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Abstract

It is becoming increasingly common for companies to try to un-
derstand their customers and take various actions using data-driven
methods. The data availability, the increased storage capacities and
the improvements in computing have all contributed towards this di-
rection. Web Summit, an Irish technology conference company, is no
exception and has taken advantage of these developments.

In this thesis, an optimal division of attendees from three confer-
ences into segments was the desired outcome and cluster analysis was
the chosen approach. The segments would consist of homogeneous
sub-populations which share common behavioural aspects regarding
patterns of engagement per conference. The company’s mobile app
was the source of the various engagement metrics, which were subse-
quently aggregated.

To achieve the above, three clustering methods were chosen to be
fitted, validated and compared. Those methods were K-Medoids, Ag-
glomerative clustering with average-linkage and (”fuzzy”) HDBSCAN.
The data were transformed before clustering with UMAP, a fairly
new dimensionality reduction method, after a simulation study which
showed that UMAP-assisted clustering provides a performance advan-
tage.

It was concluded that overall Agglomerative clustering with average-
linkage had a small advantage over the other methods. The cluster cen-
troids revealed a shared pattern that underlines all clusters, namely
the increase in engagement as the event approaches and the abrupt
decrease of it when it ends. Most importantly it revealed spikes in en-
gagement on different days, which is what makes the clusters distinct.
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1. Introduction

1.1 Web Summit – a tech conference company

Based on information on its website [31], Web Summit is a tech conference com-
pany founded in 2009 in Dublin, Ireland. Since then, it has exhibited significant
growth both in number of attendees and partnerships. It has hosted primarily
in-person events in Dublin, Lisbon, Toronto, Hong Kong, New Orleans, Bangalore
and cities like Tokyo and Kuala Lumpur will be added to the list soon. The com-
pany’s flag event is named after it (Web Summit) and it is the biggest in size and
publicity. Other events are Collision, RISE, SURGE (inactive) and MoneyConf
(part of the Web Summit event now).

The company’s events are a good place for startups, investors and simple tech
enthusiasts to meet and explore interests and opportunities. Market research, lead
generation, networking and professional development are some key benefits of at-
tendance. The Web Summit event has been characterized as a leading technology
conference worldwide [8].

In 2015, Web Summit launched a mobile app. The latter would be the place
where the conference ticket would be stored. Moreover, it had several other fea-
tures such as online communication among attendees, schedule and personalized
recommendations for conference sessions. The app has been essential throughout
the years for a complete event experience.

In 2020, the COVID-19 pandemic affected, among others, the way people inter-
act socially and professionally. It also encouraged the acceleration of digitalisation
in the Western world. These facts had, of course, implications on how mass public
events are held. Following this trend, Web Summit decided to organise exclusively
online events for the first time. To achieve that, it enhanced significantly its soft-
ware infrastructure and created a platform on which these virtual events can and
have already taken place.

The aforementioned situation makes even more urgent the need for under-
standing the company’s customer base and, particularly, conference attendees.
This would facilitate interventions on every level improving the quality of the
product and as a result the attendee satisfaction.
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1.2 Customer segmentation

Tsiptsis and Chorianopoulos [51] defined customer segmentation as “the process of
dividing customers into distinct, meaningful, and homogeneous subgroups based
on various attributes and characteristics” [51, p. 189]. It started being used to
address the drawbacks of mass marketing, particularly the inability to follow the
developments in the market in the 20th century, such as the increasing fragmen-
tation and cost of advertising [29, p. 240].

The objectives of customer segmentation can be many. Companies can imple-
ment it to understand their customers, create new products and services or im-
prove existing ones, offer discounts, adjust their marketing strategy, adjust their
resource allocation and others [51, p. 190]. The segments make the customer base
more manageable and facilitate decision making [51, p. 190].

Segmentation can take various forms and selecting one of them can be depen-
dent on the objective and/or the data availability. Kotler and Keller [29] identify
geography, demographics, psychology and behavior as the main pillars on which
this process can be based [29, p. 247], but there can, also, be combinations of
them.

1.3 The goal of this project

In this project, the focus will be on behavioral segmentation and by behavior we
mean patterns of user engagement before, during and after the three events in
question. The goal is to identify segments of conference attendees, who exhibit
similar patterns of engagement time-wise. The metrics of engagement will be
derived exclusively from the mobile app usage.

This data-driven approach, apart from its descriptive value, will be proven
useful for potential time-dependent attempts to engage with groups of attendees
either on a marketing or product-related basis (e.g. recommender system). How-
ever, segment profiling and deployment issues will not be a part of this project.

1.4 Software and hardware

The source code for this project is being written in Python. The data analysis
took place in JupyterLab running in a m4.large EC2 instance on AWS, having
Ubuntu 20.04.02 LTS as OS. The Python packages used, aside from the ones in the
Python Standard Library, were hdbscan [34], scikit-learn [43], scikit-learn-extra,
pandas [50] [39], matplotlib [25], NumPy [22], UMAP [36], validclust, pycluster-
tend, Yellowbrick [6], kneed [48] and dill [38] [37].
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2. Methods

2.1 Cluster analysis

Cluster analysis or clustering is a set of techniques used for identifying groups in
data [27, p. 1]. It differs from classification in the sense that the algorithms used
are considered to be unsupervised learning. In classification, the class labels are
already known, while in clustering they need to be discovered.

Assigning objects to groups is an important aspect of human behavior, starting
from the early childhood [27, p. 1]. That is to address the problem of managing the
countless objects (real or abstract) humans encounter every day [2, p. 1]. More-
over, it has been used in various fields, such as biology, social science, geoscience,
medicine and engineering [2, p. xi]. Reasons to use it can be either descriptive or
predictive or both.

Everitt et al. [17, pp. 7, 8] claim that it is difficult to give a clear definition of
the cluster, though measures related to cohesion and separation have been used to
form one. They acknowledge the fact that clusters are often identified visually and
sometimes there is a disagreement between that and methods of cluster analysis.
According to them, that is often the case when it comes to uniform datasets,
where a method can impose a non-existent structure. However, even in cases like
that, it might be meaningful to dissect the data [17, p. 8].

Kaufman and Rousseeuw [27, pp. 3, 4] identify two types of input data that
can be used for clustering. The first one, according to them, is a N × l matrix
where N is the number of observations and l is the number of features. Features
are carefully selected, usually on empirical grounds. The second is a N×N matrix
of the similarities or dissimilarities of observations [27, pp. 3, 4].

According to Han et al. [21, pp. 448–451] there are four general categories of
clustering methods. They identify: 1. Partitioning methods, which separate data
into different partitions on a single-level basis, with a predefined number of clus-
ters; 2. Hierarchical methods, which separate data on a multi-level basis and can
be performed on a bottom-up or top-down way; 3. Density-based methods, which
do not work directly on the distance, but on the “neighborhood“ of data points
and can exclude many of them by treating them as noise; 4. Grid-based methods
which create a grid data structure and perform clustering on that, demonstrating
a performance advantage compared to the other categories of methods.
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2.2 Time-series clustering

Aghabozorgi et al. [1] definition of time-series clustering does not differ from the
classical one. They state, however, that time-series have special characteristics
and pose different challenges, with respect to size, dimensionality and similarity.
There are, also, unique aspects in objectives (e.g. anomaly detection, dynamic
changes, etc.) and taxonomy (e.g. clustering of multiple entire time-series or parts
of one time-series) [1].

According to Warren Liao [53] time-series can either be handled as they are by
fitting an appropriate similarity/dissimilarity measure or converted to a feature
vector, using dimensionality reduction techniques or even model parameters. The
nature of the data play a role on how they will be handled, particularly in terms of
the quality of the sampling, the number of time-dependent variables, the nature
of the numbers and the length (varying or not) [53].

2.3 Similarity/distance

The choice of time-series similarity/distance metric needs always careful consider-
ation, because it is tightly connected to the objectives of clustering. Bagnall and
Janacek [3] identify similarity in time, shape and change as the three categories
that guide the choice of a similarity/distance metric. Similarity in time can be
achieved with distance metrics like the correlation distance or the Euclidean dis-
tance on the normalised time-series, while Dynamic Time Warping, introduced by
Bellman and Kalaba [5], is a popular method for similarity in shape [3]. Similarity
in change is a bit different, since time-series models, such as ARMA, have to be
utilized [3].

The distance between two time-series x1 = {x11, x12, ..., x1l} and x2 = {x21, x22, ..., x2l}
can be generally defined as follows [1]:

d(x1, x2) =
l∑

i=1

d(x1i, x2i) (2.1)

The Euclidean distance is [53]:

dE(x1, x2) =

√√√√ l∑
i=1

(x1i − x2i)2 (2.2)

and it is the most widely used. Data normalization/standardization is often re-
quired before fitting. It has variations, such as the squared Euclidean distance and
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generalizations such as the Minkowski distance. The correlation distance is [53]:

dr(x1, x2) = 1− rx1,x2 = 1−
∑l

i=1(x1i − x̄1)(x2i − x̄2)√∑l
i=1(x1i − x̄1)2

√∑l
k=1(x2i − x̄2)2

(2.3)

where r is the Pearson’s correlation coefficient. Since the latter is a value between
0 and 1, the correlation distance can take values between 0 and 2. Given the
lattice Ll,l = {1, ..., l} × {1, ..., l}, the Dynamic Time Warping distance is [26]:

dDTW (x1, x2) = min
π∈Π

√ ∑
(i,j)∈π

(x1i − x2j)2 (2.4)

where π = {π1, π2, ..., πz} is a warping path and Π is the set of all warping paths
in Ll,l. A warping path is a sequence of points πk = (ik, jk) in Ll,l which satisfy
the follwing conditions [26]

• (boundary condition) π1 = (1, 1) and πz = (l, l)

• (step condition) πk+1 − πk ∈ {(1, 0), (0, 1), (1, 1)},∀k ∈ [z − 1]

From the above, only the Euclidean distance is a metric, since the rest do
not satisfy the triangular inequality. This does not, however, prevent them from
being used extensively. Moreover, there is no restriction on the input data for
these distances. Finally, the choice of similarity/distance metric should be unique
when comparing different clustering methods using exclusively internal validity
indices, since otherwise it is like comparing methods on different data [1].

2.4 Clustering methods

The list of methods that have been used for time-series clustering is rather large.
They range from original ones, such as Fuzzy c-means, Agglomerative clustering,
k-means, K-Medoids and SOM to adjusted, such as Modified relocation clustering,
modified k-means, Modified CAST [1] [53]. In the following subsections, we will
expand on three algorithms, specifically K-Medoids, Agglomerative Clustering and
HDBSCAN, which were chosen for three reasons: 1. Each one of them represents
a broader class of models, 2. They all can be used with distance measures and 3.
They produce results relatively fast.

