
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

Gradient Boosted Trees Applied to Chain-
Ladder Reserving

Fredrik Käll

Matematiska institutionen

Masteruppsats 2022:13

Försäkringsmatematik

September 2022

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2022:13

http://www.math.su.se

Gradient Boosted Trees Applied to

Chain-Ladder Reserving

Fredrik Käll*

September 2022

Abstract

This thesis investigates whether non-life claims reserving can be

improved by using more information regarding each claim and ma-

chine learning techniques. As a foundation, Wühtrich’s article Neural

Networks applied to Chain-Ladder reserving has been used, with the

modification that Gradient Boosted Trees have been used instead of

Neural Network. We begin by obtaining a model by walking through

the fitting process. The model is then used to predict the outstanding

reserves and compared to Mack’s Chain-Ladder predictions. Further,

a comparison of the two models MSEP is made to investigate the

variation of the two models. The comparison shows that the Gradient

Boosted Trees perform as well as Chain-Ladder for earlier, more devel-

oped years. However, in later years, the performance is not as good.

We end the thesis with a discussion on why the boosted trees did not

perform well and what could be done to improve the predictions.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: fredrik.kall@outlook.com. Supervisor: Mathias Lindholm.

Acknowledgement
I would like to thank Mathias Millberg Lindholm for feedback and valuable
discussions. I would also like to thank Adam Pettersson and Dennis Uygur
Andersson for their work as sounding boards. And finaly, I would like to thank
my cohabit Hedda Hultgren and our two cats for their support.

2

Contents
1 Introduction 4

2 Methods 5
2.1 Chain-Ladder . 5
2.2 Tree-Based Gradient Boosting Machines 6

2.2.1 Regression Trees . 6
2.2.2 Gradient Tree-Boosting 7

2.3 Mean Square Error of Prediction (MSEP) 8
2.4 Bias-Variance Trade Off . 9
2.5 k-fold Cross Validation . 10

3 Model 12
3.1 Part I : Claims with reported payments 14
3.2 Part II : Claims without reported payments 17
3.3 Comparison . 18

4 Comparing MSEP 21

5 Discussion 24

6 References 26

A Appendix 27

3

1 Introduction
When an accident occurs, it does not necessarily get reported directly. There are
several reasons why this is the case. For example, an expert opinion is needed
to verify that it is a particular injury, or it could be that it takes time even to
realize that an accident has happened.

Since there are rules and demands on how an insurance company should fulfill
their future commitments, there are often two types of payments mentioned
within insurance, Incurred But Not Reported (IBNR) and Reported But Not
Settled (RBNS). We will give a brief explanation of both with an example.

Example:
Suppose an accident occurs at time TA, is reported at time TR and closed at
time TC . Further, assume that the accident results in three payments, p1, p2
and p3. We then have TA < TR < p1 < p2 < p3 < TC .
Given that we are now located at time τ , every timepoint < τ is known.

Scenario 1: If τ < TR we are not aware that this accident has happened, we,
therefore, classify the payments as IBNR

Scenario 2: If p1 < τ < p2 the accident is known and we have paid a part
of it. However p2 and p3 have not yet been paid, and are therefor classified as
RBNS

The most common models used today for estimating IBNR are Bornhuetter-
Furgesson (BF) and Chain-Ladder (CL). BF and CL are popular because they
are both easy to compute and assume that the claims are distribution-free but
still give a good estimate of the total claims cost, also called Ultimo. However,
as the development proceeds, there are more possibilities to apply, for example,
machine learning techniques.

There are multiple machine learning techniques and claims reserving models,
hence multiple combinations that can be used. Machine learning can also be
used to fit the original model, or it can be used to improve the original model by
creating adjustments based on the residuals. Further, by using machine learn-
ing, there is a possibility to include more information about each claim than the
original model allows.

In this thesis, we will use Wüthrich’s article Neural Networks applied to Chain-
Ladder reserving [10] as a foundation. However, we will use Gradient Boosting
Machines instead of Neural Networks.

4

2 Methods
In this section we take a look at the theory that is used within this thesis.

2.1 Chain-Ladder
As the introduction mentions, the Chain-Ladder method is one of the most com-
mon models to estimate IBNR. CL aims to estimate the ultimo for a specific
month, quarter, or year period. All the theory below is from [6] and [7]

Let’s denote the cumulative claim cost for development year k and accident
year i as Cik, where 1 < i < I and 1 < k < K. We can then represent the
Ultimo for accident year i as CiK . The Chain-Ladder can be presented as a
triangle, Figure 1. The goal is to estimate the lower right triangle, marked as
gray.

Figure 1: Chain-Ladder illustrated as a triangle

When working with Chain-Ladder there are three assumptions made. The
first assumption is that the expected value of Ci,k+1 is a factor, fk times the
previous periods value, Cik. This can be expressed as

E(Ci,k+1 |Ci,1, ..., Ci,k) = fkCi,k for 1 ≤ i ≤ I, 1 ≤ k ≤ K − 1.

Assumption two is that two different accident years are independent i.e.

