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Abstract

How to set the premiums in an appropriate way have been studied
ex- tensively by both practitioners and academics during history. The
stan- dard approach in literature is to set the premium level according
to a model of the expected loss and then adding a safety loading which
is related to distributional properties of the risk. In this study, we take
another approach and examine the competition between two insurance
companies and analyze different versions of the push and pull game be-
tween two insurance companies I1 and I2 that have initial capital reserves
R1(0) > R2(0) (one larger than the other). In the game, the larger com-
pany aims to maximize the reserve difference R1(t) − R2(t) (push the
smaller company away) and the smaller company aims to minimize the
same (pull closer to the larger company) by using premiums as controls.
Using the results in Asmussen et. al (2019) we analytically derive the
Nash-equilibrium premiums in the considered games, when taking mar-
ket frictions H ∼ beta(a, b) into consideration. Later on, we implement
dynamic programming and reinforcement learning methods to solve the
control problem when assuming a simplified state space (reserve differ-
ence) and action space (premium levels). The results in this game show
that the optimal premium derived with DP and RL is in agreement with
the analytical Nash equilibrium solution. The game is later on extended
to a case where the market frictions depend on the number of customers
currently insured at respective company. Again, a form of analytical re-
sult is computed and lastly, the game is analyzed using DP and RL. The
results in this game show that if the reserve difference is large, the larger
company benefits from offering a lower premium to gain a market ad-
vantage. However, when the reserve difference is low, the company can
not afford to lower the premium because of the risk of losing the game.
The results in the game also indicate that when the company have gained
market advantage it benefits from charging higher premiums. This is also
in accordance with the analytical results. To summarize, the results show
that it is indeed possible to solve and gain insights of the considered op-
timal control problems using DP and RL. However, in order to use these
methods in a real-insurance context, the specific and simplified settings
considered in this thesis would need to be evolved and extended in several
ways.
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Glossary

Insurance

Insurance policy: Legal contract between insurer and the policyholder which
determines how and when the insurer need to compensate the policyholder if a
future uncertain event occur.

Policyholder: The person/s, business or entity buying an insurance policy.

Premium: The price of an insurance policy.

Gross premium: Total premium paid by the policyholder.

Claim: Policyholders request for compensation by the insurance company re-
garding an occurred event.

Market frictions: Umbrella term collecting all the imperfect market costs that
customers face when deciding company. Could for example be, different costs
of search and switching company, transportation or preferences.

Reinforcement learning

Reinforcement learning: An area about algorithmic learning that learns
which actions that are best in different situations in order to reach some well-
defined goal. This is done by taking different actions and then examine how
good they are with respect to a numerical reward signal related to the goal.

Agent/Decision rule: The agent/decision rule contain all information of the
rewards and is the component that decides which action that should be taken
in different states. The decision is made in order to find the optimal policy in
an efficient manner.

Exploitation: Selecting actions with the best estimated expected rewards (op-
timal actions) is called exploiting.

Exploration: Selecting actions that are expected to be suboptimal is called
exploring. This is done in order to get more reliable estimates of the expected
rewards when taking different actions.
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1 Introduction

The information-based society we live in today, combined with the great in-
crease of computer power, have made the application of data-driven methods
to make well informed decisions a vital part of almost all businesses. For ex-
ample, machine learning algorithms and artificial intelligence have become a
standard feature in all sorts of decision making. Especially in finance and rev-
enue management the influence of data-driven tools play an important role in
order to react rapidly to changed conditions in real time. However, in the in-
surance industry the digital transformation has been relatively slow. Most of
the larger companies want to evolve in the area of data-driven methods and are
currently going through changes to make use of the new existing techniques and
technologies. One of the major machine learning techniques is reinforcement
learning. Reinforcement learning is a computational approach that are able to
learn directly from interaction with an environment and it has, for example,
been widely used in building powerful computer engines in complex games such
as chess and backgammon.

The early history of reinforcement learning can mainly be divided into two
threads. One thread is based on trial and error and comes from the psychology
of animal learning. The other thread relates to the optimal control problem,
using value functions and dynamic programming to find the solution. The two
threads were for the main part independent but to some extent they became uni-
fied around a third thread of temporal-difference learning methods. During the
late 1980s all of these threads came together and developed the reinforcement
learning as we know it today. The reinforcement learning algorithm learns what
to do in order to maximize a numerical reward signal. As stated before, the
method is closely related to the optimal control problem (especially stochastic
optimal control formulated as Markov decision processes). Actually all of the
work considering optimal control are also seen as work in reinforcement learn-
ing (Sutton and Barto, 2018). Today the method is involved in many lines of
modernization, for example in the development of self-driven cars or, as in the
main focus of this thesis, finding optimal pricing strategies to achieve a specific
goal.

Finding an optimal way of pricing its products is an essential part of every
business and the insurance industry is not an exception. How to set the premi-
ums in an appropriate way has been studied extensively by both practitioners
and academics during history. The standard approach in literature is to set
the premium level according to a model of the expected loss and then adding a
safety loading which is related to distributional properties of the risk. However,
there are also other approaches. For example in Asmussen et al. (2013) and
Thøgersen (2016) where the individual customer’s decision problem of buying
insurance or not at a specific premium level is modeled explicitly. This approach
makes it possible to derive the portfolio size as a function of the premium and
the insurance company is able to choose optimal premiums that balances rev-
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enue and portfolio size so that the risk of ruin is minimal.