2.4.1 K-Medoids

K-Medoids is a partitioning-based method. Medoids are actual observations in
contrast with K-Means where the representatives are artificial. The name of the
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method was given by Kaufmann and Rousseeuw [28] who, also, introduced one
of its implementations, the Partitioning Around Medoids (PAM) algorithm. The
method aims to allocate observations to clusters based on the minimum distance
from their medoids [28]. In K-Medoids, as in K-Means, the number of clusters
has to be provided.

Kaufman and Rousseeuw [27, pp. 102–104] describe PAM, which consists of
the phases BUILD and SWAP that can be summarized in algorithm 1 and algo-
rithm 2. Let Xs be the selected and Xu the unselected observations and let xm the
observation whose sum of distances to all other observations is the smallest [27,
p. 102].

Algorithm 1: Find initial k medoids (BUILD)

1 Add observation xm to Xs.
2 Pick observation xi ∈ Xu.
3 Pick xj ∈ Xu − {xi} and calculate φji = d(xj, x1nnj

)− d(xj, xi), where d
the distance and x1nnj

the nearest selected observation to xj.
4 Calculate the partial contribution gji = max(φji, 0). If gji = φji then xj

will play a role in the selection process of xi.
5 Calculate the total contribution Gji =

∑
j gji.

6 Select the xi that maximizes Gji.
7 Repeat steps 2-6 until k medoids have been found.

Now let x2nnj
be the second nearest selected observation to xj and (xi, xh) be

all pairs of observations where xi has been selected, while xh has not [27, p. 103].

Algorithm 2: Update k medoids (SWAP)

1 Pick observation xj ∈ Xu − {xh}.
2 Calculate

tjih =

{
min(d(xj, xh)− d(xj, x1nnj

), 0), d(xj, xi) > d(xj, x1nnj
)

min(d(xj, xh), d(xj, x2nnj
))− d(xj, x1nnj

), d(xj, xi) = d(xj, x1nnj
)

where tjih the partial contribution to the swap.
3 Calculate the total contribution to the swap Tih =

∑
j tjih.

4 Select xi and xh that minimize Tih.
5 If minTih < 0, the swap takes place and algorithm restarts. If minTih ≥ 0

the swap is meaningless and the algorithm stops.

In some cases, such as when we try to determine the number of clusters, speed
is crucial. An alternate method which will replace algorithm 2 can be used [42].
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Algorithm 3: Update k medoids and assign observations (Alternate)

1 Assign observations to their nearest medoid.
2 Calculate the sum of distances between all observations and their

medoids.
3 For each cluster, find the observation that minimizes the sum of distances

between itself and all other observations in the cluster. Make this
observation the new medoid of the cluster.

4 Repeat steps 1 and 2. If the number we get from step 2 is equal to the
previous calculation, the algorithm stops. If not, go back to step 3.

2.4.2 Agglomerative clustering: Average-linkage

Agglomerative clustering is one of the two main methods of hierarchical clustering,
the other one being the divisive clustering [32]. While the divisive clustering
utilizes a ”top-down” approach, the agglomerative clustering utilizes a ”bottom-
up” approach. This, basically, means that we start with as many clusters as the
number of observations and we gradually merge those to larger clusters, until we
reach the point of having just one big cluster [32], as shown in algorithm 4.

A choice has to be made about the linkage criterion, since different criteria
yield different results. They control how the precomputed pairwise distances de-
termine the distance between groups of observations. Some of those criteria are the
Ward’s criterion, the complete-linkage, the average-linkage and the single-linkage.
Average-linkage or Unweighted Pair Group Method with Arithmetic mean (UP-
GMA) creates clusters in a way that each observation has smaller average distance
to all observations inside its own cluster than the rest of the observations and can
be summarized as [49]:

d(K1, K2) =
1

|K1||K2|
∑
x1∈K1

∑
x2∈K2

d(x1, x2) (2.5)

which is the initial distance between clusters K1, K2 and

d(K1 ∪K2, K3) =
|K1|d(K1, K3) + |K2|d(K2, K3)

|K1|+ |K2|
(2.6)

which is the distance between clusters after a merge has occurred.
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Algorithm 4: Agglomerative clustering

1 Add each observation to a separate cluster and calculate their distance.
2 Merge similar clusters based on the smallest distance d between them.
3 Calculate the distances of the new clusters.
4 Repeat steps 2-3 until a single cluster is formed.

The output of agglomerative clustering is a dendrogram with leaves being the
individual observations and nodes being the clusters in all levels, with root node
the single upper level cluster. The naive implementation of the algorithm has
time complexity O(n3), but there exist different approaches which can reduce
that significantly [20].

2.4.3 HDBSCAN

HDBSCAN or Hierarchical Density-Based Spatial Clustering of Applications with
Noise is an extension of DBSCAN. Introduced by Campello et al. [10], the algo-
rithm aims to address issues of other density-based methods, including but not
limited to the need to have multiple density thresholds for clusters of different
densities and structure, to identify the most significant clusters and to minimize
the need for sensitive input parameters.

Summarizing how HDBSCAN works (algorithm 5), requires the definition of
certain notions [10]:

1. Core Distance (dc): The distance between an observation xi in X and its
mpts-nearest neighbor, where mpts a smoothing factor for density estimates.

2. ε-Core Object: An observation xi in X, whose core distance is smaller or
equal to ε.

3. Mutual Reachability Distance (dmr): The distance

dmr = max{dc(xi), dc(xj), d(xi, xj)} (2.7)

where xi, xj in X.

4. Mutual Reachability Graph (Gmpts): A graph consisted of the obser-
vations of X as vertices, with edge weights being the dmr of all pairs of
observations.

5. Minimum Spanning Tree: A subset of the edges of a connected undi-
rected graph that connects all vertices together with minimal weight [41].
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Algorithm 5: Construct the HDBSCAN hierarchy

1 Calculate dc for all observations.
2 Calculate a Minimum Spanning Tree (MST) of Gmpts .
3 Add a “self edge“ to each vertex with weight being the dc of the relevant

observation and, thus, extend MST.
4 Add all observations to the same cluster. This would be the root of the

dendrogram.
5 Set the dendrogram scale value equal to the largest weight of the existing

edges.
6 Remove the edge with the largest weight from the extended MST.
7 Assign cluster labels to the connected components linked to the removed

edge if they have one or more edges. If that is not the case, classify the
components as noise. Alternatively, if a connected component has fewer
observations than a given minimum cluster size, then it is classified as
noise and the cluster split is not taking place. If, on the other hand, the
split results to two clusters with number of observations larger or equal
to the minimum cluster size, then the split is valid.

8 Repeat steps 5-7 until all edges are removed.

We can extract flat clusters from the hierarchical tree. This can be achieved
by either using an excess of mass method or just choosing the clusters at the
leaves of the tree. The former aims to find the most persistent clusters and uses
the concept of stability [34] [10]

S(Ki) =
∑
xj∈Ki

(min(λdeathi , λij)− λbirthi ) (2.8)

where Ki a cluster, λ is the inverse of the split distance, λbirthi the value of λ
at which the cluster was created, λdeathi the value of λ at which the cluster was
subsequently divided to more clusters and λij is the value when the point xj
stopped belonging to that cluster. Initially, we consider all leaves as the selected
flat clusters and we move up towards the root of the tree. In case the sum of
stabilities of the child clusters is larger than the cluster’s stability, we set the
latter to be equal to the former. If the opposite is the case, then we select that
cluster and disregard its child clusters.

It is possible to implement a ”fuzzy” version of HDBSCAN where instead of
observations being assigned clustered memberships they are assigned probabilities
of membership to each cluster [34]. This is useful, especially, when we want to
assign all observations classified as noise to their nearest cluster. This method is
described in algorithm 6, algorithm 7 and algorithm 8 [34].
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Algorithm 6: Distance-based membership

1 Select a cluster Ki and get its leaf clusters.
2 For each leaf, find the observations with the largest λ. These observations

are the exemplars of the cluster.
3 Repeat steps 1 and 2 until determining exemplars for all clusters.
4 Calculate the inverse minimum distance of every observation to the

cluster exemplars and divide by the sum of these distances for all
clusters. The results are the cluster membership scores of the
observations.

Algorithm 7: Outlier-based membership

1 Select a cluster Ki and get its leaf clusters. Find its λmax
i , namely the

largest λ of its leaves.
2 For each observation xj, find its merge height ψij with Ki.
3 Repeat steps 1 to 2 until determining all λmax

i and ψij.
4 For each observation, calculate

ρij =
λmax
i

λmax
i − ψij

(2.9)

5 For each observation, calculate the exponential of all ρij and divide by
the sum of ρij for all clusters. The latter are the cluster membership
scores of the observations.

Algorithm 8: Combined membership

1 For each observation, multiply the cluster membership vectors found
by algorithm 6 and algorithm 7 and divide by the sum of the resulting
vector. That is the conditional probabilities of observations are in each
cluster based on them actually belonging in a cluster. They can be
defined as:

P (x ∈ Ki|∃j : x ∈ Kj) =
P (x ∈ Ki,∃j : x ∈ Kj)

P (∃j : x ∈ Kj)
(2.10)

We have P (x ∈ Ki) = P (x ∈ Ki,∃j : x ∈ Kj), since P (∃j : x ∈ Kj) = 1
if x ∈ Ki

2 Estimate P (∃j : x ∈ Kj) by calculating
ψij

λmax
i

for each observation.

3 Compute P (x ∈ Ki).
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2.5 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a relatively new
technique used for dimensionality reduction and subsequent visualization or some-
times as input to clustering or other algorithms [35]. The theoretical underpin-
nings of UMAP, mainly topology and category theory, are outside the scope of
this project. The readers who are interested in them are referred to [30], [33]
and [45]. McInnes et al. [35] describe the algorithm as shown in algorithm 9.
Below we briefly describe some necessary terms [35]:

1. n-simplex: A convex hull of n + 1 independent points in the Euclidean
space [12]. For example, the 0-simplex is a point, the 1-simplex is a line
segment, the 2-simplex is a triangle and so forth [12].

2. Simplicial Set: Originating in Eilenberg and Zilber [16], it is a generaliza-
tion or abstraction of simplicial complex, the latter being a set of simplices
such that the faces of the simplices belong to it and the intersection of any
two simplices is a face of both of them. A simplicial set is a mapping of the
simplex category to the set category.

3. n-skeleton: A simplicial subcomplex with dimension n.