{Cj1, Cj2, . . . , CjK}, {Ci1, Ci2, . . . , CiK}, j ̸= i are independent,∀ i, j

5

The third and last assumption is there exist a constant, σk, such that

Var(Ci,k+1|Ci,1, ..., Cik) = Cikσ
2
k

Given these three assumptions we can state the model

Ci,k+1 = Cikfk + σk

√
Cikϵi,k+1 (1)

where

E[ϵi,k+1|Ci,1, ..., Cik] = 0, Var(ϵi,k+1|Ci,1, ..., Cik) = 1 for 1 ≤ i ≤ I, 1 ≤ k ≤ K−1.

f̂ can then be estimated using least squared, given k, by

f̂k =

∑J−k
j=1 Cj,k+1∑J−k
j=1 Cj,k

and we can then write the estimation of Ultimo as

ĈiJ = Ci,K−i · f̂K−1 · ... · f̂K−i

2.2 Tree-Based Gradient Boosting Machines
2.2.1 Regression Trees

Decision trees can be used for either regression or classification. The underlying
mathematics is the same for both; however, we will use regression trees in this
thesis.

The main idea of decision trees is that you split your features space into J
non-overlapping regions, R1, ..., RJ . Given a new input vector, it is then pos-
sible to classify the output depending which region it falls into. This can be
expressed as Equation (2).

h(xi) =

J∑
m=1

cmI(xi ∈ Rm) (2)

where I(xi ∈ Rm) is a indicator which equals 1 if xi belongs to region Rm and
0 otherwise.
The goal when creating a tree is then to minimize the residual sum of squares,
RSS, given by ∑

(yi − h(xi))
2.

Minimizing this results in that the best estimate for ĉm is the average of yi in
region Rm, i.e.

ĉm = ave(yi | xi ∈ Rm)

6

However, since it is impossible to consider all possible partitions, a so called
greedy method is used when creating a tree. The greedy method is a top-down
method, meaning that we start with the root and then work our way down.
We start by dividing the predictor space into two regions given predictor j and
splitting point s.

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s}

The next step is then to choose which j and s that minimize the RSS, i.e solving
Equation (2) .

min
j,s

[
min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2
]

(3)

When the j and s that minimize RSS are found, the same procedure is then
repeated until a criterion is fulfilled, e.g., a maximum of observations in each
region. It is worth mentioning that when using the greedy method, the same
feature is possibly used in multiple depths of the tree.

2.2.2 Gradient Tree-Boosting

When using weak classifiers, such as trees, they are often improved by boosting.
The idea behind boosting is to combine multiple weak models into one. There
are multiple tree boosting techniques, for example, Random Forest, AdaBoost,
and Gradient Boosting, where the last one is used in this thesis.

Gradient Tree-Boosting is an ensemble of many trees where you start with a
root and then add new trees recursive. The approach is to start with an initial
guess. We then use a loss function, L(yi, f(xi)), that is optimized using gradient
descent. The gradient is defined as

gim =

[
∂L(yi, f(xi))

∂f(xi)

]
f=fm−1

.

The aim is then to create a new tree that fits the values obtained from the
gradient.

We now have a model that consists of the initial guess and a tree. This process
is then repeated a predefined iterations, M . When all M trees are done we end
up with a model defined as

f̂(x) = T0(x, θ) +

M∑
k=1

Tk(x, θ)

This process can be written down more broadly, as in Algorithm 1, below.

7

Algorithm 1 Gradient Tree Boosting Algorithm

1. Initialize g0(x) = argminγ
∑N

i=1 L(yi, γ)

2. For m = 1 to M :

(a) For i = 1, 2,..., N compute

rim = −
[
∂L(yi, g(xi))

∂g(xi)

]
g=gm−1

(b) Fit a regression tree to the targets rim giving terminal regions
Rjm, j = 1, 2, ...Jm

(c) For j = 1,2,...,Jm compute

γjm = arg min
γ

∑
xi∈Rjm

L(yi, gm−i(xi) + γ)

(d) Update gm(x) = gm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm)

3. Output ĝ(x) = gM (x)

As can be seen in Algorithm 1 two parameters can be tuned, the number of
iterations, M , and the size of each tree, Jm. The question is then how to select
proper values for these parameters.

We start by examining how to choose a proper Jm. As mentioned in Section 2.2.1
big trees tend to over-fit, which results in high variance. Further, since boost-
ing uses multiple trees, this may result in increased computation. The simplest
way to avoid this is to set Jm = J ,∀m, i.e., restricting the trees to the same size.

There are two ways to control the impact of M in boosting, either find the
best suited M or by using shrinkage. When using shrinkage there are multiple
ways to implement this. The technique that will be used in this thesis is to
scale the contribution of each tree by a factor 0 < η < 1, i.e. replace line 2(d)
in Algorith 1 with

gm(x) = gm−1(x) + η

Jm∑
j=1

γjmI(x ∈ Rjm).

We refer to [4] for further reading regarding shrinkage.

2.3 Mean Square Error of Prediction (MSEP)
To see how well a prediction is, MSEP is often used, which is defiened as

MSEP(ĈiI) = E((ĈiI − CiI)
2).