In another article Asmussen et al. (2019), this approach of deciding the premium
is extended to take the market competition between two insurance companies
into consideration. The article consider the two companies I1 and I2 with cap-
ital reserves R1(t) and R2(t) where R1(0) > R2(0), namely I1 is initially larger
than I2. Furthermore, a stochastic variable V is defined to take market frictions
into account. The capital reserve difference is taken as state variable and in the
article they consider the so called push and pull game where the larger company
wants to maximize the reserve difference and the smaller wants to minimize the
same. By using premiums as controls they manage to find a pricing strategy
that none of the companies are willing to change, a so called Nash equilibrium.
The formulation of the game as an optimal control problem makes it feasible
to implement reinforcement learning to model the competition situation as a
sequential decision process.

In this thesis we will adopt some of the ideas stated in Asmussen et al. (2019) to
see how the optimal premium is influenced by the other company in a somewhat
simplified insurance setting. Firstly, we will consider the push game of the larger
company when the market friction variable V (in our case we will denote it H
in order to not confuse it with the value function) does not change for different
years and the smaller company has the premium set in a standard way. This
will then be extended to the situation where both companies simultaneously try
to find the optimal pricing strategy. The problem will be modeled as a Markov
decision process (chosen strategy only dependent on the current state) with the
reserve difference as state variable. To begin with, the game will be solved ana-
lytically and optimal premiums will be derived. Afterwards, the state-transition
probabilities for the game will be estimated using a simulation approach. With
the state-transition probabilities we can assume that the environment is fully
known and from this the problem can be solved using dynamic programming
(DP). Lastly, we implement model-free reinforcement learning methods (RL)
such as Monte-Carlo (MC) and Temporal-Difference learning (TD) to solve the
problem. By analyzing if the RL methods converge to the optimal premiums
according to the analytical and DP results we want to conclude if the methods
could be appropriate to use in the considered situations.

Later on, the first game situation, will be extended to a game where the market
friction variable H changes depending on which company the insured currently
holds insurance from. In this scenario we take some inspiration from Krashenin-
nikova et al. (2019) which uses a reinforcement learning approach to adjust the
renewal prices for existing customers. This is a balance between two conflicting
objectives, increasing the retention of existing customers and increasing revenue.
In many ways we will inherit these conflicting objectives in our problem. Either
we could offer a premium that maximizes the revenue in the short perspective or
we could offer a lower premium to attract many customers and in this way gain
a market advantage. Again, the problem will be modeled as a Markov decision
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process but this time the state variable will be given as a tuple s = (d, n) where
d is the reserve difference and n the proportion of customers. We will present
an analytical solution in this problem for different n. Later on, we will estimate
the state-transition probabilities (the environment dynamics) using simulation
and then make use of dynamic programming to derive some reference of optimal
premiums. Lastly, reinforcement learning methods will be implemented and the
results will compared to the optimal premiums derived using DP.

1.1 Objectives

The aim of this thesis is to see if it is possible and appropriate to implement
reinforcement learning approaches to analyze the market competition part of
pricing in a somewhat simplified insurance setting. Surely the large companies
in the insurance industry take the competition aspect into account in some way
when deciding the premiums. However, using a reinforcement learning approach
to support the decision-making in this pricing context is, within my knowledge,
not very common yet. Therefore, the main contribution of this thesis is the
implementation of the methods in this particular setting.

1.2 Disposition

The thesis will be structured as follows. In section 2 we will go through the
theoretical framework of reinforcement learning as a whole. The section will be
divided into different underlying parts of the full reinforcement learning prob-
lem. Also, the different algorithms used in this thesis will be presented using
pseudocode. In section 3, we go through the simulation of insurance data and
how the customers choice of company can be modeled explicitly. In section 4,
the game situations we want to analyze are described. In section 5, we first
derive some theoretical results of the considered games. Then the results of the
algorithms implemented in this thesis are presented. Lastly, in section 6, we
discuss the results and draw conclusions from the study.

2 Theory of Reinforcement Learning

In this section and subsections we introduce a computational approach to learn
from interaction, namely reinforcement learning. Compared to other machine
learning algorithms, reinforcement learning is way more focused on goal-directed
interaction and are usually effective in solving learning problems of scientific or
economic interest. Unless stated otherwise, the theory in this section and sub-
sections follow Sutton and Barto (2018).

Reinforcement learning are methods that learn which actions to take in dif-
ferent situations when the goal is to maximize some numerical reward signal.
This is done by trying out different actions, map the results to rewards and
in this way discover which actions that create the most reward. After each
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sample of rewards the followed policy gets updated. A complicating factor is
that the actions might not only affect the immediate reward but also the next
situation and in this way all subsequent rewards. Since the aim is to learn an
optimal strategy to maximize the reward in the long run, we must be careful
so that we do not perform too many suboptimal actions if we want to reach
our goal. However, in the beginning, the learning agent have no idea of which
actions that are optimal and the only way to find out is by learning from inter-
action with the environment. In this way the agent have learned which actions
that give good rewards and make use of this knowledge to make better decisions.

A more formal definition of the reinforcement learning problem could be for-
mulated using the ideas from optimal control of incompletely known Markov
decision processes. The idea of this is basically to capture the most important
parts of the real problem facing a learning agent which interacts over time with
its environment to achieve a goal. This is described in more detail in section
2.3. Furthermore, the learning agent must be able to distinguish the state of its
environment in order to take actions that affect the state. The agent also need
to have a goal/goals that relate to the state of the environment. Markov deci-
sion processes are intended to include just these three key aspects and actually,
any method that can be used to solve these kind of problems can be considered
as a reinforcement learning method.

Moreover, reinforcement learning is different to both supervised and unsuper-
vised learning in several ways. In supervised learning the correct actions are
provided by a knowledgeable external supervisor and the task is then to gener-
alize this to other situations. Unsupervised learning is typically about finding
structure hidden in collections of unlabeled data and is similar to reinforcement
learning in the way that it does not rely on examples with correct behaviour.
However, they are different in the sense that reinforcement has the goal of max-
imizing the reward signal instead of trying to find hidden structures.