4. k-nearest neighbors: A classification and regression method originating
in Fix and Hodges [18], with the central idea that neighboring observations
”vote” for the values of observations in question.

5. Weighted Adjacency Matrix: A square matrix A whose elements are the
weights of the edges of a graph Γ̄, when the edges exist and zero otherwise.

6. Degree Matrix: A square matrix D of a graph Γ̄ with elements [11]

Dij =

{
deg(xi) if i = j

0 otherwise
(2.11)

where deg(xi) the number of either the incoming or outgoing edges at each
vertex if the graph is directed or the number of edges at each vertex if the
graph is undirected (loops count as 2).

7. Cross entropy: It measures the amount of information needed for a prob-
ability distribution p to identify samples from a probability distribution q
over the same set and it can be defined as:

CE(p, q) = −Ep [log q(x)] (2.12)
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Algorithm 9: UMAP

1 For xi in X and X inn = {xij |j = 1, ..., k} the k nearest neighbors of xi,
construct a local fuzzy simplicial set by creating a weighted directed
graph Γ̄ = (X,Ω, w) where Ω is the set of the directed edges (xi, xij)
with weights:

wij = exp[
−max (0, d(xi, xij)− ρi)

σi
] (2.13)

where ρi = min (d(xi, xij)|1 ≤ j ≤ k, d(xi, xij > 0) and σi is a

normalization factor which should satisfy the equality
∑k

i wij = log2 k,
with k being the neighborhood size. Convert Γ̄ into an undirected
weighted graph by calculating a new adjacency matrix

As = A+ AT − A ◦ AT (2.14)

where A is the weighted adjacency matrix of Γ̄ and ◦ is the Hadamard
product. The matrix As is the 1-skeleton of the topological
representation.

2 Initialize graph layout using spectral embedding:

Y = Λ[1..τ + 1] (2.15)

where τ the desired reduced dimension, Λ are the eigenvectors of
D1/2(D − As)D1/2 and D the degree matrix of the undirected graph.

3 Optimize embedding by minimizing the quantity:

−
∑
ij

w∗ij log(vij) + (1− w∗ij) log(1− vij) (2.16)

which is derived by the fuzzy set cross entropy. The weight w∗ij
corresponds to the undirected graph from the previous steps and vij is
the corresponding weight in the low-dimensional space and it is
approximated by

vij =
1

1 + ad(yi, yj)2b
(2.17)

where a, b are calculated by non-linear least squares fitted to the curve

CRij =

{
1, if d(yi, yj) ≤ dmin

exp(−d(yi, yj)− dmin), otherwise
(2.18)

where dmin the provided minimum distance between embedded points.
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2.6 Validation

Clustering validation is the process of assessing how the clustering methods per-
form on real data. It can be used either for determining the number of clusters
and other parameters for a single method or for comparing the performance of
different methods. It can, also, be used for assessing the clustering tendency in
the data.

Validation indices can be classified as either external or internal. External
indices can only be used if a ”ground truth” of the clusters is known. This is
not the case, however, for the majority of the problems, since clustering is mainly
used as an exploratory technique for uncovering an unknown structure in the data.
The Rand index, the Jaccard index, the Fowlkes-Mallows index are some external
indices. On the other hand, we have the internal indices which do not require any
prior knowledge about the data structure. They assess how well the produced
clusters match that structure. They include but are not limited to the Silhouette
score, the Dunn index, the Davies-Bouldin index.

Internal indices measure 1) compactness, which is how close to each other
the cluster elements are and 2) separability, which is how far away from each
other different clusters are [44]. There should be careful interpretation of the
indices’ values, since some of them are positively biased towards certain clustering
techniques.

2.6.1 Cluster tendency - Hopkins statistic

The Hopkins statistic originates in Hopkins and Skellam [23] as part of an alterna-
tive method to quadrats for the determination of distribution of plants. Banerjee
and Dave [4] used it as a method to assess clustering tendency and defined it as

HS =

∑M
i=1 d(yi, xyi1 )∑M

i=1 d(yi, xyi1 ) +
∑M

i=1 d(x∗i , xx∗i1
)

(2.19)

where xyi1 is the nearest neighbor of yi in X and xx∗i1
is the nearest neighbor

of x∗i in X, while X = {x1, x2, ..., xN} the points in l-dimensional space, X∗ =
{x∗1, x∗2, ..., x∗M} a random sample of X , with M << N , and Y = {y1, y2, ..., yM}
points in l-dimensional space sampled from a uniform random distribution. In
many cases, the value 1−HS is taken into account instead. If the latter is close
to 0 then the data exhibit cluster tendency, while if it is 0.3 and above, then the
data are near uniform.
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2.6.2 External validity indices

Let N be the number of data points, K = {K1, K2, ..., Ks} be a clustering im-
plementation, C = {C1, C2, ..., Cr} be the ground truth classes, nck = {ck : c =
1, .., r|k = 1, ..., s} be the number of common observations between the elements
of C and K, as shown in the contingency table

C/K K1 K2 ... Ks sum
C1 n11 n12 ... n1s n1∗
C2 n21 n22 ... n2s n2∗
. . . . . .
. . . . . .
. . . . . .
Cr nr1 nr2 ... nrs nr∗
sum n∗1 n∗2 ... n∗s

Adjusted Rand Index

The Adjusted Rand Index is defined as [24]:

ARI =

∑
ck

(
nck

2

)
− [
∑

c

(
nc∗
2

)∑
k

(
n∗k
2

)
]
(
n
2

)
1
2
[
∑

c

(
nc∗
2

)
+
∑

k

(
n∗k
2

)
]− [

∑
c

(
nc∗
2

)∑
k

(
n∗k
2

)
]/
(
n
2

) (2.20)

Another formulation of the index is [24]

ARI =
RI − E(RI)

maxRI − E(RI)
(2.21)

where RI = a+b

(nck
2 )

is the Rand index, a being the number of pairs of observations

belonging in the same subsets in both C and K, while b is the number of pairs of
observations belonging in different subsets in both C and K.

The ARI takes values from −1 to 1. The higher the values the more the two
clustering implementations look alike, while a value close to 0 signifies randomness
in the assignment of observations to clusters. Negative values signify less than
expected similarity between the two clusterings.

Homogeneity - Completeness - V-measure

These indices relate to Shannon’s entropy. Homogeneity is defined as [46]

h = 1− H(C|K)

H(C)
(2.22)

22



where

H(C|K) = −
s∑

k=1

r∑
c=1

nck
N

log
nck∑r
c=1 nck

(2.23)

and

H(C) = −
r∑
c=1

∑s
k=1 nck
r

log

∑s
k=1 nck
r

(2.24)

Completeness is symmetric to homogeneity and defined as [46]

c = 1− H(K|C)

H(K)
(2.25)

where

H(K|C) = −
r∑
c=1

s∑
k=1

nck
N

log
nck∑s
k=1 nck

(2.26)

and

H(K) = −
s∑

k=1

∑r
c=1 nck
r

log

∑r
c=1 nck
r

(2.27)

Finally, V-measure is [46]

Vβ =
1 + βhc

βh+ c
(2.28)

where β is a weight to determine the importance of homogeneity or completeness
over the other.

Fowlkes-Mallows index

The Fowlkes-Mallows index is [19]

FMI =

∑r
c=1

∑s
k=1 n

2
ck −N

(
∑s

k=1 n
2
∗k −N)(

∑r
c=1 n

2
c∗ −N)

(2.29)

It can range from 0 to 1, with the latter signifying a good matching between the
partitions.

Adjusted Mutual Information

The Adjusted Mutual Information index is [52]

AMI =
MI(C,K)− E{MI(C,K)}

avg{H(C), H(K)} − E{MI(C,K)}
(2.30)
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where

MI(C,K) =
r∑
c=1

s∑
k=1

nck
N

log
nck/N

nc∗n∗k
(2.31)

E{MI(C,K)} =
r∑
c=1

s∑
k=1

min(nc∗,n∗k)∑
nck=(nc∗+n∗k−N)+

nck
N

log
Nnck
nc∗n∗k

×

nc∗!n∗k!(N − nc∗)!(N − n∗k)!
N !nck!(nc∗ − nck)!(n∗k − nck)!(N − nc∗ − n∗k + nck)!

(2.32)

where MI the Mutual Information index. The index ranges from −1 to 1, where
the latter signifies perfect overlapping and we get a value of 0 when the Mutual
Information index is the same with its expected value.

2.6.3 Internal validity indices

Let again K = {Ki : i = 1, 2, ..., s} be a clustering implementation.

Distortion

Technically not a validity index, distortion is the Within-Cluster Sum of Squares

WCSS =
s∑
i=1

Ni∑
v=1

d(xv, x̄i)
2 (2.33)

where xv = {xvw|w = 1, ..., l} a data point, Ni the number of observations in
cluster Ki and x̄i the mean value of data points in the cluster Ki, the distance d is
usually Euclidean. The distortion scores are typically used in the Elbow method.

Calinski-Harabasz index

The Calinski-Harabasz index is [9]

CHk =
tr(Bk)

tr(Wk)

N − s
s− 1

(2.34)

where

Bk =
s∑
i=1

|Ki|(κi − κG)(κi − κG)T (2.35)

Wk =
s∑
i=1

∑
x∈Ki

(x− κi)(x− κi)T (2.36)

where κG is the global centroid.
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Davies-Bouldin index

The Davies-Bouldin index is [13]

DB =
1

s

s∑
1

max
i 6=j

Rij (2.37)

where

Rij =
Si + Sj
Mij

(2.38)

Si =

 1

|Ki|

|Ki|∑
j=1

|xj − κi|q
1/q

(2.39)

Mij =

(
m∑
k=1

|κik − κjk|p
)1/p

(2.40)

where xj = {xj1, xj2, ..., xjm} an observation belonging to cluster Ki and κi =
{κi1, κi2, ..., κim} is the centroid of the cluster Ki. The index takes values larger
or equal to zero and the smaller the values the better the score.

Silhouette coefficient

The Silhouette coefficient is defined as [47]:

s(i) =

{
b(i)−a(i)

max{a(i),b(i)} , if|Ki| > 1

0, if|Ki| = 1
(2.41)

where a(i) is the average distance between xi and the rest of observations in
cluster KA and b(i) = minK 6=A d(i,K) is the minimum mean distance between
i and the rest of the observations in the clusters to which xi does not belong.
The coefficient can take values between −1 and 1, with 1 indicating a good clus-
tering allocation, 0 indicating uncertainty over the clustering allocation and −1
indicating misclassification [47].