8

However, since we are using Chain-Ladder and different accident contains differ-
ent amount of information, it is more convenient to use the Conditional MSEP,

MSEP(ĈiI |D) = E((ĈiI − CiI)
2|D)

where D = {Cik | i+ k ≤ I}, i.e., the set of data observed so far.

This can be rewritten as

MSEP(ĈiI |D) = Var(CiI |D) + (E(CiI |D)− ĈiI)
2.

Under the assumptions that are made in section 2.1 the estimation of MSEP
can be rewritten as

̂MSEP(ĈiI |D) = Ĉ2
iI

I−1∑
k=I+1−i

σ̂2
k

f̂2
k

(
1

Ĉik

+
1∑I−k

j=1 Cjk

)

where σ̂2 is the unbiased estimatior of σ2 and is defiened as

σ̂2
k =

1

I − k − 1

I−k∑
i=1

Cik

(
Ci,k+1

Cik
− f̂k

)2

For the proof we refer to [6].

As can be seen, there arise issues when k = I − 1. This can be solved ei-
ther by assuming that the claim cost is fully developed after I − 1 years, i.e.
f̂I−1 = 1, which will give us that σ̂2

I−1 = 0. If we do not assume that it’s fully
developed, we could instead extrapolate the usually exponential decreasing se-
ries σ̂2

1 , σ̂
2
2 , ..., σ̂

2
I−2. The extrapolation could either be a log linear regression or

as simple as
σ̂2
I−3

σ̂2
I−2

=
σ̂2
I−2

σ̂2
I−1

which holds true as long as σ̂2
I−3 > σ̂2

I−2. Given the last constraint we can use

σ̂2
I−1 = min

(
σ̂4
I−2

σ̂2
I−3

,min
(
σ̂2
I−2, σ̂

2
I−3

))

2.4 Bias-Variance Trade Off
When creating a model, the goal is to minimize the expected error on unseen
data. The risk that arises is an overfitted model and hence too complex. A
complex model might predict the training data well, but not the predicted one.
This results in a model with high variance. On the other hand, a simple model
does not use all the information, which results in a bad prediction, i.e., high bias.

Let’s assume that we expect that the response variable Y = h(x) + ϵ, where

9

E(ϵ) = 0. The expected prediction error, MSE, for an observation can then be
written as

Err(x0) = E
(
y0 − ĥ(x0)

)2
= Var

(
ĥ(x0)

)
+
[
Bias

(
ĥ(x0)

)]2
+Var(ϵ)

The goal is then to find a model that minimize the expected prediction error.
An illustration of the MSE can been seen in Figure 2 below

Figure 2: Squared bias (blue curve), variance (orange curve), Var(ϵ) (dashed
line) and MSE (red curve). Figure taken from [5].

2.5 k-fold Cross Validation
The best way to find the model that minimizes the MSE is to use one dataset
for training and one for validation. However, there are often times data for vali-
dation is not available. When this is the case, resampling methods can be handy.

The idea of resampling methods is to use the training data for training and
validation. This is achieved by splitting the data into training and validation
data. There are multiple different methods available for resampling, but the one
used in this thesis is k-fold cross validation.

Given a data set of n observations, top row in Figure 3, we can divide it into k

10

Figure 3: A 4-fold illustrated. The top row is the whole data. The blue-marked
are the parts that are left out when calibrating the model based on the data for
a specific fold (row).

parts. Figure 3 illustrates a division of 4 parts. We are then able to use (k−1)
k

parts of the data, represented in white, to create a model and then validate the
model using the data that have been left out, blue. This is done by using

MSE =
∑

i∈I(k)

(yi − ĥ(xi))
2

where I(k) are all the observations in part k, i.e., the left out part. This is then
repeated for all combinations. The cross validation can then be calculated as
the mean of all the MSEs, i.e.

CV(k) =
1

k

k∑
i=1

MSEi

We can then compare the cross-validation of different models and choose the
model that obtained the smallest value.

11

3 Model
As mentioned in the introduction, one of the most common models to estimate
IBNR is the Chain-Ladder due to the fact that it is easy to compute and as-
sume that the claims are distribution-free. There is, however, one drawback
with Chain-Ladder, it assumes that the data is homogeneous.

The scope of this thesis is to extend the regular Chain-Ladder by allowing the
development factors to be dependent on more specific claims data. This is done
by extending the model to be dependent on a feature vector x ∈ X . We can
then use sub-portfolios to estimate our development factors, which can be used
to calculate the ultimo.

As the original Chain-Ladder, this can be seen as a regular linear regression. By
dividing the data into sub-portfolios, we are able to use different methods rather
than the least squared. As previously mentioned, Gradient Boosting Machines
will be used in this thesis, but other techniques can be used, e.g., support vector
machines.

As mentioned in the introduction, a similar approach has previously been used
by Wüthrich [10] where neural networks have been used for fitting the devel-
opment factors. The same approach will be used in this thesis, with the modi-
fication that GBMs will be used instead of Neural Networks. There are a few
advantages with Boosted Trees (BT) compared to Neural Networks (NN). First
off, trees are much more straightforward than NN. Trees are built using state-
ments, e.g., are there more than two rooms in the apartment, while NN uses a
combination of matrix multiplication and non-linear functions. Hence, BTs are
more transparent.