Another (challenging) difference with reinforcement learning in comparison to
other learning methods is the task of exploration and exploitation trade-off. In
order to obtain a lot of reward the agent should make use of the actions that he
knows have been effective in the past but in order to find new possible better
actions for the future he also needs to explore. It is not possible to only explore
or exploit without failing the task. Therefore, the agent must try a variety of
actions and simultaneously try to perform both exploration and exploitation to
achieve the goal. For a stochastic task every action must be taken several times
in order to get reliable estimates of the expected rewards. Another key aspect
of reinforcement learning is that, in comparison to other methods, considers
the whole problem of an agent trying to reach its goal in an uncertain environ-
ment. For example, other machine learning methods have been studied without
specifying how it ultimately could be useful while reinforcement learning the
ultimate goal is central. Also, in the beginning it is usually assumed that the
agent has to choose his actions even though the significant uncertainty about
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the environment it faces.

In order to understand the reinforcement learning problem better it can be use-
ful to consider two examples which are given below.

A chess game. In a given position the chess player want to make the best move
in order to win the game. This move is chosen by taking the possible replies
and counterreplies into account and by comparing the advantages of particular
positions and moves.

A robot collecting trash. Based on the current charge level of its battery
and how fast it has been able to find the recharger in the past, the robot decides
whether it should enter a new room to collect trash or try to find the recharging
station.

Both of these examples are easy to overlook and involve the interaction between
an active decision making agent and its environment, within which the agent
tries to achieve the goal (for example win the chess game) even though its
environment is uncertain. The agents actions are allowed to have impact on the
future states of the environment as well (for example next chess position) which
means that the future actions available to the agent are impacted. These effects
of the actions cannot be fully predicted and the agent must because of this
monitor its environment frequently in order to be able to react appropriately in
any situation.

2.1 Basic elements of reinforcement learning

The agent and the environment are the primary actors interacting and there-
fore the most crucial parts of the reinforcement learning system. Beyond these,
there are essentially four elements to completely explain the system: a policy,
a reward signal, a value function, and optionally a model of the environment.
These are summarized in the following.

Policy. A policy defines the learning agent’s way of behaving at a given time.
It is basically a mapping from the perceived states of the environment to actions
which should be taken in those states based on the estimated rewards. When
taking different actions, we receive different rewards and the policy is updated
with respect to this. The policy is seen as the core of a reinforcement learning
agent since that it alone is sufficient to determine the behaviour. Furthermore,
the policies may be stochastic and map to different actions with different prob-
abilities.

Reward signal. A reward signal defines the goal of the reinforcement learning
problem. On each time step we choose an action and in response the reinforce-
ment learning agent gets a single number as a reward. In this way the policy
can be updated and we are (hopefully) able to identify bad and good actions at
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different states. The objective of the agent is then to maximize the total reward
it receives over the long run. In general the reward signals may be stochastic
functions of the state and the actions taken.

Value function. In comparison to the reward signal the value function de-
scribe what is good in the long run. What is good in the long run is decided
by taking the states that are likely to follow and their corresponding rewards
into account. Roughly speaking, the value of a state is the total accumulated
reward an agent can expect over the future when starting from that state. This
is somewhat complex and to efficiently estimate values is in many ways the most
important component of all reinforcement learning algorithms.

Model of the environment. A model of the environment allow inferences of
how the environment will behave and planning actions by considering possible
future situations before they are actually experienced. However, as mentioned
above, a model of the environment is not necessary in the reinforcement learn-
ing problem. These model-free methods are explicitly trial-and-error and can
in many ways be viewed as the complete opposite of planning.

2.2 Multi-armed Bandits

Before going through the full reinforcement learning problem in detail we study
a simple version of the so called multi-armed bandit problem. The simplified
setting that we consider does not involve learning how to act in more than one
situation which avoids a lot of the complexity compared to the full reinforce-
ment learning problem. However, we can make use of this particular problem
to explore concepts and basic learning methods which we later on can extend to
the full reinforcement learning problem. This section and subsections are based
on the theory introduced in Sutton and Barto (2018, p. 25-42).

The original multi-armed bandit problem consider a situation where you repeat-
edly need to make a choice from k different options (actions). The k actions are
assumed to be the same every time, namely the environment we consider only
has one state. Each choice of action generates a numerical reward that is cho-
sen from a stationary probability distribution dependent on the selected action.
The goal is then to maximize the total reward over some long time period, for
example 1000 action selections. This is done by considering the expected reward
given on each of the k possible actions. The action chosen at time step t and
the corresponding reward are denoted At and Rt respectively. The expected
reward of an arbitrary action a is then given by

q∗(a)
.
= E [Rt | At = a] .

If this quantity was known for every action a we would always choose the action
with the highest value and the multi-armed bandit problem would be trivial.
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However, we assume that we don’t know the actual values of each action but
instead consider estimates Qt(a) that we (obviously) want to be close to q∗(a).
There is always at least one of the estimated values that is greatest and the ac-
tion/actions that generates this value is called greedy. When selecting a greedy
action we are exploiting the current knowledge of the action values. If we instead
select one of the non-greedy actions we are exploring since we could be able to
improve the estimate of the non-greedy actions value. Since it is not possible to
both exploit and explore in the same time this is often referred to as the conflict
between exploration and exploitation. If we want to maximize the expected
reward in one step, exploitation is the right thing to do. If we instead want to
maximize the total reward in the long run it might be better to explore since
we could find non-greedy actions that actually are better than the greedy action.