Dunn index

The Dunn index is defined as follows [14][15]:

DIs =
min1≤i<j≤s d(Ki, Kj)

max1≤k≤s ∆k

(2.42)
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where the nominator is minimum inter-cluster distance of Ki and Kj and the
denominator the maximum intra-cluster distance of cluster Kk, having the prop-
erties:

Ki 6= ∅
Ki ∩Kj = ∅, i 6= j

∪ki=1Ki = K

The values of the index are between 0 and infinity and larger values indicate better
clustering.

DBCV

Density-Based Clustering Validation is an index created by Moulavi et al. [40]
and it is defined as:

DBCV (K) =
s∑
i=1

|Ki|
|O|

VK(Ki) (2.43)

where O the noise and

VK(Ki) =
min

1≤ j≤s,i 6=j
(DSPC(Ki, Kj))−DSC(Ki)

max( min
1≤j≤s,i 6=j

(DSPC(Ki, Kj)), DSC(Ki))
(2.44)

DSPC or Density Separation of a Pair of Clusters being the Minimum Reachabil-
ity Distance between the nodes of the Minimum Spanning Tree of the correspond-
ing clusters as defined in the subsection 3.4.3 and DSC or Density Sparseness of
a Cluster is the minimum weight of the edges of the MST.
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3. Simulation study for UMAP-assisted
clustering

A simulation study is useful in order to assess if UMAP-assisted clustering en-
hances the clustering results. We will generate ten artificial datasets of varying
size, where the clusters are isotropic Gaussian blobs. We will then fit the clus-
tering methods on the original data and the UMAP embeddings. Finally, we will
compare them based on the previously defined external validity indices.

The parameters of the generation process are:

� The number of features, which in our case is chosen to be 21, being the same
as the number of points in the actual time series.

� The standard deviation of the clusters which will be a number between 0
and 5.

� The range of values of observations, which will be numbers within −10 to
10.

� The number of clusters which will be a number from 2 to 12. Number
1 is not considered due to the inability of the used implementation of K-
Medoids to handle it. Number 12 is set as the upper limit due to performance
considerations, when using heuristics to determine the number of clusters.

We will consider two cases. The first is when the number of clusters used
in the clustering methods reflects the ground truth classes in the datasets. The
second is when we determine the number of clusters heuristically.

Table 3.1: External validity scores for artificial datasets 1-10 with known clusters
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Dataset 1
Adj.Rand 0.911 0.494 0.909 0.001 0.911 0.604
Completeness 0.818 0.414 0.814 0.180 0.818 0.508
Fowlkes–Mallows 0.950 0.693 0.949 0.661 0.950 0.766
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Homogeneity 0.824 0.502 0.824 0.001 0.824 0.580
Adj.Mutual Info 0.820 0.454 0.819 0.001 0.821 0.542
V-measure 0.821 0.454 0.819 0.002 0.821 0.542
Dataset 2
Adj.Rand 0.559 0.295 0.534 0.000 -0.000 0.055
Completeness 0.464 0.266 0.436 0.091 0.000 0.107
Fowlkes–Mallows 0.781 0.654 0.774 0.712 0.708 0.579
Homogeneity 0.469 0.265 0.426 0.000 0.000 0.091
Adj.Mutual Info 0.467 0.266 0.431 0.000 -0.000 0.098
V-measure 0.467 0.266 0.431 0.001 0.000 0.098
Dataset 3
Adj.Rand 0.998 0.993 0.998 0.994 0.998 0.997
Completeness 0.994 0.984 0.994 0.985 0.994 0.990
Fowlkes–Mallows 0.999 0.997 0.999 0.997 0.999 0.998
Homogeneity 0.994 0.984 0.994 0.985 0.994 0.990
Adj.Mutual Info 0.994 0.984 0.994 0.985 0.994 0.990
V-measure 0.994 0.984 0.994 0.985 0.994 0.990
Dataset 4
Adj.Rand 0.999 0.868 0.999 0.998 0.999 0.997
Completeness 0.998 0.915 0.998 0.996 0.998 0.994
Fowlkes–Mallows 0.999 0.889 0.999 0.998 0.999 0.997
Homogeneity 0.999 0.967 0.999 0.997 0.999 0.994
Adj.Mutual Info 0.998 0.940 0.998 0.996 0.998 0.994
V-measure 0.998 0.941 0.998 0.996 0.998 0.994
Dataset 5
Adj.Rand 1.0 1.0 1.0 1.0 1.0 1.0
Completeness 1.0 1.0 1.0 1.0 1.0 1.0
Fowlkes–Mallows 1.0 1.0 1.0 1.0 1.0 1.0
Homogeneity 1.0 1.0 1.0 1.0 1.0 1.0
Adj.Mutual Info 1.0 1.0 1.0 1.0 1.0 1.0
V-measure 1.0 1.0 1.0 1.0 1.0 1.0
Dataset 6
Adj.Rand 0.996 0.969 0.996 0.989 0.996 0.981
Completeness 0.992 0.956 0.992 0.981 0.992 0.972
Fowlkes–Mallows 0.997 0.976 0.997 0.992 0.997 0.986
Homogeneity 0.991 0.956 0.991 0.979 0.991 0.972
Adj.Mutual Info 0.991 0.956 0.991 0.980 0.991 0.972
V-measure 0.991 0.956 0.991 0.980 0.991 0.972
Dataset 7
Adj.Rand 1.0 1.0 1.0 1.0 1.0 1.0
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Completeness 1.0 1.0 1.0 1.0 1.0 1.0
Fowlkes–Mallows 1.0 1.0 1.0 1.0 1.0 1.0
Homogeneity 1.0 1.0 1.0 1.0 1.0 1.0
Adj.Mutual Info 1.0 1.0 1.0 1.0 1.0 1.0
V-measure 1.0 1.0 1.0 1.0 1.0 1.0
Dataset 8
Adj.Rand 0.998 0.985 0.998 0.947 0.998 0.988
Completeness 0.995 0.974 0.995 0.980 0.995 0.978
Fowlkes–Mallows 0.998 0.988 0.998 0.957 0.998 0.990
Homogeneity 0.995 0.976 0.995 0.923 0.995 0.981
Adj.Mutual Info 0.995 0.975 0.995 0.950 0.995 0.979
V-measure 0.995 0.975 0.995 0.950 0.995 0.980
Dataset 9
Adj.Rand 0.492 0.216 0.702 0.000 0.513 0.276
Completeness 0.528 0.336 0.620 0.158 0.620 0.514
Fowlkes–Mallows 0.594 0.353 0.766 0.463 0.647 0.540
Homogeneity 0.620 0.401 0.601 0.003 0.489 0.196
Adj.Mutual Info 0.568 0.363 0.609 0.001 0.544 0.283
V-measure 0.570 0.366 0.611 0.007 0.547 0.284
Dataset 10
Adj.Rand 0.984 0.576 0.984 0.917 0.984 0.606
Completeness 0.961 0.564 0.961 0.961 0.961 0.575
Fowlkes–Mallows 0.992 0.762 0.992 0.961 0.992 0.781
Homogeneity 0.957 0.800 0.957 0.815 0.957 0.798
Adj.Mutual Info 0.959 0.662 0.959 0.882 0.959 0.668
V-measure 0.959 0.662 0.959 0.882 0.959 0.668

From Table 3.1 we can see clearly that in all ten datasets UMAP-assisted
clustering performs better, with the exception of the dataset 2 where it performs
better only in the Fowlkes–Mallows index.

When it comes to heuristically found number of clusters, we will examine the
following datasets:

� Dataset 1, because of the clear superioriority of UMAP-assisted clustering.

� Dataset 2, because UMAP-assisted HDBSCAN performs worse than just
simple HDBSCAN.

� Dataset 3, because of the slight advantage of UMAP-assisted clustering .

� Dataset 5, because of the great performance of all algorithms.
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Table 3.2: External validity scores for artificial datasets 1, 2, 3, 5. The number of
clusters in K-Medoids and Agglomerative clustering is determined by the optimal
distortion score (Elbow method), while HDBSCAN has the default parameters.
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Dataset 1
Adj.Rand 0.812 0.736 0.797 0.758 0.911 0.758
Completeness 0.856 0.741 0.861 0.769 0.818 0.756
Fowlkes–Mallows 0.902 0.862 0.895 0.873 0.950 0.873
Homogeneity 0.655 0.565 0.656 0.602 0.824 0.579
Adj.Mutual Info 0.742 0.641 0.744 0.675 0.821 0.656
V-measure 0.742 0.641 0.744 0.676 0.821 0.656
Dataset 2
Adj.Rand 0.559 0.256 0.435 0.000 0.016 0.204
Completeness 0.464 0.210 0.317 1.000 0.089 0.153
Fowlkes–Mallows 0.781 0.583 0.682 0.713 0.131 0.541
Homogeneity 0.469 0.319 0.493 0.000 0.579 0.241
Adj.Mutual Info 0.467 0.253 0.385 0.000 0.150 0.187
V-measure 0.467 0.253 0.386 0.000 0.155 0.187
Dataset 3
Adj.Rand 0.998 0.993 0.998 0.994 0.998 0.997
Completeness 0.994 0.984 0.994 0.985 0.994 0.990
Fowlkes–Mallows 0.999 0.997 0.999 0.997 0.999 0.998
Homogeneity 0.994 0.984 0.994 0.985 0.994 0.990
Adj.Mutual Info 0.994 0.984 0.994 0.985 0.994 0.990
V-measure 0.994 0.984 0.994 0.985 0.994 0.990
Dataset 5
Adj.Rand 0.907 0.833 0.907 0.900 1.0 1.0
Completeness 1.000 0.986 1.000 1.000 1.0 1.0
Fowlkes–Mallows 0.926 0.872 0.926 0.921 1.0 1.0
Homogeneity 0.857 0.773 0.857 0.890 1.0 1.0
Adj.Mutual Info 0.923 0.866 0.923 0.942 1.0 1.0
V-measure 0.923 0.866 0.923 0.942 1.0 1.0

We observe in Table 3.2 that overall UMAP-assisted clustering performs bet-
ter when the number of clusters is determined by the optimal distortion score.
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This is particularly the case for Dataset 1. For Dataset 2, we still observe an
advantage for all but one indices for simple HDBSCAN, but with improved scores
for UMAP-assisted HDBSCAN. The advantage for UMAP-assisted clustering re-
mains in Dataset 3 and the balance is maintained in Dataset 5.