The second advantage of BTs is the acceptance of input. Since the BTs use
statements to find the best fit, both categorical and continuous variables are al-
lowed. NN on the other hand, which uses matrix multiplication and non-linear
functions, does not allow categorical input, and the continuous variables need
to be scaled. There are, however, solutions for these issues, but depending on
the data, this can be time-consuming.

The two advantages above often result in a faster computation for BTs than
NNs.

The data we will be using is simulated using a simulation machine [1]. The
data, where the first ten rows are presented in Table A.1, consists of 2’502’078
observations, where each observation consists of information regarding

• The Line of Business (LoB) ∈ {1, 2, 3, 4}

• Claims Code (cc) ∈ {1, 2, ..., 53}

12

• Accident Quarter (AQ) ∈ {1, 2, 3, 4}

• Age of the injured (age) ∈ {15, 16, .., 70} in years when claims occurrence

• Injured body part (inj_part) ∈ {10, 11, .., 99}

In this thesis, all features above will be used, which gives us |X| = 4·4·53·56·90 =
4′273′920 different possible feature values. These features can be seen as static,
i.e., they do not change over time. The distribution of each feature is pre-
sented in Figure A.2. What can be seen in the figure is that the claims are
uniformly distributed over accident year and accident quarter. The figure, how-
ever, presents the distribution of all generated observations. Since the scope of
this thesis is to predict the ultimo, we could expect that the distribution of the
"known" data looks a bit different. We can also see that the number of reported
claims decreases for higher ages. There are also a few claim codes and injured
body parts that have fewer reported claims. This might cause problems when
the ultimo for features including these are estimated. However, in this thesis,
we will focus on the total ultimo and will not examine ultimo for specific features.

To be able use specific features in the Chain-Ladder we also have to extend
our assumptions. The following extensions are introduced by Wüthrich [10] and
is as follows

There exist parameters f0(x), ..., fK−1(x) such that for all 1 ≤ i ≤ I, 1 ≤ k ≤
K − 1 and x ∈ X

E
(
Ci,k+1(x) |Ci,k(x)

)
= fk(x)Ci,k(x) + E

(
Ci,k+1(x) |Ci,k

)
I(Ci,k(x) = 0)

There exist parameters σ2
0 , ..., σ

2
K−1 such that for all 1 ≤ i ≤ I, 1 ≤ k ≤ K − 1

and x ∈ X

Var
(
Ci,k+1(x) |Ci,k(x)

)
= σ2

kCi,k(x) + Var
(
Ci,k+1(x) |Ci,k

)
I(Ci,k(x) = 0)

Where I(Ci,k(x) = 0) is an indicator which equals 1 when there is a zero-claim
the year before. Further, we assume that Cik(x) of different accident years
1 ≤ i ≤ I or different features x ∈ X are independent.

The reason why an extension of an intercept is made is because when work-
ing with sub-portfolios, there are situations where the cumulative value is zero
for an accident year, given a feature value. There are two reasons this can oc-
cur. Either there have not been any claims reported for that accident year and
feature value, or no payments have been made.

There are two possible ways to solve this issue. We can either reduce the di-
mensions of our feature vector or extend our assumptions as Wüthrich [10].
However, reducing the number of features removes the idea behind more ho-
mogeneous sub-groups. If all features are removed we are left with the regular
Chain-Ladder. Hence we will use the approach with an intercept. This model

13

can then be divided into two parts. One when Cik > 0, which will be referred
to as Part I, and one when Cik = 0, Part II. We start by obtaining a model for
Part I.

3.1 Part I : Claims with reported payments
As mentioned in Section 2, the first step is to choose a loss function. Given the
assumptions, which are made in Section 1, it is reasonable to use the weighted
square loss function. Given development year k, we can then express the loss
function as

Lk =

I−j∑
i=1

∑
x:Cik(x)>0

(
Ci,k+1(x)− Cik(x)fk(x)

)2
σ2
kCik(x)

=
1

σ2
k

I−j∑
i=1

∑
x:Cik(x)>0

Cik(x)

(
Ci,k+1(x)
Cik(x)

− fk(x)

)2

where fk(x) will be our gradient boosted tree.

Once the loss function is selected, we proceed with finding the optimal tuning
parameters for our model. LoB, injured part, claim code, and AQ are treated
as categorical, while age will be treated as numerical. When using gbm-package
in R the default for our tuning parameters are as follow; Interaction depth 1,
i.e. no interaction, shrinkage 0.5, minimum observations in a node is 10 and
bagging 0.5.

We start by examining the depth of each tree. The interaction depth in the
gbm-package is stated as

Interaction Depth = # of Terminal nodes + 1.

If using the default depth, each tree is presented as a stump. However, Fried-
man and Hastie [4] suggest that the optimal number of terminal nodes, J , is 4
≤ J ≤ 8 with results relatively insensitive to particular choices in this range.
To minimize the computational we will only examine interaction depths 1, 2,
and 3, even thought this might not be optimal.