The requirement to balance exploration and exploitation is a challenge that
repeatedly appears in reinforcement learning. How this should be done depends
in a complex way on the precise values of the estimates, uncertainties and the
number of remaining steps. However, by considering our simplified multi-armed
bandit problem the idea of these methods can be presented in a clear way.
Since the true action value is the expected reward when that action is selected
a natural estimate is obtained by averaging the actual received reward in the
following way.

Qt(a) =
Sum of rewards when a taken prior to t

Number of times a taken prior to t
=

∑t−1
i=1 Ri · IAi=a

Nt−1(a)
, (1)

where I is a so called indicator function and Nt−1(a) =
∑t−1
i=1 IAi=a. Using the

well known law of large numbers it follows that Qt(a) converges to q∗(a) as the
denominator (number of times taking action a) goes to infinity. This method
is called the sample-average method and is just one of many ways to estimate
action values.

2.2.1 Incremental update

In order to save time and space when implementing the method we notice that
the equation (1) can be written as an incremental update procedure in the
following way:
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Qt+1(a) =
1

Nt(a)

t∑
i=1

Ri · IAi=a

=
1

Nt(a)

(
Rt · IAt=a +

t−1∑
i=1

Ri · IAi=a

)

=
1

Nt(a)
(Rt · IAt=a + (Nt(a)− IAt=a)Qt(a))

=
1

Nt(a)
(Rt · IAt=a +Nt(a)Qt(a)−Qt(a)IAt=a)

= Qt(a) +
IAt=a

Nt(a)
[Rt −Qt(a)]

.

Using this incremental update procedure we don’t need to save all rewards and
recalculate the mean. Instead we can update the mean easily by the term
IAt=a

Nt−1(a)
[Rt −Qt(a)] which in words can be formulated as the weighted differ-

ence of the observed and expected reward. The difference between the observed
and expected reward is an error in the estimate and is reduced by taking a step
closer to the observed value. When incrementally updating the mean we only
need to keep track of Qt(a) and Nt(a). Because of this, this way of updating
is used in many reinforcement learning algorithms to save memory and reduce
computation time.

The incremental update rule can also be extended to be useful in nonstationary
problems. One way of doing this is by replacing 1

Nt(a)
with a constant step size

parameter α ∈ (0, 1]. The update can then be expressed in the following way
(note that we have chosen to not write out the indicator in order to make the
steps easier to survey):

Qt+1 =Qt + α [Rt −Qt]
=αRt + (1− α)Qt

=αRt + (1− α) [αRt−1 + (1− α)Qt−1]

=αRt + (1− α)αRt−1 + (1− α)2Qt−1

=αRt + (1− α)αRt−1 + (1− α)2αRt−2 + · · ·+ (1− α)t−1αR1 + (1− α)tQ1

=(1− α)tQ1 +

t∑
i=1

α(1− α)t−iRi

Since the sum of the weights is 1, this is a weighted average. Moreover, since 1−α
is less than 1 we can conclude that the sum gives less and less weight to older
observations. Actually the weights decay exponentially and for that reason this
weighted average is often referred to as an exponential recency weighted average.
From the sum we also conclude that we give more weight to recent observations
for larger parameter α.
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2.2.2 Balancing exploration and exploitation

As described earlier, one of the most challenging parts of reinforcement learning
is the balance between exploration and expoitation. The simplest policy is to
always be greedy (exploiting) and take the action which maximize the estimated
value, namely the action selected by the following expression.

At
.
= argmax

a
Qt(a).

However, since these greedy actions never explore possible better actions it is
rarely the best approach in the long run. One simple way of maintaining explo-
ration is to consider the so called ε-greedy policies which act greedily most of
the time but with a small probability ε choose from the non-greedy actions at
random. The ε-greedy policies have an advantage over the greedy policy since
it guarantees that all actions will be sampled infinitely many times in the limit
and every Qt(a) will converge to q∗(a). However, these are only asymptotic
results and it does not say much about the methods efficiency in practice.

There are many other ways of balancing exploration and exploitation. For
example the upper confidence bound method (UCB) and the gradient bandit
algorithm which is described in Sutton and Barto (2018). In order to limit
the scope of this thesis we will not go through these methods in more detail.
Instead we choose to define the interaction between the learning agent and its
environment in a more formal way. This is done in the following section using
the framework of Markov decision processes. Using this, the most important
features of the artificial intelligence problem can be represented in terms of
states, actions and rewards in a simple manner.

2.3 Finite Markov Decision Processes

In this section we represent the reinforcement learning problem in a more for-
mal way using the framework of finite Markov decision processes (finite MDPs).
MDPs are meant to be a straightforward framing of the problem of learning
from interaction to achieve a goal. The interaction is between the agent and
environment and these interact continually when the agent selects actions and
the environment responds to these actions with rewards and presenting new
situations to the agent. The aim for the agent is then to maximize these re-
wards over time. The theory in this section and subsections follow the theory
presented in Sutton and Barto (2018, p. 47-68).

We can assume that the interaction is made in a sequence of discrete time steps,
t = 0, 1, 2, .... At each time step, the agent receives some representation of the
environments state St ∈ S. With respect to the current state the agent then
selects an action At ∈ A(St) which in the next time-step generates a numerical
reward Rt+1 ∈ R ⊂ R and the agent finds itself in a new state St+1. In this
way the interaction give rise to a sequence of states, actions and rewards in the
following way.

13



S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .

If the random variables Rt+1 and St+1 have well defined discrete probability
distributions and only depend on the immediately preceding state St and action
At (given them, not at all on earlier states and actions) then this is said to be
a MDP (Markov property holds). Furthermore, if the sets S,A and R all have
a finite number of elements it is said to be a finite MDP. In a finite MDP the
probability of the specific values of s′ ∈ S and r ∈ R occurring at time t given
any preceding state s and action a completely characterize the environment’s
dynamics and can be defined as follows.

p (s′, r | s, a)
.
= Pr {St = s′, Rt = r | St−1 = s,At−1 = a} ,

for all s′, s ∈ S, r ∈ R, and a ∈ A(s).

