with a fixed reference
rewiring probability p0, and then compared with a set of graphs, each generated
for a value of the rewiring probability p, while fixing the number of nodes N
and node degree k.
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3.1.1 Experiments on networks with fixed rewiring probability p and
varying node degree k

The different steps of this experiment were as follow:

• A reference modelG(k0) was generated for each node degree k0 ∈ {10, 100, 220, 280}.
• An ensemble of 50 graphs was generated for 22 values of k (50 graphs for each
k), chosen between [6, 294].

• All graphs are of size N = 300 and were constructed with a rewiring probability
p = 0.1.

• For each value of k, the SGD between the reference graph and each graph of
the ensemble was computed.

Fig. 11 shows the SGD average over the ensemble of graphs and each reference graph
G(k0). Several important properties of the SGD are summarize as follows:

(i) All experiments show a rapid increase of the SGD around k = 280 and k = 294.
This behavior is caused by the high Kruglov Distance contributions from the
high order eigenvectors, whose elements are almost constant. To illustrate this
effect, Fig. 12 plots the Kruglov distance contributions to the SGD between a
graph G(k); k ∈ {10, 100, 220} (sampled from the ensemble) and the reference
graph G(10). Note that for all cases the highest contributions come from the
high order eigenvectors. In order to take a closer look into this issue, Fig. 13
plots the eigenvectors that contribute the most, for the case when k0 = 10

and k = 294. The first plot in Fig. 13 highlights the three highest Kruglov
distance contributions, in this case are attributed to the 300th, 294th and 292nd
eigenvectors. Moreover, the eigenvectors of the reference and sampled graph
associated with these high contributions are shown in the 3 left panels of Fig.
13. Note that the 300th eigenvector of the sampled graph is constant except
for the minimum value component. For the rest of the eigenvectors, although
they show more variability, (excluding the 292nd and 294th eigenvector of the
reference graph), the elements are overall constant, except for the component
with minimum value.

(ii) Another aspect to notice is that almost all experiments present a flat and con-
stant phase around intermediate values of k. This is caused by the uniform
contribution of the Kruglov distance from different eigenvectors. Fig. 12 il-
lustrates this effect for the case when k = 10. Note that the transition from
k = 10 to higher values of k is only affected by the contribution of eigenvectors
associated with small and high order eigenvalues. For k = 10, this effect is most
notable as all eigenvectors’ distances contribute in a very similar manner. Al-
though a change in the shape of the distribution can be noticed as k increases,
the overall contribution of all eigenvectors remains very uniform.

(iii) Additionally, when k0 = k = 10, the SGD in Fig. 11 manages to capture the
difference between the networks, as the minimal SGD is reached when k = k0.
However, compared to the maximum SGD value (excluding the last experiment,
when k = 294), the minimal SGD reached in all experiments is not close to zero,
caused by the uniform contributions shown in Fig. 12. This means that, even
though the parameters k and k0 are the same, as long as the graphs are not
identical, the SGD will not be close to zero.
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Figure 11: Average SGD between the reference graph G(k0) and 50 graph replicates G(k)

generated from the W-S model for 6 ≤ k ≤ 294. Graphs were constructed with a rewiring
probability of p = 0.1 and size N = 300. The dotted blue line corresponds to k0. The grey
area denotes ± standard deviation.

Figure 12: Kruglov distance contributions between eigenvectors of a reference graph G(10)

and a single graph G(k) randomly chosen from the ensemble of 50 graphs generated for each
k ∈ {10, 100, 220, 294}.

Figure 13: Left: Kruglov distance contributions between eigenvectors of the reference graph
G(10) and a graph G(294). The highlighted markers refer to the 3 highest contributions.
Last three plots refer to the r:th re-scaled eigenvectors of G(10) and G(294) in descending
order of contribution to the SGD.
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On the other hand, Fig. 14 shows the average over the (i) DDD, and (ii) Hamming
distance between the ensemble of graphs and each reference graph. It is not surprising
that both, the DDD in Fig. 14 (a) and the Hamming distance in Fig. 14 (b) (except
when k0 = 280) manage to distinguish the graphs and correctly identify the minimal
distance when k0 = k. In the context of this experiment, this results as the varying
parameter k defines the main difference between the compared graphs.

(a)

(b)

Figure 14: Average (a) DDD, and (b) Hamming distance between the reference graph G(k0)

and 50 graph replicates G(k) generated from the W-S model for 6 ≤ k ≤ 294. Graphs were
constructed with a rewiring probability of p = 0.1 and size N = 300. The dotted blue line
corresponds to k0.
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3.1.2 Experiments on networks with fixed node degree k and varying
rewiring probability p

The different steps of this experiment were as follow:

• A reference model G(p0) was generated for each rewiring probability p0 ∈
{0.1, 0.2, 0.6, 0.9}
• An ensemble of 50 graphs was generated for 50 values of p (50 graphs for each
p), chosen between (0, 1].