Table 3.3: External validity scores for artificial datasets 1, 2, 3, 5. The number of
clusters in K-Medoids and Agglomerative clustering is determined by the optimal
Calinski-Harabasz score, while HDBSCAN has the defaults parameters.
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Dataset 1
Adj.Rand 0.812 0.736 0.797 0.758 0.911 0.758
Completeness 0.856 0.741 0.861 0.769 0.818 0.756
Fowlkes–Mallows 0.902 0.862 0.895 0.873 0.950 0.873
Homogeneity 0.655 0.565 0.656 0.602 0.824 0.579
Adj.Mutual Info 0.742 0.641 0.744 0.675 0.821 0.656
V-measure 0.742 0.641 0.744 0.676 0.821 0.656
Dataset 2
Adj.Rand 0.559 0.295 0.534 0.002 0.016 0.204
Completeness 0.464 0.266 0.436 0.072 0.089 0.153
Fowlkes–Mallows 0.781 0.654 0.774 0.709 0.131 0.541
Homogeneity 0.469 0.265 0.426 0.005 0.579 0.241
Adj.Mutual Info 0.467 0.266 0.431 0.006 0.150 0.187
V-measure 0.467 0.266 0.431 0.010 0.155 0.187
Dataset 3
Adj.Rand 0.998 0.993 0.998 0.994 0.998 0.997
Completeness 0.994 0.984 0.994 0.985 0.994 0.990
Fowlkes–Mallows 0.999 0.997 0.999 0.997 0.999 0.998
Homogeneity 0.994 0.984 0.994 0.985 0.994 0.990
Adj.Mutual Info 0.994 0.984 0.994 0.985 0.994 0.990
V-measure 0.994 0.984 0.994 0.985 0.994 0.990
Dataset 5
Adj.Rand 1.0 0.886 1.0 1.0 1.0 1.0
Completeness 1.0 0.923 1.0 1.0 1.0 1.0
Fowlkes–Mallows 1.0 0.907 1.0 1.0 1.0 1.0
Homogeneity 1.0 1.000 1.0 1.0 1.0 1.0
Adj.Mutual Info 1.0 0.960 1.0 1.0 1.0 1.0
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V-measure 1.0 0.960 1.0 1.0 1.0 1.0

As we can see in Table 3.3 the superiority of UMAP-assited clustering is con-
firmed when using the Calinski-Harabasz index as a way to determine the number
of clusters in two out of tree algorithms. There are some variations compared to
the previous approach, particularly in datasets 2 and 5, but those do not affect
the overall picture.
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4. Empirical illustration

4.1 Data

4.1.1 Selection and description

The initial input data of this project are time-series of user engagement met-
rics from Web Summit’s mobile apps. However, as we will see in the following
subsections, only their aggregates (sums) per event will be used for clustering.

Seven (7) user engagement metrics have been carefully selected, for each of
the three (3) events we examine, based on availability, integrity and usefulness.
They are of varying importance to the business and of varying relatedness to each
other. This approach was chosen for two reasons: 1. behavioral patterns may vary
per event/metric and 2. the essential sampling that would take place would not
distort the original data as much due to their reduced size.

Each row consists of counts (positive integers), where the latter is the aggre-
gation of user actions in the app (for the specific metric) on a daily basis. The
total number of days is twenty one (21) and the conference days are included.
The last day of the conference is the 14th day of the interval. The length of the
interval was chosen to be such in order to avoid unnecessary sparsity and at the
same time capture most user activity. Each row represents one user id. Different
metrics and events do not consist necessarily of the same user ids. The time-series
with just one day of activity have been been removed.

Due to confidentiality reasons, the data have been masked, but their struc-
ture has remained unchanged. The event names cannot be revealed and, thus,
they will be represented as event a, event b and event c. The days are repre-
sented as day 1, day 1,..., day 21. Finally, the user engagement metrics are
represented as user engagement metric a, user engagement metric b,...,
user engagement metric g.

4.1.2 Exploration

At Table 4.1, we can see an example of how the activity of five users look like. The
data are quite sparse, particularly before and after the week the event is taking
place. Sparsity exists in all the data and this can be confirmed by Table A.5. We
can see at Figure 4.1, that for event a the mean value of all engagement metrics
increases steadily up until the event. Then, it can be observed that with some very
small variations, the value decreases rapidly and by day 15, it is almost zero for
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Table 4.1: Example data from user engagement metric a from event a
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ay
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d
ay

18
d
ay

19
d
ay

20
d
ay

21

id

XXXXXXx 0 0 0 0 0 0 0 0 0 0 0 52 2 0 0 0 0 0 0 0 0
XXXXXXp 0 0 0 0 0 0 0 0 0 0 22 34 12 44 0 0 0 0 0 0 0
XXXXXXQ 0 0 0 0 0 0 0 0 0 0 92 14 8 0 0 0 0 0 0 0 0
XXXXXX1 0 0 0 0 0 0 0 0 0 0 34 8 40 0 0 0 0 0 0 0 0
XXXXXXP 0 0 0 0 0 0 12 0 0 80 0 0 20 4 0 0 0 0 0 0 0

most metrics. The data are obviously highly correlated and for event a this can
be seen at Table A.1. Similar conclusions can be made for the standard deviation
over time, although with some noticeable variations.

Figure 4.1: Mean and standard deviation values of user activity over time for
event a

(a) Mean
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(b) Standard deviation

4.2 Implementation

Due to the high correlation of user engagement metrics we choose to consider
their aggregates per user per event. This would, also, facilitate some general
conclusions about the overall attendee behavior. The following implementation
steps are going to be taken for every aggregate:

1. Removal of certain observations: As mentioned in subsection 4.1.1,
observations (users) with less than two days of activity are removed. The
number two is chosen based on a trade-off between keeping plenty of observa-
tions for clustering and removing those observations which make behavioral
patterns more difficult to interpret.

2. Sampling: Simple random sampling without replacement takes place in
order to increase performance as much as possible. The sample size is chosen
to be 5000, a number that will achieve the latter without causing unnecessary
loss of information.

3. Distance calculation: Calculation of the correlation distance between all
pairs of observations, since similarity in time is what we mostly care about.
Another option would be the Euclidean distance on the z-score normalised
time-series, but it would not be completely certain that we would get equiv-
alent results, due to the internal mechanics of each algorithm [7].
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4. Euclidean space embedding: Fitting of UMAP to the distance matrix.
This is in accordance with chapter 3, where we showed that using UMAP
can improve the clustering validation scores. In addition to that there are
two more reasons: 1. HDBSCAN classifies some observations as noise. This
is not always desirable when customer segmentation is the objective of clus-
tering. As a result, the embedding to Euclidean space makes it possible
to perform soft clustering and assign each noise observation to a cluster.
2. Having data in the form of (samples, features) makes the use of more
internal validity indices possible.

5. Clustering: Fitting of clustering methods to the data. The determination
of the number of clusters will be done using the optimal distortion (Elbow
method) and Calinski-Harabasz scores for K-Medoids and Agglomerative
clustering. The Elbow method is a typical approach when it comes to this
task. The Calinski-Harabasz index is a random choice among all other in-
ternal validity indices but it is frequently used in the literature. HDBSCAN
handles this task on its own, after we have set certain parameters. We will
set the minimum cluster size to be 50, because below that number a cus-
tomer segment will not be too meaningful. We will, also, set the number
of observations in a neighborhood that will make a point a core one to be
1. That is because this parameter has an effect on noise and we want the
least noise possible. Finally, we will assign all noise points to their nearest
clusters.

6. Validation, comparison and selection: Evaluation of cluster tendency
with Hopkins statistic. Validation with Silhouette coefficient, Dunn index,
Davies-Bouldin index and DBCV . Finally, we will compare the results and
select the most appropriate algorithm for the segmentation.
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Figure 4.2: Visualization of the pairwise correlation distance of user engagement
metrics using UMAP. Parameters: 1. Size of local neighborhood = 15, 2. Mini-
mum distance between embedded points = 0.1, 3. Dimension of reduced space =
2.

(a) event a metric a (b) event b metric a (c) event c metric a

(d) event a metric b (e) event b metric b (f) event c metric b

(g) event a metric c (h) event b metric c (i) event c metric c

(j) event a metric d (k) event b metric d (l) event c metric d
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(m) event a metric e (n) event b metric e (o) event c metric e

(p) event a metric e (q) event b metric e (r) event c metric e

(s) event a metric g (t) event b metric g (u) event c metric g

Figure 4.3: Visualization of the pairwise correlation distance of aggregates using
UMAP. Parameters: 1. Size of local neighborhood = 15, 2. Minimum distance
between embedded points = 0.1, 3. Dimension of reduced space = 2.

(a) event a (b) event b (c) event c
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In Figure 4.2 we can see that most metrics seem to be divided in clusters,
but the degree varies. The same applies to the aggregates as seen in Figure 4.3.
We will test the ”clusterability” of the aggregates using the Hopkins statistic
after having transformed the data with UMAP. We will use neighborhood size of
30, zero distance between embedded points and 10 dimensions of reduced space,
similar to suggestions of the UMAP creators themselves [36].

Table 4.2: Hopkins statistic on UMAP embeddings for aggregates.

event a event b event c

0.017479 0.015997 0.020086

The numbers in Table 4.2 indicate that the transformed aggregates are indeed
clustered and we observe high clusterability in all of them.

In Figure 4.4 and Figure 4.5 we can see the evolution of the distortion and
the Calinski-Harabasz scores as the number of clusters increase. In general, we
observe a tendency for the Calinski-Harabasz index to give larger numbers of
clusters as the optimal ones. Moreover, we observe that in certain cases, such
as Figure 4.4a, Figure 4.4b and Figure 4.4c the optimal number of clusters is
not that clear. This may be either a global issue or a local issue, due to the range
of numbers of clusters we chose to consider.
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Figure 4.4: Distortion and C-H plots of the UMAP embeddings with K-medoids.

(a) event a, distortion (b) event a, C-H

(c) event b, distortion (d) event b, C-H

(e) event c, distortion (f) event c, C-H
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Figure 4.5: Distortion and C-H plots of the UMAP embeddings with Agglomera-
tive clustering.

(a) event a, distortion (b) event a, C-H

(c) event b, distortion (d) event b, C-H

(e) event c, distortion (f) event c, C-H
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Looking at the table Table 4.3 we observe that, for event a , Agglomerative
Clustering performs better than the other methods in all indices, and the Calinski-
Harabasz and distortion ”agree” on the number of clusters. It is interesting that
it scores better than HDBSCAN in DBCV, but this may have to do with the ”soft
clustering” approach that we chose for HDBSCAN.