As mentioned in 2.2.2 the shrinkage factor, ν, is used to scale the contribution
of each tree and is restricted to 0 < ν ≤ 1. Where ν = 1 imply no shrinkage.
Here, Friedman [4], suggest that ν < 0.1 appears to be the best strategy. Due
to this, we will try both 0.1 and 0.01.

Bagging is used, as the other parameters, to prevent overfitting. The bagging
fraction states how much training data should be used when fitting the model.
Friedman and Hastie [4] suggest a bagging fraction of 0.5 or even lower for a
higher number of observations. Since the last development quarters have scarce

14

data, we will try 0.5 and 1.

The last tuning parameter that should be tuned is minimum observations in
a node. As mentioned above, there are few observations in the last development
quarters, and therefore we will also investigate when allowing only one observa-
tion in the node.

A few things are worth mentioning before we continue analyzing our tuning
parameters. To establish which parameter is optimal, we will evaluate using
training and validation errors. The training data will consist of 90% of the data
and the validation of 10%. Further, we will start by using the default values
of the tuning parameters. Once we find the best, we will move on to the next.
When the following parameter is analyzed, the optimal value of the previous is
used. There might be the case that a change in a parameter would result in an-
other optimal parameter, but that case will be disregarded here. The last thing
worth mentioning is that we will use the same model for each development year,
k. This is due to a lack of computational power and would take a long time.
There might, however, be the case that each k has different optimal parameters.

The first tuning parameter that will be chosen is the interaction depth. What
can be seen in Figure 4 (a), which presents the training error, a depth of 3 seems
preferable. However, if we look at Figure 4 (b), we can see that there seems
to be no difference between a depth of 2 or 3 when estimating previous unseen
data. Since a less complicated model is preferred according to Occam’s razor,
we will proceed with a depth of 2.

(a) (b)

Figure 4: Training error (a) and validation error (b) for CY1 model with a
interaction depth of 1,2 and 3. 90% of the data have been used for training and
10% for validation

We now move on the find the optimal value of shrinkage. As mentioned
above, we will adjust the parameters as we proceed; hence we now find the
optimal shrinkage given a depth of 2. Figure 5 present the training and val-
idation error for shrinkage 0.1 and 0.01. As in the case of depth, there is a
preferable value when looking at the training error. There is not as clear when
looking at the validation error. When looking at the validation error, we can
see that, as in the case of training error, shrinkage 0.1 is steeper in the beginning.

15

Another thing that can be noticed is that as the number of trees used in our
model increases, the validation error for 0.1 exceeds the validation error for
0.01. A higher validation error means that it performs worse at unseen data.
However, as we see the risk that the optimal number of trees will exceed 1000,
we will use 0.1 shrinkage. A higher shrinkage often results in a lower number of
trees used, hence, lowering the computational time.

(a) (b)

Figure 5: Training error (a) and validation error (b) for CY1 model with a
shrinkage of 0.1 and 0.01. 90% of the data have been used for training and 10%
for validation

Figure 6 present the error for bagging. Here it is hard to draw any conclusions
since the training and validation errors are similar. Hence we refer to Friedman
and Hastie [4], which suggest a bagging value of 0.5.

(a) (b)

Figure 6: Training error (a) and validation error (b) for CY1 model with bagging
of 0.5 and 1. 90% of the data have been used for training and 10% for validation

The last tuning parameter to be optimized is the minimum number of ob-
servations in a node. As can be seen in Figure 7 the errors are almost identical.
Since both values result in the same error, a minimum number of observations
will be set to 10. The value 10, instead of 1, is used since the prediction is done
using the mean of the fitted values. If a minimum of 1 is used, there is a risk of
high variance.

16

(a) (b)

Figure 7: Training error (a) and validation error (b) for CY1 model with mini-
mum observation of 1 and 10. 90% of the data have been used for training and
10% for validation

To summarize, the tuning parameters used are Interaction Depth of 2, Shrink-
age of 0.1, bagging set to 0.5, and the minimum number of observations in a
node is 10. The last part of optimizing is the number of trees used in our model.
To find this value, 5-fold cross-validation is used. The cross-validation for a dif-
ferent amount of trees is presented in Figure 8. As can be seen, the optimal
number of trees is approximately 50-100. Hence, our prediction is confirmed
that a higher number of trees than 1000 is not needed.

Figure 8: Cross validation for CY1 model where shrinkage equal 0.1, Interaction
Depth of 2, bagging 0.5 and a minimum of 10 observations per node.

3.2 Part II : Claims without reported payments
The next step is to fit a model for the case when Cik(x) = 0. Here we will use
the same approach as in Neural Network Applied to Chain-Ladder Reserving
by Wüthrich, [10].

Given the assumptions that are made for Chain-Ladder, an accident year re-
mains strictly positive once a claim has been reported. Due to this assumption,
we only need to establish a model for the feature values that have no reported
claims in the latest year, i.e., for all Ci,I−i(x). To estimate models for each
feature value equal to zero would result in a highly complex model. Hence, the

17

following model will be defined for the lower triangle, k + i > I,

C∗
ik =

∑
x:Ci,I−i(x)=0

Cik(x).