• All graphs are of size N = 300 and have node degree k = 10.
• For each value of p, the SGD between the reference graph and each graph of

the ensemble was computed.

Results of this experiment are shown in Fig. 15, where each row refers to the resulting
average over the (i) SGD, (ii) DDD, and (iii) Hamming distance between the ensemble
of graphs and each reference graph G(p0). Several important properties of the SGD
are summarize as follows:

(i) For high values of p, the SGD in Fig. 15 (a) shows small or no changes, and
fails to distinguish graphs. This behaviour is caused by the introduction of
randomness in the reference graph and the rest of the graphs, as by increasing
the values of p and p0, the variance in the degree distribution of the graphs also
increases.

(ii) Fig. 15 (b) shows that the degree distribution seems to explain the information
captured by the SGD. Even if there is no clear connection between the SGD and
the degree distribution, the degree distribution is solely based on the frequency
of the nodes’ degree. Therefore, it will fail to capture other structural properties
of the network (e.g. clustering structures), that can be captured by the SGD.
Hence, the similar behavior between the SGD and the DDD will not necessarily
hold for other types of networks, as in the case of the experiment performed in
Section 3.1.1, where the DDD showed a different behavior of the SGD.

(iii) For all p0 the SGD outperforms the Hamming distance. Also note that when
p0 = 0.1, the minimal SGD is achieved when p0 = p. Nevertheless, even if the
SGD performs better, the DDD provides similar information as the SGD at a
lower computational cost.

(iv) The Hamming distance in Fig. 15 (c) shows a linear behavior for all experiments,
resulting from the introduction of randomness in the graphs. As the rewiring
probability p increases, the graphs become less regular and the similarities of
the node’s connectivity more distant.
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(a)

(b)

(c)

Figure 15: Average (a) SGD, (b) DDD, and (c) Hamming distance between the reference
graph G(p0) and 50 replicates G(p) generated from the W-S model for 0 ≤ p ≤ 1. The
number of nodes N = 300 with node degree k = 10. The dotted blue line corresponds to p0.
The grey area denotes ± standard deviation.

4 Discussion and Conclusions

The present work aimed to provide a thorough introduction to the SGD, as well as
a review of related topics in graph theory and network theory. Section 2.1 presented
different ways to define graphs and basic concepts in graph theory. A discussion re-
garding relevant aspects of complex networks followed in Section 2.2, focusing on two
widely studied types of networks – the random graphs and the small-world networks.
Due to their useful theoretical properties, random graphs are commonly used to com-
pare properties of real-world networks. Similarly, properties of networks generated
from the W-S model were also considered for their ability to generate graphs with
structural properties commonly found in real systems. Section 2.3 introduced and
compared different approaches to impose a graph structure on data. An overview of
connectivity matrices derived from graphs was proposed in Section 2.4, which looked
at the different ways of defining the graph Laplacian and their relationships, limita-
tions, and artifacts. It was thus concluded that, in the context of the SGD, the main
artifact introduced by the unnormalized Laplacian form is explained by the fact that
high order eigenvectors could approximate a delta function. Section 2.5 provided with
some background on matrix distances and spectral distances. The Hamming distance
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was presented, followed by the theory supporting the SGD, as well as related technical
aspects and practical considerations.

A simplified version of the original graph distance introduced by the authors in [3]
was also offered to the reader. The main limitations and artifacts of the SGD were
also identified and discussed. Concluding that the main limiting aspect of the SGD is
that it considers the distances between eigenvectors to be equally important. As such,
the SGD becomes affected by noisy high-order eigenvectors that could overshadow the
contribution of the distribution distance of more relevant eigenvectors. Overall, the
fact that high order eigenvectors have a significant contribution is a drawback of the
SGD. Another important limitation of the SGD is that it requires correspondence
between eigenvectors and it assumes that all eigenvectors are independent. In Section
3, two different experiments were performed on graphs sampled from the W-S model,
where the SGD was able to correctly identify the reference models fixed parameters;
the rewiring probability in the first case and the node degree in the second case (at
least to some extent). As a result the SGD did not perform as well as the degree
distribution distance (DDD) when comparing graphs sampled from the W-S model.
An alternative proposal to evaluate the performance of the SGD could be to consider
graphs that present a scale-free distribution (or scale-free networks), as they have dif-
ferent structural properties. In conclusion, even though the experiments presented in
the Results Section 3 only covered graphs from the W-S model, the application of the
SGD can be extended to all the possible ways of simulating graphs and constructing
graphs from data that were introduced in this thesis.

4.1 Outlook on further studies

The authors of [3] established the graph distance by only considering unweighted
graphs and the associated unnormalized graph Laplacian. Nevertheless, many as-
pects of the SGD can be generalized and further extended. For instance, the SGD
could be extended to the general case of weighted graphs and it could also be reformu-
lated in terms of the normalized Laplacian matrix representation. Another possible
generalization could be to consider a different distribution-distribution distance such
that the eigenvector’s importance is reflected on each contribution.
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Appendices

Appendix A Proofs

A.1 Equality of the Kruglov Distance of flipped eigenvectors.