By considering the dynamics function p it is possible to compute other quantities
of interest in the environment. For example the state-transition probabilities

p (s′ | s, a)
.
= Pr {St = s′ | St−1 = s,At−1 = a} =

∑
r∈R

p (s′, r | s, a) ,

the expected rewards for state-action pairs

r(s, a)
.
= E [Rt | St−1 = s,At−1 = a] =

∑
r∈R

r
∑
s′∈S

p (s′, r | s, a)

and the expected rewards for state-action-next-state triples

r (s, a, s′)
.
= E [Rt | St−1 = s,At−1 = a, St = s′] =

∑
r∈R

r
p (s′, r | s, a)

p (s′ | s, a)
.

Throughout this thesis we will assume that the Markov property holds even
though it is possible to accomplish approximation methods that not rely on it.
Using this framework, reinforcement learning methods specifies a way of the
agent to improve its policy with the goal of maximizing the long run reward.
This idea is expressed as a reward hypothesis in Sutton and Barto (2018, p. 53):

”That all of what we mean by goals and purposes can be well thought of as the
maximization of the expected value of the cumulative sum of a received scalar
signal (called reward)”.

Since the agent always learns to maximize the rewards, the reward signal must
be defined and connected to the problem in such a way that maximizing them
also achieves our goals. The task of maximizing the rewards can itself be rep-
resented in two different ways, one in which the interaction between the agent
and environment breaks down into a sequence of separate episodes (episodic
task) and one which it does not (continuing tasks). However both these tasks
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can be expressed in unified notation which enables us to talk about both cases
simultaneously.

2.3.1 Return in episodic and continuing tasks

In episodic tasks we need to consider a series of episodes (each with a finite
sequence of time steps) rather than a long sequence of time steps which we
consider in continuing tasks. In this setting we let the state at time t in episode
i be denoted as Sti and in the same way we denote Ati, Rti, πti, Ti etc. How-
ever, when discussing episodic tasks we are almost always considering a specific
episode (or stating that something is true for all episodes) and therefore almost
never need to distinguish between different episodes. Because of this we almost
always abuse this notation in practice and use St to refer to Sti and so on.
Given the sequence of rewards at each time step the goal of the agent is then
to maximize the expected return. The return Gt is defined as a function of the
sequence of rewards and in a way which unifies the two tasks considered. This
is done by considering Gt as the following sum

Gt
.
=

T∑
k=t+1

γk−t−1Rk,

where 0 ≤ γ ≤ 1 is the discount factor and T is the last time step which could
be both finite and infinite, however γ can’t be 1 when T = ∞. For the case
where T is finite the sum represents the episodic task and the other case rep-
resents the continuing task. Moreover the environment we consider could be
deterministic or non-deterministic. In a deterministic environment the reward
and state following the same state and action of different time steps are the
same and in non-deterministic they can differ. The environments could also
be stationary and non-stationary, which means that the state transitions and
reward dynamics are either the same in different time steps or not.

2.3.2 Optimal policies and Optimal Value functions

Essentially all reinforcement learning rely on estimating value functions of either
states (or state-action pairs). The purpose of the value function is to estimate
how good (in terms of expected return) it is for the agent to be at a certain
state (or performing an action in a given state). Since the expected return in
the future depends on the actions of the agent the value function is defined with
the different ways of acting, namely policies.

Under a policy π, the value function vπ(s) of a state s, is the expected return
when starting in s and then following the policy π. In case of a MDP the value
function can be defined by the following expression.
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vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]
, for all s ∈ S,

where Eπ[·] denotes the expected value of the random variable given that the
agent follows policy π and t represents any time step. In a similar way the
corresponding action-value function qπ(s, a) can be defined by the following
expression.

qπ(s, a)
.
= Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]
.

These value functions can be estimated by experience. For example, an agent
which follows a policy π and get an average of the actual returns following
different encountered states, the average will converge to the value of the state
as the number of times the state is encountered approaches∞. In a similar way
the action-values can be obtained. Both of these value functions also satisfy
recursive relationships between the value of any state s and the value of its
possible successor states for any policy π. This equation is more known as the
Bellman equation for vπ and can be obtained in the following way.

vπ(s)
.
= Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p (s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]]

=
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)] , for all s ∈ S

. (2)

The so called Bellman equation (2) expresses a relationship between the value
of a state and the value of its successor states. The value function vπ is the
unique solution to its Bellman equation and in this way these equations form
the basis in many ways of learning vπ. Reinforcement learning aims to find a
policy that maximize the reward obtained in the long run and for a finite MDP
these equations can be used to precisely define an optimal policy. Since value
functions define a partial ordering of the policies a policy π is said to be better
or equal to the policy π′ if and only if vπ(s) ≥ vπ′(s) for all states s ∈ S. There
is always at least one policy that is better or equal to all other policies. These
policies (in case of more than one optimal policy) are all said to be optimal
policies and are denoted by π∗. That more than one policy could be optimal
don’t have any influence on the solution since they are equivalent in the terms
of value functions. The optimal state value function can be expressed as

v∗(s)
.
= max

π
vπ(s),
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for all s ∈ S and the corresponding action-value function can be expressed as

q∗(s, a)
.
= max

π
qπ(s, a),

for all s ∈ S and a ∈ A(s). The action-value function can also be obtained in
terms of vπ by considering the expected return of taking action a in state s and
then follow an optimal policy. In this way the following relation is obtained

q∗(s, a) = E [Rt+1 + γv∗ (St+1) | St = s,At = a] . (3)