Further, given this model, it is reasonable to assume the following approximation

C∗
ik ≈ Ci,I−i

k−1∏
l=I−i

g
(i)
l

where Ci,I−i is the total observed claim cost for accident year i and development
year I − i. What can be noted is that the development factors are dependent
on the accident year. This is reasonable since the same feature values might not
be non-zero yearly.

When we have defined a model for the zero-claims we also need to estimate
the devlopment factors. We start by defining the feature values for accident
year 1 ≤ k ≤ i as

X (i)
k = {x ∈ X : Ck,I−i(x) = 0}.

As mentioned above, all zero values are combined in a joint model. We can then
express the cumulative value for development year j > I − i and accident year
k as

C
(∗i)
k,j =

∑
x∈X (i)

k

Ck,j(x)

A reasonable way to estimate them is according to

ĝ
(i)
I−i =

∑i−1
k=1 C

(∗i)
k,I−i+1∑i−1

k=1 Ck,I−i

, and for I − i < j < J ĝ
(i)
j =

∑I−j−1
k=1 C

(∗i)
k,j+1∑I−j−1

k=1 C
(∗i)
k,j

The first development factor can be interpreted as how big part of the known
value is usually observed the next year, given a set of features and the follow-
ing development factors can be seen as usual Chain-Ladder estimations. The
estimations of the development factors, for our data, are presented in Figure
A.3.

3.3 Comparison
We have now calibrated our model which can be expressed as

ĈiJ =
∑
x∈X

Ci,I−i(x)
J−1∏

j=I−i

f̂j(x) + Ci,I−i

J−1∏
j=I−i

ĝ
(i)
j

The model established in Part I estimates the IBNR with a Gradient Boosted
Tree for each development year. Part II estimates the zero claims with the de-
velopment factors given in Figure A.3. What can be seen in the figure is that the

18

first development factors, the ones presented in the first diagonal, are small and
decreases in earlier years. The zero-claim model assumes that the first unknown
observation is a fraction of the last known value. It is reasonable to assume that
the more rare claims are fewer; hence, the fraction is less than 1. Further, it
is reasonable that the first development factor is smaller for earlier years since
more data is known, resulting in fewer zero features.

The next step is to see how well the models perform. Since the data is generated
using a simulator, we can compare the expected values with the true ones. The
estimates for our model, the Chain-Ladder, and the true values are presented
in Table 1. We have also included the MSEP for the Chain-Ladder. This is the
prediction uncertainty related to one standard error.

What can be seen in the Table is that the GBM performs slightly better than the
regular CL for the earlier years while the CL outperforms the latter years. Since
our model has two parts, it could be either the non-zero model that performs
slightly poorer, the GBM, or both. Since the latter years perform poorer, the
earlier development factors must be the ones that do not perform as well. How-
ever, those development factors have the most information and should, however,
give more stable estimates. It is, therefore, reasonable to start investigating the
zero claim model.

True
Reserves

GBM
Reserves

CL
Reserves

√
MSEP

1994 0 0 0 0
1995 1’536 1’529 1’510 63
1996 4’303 3’933 3’892 134
1997 7’937 6’888 6’860 276
1998 10’614 10’170 10’139 416
1999 15’044 15’144 14’807 598
2000 21’434 20’799 20’608 802
2001 32’006 30’789 30’416 1’173
2002 44’708 43’499 43’035 1’434
2003 62’155 65’582 64’796 2’136
2004 110’152 113’243 111’990 4’841
2005 239’630 253’857 235’675 10’745

Total 549’519 565’433 543’728 12’789

Table 1: True outstanding payments, GBM reserves, CL reserved and Mack’s
rooted mean square error prediction at time I. Values presented in 1’000

The true and the estimated reserves for our zero-features are presented in
Table 2. As can be seen, the zero-features only explain approximately 1/3
deviation; hence, 2/3 of the deviation has its explanation by our GBM. To

19

investigate this further, we investigate the average parameter. We use the same
approach as in [10]. The average parameter is defined by

f
GBM

j−1 =

∑I−j
i=i

∑
x:Ci,j−1(x)>0 f̂j−1(x)Ci,j−1(x)∑I−j

i=i

∑
x:Ci,j−1(x)>0 Ci,j−1(x)

.

The marginalized version, i.e., the average CL factor considered as a function
of the different labels, where one feature is fixed, is presented in Figure A.4
and A.5. Since the same simulator and parameters, except for the number of
observations, as in [10] are used, we can compare the marginalized versions. To
compare the factors, we first have to observe that each feature has the same
distribution as in [10]. Figure A.2 shows the distribution of our features, which
have the same as Wüthrich; hence we could compare our marginalized factors.