For event b we observe that Agglomerative Clustering (CH) and HDBSCAN
perform better than K-Medoids in four and at least three out four indices re-
spectively. Between themselves there is a ”tie” because Agglomerative clustering
outperforms HDBSCAN in the Silhouette coefficient and Davies-Bouldin index,
while HDBSCAN has a better performance in Dunn and DBCV.

Finally, for event c we can see that again Agglomerative Clustering (CH) per-
forms better than HDBSCAN and K-Medoids (Dist.) in three out four indices,
better than Agglomerative Clustering (Dist.) in all indices and there is a ”tie”
with K-Medoids (CH).

Table 4.3: Internal validity scores for aggregates.
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event a
Dunn 0.004 0.011 0.031 0.031 0.007
Silhouette Coef. 0.423 0.371 0.554 0.554 0.374
DBCV -0.704 -0.714 -0.030 -0.030 -0.067
Davies-Bouldin 0.937 1.072 0.602 0.602 0.638
event b
Dunn 0.003 0.006 0.022 0.025 0.094
Silhouette Coef. 0.348 0.533 0.531 0.579 0.370
DBCV -0.983 -0.277 -0.291 -0.156 0.707
Davies-Bouldin 1.099 0.743 0.685 0.530 0.661
event c
Dunn 0.007 0.003 0.021 0.025 0.009
Silhouette Coef. 0.459 0.499 0.441 0.452 0.157
DBCV -0.706 -0.453 -0.532 -0.391 0.466
Davies-Bouldin 0.842 0.735 0.847 0.778 0.827

Based on the above it is reasonable to select Agglomerative Clustering (CH)
for the segmentation of users. We can see in Figure 4.6 that the groupings in the
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graphs are captured in a satisfying way.

Figure 4.6: Visualization of the clustered aggregates by Agglomerative Clustering
using UMAP. Parameters: 1. Size of local neighborhood = 15, 2. Minimum
distance between embedded points = 0.1, 3. Dimension of reduced space = 2.

(a) event a (b) event b

(c) event c
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Figure 4.7: Centroids of clusters produced from Agglomerative Clustering (CH)

(a) event a centroids

(b) event b centroids
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(c) event c centroids

There is no straightforward way to find cluster representatives in Agglomera-
tive clustering, as is the case for partitioning based methods. As a result, both
centroids and medoids would be good candidates. At Figure 4.7, we can see
that the cluster centroids in all three events have similar characteristics. Most of
them have values close to zero which increase just before the event and decrease
subsequently after. This trend is interrupted by spikes on different days.

45



5. Conclusion

The aim of this thesis was to discover segments of attendees based on their en-
gagement with Web Summit’s mobile app. In order to achieve that, we described
three clustering methods each one belonging in broader groups, which represent
different philosophies around clustering. We, also, described a controversial di-
mensionality reduction method, as well as, some assessment metrics.

We did a simulation study, generating several artificial datasets, and showed
that clustering on the UMAP-transformed data performs better than clustering
on the original data in several external validity indices. That effect was shown to
be similar regardless of our knowledge of the number of classes in the datasets.

Finally, we worked with our data of interest. We removed from them obser-
vations that could make interpreting results difficult, we sampled them to avoid
computational problems and considered their correlation distance as the most
suitable measure. We transformed the data with UMAP and fitted the clustering
methods. We compared the results and concluded that Agglomerative clustering
with average-linkage was the most suitable one. We observed from the graphs
of the cluster centroids a shared dominant pattern in all of them, However, the
spikes on different days are essentially what makes them distinct.

The spikes are, precisely, what a planned intervention should be based on.
Future work includes segment profiling in order to understand if these segments
are being populated by attendees of varying demographic or other characteristics
or if there is an underlying uniformity in those. Should the former be the case,
then we can experiment with classification models (supervised learning) in order
to identify to which group each new attendee belongs.
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A. Primary data: summary statistics and
plots

Table A.1: Correlation matrix of mean values of event a
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user engagement metric a 1.000 0.989 0.955 0.955 0.965 0.950 0.913
user engagement metric b 0.989 1.000 0.980 0.985 0.955 0.974 0.959
user engagement metric c 0.955 0.980 1.000 0.993 0.939 0.992 0.977
user engagement metric d 0.955 0.985 0.993 1.000 0.928 0.989 0.990
user engagement metric e 0.965 0.955 0.939 0.928 1.000 0.950 0.879
user engagement metric f 0.950 0.974 0.992 0.989 0.950 1.000 0.976
user engagement metric g 0.913 0.959 0.977 0.990 0.879 0.976 1.000
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Table A.2: Correlation matrix of mean values of event b
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user engagement metric a 1.000 0.945 0.989 0.966 0.974 0.953 0.908
user engagement metric b 0.945 1.000 0.974 0.990 0.906 0.988 0.983
user engagement metric c 0.989 0.974 1.000 0.988 0.961 0.978 0.950
user engagement metric d 0.966 0.990 0.988 1.000 0.925 0.989 0.983
user engagement metric e 0.974 0.906 0.961 0.925 1.000 0.902 0.847
user engagement metric f 0.953 0.988 0.978 0.989 0.902 1.000 0.981
user engagement metric g 0.908 0.983 0.950 0.983 0.847 0.981 1.000

Table A.3: Correlation matrix of mean values of event c
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user engagement metric a 1.000 0.946 0.969 0.966 0.988 0.952 0.927
user engagement metric b 0.946 1.000 0.940 0.993 0.904 0.972 0.986
user engagement metric c 0.969 0.940 1.000 0.949 0.951 0.951 0.902
user engagement metric d 0.966 0.993 0.949 1.000 0.931 0.982 0.991
user engagement metric e 0.988 0.904 0.951 0.931 1.000 0.920 0.885
user engagement metric f 0.952 0.972 0.951 0.982 0.920 1.000 0.970
user engagement metric g 0.927 0.986 0.902 0.991 0.885 0.970 1.000
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Figure A.1: Mean and standard deviation values of user activity over time for
event b

(a) Mean

(b) Standard deviation
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Figure A.2: Mean and standard deviation values of user activity over time for
event c

(a) Mean

(b) Standard deviation
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Table A.4: Summary of user engagement metric a from event a

day 1 day 2 day 3 day 4 day 5 day 6 day 7

count 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000
mean 0.619 0.659 0.873 1.802 1.874 2.047 2.287
std 6.572 7.748 8.536 11.196 11.391 12.341 14.189
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 270.000 426.000 292.000 322.000 604.000 438.000 708.000

day 8 day 9 day 10 day 11 day 12 day 13 day 14

count 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000
mean 3.597 4.472 8.559 15.905 16.104 11.779 5.659
std 17.524 19.451 26.510 31.782 24.216 18.461 11.841
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50% 0.000 0.000 0.000 2.000 6.000 4.000 0.000
75% 0.000 0.000 2.000 18.000 22.000 16.000 6.000
max 474.000 536.000 778.000 844.000 366.000 364.000 470.000

day 15 day 16 day 17 day 18 day 19 day 20 day 21

count 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000 23852.000
mean 0.014 0.005 0.004 0.006 0.004 0.002 0.001
std 0.451 0.130 0.116 0.220 0.119 0.085 0.067
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75% 0.000 0.000 0.000 0.000 0.000 0.000 0.000
max 50.000 8.000 10.000 26.000 8.000 8.000 8.000
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Table A.5: Average sparsity of user engagement metrics

event a event b event c

user engagement metric a 0.842896 0.856351 0.857400
user engagement metric b 0.834639 0.859882 0.841713
user engagement metric c 0.857328 0.865202 0.861117
user engagement metric d 0.775313 0.810510 0.789079
user engagement metric e 0.884396 0.887041 0.886952
user engagement metric f 0.866077 0.875184 0.869774
user engagement metric g 0.818803 0.834133 0.812528
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B. Simulation data: evaluation

Table B.1: External validity scores for z-score normalized artificial datasets 1-10
with known clusters
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Dataset 1
Adj.Rand 0.903 0.655 0.892 0.735 0.792 0.820
Completeness 0.811 0.564 0.789 0.752 0.803 0.694
Fowlkes–Mallows 0.945 0.797 0.938 0.862 0.890 0.897
Homogeneity 0.814 0.649 0.813 0.577 0.661 0.741
Adj.Mutual Info 0.812 0.603 0.801 0.653 0.725 0.717
V-measure 0.812 0.604 0.801 0.653 0.725 0.717
Dataset 2
Adj.Rand 0.597 0.411 0.567 0.001 -0.001 0.508
Completeness 0.485 0.317 0.464 0.053 0.004 0.402
Fowlkes–Mallows 0.802 0.709 0.789 0.711 0.704 0.758
Homogeneity 0.484 0.319 0.456 0.001 0.000 0.401
Adj.Mutual Info 0.484 0.318 0.460 0.002 0.000 0.402
V-measure 0.485 0.318 0.460 0.002 0.001 0.402
Dataset 3
Adj.Rand 0.998 0.996 0.998 0.993 0.998 0.988
Completeness 0.994 0.988 0.994 0.982 0.994 0.973
Fowlkes–Mallows 0.999 0.998 0.999 0.997 0.999 0.994
Homogeneity 0.994 0.989 0.994 0.982 0.994 0.973
Adj.Mutual Info 0.994 0.989 0.994 0.982 0.994 0.973
V-measure 0.994 0.989 0.994 0.982 0.994 0.973
Dataset 4
Adj.Rand 0.997 0.860 0.997 0.983 0.997 0.995
Completeness 0.995 0.918 0.995 0.992 0.995 0.990
Fowlkes–Mallows 0.998 0.881 0.998 0.985 0.998 0.996
Homogeneity 0.995 0.963 0.995 0.969 0.995 0.990
Adj.Mutual Info 0.995 0.940 0.995 0.980 0.995 0.990
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V-measure 0.995 0.940 0.995 0.980 0.995 0.990
Dataset 5
Adj.Rand 1.0 1.0 1.0 1.0 1.0 1.0
Completeness 1.0 1.0 1.0 1.0 1.0 1.0
Fowlkes–Mallows 1.0 1.0 1.0 1.0 1.0 1.0
Homogeneity 1.0 1.0 1.0 1.0 1.0 1.0
Adj.Mutual Info 1.0 1.0 1.0 1.0 1.0 1.0
V-measure 1.0 1.0 1.0 1.0 1.0 1.0
Dataset 6
Adj.Rand 0.994 0.990 0.994 0.886 0.994 0.984
Completeness 0.988 0.980 0.988 0.980 0.988 0.970
Fowlkes–Mallows 0.995 0.992 0.995 0.916 0.995 0.987
Homogeneity 0.988 0.981 0.988 0.869 0.988 0.975
Adj.Mutual Info 0.988 0.980 0.988 0.922 0.988 0.972
V-measure 0.988 0.980 0.988 0.922 0.988 0.972
Dataset 7
Adj.Rand 1.0 1.0 1.0 1.0 1.0 1.0
Completeness 1.0 1.0 1.0 1.0 1.0 1.0
Fowlkes–Mallows 1.0 1.0 1.0 1.0 1.0 1.0
Homogeneity 1.0 1.0 1.0 1.0 1.0 1.0
Adj.Mutual Info 1.0 1.0 1.0 1.0 1.0 1.0
V-measure 1.0 1.0 1.0 1.0 1.0 1.0
Dataset 8
Adj.Rand 0.997 0.816 0.997 0.948 0.997 0.996
Completeness 0.994 0.870 0.994 0.980 0.994 0.991
Fowlkes–Mallows 0.998 0.852 0.998 0.958 0.998 0.996
Homogeneity 0.993 0.940 0.993 0.926 0.993 0.991
Adj.Mutual Info 0.994 0.903 0.994 0.952 0.994 0.991
V-measure 0.994 0.904 0.994 0.953 0.994 0.991
Dataset 9
Adj.Rand 0.488 0.366 0.747 0.549 0.513 0.443
Completeness 0.540 0.439 0.647 0.540 0.622 0.459
Fowlkes–Mallows 0.589 0.485 0.806 0.671 0.649 0.552
Homogeneity 0.616 0.529 0.605 0.442 0.464 0.477
Adj.Mutual Info 0.573 0.478 0.623 0.483 0.529 0.466
V-measure 0.575 0.480 0.625 0.486 0.531 0.468
Dataset 10
Adj.Rand 0.582 0.576 0.979 0.958 0.979 0.791
Completeness 0.592 0.572 0.952 0.910 0.952 0.693
Fowlkes–Mallows 0.766 0.762 0.990 0.979 0.990 0.894
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Homogeneity 0.838 0.811 0.944 0.905 0.944 0.803
Adj.Mutual Info 0.694 0.671 0.948 0.907 0.948 0.744
V-measure 0.694 0.671 0.948 0.907 0.948 0.744
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C. UMAP-transformed data: example
tables