Because v∗(s) is the value function with respect to some policy, the Bellman
equation holds. However, because this is the the optimal value function it can
also be written without any reference to a specific policy in the following way

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

E [Rt+1 + γv∗ (St+1) | St = s,At = a]

= max
a

∑
s′,r

p (s′, r | s, a) [r + γv∗ (s′)]

. (4)

Equation (4), called the Bellman optimality equation, expresses the fact that
the value of a state following an optimal policy must be equal to the expected
return when the best action is taken from that state. The Bellman optimality
equation for q∗ could furthermore be written as

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗ (St+1, a

′) | St = s,At = a
]

=
∑
s′,r

p (s′, r | s, a)
[
r + γmax

a′
q∗ (s′, a′)

] . (5)

In finite MDPs, the Bellman optimality equations for v∗(s) and q∗(s, a) have
unique solutions and if the dynamics p of the environment are known both of
these can be solved using methods for solving systems of non-linear equations.
From this an optimal policy can be obtained in a fairly simple way and form
the solution for the reinforcement learning problem. However, this solution rely
on at least three assumptions that are rarely true in real world. Firstly, as said
before, the dynamics of the environment need to be accurately known. Sec-
ondly, the computational power must be enough to complete the calculation
and thirdly, the Markov property must hold for the states.

Since these assumptions in general is not met for the problems we consider, other
approximate solution methods are more efficient in practice. Some of these are
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model-based and try to first estimate the model of the environment and then
uses it to derive the optimal policy. Others are model-free and instead learns the
optimal policy without knowing the model of the environment. In this thesis
we mainly focus on the model-free algorithms. However, in order to build a
foundation of how these model-free methods work it is useful to first consider
the collection of algorithms that can be used to derive an optimal policy given
the perfect model of the environment as a MDP (dynamic programming).

2.4 Dynamic Programming

In this section we go through the concept and algorithms of dynamic program-
ming (DP) which can be used when the perfect model of the environment is
known and is assumed to be a finite MDP. The idea of DP (which can be ex-
tended to reinforcement learning in general) is to use the value functions to
structure the search for good policies. The DP-algorithms are constructed by
considering the Bellman optimality equations stated earlier and turning these
into update rules which improve approximations of the value function. When
the optimal value functions have been found using the DP-algorithms we are, as
explained in earlier chapters, able to find the optimal policy in a fairly simple
way. This section and subsections are based on the theory introduced in Sutton
and Barto (2018, p. 73-88).

The procedure of the algorithms can be structured into two main parts. The
first part consider the policy evaluation and the second part policy improvement.
The policy evaluation part uses an iterative solution method for the set of linear
equations which the Bellman equations following policy π give rise to. In this
iterative policy evaluation we consider the initial approximate value function at
time 0 be arbitrarily chosen and each successive approximation be given by

vk+1(s)
.
= Eπ [Rt+1 + γvk (St+1) | St = s]

=
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvk (s′)] , for all s ∈ S. (6)

The policy improvement part is then used to decide whether it would be prefer-
able compared to the policy followed with respect to the value function. This
is done by considering the action a in state s and then following the current
policy π. The value of this is given by qπ(s, a) and is compared to the value
function vπ(s). If qπ(s, a) ≥ vπ(s) then it suggests that it is better or at least
equal to consider a new policy choosing action a every time state s is encoun-
tered. This is a general result called the policy improvement theorem. The
policy improvement theorem states that if

qπ (s, π′(s)) ≥ vπ(s),

for any pair of deterministic policies π and π′, then the policy π′ must be at
least as good as π. This means that the expected return from all states s ∈ S
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must hold the following identity

vπ′(s) ≥ vπ(s).

The proof of the policy improvement theorem is given in appendices A. More-
over, it can be proved that the policies only are equally good when they are
both optimal policies.

This way of changing to a greedy action can be extended to consider changes
at all states with respect to the best action selected according to qπ(s, a) and
leads to a new greedy policy π′ according to

π′(s)
.
= arg max

a
qπ(s, a)

= arg max
a

E [Rt+1 + γvπ (St+1) | St = s,At = a]

= arg max
a

∑
s′,r

p (s′, r | s, a) [r + γvπ (s′)]

(7)

in which arg maxa denotes the value of a that maximizes the expression. In case
of a tie it is chosen arbitrarily between these.

2.4.1 Deriving an optimal policy

By combining the evaluating and improvement parts we end up in an algorithm
procedure called policy iteration. By repeatedly evaluating and improving the
policy the algorithm are able to obtain a sequence of monotonically improving
policies and value functions. Since a finite MDP only consist of a finite num-
ber of policies this sequence must converge to an optimal policy and optimal
value function in a finite number of iterations. This procedure is described in
algorithm 1 below.
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Algorithm 1 Policy iteration.

1. Initialize value function V (s) ∈ R and policy π(s) ∈ A(s) arbitrarily for
all states s ∈ S. Assume V ( terminal state )

.
= 0.

2. Policy Evaluation:

while ∆ < θ (where θ is a small positive number which determine the accu-
racy of estimation) do

∆← 0
for each s ∈ S do
v ← V (s)
V (s)←

∑
s′,r p (s′, r | s, π(s)) [r + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

end while
3. Policy Improvement
policy-stable ← true

for each s ∈ S do
old-action ← π(s)
π(s)← argmaxa

∑
s′,r p (s′, r | s, a) [r + γV (s′)]

if old-action 6= π(s) then
policy-stable ← false

end if
end for
if policy-stable then

Return V ≈ v∗ and π ≈ π∗
else

Go to 2.
end if
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Policy iteration often converge in relatively few iterations. However, each it-
eration in policy iteration takes a long time because of the policy evaluation
part that itself can be an extensive iterative procedure. Without losing the
convergence guarantees of policy iteration this can be handled in several ways
by stopping the policy evaluation part before exact convergence. A special case
of this truncated policy evaluation technique is the so called value iteration al-
gorithm which stops the evaluation after only one update of each state. This
algorithm uses the Bellman optimality equation (2) as update rule, namely

vk+1(s) = max
a

∑
s′,r

p (s′, r | s, a) [r + γvk (s′)] ,

for all s ∈ S. Under the same conditions that guarantee the existence of v∗,
the sequence {vk} can be shown to converge to v∗ for arbitrary v0. When the
optimal value function is found the optimal policy easily can be derived. The
full procedure is described in algorithm 2.