True
IBNR

Est.
IBNR

1994 0 0
1995 1 9
1996 155 120
1997 105 174
1998 279 234
1999 254 404
2000 299 699
2001 859 963
2002 1’206 1’392
2003 1’009 2’124
2004 2’835 4’470
2005 58’129 63’100
Total 65’131 73’689

Table 2: True outstanding payments for zero-features and estimated using
Wüthrich [10] at time I. Values presented in 1’000

What can be seen is that the marginalized versions look like Wüthrich’s,
except for the values of the estimated values. However, it is hard to conclude if
the difference in the estimates is due to the different estimation approaches or
because we are using fewer data points.

20

4 Comparing MSEP
As mentioned in Section 2.3 MSEP could be used to see how well a model
predicts. To recall, MSEP is expressed as

MSEP(ĈiI) = Var(CiI |D) + (E(CiI |D)− ĈiI)
2

where Var(CiI |D) is the the process variance and (E(CiI |D)− ĈiI)
2 is the esti-

mation error.

Since MSEP is a measurement of uncertainty, extending the analysis and in-
vestigating whether the GBM is more or less uncertain than the original Chain-
Ladder is convenient.

The data that was used previously, when estimating the ultimo, included zero
feature claims. To compare the GBM approach with the Chain-Ladder, we cre-
ate a new data set that does not have any zero features, i.e., all features have a
claim in the first development year. Further, to reduce the computational time,
we use fewer feature value combinations. When creating a new data set, the
following feature values will be used

• LoB ∈ {1,2,3,4}

• AQ ∈ {1,2,3,4}

• Injured body part ∈ {1,2,...,9}

Which gives us |X | = 4 · 4 · 9 = 144 possible feature values.
To obtain the new data set, the following method has been used

1. Create an initial claims vector, Ci,1 ∀x ∈ X , 1994 ≤ i ≤ 2005

2. Simulate the next development year for each feature value using

Ci,k+1(x) = Cik(x)fk(x) +
√
Cik(x)σkϵ

where ϵ ∼ N(0, 1).

In this thesis we will use σk = σ = 1. The choice of σ = 1 might not be fully
realistic given the assumptions made in the Chain-Ladder, and it could be ex-
pected that there is less variance in later development years than earlier. This
data set, which consists of triangles for each feature value, will be referred to as
"the initial data set."

When the data set has been obtained, we can calculate the MSEP for each
model. We start with the MSEP for the Chain-Ladder, presented in Table 3.
This can be calculated using the law of total conditional variance. For further
information regarding the calculation, we refer to Mack’s article regarding the
calculation of the standard error [6]; however, since our sigma is known, we are

21

able to use that instead of the estimated.

The calculation of the MSEP for the GBM can be divided into two parts. One
part is the process variance, and the other is the estimation error.
The process variance for the GBM is calculated similarly to the Chain-Ladder.
The difference is that the variance is calculated for each feature and then
summed up. As the case in the Chain-Ladder, this is calculated using the
law of total conditional variance.

The second part of the GBM MSEP is the estimation error. To estimate the
estimation error, the following procedure is used

1. Create new triangles for each feature value ∈ X using the same Ci,1(x), σ and
fk(x) as above.

2. Estimate the development factors using GBM on the new triangle.

3. Calculate the ultimo of the initial data set, using the new development
factors.

4. Calculate the square of the difference between the initial data sets ultimo
and the new ultimo.

This process is repeated N times, and the estimation error can then be esti-
mated using the mean of the squared differences.

To estimate the estimation error, we have used N equal to 1000. The root
square of the process variance, the estimation error, and the root square of the
MSEP for the GBM are presented in Table 3.

GBM CL
AY

√
Estimation Error

√
V ar

√
MSEP

√
MSEP

1994 0 0 0 0
1995 39 577 579 590
1996 56 824 826 824
1997 72 1 036 1 038 1 036
1998 73 1 195 1 197 1 195
1999 124 1 355 1 361 1 355
2000 165 1 486 1 495 1 485
2001 286 1 659 1 684 1 657
2002 319 1 788 1 817 1 786
2003 385 1 926 1 964 1 922
2004 602 2 092 2 177 2 087
2005 888 2 212 2 384 2 206

Table 3: Conditional root squared estimation error, process variance, and MSEP
for GBM and Chain-Ladder for each accident year. Values presented in 1000s

22

What can be noted in the Table is that the Chain-Ladder MSEP is close to
the process variance of the GBM. This might be due to too high development
factors for our GBM. Higher development factors result in a higher estimation
of the variance.

In Figure A.6 the ultimo’s that have been used to calculate the estimation
error are shown, together with the true ultimo. As can be seen, the GBM tends
to overestimate the ultimo. One explanation is that the same parameters, as in
the ultimo analysis, were used when the models were fitted. By looking at the
histogram, it looks like those parameters were not correct.
It is hard to draw any conclusion from this analysis since the correct parameters
were not chosen. An analysis to find the best-suited parameters should have
been done to make a fair comparison.

23

5 Discussion
The scope of this thesis was to see if we could improve our Chain-Ladder reserve
estimates by dividing the data into sub-portfolios and using machine learning to
estimate our development factors. The approach that has been used is inspired
by Wüthrich [10] with the modification that Gradient Boosted Trees have been
used instead of Neural Networks.