Table C.1: Random sample of UMAP-transformed event a aggregates in 10 di-
mensions.

1 2 3 4 5 6 7 8 9 10

2.2458 1.5888 9.2910 7.7264 6.3383 6.5498 2.6738 1.7395 7.6562 3.9353
2.6537 0.8798 5.6589 9.2574 6.5118 8.0717 4.3155 3.3288 6.4362 4.6587
2.1628 4.4724 5.5382 6.3201 4.3639 8.4362 2.9336 3.7194 7.4005 3.7475
3.3124 0.6617 5.4705 9.6279 6.4506 8.3380 4.2881 3.8196 6.3632 4.5680
3.4921 4.1638 3.6812 7.9891 5.8691 8.0641 3.7711 3.4985 7.1981 4.4459
2.8628 1.1507 5.3400 7.9826 6.6347 7.4409 4.0828 2.4086 6.7561 4.6505
4.8913 3.4882 4.4138 8.6739 6.1623 8.0052 3.8874 3.4654 7.0676 4.5825
4.5956 0.8022 4.5180 7.8837 6.6674 7.5892 3.9740 2.7787 6.7397 4.5146
1.7047 1.2442 7.5191 5.2302 8.1975 7.0322 4.7455 1.5215 6.3284 4.8477
2.5576 1.5940 9.3015 7.6172 6.3760 6.5792 2.4431 1.7433 7.8323 3.7423
4.0574 0.8354 4.3555 7.9070 6.6427 7.6623 4.0498 2.8125 6.6986 4.5444
1.9816 4.6986 5.6649 6.0685 4.1590 8.4650 2.8333 3.7691 7.4527 3.6663
1.6867 0.8036 7.9704 5.6509 6.2770 4.6028 3.6356 1.3989 7.4223 4.6406
1.2650 2.3423 4.3000 4.6939 7.6168 7.9917 4.3510 2.6107 6.9441 4.5949
1.2900 1.4964 7.2021 8.3482 6.7993 7.3348 4.2201 1.9543 6.7072 4.8248
4.0379 4.1208 4.6357 8.7254 6.0497 7.9553 3.8910 3.3617 7.1598 4.6372
1.0156 1.3007 5.9544 8.5378 6.5908 7.7032 4.3106 2.5717 6.5896 4.7438
4.6055 4.8559 3.8468 8.6131 5.8657 8.1309 3.7711 3.7013 7.2896 4.5411
1.3702 1.1069 6.6056 9.3919 6.5383 7.9613 4.4069 3.0047 6.4169 4.7674
2.2846 1.1812 7.2429 5.2931 8.0936 7.0556 4.6308 1.5749 6.4021 4.7804
1.7201 0.9646 6.8354 9.9511 6.4865 8.1665 4.4539 3.3786 6.3067 4.7599
0.6924 1.3571 3.3405 7.1794 6.5029 7.8784 4.1299 2.8662 6.7324 4.4695
1.4047 1.4140 7.9052 8.9119 6.7752 7.3340 4.2569 2.0148 6.6423 4.8724
0.7686 1.3811 5.2582 7.9373 6.6141 7.6592 4.2475 2.4473 6.6745 4.6800
5.9468 0.5992 4.7611 8.1645 6.8064 7.5985 4.0687 2.7631 6.6628 4.6014
1.4947 0.8837 5.2450 9.3589 6.4067 8.3427 4.4178 3.6669 6.3416 4.6284
4.2344 0.8450 3.8090 7.7325 6.5939 7.7630 3.9911 3.0090 6.7216 4.4610
2.0190 1.2247 4.5740 7.6070 6.6009 7.5632 4.0970 2.5070 6.7617 4.5906
4.8193 5.3345 3.7441 8.5612 5.7650 8.0584 3.6759 3.6706 7.4235 4.5256
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1.6575 1.1447 2.8080 7.1437 6.4796 7.8833 4.0561 3.0811 6.7362 4.4033
0.8042 1.4094 3.8400 7.2536 6.5474 7.7670 4.1429 2.6746 6.7493 4.5316
5.9584 0.5531 4.2674 8.0865 6.7691 7.7378 4.0234 3.0294 6.6559 4.5137
1.0030 2.1721 4.1857 5.4691 7.2979 7.9771 4.2880 2.6819 6.8574 4.6015
1.3283 0.9061 4.4189 8.9820 6.3651 8.4176 4.3687 3.7702 6.3832 4.5443
3.9333 1.0270 6.0768 8.7439 6.6815 7.6000 4.1755 2.6708 6.6218 4.7135
1.1118 1.4259 3.2843 7.5491 6.4523 8.1094 4.1607 3.2562 6.6761 4.4549
2.0687 1.3363 5.7901 7.9710 6.6515 7.3667 4.1086 2.1854 6.7787 4.6978
5.7250 0.5787 5.0784 8.4072 6.7245 7.6995 3.9303 3.0849 6.6939 4.4683
6.3651 0.6284 4.9552 8.0386 6.6439 7.6590 3.7351 3.1318 6.7918 4.3398
1.6575 1.3638 8.2838 9.0918 6.8175 7.3506 4.2571 2.0613 6.6071 4.8743
5.1830 5.4684 3.9570 8.5786 5.6294 8.0985 3.6039 3.7475 7.4527 4.4791
4.8095 1.1376 6.7919 6.3787 6.3964 6.3604 2.1467 2.4322 7.8398 3.4672
0.7899 1.4218 5.5657 7.9902 6.6319 7.5728 4.2391 2.3200 6.6947 4.7117
4.8714 0.5882 4.8601 8.7647 6.6264 7.9775 4.1070 3.3761 6.5461 4.5213
1.6751 0.8133 7.8779 5.6462 6.2270 4.5962 3.6342 1.4249 7.4310 4.6469
2.5845 0.9340 6.1459 9.3981 6.5366 7.9949 4.3368 3.1957 6.4316 4.7114
5.6351 0.6626 5.4839 8.5254 6.7762 7.6129 4.0825 2.8176 6.6403 4.6244
1.8893 1.1274 3.0575 7.2038 6.5125 7.8321 4.0528 2.9876 6.7434 4.4267
5.5623 0.6521 4.1717 8.0494 6.7188 7.7541 4.0156 3.0510 6.6704 4.5036
4.3786 4.5390 4.6130 8.7857 5.9783 7.9181 3.8333 3.3681 7.2659 4.6547

Table C.2: Random sample of UMAP-transformed event b aggregates in 10 di-
mensions.