Algorithm 2 Value iteration.

Algorithm parameter θ (a small positive number which determine the accu-
racy of estimation). Initialize value function V (s) arbitrarily for all states
s ∈ S except V ( terminal state )

.
= 0.

while ∆ < θ do
∆← 0

for each s ∈ S do
v ← V (s)
V (s)← maxa

∑
s′,r p (s′, r | s, a) [r + γV (s′)]

∆← max(∆, |v − V (s)|)
end for

end while
Return deterministic policy, π ≈ π∗, such that

π(s) = arg max
a

∑
s′,r

p (s′, r | s, a) [r + γV (s′)] .
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Value iteration combines one sweep of policy evaluation and policy improvement
in a clever way. This can be extended by allowing multiple evaluation sweeps
between each policy improvement and in this way convergence can be accom-
plished in less time. For a discounted finite MDP, all of these variations can be
seen to converge to an optimal policy.

Compared to the policy iteration algorithm, it takes more iterations to obtain
convergence when using the value iteration algorithm. However, each iteration
takes less time. When assuming perfect knowledge of the model of the envi-
ronment both of these methods can be used to solve the reinforcement learning
problem but since this assumption is not met in practice these methods are of
limited use in real life. However, the general idea of combining policy evalua-
tion and policy improvement are used as foundation in the approximate methods
that we will through in later sections.

2.4.2 Generalized policy iteration

In this section we go through generalized policy iteration (GPI) which refers to
the general idea of policy evaluation and policy improvement interacting with
each other. To be precise, the policy evaluation makes the value function com-
patible with the current policy and policy improvement make the policy greedy
with respect to the current value function. In policy iteration described earlier
these two processes alternate but in general this is not needed. For example, in
value iteration this is not the case since only one iteration of policy evaluation
is done between each policy improvement. However, as long as both these pro-
cesses keep updating all states, convergence to the optimal value function and
an optimal policy are achieved. Furthermore, almost all reinforcement learning
methods are well described as GPI which makes it a very applicable tool.

In GPI, the evaluating and improvement processes are in some sense working in
opposing directions. Making the policy greedy with regard to the value function
typically make the value function inaccurate for the changed policy. Moreover,
making the value function compatible with the policy typically makes the pol-
icy non-greedy. However, in the long run, the two processes interact with each
other and find the solution that make the value function compatible with the
current policy and the policy greedy with respect to the current value function
and because of this, both processes stop shifting. Thus, both processes only
stabilize when the policy is greedy to its own evaluation function. This implies
that the Bellman optimality equation holds, which in turn means that the policy
and value function must be optimal.

2.5 Monte Carlo Methods

In this section we go through Monte Carlo methods which in comparison to dy-
namic programming does not assume complete knowledge of the environment.
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Instead, these methods only need experience-sample sequences of states, actions
and rewards from actual or simulated interaction with an environment. This is
very useful since learning from actual experience means that it does not require
any prior knowledge of the dynamics of the environment but still can obtain
the optimal behaviour. Learning from simulation is also useful since it only
need sample transitions from a model, not the complete probability distribu-
tions which is needed for DP. In this section and subsections the theory is based
on Sutton and Barto (2018, p. 91-115).

The Monte Carlo methods solve the reinforcement learning problem based on
averaging sample returns and in order for all returns to exist we only consider
episodic tasks. Moreover, the value estimates and policies are only updated
when an episode are completed. The procedure is much like the bandit method
that we explained earlier but in this case we consider multiple states, each one
acting like a different bandit problem. Since the return taking an action in one
state also depends on the actions in later states in the same episode these bandit
problems are interrelated.

2.5.1 Monte Carlo control with exploring starts

Since state values alone not are sufficient for deciding a policy when a model is
not available it is, in these cases, very useful to estimate action values instead of
state values. In order to do this we consider the policy evaluation problem for
action values that consist of estimating qπ(s, a). In the Monte Carlo methods
this estimate can be obtained considering the visits of state action pairs s, a
(visiting state s and taking action a) in an episode. The first visit MC-method
estimates qπ(s, a) as the average of the returns given only by the first visits to
s, a while the every-visit MC-method averages the returns considering all visits.
Furthermore, these methods can be seen to converge quadratically to the true
expected values as the number of visits to each state action pair approaches
infinity.

The only complication is the general problem of balancing exploration and ex-
ploitation that has been discussed earlier. If not taken care of, many state action
pairs may never be visited. This is a serious problem since the estimates from
these will not be improved with experience, meaning that the method might
not be able to choose correctly among available actions in each state. One way
of assuring continual exploration are the assumption of exploring starts. The
assumption of exploring starts specify that the starting state action pair in ev-
ery episode are selected from all pairs with non-zero probability and all state
action pairs will therefore be visited an infinite number of times in the limit of
an infinite number of episodes. This assumption can sometimes be useful but in
general it can not be relied on, particularly when learning by actual interaction
with an environment.