Define G to be a graph of size N , whose Laplacian matrix L has N real eigenvalues
associated with N real and linearly independent eigenvectors. Define also the N ×N
eigenvectors matrix V = (v1, v2, ..., vN ), such that ∀r; vr ∈ V it holds that:

max(−vr) = −min(vr) ⇐⇒ ∀j vrj ≤ max(vr)

min(− vr) = −max(vr) ⇐⇒ ∀j − vrj ≥ −max(vr) = min(vr)

The re-scaled form of ±vr is given by:

z(vr) =
v −min(vr)

max(vr)−min(vr)

z(−vr) =
−vr + max(vr)

max(vr)−min(vr)
=

−vr + min(v i)
max(vr)−min(vr)

+ 1 = 1− z(vr)

While the eCDF of the re-scaled form of ±v i is:

%(z(vr))(x) =
1

N

N∑
l=1

1{zl(vr) ≤ x}

%(z(−vr))(x) =
1

N

N∑
l=1

1{zl(−vr) ≤ x} =
1

N

N∑
l=1

1{1− x ≤ zl(vr)} = 1− %(z(vr))(1− x)

For a pair of graphs G(i) and G(j) of size N (i) and N (j) and unnormalized Laplacian
matrices L(i), L(j) with respective eigenvector matrices V(i) and V(j). It can be
shown that the Kruglov distance between the probability distributions ρ(z(−v (i)

r )) and
ρ(z(v (j)

r )) is the same as the Kruglov distance between the probability distributions
ρ(z(v (i)

r )) and ρ(z(−v (j)
r )). That is:

d(ρ(z(−v (i)
r )), ρ(z(v (j)

r ))) =

∫ 1

0

|1− %(z(v (i)
r ))(1− x)− %(z(v (j)

r ))(x)| dx

=

∫ 0

1

|1− %(z(v (i)
r ))(u)− %(z(v (j)

r ))(1− u)| (−du)

=

∫ 1

0

|1− %(z(v (j)
r ))(1− u)− %(z(v (i)

r ))(u)| du

=

∫ 1

0

|%(z(−v (j)
r ))(u)− %(z(v (i)

r ))(u)| du

= d(ρ(z(v (i)
r )), ρ(−z(v (j)

r )))

(20)

Similarly, it can also be shown that the Kruglov distance between ρ(z(−v (i)
r )) and

ρ(z(−v (j)
r )) is the same as the Kruglov distance between the probability distributions

ρ(z(v (i)
r )) and ρ(z(v (j)

r )). That is:

37



d(ρ(z(−v (i)
r )), ρ(z(−v (j)

r ))) =

∫ 1

0

|(1− %(z(v (i)
r ))(1− x))− (1− %(z(v (j)

r ))(1− x))| dx

=

∫ 1

0

|%(z(v (j)
r ))(1− x)− %(z(v (i)

r ))(1− y)| dx

=

∫ 1

0

|%(z(v (j)
r ))(u)− %(z(v (i)

r ))(u)| du

= d(ρ(z(v (i)
r )), ρ(z(v (j)

r )))

(21)

Appendix B Algorithms

B.1 ER model: binomial random graph

Algorithm 1: ER: Binomial Random Graph
Input: Number of nodes N ∈ Z+; probability p ∈ [0, 1]

Output: A graph G = (N ,L), where G ∈ GERN,p.
1 N ← {1, 2, ..., N};
2 L ← ∅;
3 for i = 1, ..., N do
4 for j = i+ 1, ..., N do
5 ε← random(0, 1);
6 if ε < p then
7 L ← L ∪ {(i, j)};

8 return G = (N ,L)
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B.2 Watts-Strogatz model

Algorithm 2: Watts-Strogatz model
Input: Number of nodes N ∈ Z+; m; p ∈ [0, 1]

Output: A graph G = (N ,L)

1 N ← {1, 2, ..., N};
2 k ←

⌊
m
2

⌋
3 for i = 1, ..., N do
4 for j = 1, ..., k + 1 do
5 l← i+ j mod N ;
6 L ← L ∪ {(i, l)};

7 for j = 1, ..., k + 1 do
8 i← 1

9 for l ∈ {j + 1, ..., N} ∪ {1, ..., j + 1} do
10 ε← random(0, 1)

11 if ε < p then
12 ε′ ← random(0, 1)

13 l′ ← bNε′c
14 while l′ = i or (i, l′) ⊂ L do
15 ε′ ← random(0, 1)

16 l′ ← bNε′c
17 if deg(i) = N − 1 then
18 break

19 else
20 replace (i, l) with (i, l′)

21 i← i+ 1

22 return G = (N ,L)
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