1 2 3 4 5 6 7 8 9 10

1.7046 6.0762 1.8502 6.4533 7.8263 6.7182 5.1871 6.4045 4.6159 7.2118
2.5369 5.8501 3.4897 5.0636 8.6582 3.4834 4.6363 6.4494 4.4965 7.2641
6.1053 4.9654 1.5794 5.7908 6.1653 6.4625 5.2901 6.5189 4.2521 7.2954
2.8376 4.0451 1.9985 6.3479 6.9701 6.5937 5.2185 6.2982 4.3158 7.2667
4.1486 4.2112 3.5854 3.6091 3.9830 6.2378 5.7514 6.5827 4.4308 8.4538
1.0864 2.0685 2.9172 6.8203 6.4699 6.5026 5.0079 5.9477 4.1351 7.3894
1.2157 7.6224 1.7416 6.4873 8.1335 6.7159 5.1882 6.4600 4.8074 7.1925
0.8082 4.1794 1.5775 5.9904 5.8065 5.2502 5.1194 5.7599 4.4415 7.4980
0.6092 4.3776 1.8807 6.3951 7.0288 6.1071 5.1221 6.0292 4.4903 7.3402
0.8310 6.9150 1.0835 6.0474 6.2086 5.5963 5.2426 5.8996 4.7875 7.4754
0.7042 6.2154 1.5307 6.3258 7.2629 6.1512 5.2094 6.1187 4.7201 7.3349
1.3880 5.5931 4.4887 10.0466 6.0089 7.3789 4.9549 3.9207 3.4007 6.9192
2.3891 6.0128 3.3089 5.1235 8.5339 3.6430 4.6983 6.4274 4.5444 7.2771
5.1390 3.9004 1.7706 6.0295 6.3935 6.5181 5.2192 6.4410 4.1587 7.2474
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1.2125 7.8862 1.4617 6.2624 7.4760 6.3801 5.2142 6.3084 4.8323 7.2876
0.6127 2.4299 2.4337 6.5813 6.6239 6.1994 4.9649 5.9537 4.1855 7.3459
0.8258 7.8494 1.2256 6.1943 7.0524 6.0766 5.2554 6.1399 4.8893 7.3802
3.9169 4.5050 4.3014 9.5293 5.6969 7.5362 4.0510 5.1333 3.6864 7.0347
0.8947 6.3325 1.5315 6.3251 7.3138 6.2206 5.2194 6.1636 4.7148 7.3186
6.0740 4.9334 1.5683 5.8098 6.1231 6.4396 5.2879 6.4852 4.2311 7.2859
3.9323 4.8249 1.4820 6.0134 6.4735 6.3364 5.2989 6.3153 4.3425 7.2888
2.4631 5.9597 3.2218 5.1458 8.3699 3.7292 4.7277 6.4004 4.5208 7.2879
4.9011 4.3583 5.1045 9.3448 5.0717 7.9667 2.7090 6.3138 4.2909 7.5038
0.7376 2.0438 2.5903 6.6706 6.5187 6.2567 4.9275 5.9352 4.1146 7.3415
5.5846 4.8491 2.2330 5.2087 5.8267 6.5048 5.4119 6.6023 4.3364 7.5815
0.5972 2.5460 2.3161 6.4931 6.4765 6.0445 4.9871 5.9087 4.2049 7.3693
0.3000 7.5238 1.0655 5.8793 4.5650 5.4395 4.9549 5.6812 4.7368 7.4477
1.1978 1.6334 2.7604 6.7037 6.1532 6.2015 4.9368 5.8720 4.0216 7.3811
1.2681 3.8962 5.5046 8.8057 8.4697 8.4406 5.6551 5.9007 4.5737 7.5570
3.2340 5.5988 3.4265 5.1555 8.3308 3.8347 4.6532 6.4854 4.4310 7.2454
3.6676 3.2128 1.9693 6.2647 6.4073 6.4212 5.1272 6.2601 4.1275 7.2517
0.8619 8.0077 1.1507 6.1694 6.7912 5.9786 5.2671 6.0544 4.9025 7.4221
1.0179 2.3014 2.1181 6.2280 5.5785 5.5272 5.0057 5.7187 4.1396 7.4688
2.3658 5.7220 3.2393 5.2705 8.3681 3.9139 4.7163 6.3852 4.4945 7.2692
0.7808 7.1733 1.4205 6.3002 7.3387 6.1989 5.2248 6.1765 4.8096 7.3270
1.6453 7.7310 1.6628 6.4229 8.0039 6.7528 5.2041 6.4976 4.7939 7.1965
1.0270 2.3722 2.0781 6.1959 5.5423 5.4930 5.0188 5.7052 4.1440 7.4778
4.1506 5.1255 3.7719 7.5005 5.9054 6.1730 2.1146 6.8438 4.9459 7.1922
0.7567 4.9540 1.7889 6.3969 7.2084 6.2135 5.1495 6.1014 4.5722 7.3231
4.3069 4.3519 3.6484 3.4889 3.9963 6.2198 5.7504 6.6254 4.4738 8.4950
1.2932 6.3955 0.8076 5.5000 4.2969 5.3796 5.3394 5.5947 4.4500 7.5992
5.4695 5.2355 1.6350 5.9053 6.7362 6.7089 5.3762 6.5958 4.3328 7.2463
2.1455 6.0519 3.1074 5.3043 8.4303 4.0246 4.7534 6.4006 4.5642 7.2635
1.1781 4.3104 5.1737 8.6607 8.5619 8.3383 5.6423 5.9330 4.6014 7.5083
4.3422 4.5302 4.8120 9.9982 5.5060 7.7867 3.8452 5.0565 3.6176 6.9885
2.2514 5.7557 1.6765 6.3451 7.1922 6.4973 5.2137 6.2869 4.5460 7.2681
2.6962 5.5282 3.3437 5.2318 8.3018 3.8564 4.6915 6.3961 4.4418 7.2709
0.8462 6.6441 1.0882 6.0259 6.0496 5.5023 5.2314 5.8576 4.7609 7.4952

-1.6368 5.7206 1.5673 7.9133 6.0561 6.6061 4.2243 5.7889 4.0785 6.1119
2.4482 2.7906 2.1654 6.4339 6.4968 6.3799 5.0703 6.1393 4.1490 7.2805

64



Table C.3: Random sample of UMAP-transformed event c aggregates in 10 di-
mensions.

1 2 3 4 5 6 7 8 9 10

7.4735 5.4543 9.5840 5.3930 2.1095 2.3492 6.3883 4.4245 4.9597 5.5340
6.8644 3.6708 9.4579 7.1614 2.5019 2.2649 6.5195 4.4724 4.9632 5.5513
7.7347 6.9517 9.1383 5.6762 2.4310 2.3574 6.3417 4.5146 5.0155 5.5850
8.2274 5.4498 4.8121 7.4059 2.3119 2.5635 6.0882 4.2839 5.5430 5.0117
9.0415 6.0643 6.6687 4.7767 1.3913 4.0423 6.3737 3.6031 5.0327 5.6090
3.6197 5.7523 9.0883 5.5930 2.5366 2.3575 6.4873 4.7179 5.6699 5.8235
7.0208 4.9947 9.5952 6.1328 2.2983 2.3106 6.4470 4.4719 4.9709 5.5754
8.3910 8.5501 8.0182 6.1058 2.7608 2.4572 6.2376 4.5447 5.1286 5.5543
4.7262 5.4906 9.3841 6.4244 2.6524 2.3061 6.5236 4.6857 5.3878 5.8082
7.7190 5.7967 6.6610 8.0071 6.5581 1.7207 6.6749 2.9469 4.7766 5.0089
8.4711 7.2919 6.2862 8.2244 6.6728 1.8873 6.7544 3.2884 4.7098 5.1086
4.4650 6.4657 8.8304 6.0105 2.9950 2.2268 6.4012 4.6073 5.5421 5.8021
8.4089 6.1361 7.2886 7.4622 5.6082 1.6557 6.2904 3.3870 4.8029 5.1559
3.7074 5.7155 9.1581 5.6896 2.5548 2.3481 6.4961 4.7204 5.6334 5.8296
7.7302 5.8526 6.8355 8.0077 6.4000 1.7900 6.7688 2.9667 4.6810 5.0329
9.2964 5.1718 9.4853 7.1519 2.6626 2.1777 6.3847 4.4689 4.6092 5.4576
3.9403 5.3743 9.2446 6.1401 2.5972 2.3132 6.5358 4.7228 5.5504 5.8404
4.7060 7.0863 8.9875 5.9272 2.8153 2.3658 6.4474 4.7097 5.4971 5.8313
7.8098 5.9826 7.0626 7.9786 6.2277 1.8618 6.8626 2.9859 4.5749 5.0974
8.9331 4.4677 9.6562 6.4151 2.2603 2.2464 6.3928 4.3576 4.6435 5.4109
7.7563 5.9357 6.7864 8.0367 6.3986 1.8185 6.7775 3.0026 4.6881 5.0354
8.5519 5.2809 9.6935 4.2293 1.7399 2.3542 6.2952 4.3278 4.9214 5.4087
3.0943 6.0043 8.8774 5.7899 2.7339 2.3110 6.5244 4.7898 5.7642 5.9091
8.1051 2.5863 9.5603 6.8856 2.2325 2.2602 6.4827 4.2998 4.7318 5.3735
9.3345 7.8667 8.7090 5.5934 2.5573 2.2980 6.2219 4.4987 4.8990 5.4670
9.0726 5.0935 9.3750 7.7873 2.8640 2.1714 6.4203 4.5411 4.6390 5.4950
4.2730 6.6827 9.1426 6.0111 2.7842 2.3500 6.4848 4.7498 5.5280 5.8623
7.8862 6.4483 6.8282 6.7446 5.9331 1.3840 5.8040 3.3571 5.0904 5.1992
9.0544 5.1267 9.3551 7.8222 2.8880 2.1701 6.4202 4.5451 4.6452 5.4986
4.9915 6.3153 8.5713 6.2640 2.6382 2.3859 6.4339 4.6438 5.4883 5.7299
7.7970 6.4092 6.7660 6.7455 6.0023 1.3647 5.7862 3.3530 5.1242 5.2111
9.4809 7.4460 8.9196 5.6799 2.5260 2.2684 6.2391 4.4920 4.8300 5.4548
8.3103 5.5841 5.0149 7.4030 2.2935 2.5472 6.0950 4.2933 5.5108 5.0455
8.2457 4.3951 9.9850 5.2468 3.0850 1.8361 6.3515 5.1583 5.5276 5.6778
8.3505 3.1502 9.6419 6.5078 2.1499 2.2738 6.4504 4.3035 4.7026 5.3817
7.9430 5.5060 9.5904 5.4135 2.1084 2.3354 6.3699 4.4126 4.8962 5.5061
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9.2768 8.4965 8.0025 6.1924 2.9247 2.3378 6.1948 4.5482 5.0034 5.4648
7.1734 6.9601 9.0875 6.8140 2.8714 2.3093 6.4222 4.6277 5.0314 5.6792
9.0710 6.1329 6.6157 4.7379 1.3782 4.0770 6.3683 3.5863 5.0403 5.6113
7.4131 4.5430 9.7761 4.8224 1.8144 2.3540 6.3827 4.3502 4.9822 5.4710
5.7540 4.8114 9.4866 6.6994 2.5351 2.2973 6.5183 4.5959 5.1604 5.7000
3.0276 6.0515 8.7173 5.6966 2.7238 2.3291 6.4992 4.7706 5.8105 5.8752
3.4353 6.0463 9.0460 5.8640 2.7106 2.3352 6.5156 4.7660 5.6816 5.8819
7.8054 2.4219 9.2328 7.6660 2.5815 2.2229 6.5295 4.3806 4.8355 5.4099
9.0027 4.3340 9.5824 7.0351 2.4426 2.2187 6.4179 4.4018 4.6140 5.4256
8.4049 7.2949 6.3013 8.2052 6.6461 1.8926 6.7278 3.3546 4.7456 5.1213
9.5144 8.2384 8.2370 6.5240 2.9335 2.3208 6.2198 4.5244 4.8867 5.4801
9.3676 8.4967 8.1594 5.8824 2.7375 2.3472 6.1934 4.4992 4.9694 5.4728
9.0444 5.0143 9.3765 7.8069 2.8624 2.1680 6.4233 4.5366 4.6415 5.4911
7.0124 4.9236 9.6103 6.0496 2.2605 2.3141 6.4447 4.4622 4.9744 5.5684
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D. Clustering results: plots

Figure D.1: Cluster sizes

(a) event a
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(b) event b

(c) event c
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