What was observed was that the reserve estimates with GBM were in line with
the Chain-Ladder for the earlier years. A benefit with GBM is that we are able
to do a more granular analysis, since reserving is done by aggregating multiple
feature estimations.

In the latter year, however, the GBM estimations were outperformed by the
original Chain-Ladder. Either the feature space that is observed in the latter
years differs from the previous years; hence the estimations of the development
factors are poor. Another possible explanation is that the optimal tuning pa-
rameters have not been chosen. As mentioned earlier, the parameters have been
chosen given the previous as fixed. By re-estimating the parameters, better
predictions might be possible.

A few improvements should have been made if the time, knowledge, and com-
putational power were available. First, we could not compare our results with
Wüthrich’s due to a lack of knowledge of R and lack of computational power.
In our analysis, we were able to use 2’500’000 observations while Wüthrich [10]
used 5’000’000. An increased number of observations would most likely improve
our estimates but also be able to see the difference in our estimations. Another
extension of Wüthrich’s analysis was to divide the reserves into the different
lines of businesses. Our model might have poorly performed on one line of busi-
ness, hence an overall bad estimation.

The second thing is the choice of tuning parameter values. As mentioned earlier,
we started by finding the optimal for one parameter, given the other. We then
proceeded with this value and kept it fixed. A possible solution would be to
return to the previous parameters and tune them once more until they converge.
Further, since two parameters are continuous, shrinkage and bagging, multiple
more values could be regarded than the few used in this thesis. However, since
this is the case, there are infinite possible combinations; hence not possible to
try them all.

Further, in this thesis, we used the same features as Wüthrich, i.e., all available.
Since we used fewer observations than Wüthrich, there is a possibility that a
more aggregated data set, e.g., not using claim code, would result in a better
estimation. There is also a risk of overfitting when too many features are used.
This could also be a parameter that changes over each claim year; hence this
analysis should be done for each model.

24

As mentioned earlier, the division into sub-portfolios results in regular linear
regression. Multiple machine learning techniques handle regression well, and
the analysis could then be extended by adding more models.

25

6 References
[1] Gabrielli, A and Wüthrich, M. (2018). An Individual Claims History Simu-

lation Machine. Risks, 6(2):29. https://doi.org/10.3390/risks6020029

[2] Gesmann, M., Murphy, D., Zhang, Y., Carrato, A., Wüthrich, M., Concina,
F. and Dal Moro, E. (2022). ChainLadder: Statistical Methods and Mod-
els for Claims Reserving in General Insurance. R package version 0.2.15.
https://CRAN.R-project.org/package=ChainLadder

[3] Greenwell, B., Boehmke, B., Cunningham, J., and GBM Developers. (2020).
gbm: Generalized Boosted Regression Models. R package version 2.1.8.
https://CRAN.R-project.org/package=gbm

[4] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statis-
tical Learning. New York, Ny Springer New York.

[5] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An introduction
to statistical learning : with applications in R. Springer.

[6] Mack, T. (1993). Distribution-free Calculation of the Standard Error
of Chain Ladder Reserve Estimates. ASTIN Bulletin, 23(2), 213-225.
doi:10.2143/AST.23.2.2005092

[7] Mack, T. (1993). Measuring the variability of Chain Ladder reserve esti-
mates, Munich Re

[8] Ridgeway, G. (2020) Generalized Boosted Models: A guide to the gbm pack-
age. https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf

[9] Schnieper, R. (1991). Separating True IBNR and IBNER Claims. ASTIN
Bulletin, 21(1), 111-127. doi:10.2143/AST.21.1.2005404

[10] Wüthrich, M. (2018). Neural networks applied to Chain–Ladder
reserving. European Actuarial Journal, 8(2), 407-436.
http://dx.doi.org/10.2139/ssrn.2966126

26

A Appendix

ClNr LoB cc AY AQ age inj_part
1 2 49 1994 2 32 71
2 2 46 1994 2 15 34
3 3 50 1994 1 39 14
4 2 41 1994 3 36 33
5 3 20 1994 1 59 53
6 1 6 1994 1 21 20
7 1 27 1994 1 46 36
8 4 46 1994 4 51 35
9 4 26 1994 4 36 21
10 2 40 1994 4 33 51

Table A.1: 10 first lines of feature data

Figure A.1: Cumulative values presented in 1000’s

Figure A.3: Estimated zero-feature development factors.

27

(a) (b)

(c) (d)

(e) (f)

Figure A.2: Marginal distributions of the feature components Accident Year,
Accident Quarter, Age, Claim Code, Injured Body Part and Line of Business.

28

Figure A.4: Sensitives of the estimated CL factors f̂j−1(x) in individual feature
components for j = 1, 2, .., 5. Solid line shows the average development factor.
Dots show the marginalized development factor given a feature value. Method
taken from [10]

29

Figure A.5: Sensitives of the estimated CL factors f̂j−1(x) in individual feature
components for j = 6, 2, .., 11. Solid line shows the average development factor.
Dots show the marginalized development factor given a feature value. Method
taken from [10]

30

Figure A.6: Ultimo estimates used for calculating esimation error. The solid
line represent the true ultimo.

31