In order to use Monte Carlo estimation to approximate optimal policies we use
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the idea of GPI that was explained in the section about DP. In GPI, both an
approximate policy and an approximate value function is maintained. Specifi-
cally, the value function is changed repeatedly to more closely approximate the
value function for the current policy and the policy is improved repeatedly with
respect to the current value function. As explained earlier, these procedures
somewhat work in opposite directions but together they approach optimality
for both the policy and the value function. The policy evaluation is made in the
way explained earlier for estimating qπ(s, a). Under the assumptions of that we
observe an infinite number of episodes and exploring starts the MC-methods will
compute qπk

exactly for an arbitrary policy πk. The policy improvement part
can furthermore be done using the current action value function to construct the
greedy policy πk+1 (no underlying model is needed). The policy improvement
theorem then holds for πk and πk+1 since

qπk
(s, πk+1(s)) = qπk

(
s, arg max

a
qπk

(s, a)
)

= max
a

qπk
(s, a)

≥ qπk
(s, πk(s))

≥ vπk
(s), for all s ∈ S

.

The assumptions of observing an infinite number of episodes and exploring starts
is however not very likely to hold. A way of handling the first assumption for
policy evaluation is to not complete the policy evaluation before returning to
policy improvement. In this way, we move the value function towards qπk

in
every evaluation step, however we do not expect to come close until many steps
are done. For MC-methods it is reasonable to alternate between evaluation
and improvement on an episode-by-episode basis. The assumption of exploring
starts can also be removed by considering only policies that are stochastic with
nonzero probability of selecting all actions in every state. This can be obtained
using two different approaches, namely on-policy methods and off-policy meth-
ods.

2.5.2 Monte Carlo Control-on policy

In this section we go through the MC on-policy methods for maintaining con-
tinual exploration. The only way of doing this is by ensuring that all the actions
keep on being selected by the agent. One example of these methods is indeed
the assumption of exploring starts that we considered earlier but we can also
construct others without this unrealistic assumption. Generally the on policy
control methods are considered to be soft. This means that π(a | s) > 0 for all
states and actions but is gradually getting closer and closer to a deterministic
optimal policy.

We consider the ε-greedy policies that were mentioned in the multi-armed ban-
dit section. This method choose a greedy action with probability 1 − ε and
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at random choose one of the actions with probability ε. This means that the
probability of selecting the greedy action is 1− ε+ ε

|A(s)| and all other actions

have the probability of ε
|A(s)| to be selected. Moreover, the ε-greedy policies are

examples of ε-soft policies which are defined as policies where, for some ε > 0,
it holds that π(a | s) > ε

|A(s)| for all states and actions.

Using this, the general idea of GPI can be applied since GPI only require that
the policy are moved towards a greedy policy, not all the way to it. Furthermore,
the policy improvement theorem holds (for proof, see appendices A). This means
that for any ε-soft policy π we have that any ε-greedy policy with respect to qπ
is better than or equal to π. The equality, again, can be showed to only hold
when both of the considered policies are optimal among ε-soft policies. Using
this we are able to find the best policy among all ε-soft policies. In other words,
the policy iteration works for ε-soft policies. That we only will be able to find
the best policy among ε-soft policies is not optimal but a reasonable cost for
getting rid of the unrealistic assumption of exploring starts. Using the first visit
method explained in earlier sections for estimating the action value function the
complete algorithm can then be written in pseudocode as in algorithm 3 below.

Algorithm 3 On-policy first-visit MC control (ε-greedy).

Algorithm parameter: small ε > 0.
Initialize:

π ← an arbitrary ε-greedy policy
Q(s, a) ∈ R (arbitrarily), for all s ∈ S, a ∈ A(s)
Returns (s, a)← empty list, for all s ∈ S, a ∈ A(s)

Loop forever:
Generate an episode following π : S0, A0, R1, . . . , ST−1, AT−1, RT

G← 0
for each step of episode t = T − 1, T − 2, . . . , 0 do

G← γG+Rt+1

if the pair St, At not appears in S0, A0, S1, A1 . . . , St−1, At−1 then
Append G to Returns(St, At)
Q (St, At)← average (Returns(St, At))
A∗ ← arg maxaQ (St, a) (if it is a tie → broken arbitrarily)

for all a ∈ A (St) do

π (a | St)←

{
1− ε+ ε/ |A (St)| if a = A∗

ε/ |A (St)| if a 6= A∗

end for
end if

end for
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2.6 Temporal-Difference Learning

In this section we combine the ideas from DP and MC-methods in the earlier sec-
tions to define the temporal-difference (TD) learning. TD-methods both inherit
the ability to learn directly from experience without a model of the environ-
ment (as in MC-methods) and update estimates partly based on other learned
estimates without waiting for the final outcome (as in DP). When TD-methods
for estimating the value function (policy evaluation) has been established the
control problem (finding an optimal policy) also follow a variation of GPI. This
section and subsections follow the theory introduced in Sutton and Barto (2018,
p. 119-138).

2.6.1 Policy evaluation

The policy evaluation part of TD-methods is similar to the MC-methods in the
sense that it uses experience to update the estimate of the value function for all
non-terminal states when following a policy π. However, in MC-methods the
return is not known until the episode has ended and because of this, the value
function can not be updated until then. This is not the case in TD-methods
which only need to wait until the next time step t+ 1 to directly form a target
and make a useful update using the observed reward Rt+1 and the estimate
V (St+1). The simplest form of TD-methods are called TD(0) and make the
update in every time-step in the following way

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] .

While the update in MC has the return Gt as target, the update of TD(0) have
the target Rt+1 + γV (St+1). Since TD(0) partly is updated based on an exist-
ing estimate it also uses bootstrapping (as DP). In this way TD(0) are said to
combine the sampling of MC-methods with the bootstrapping of DP and the
advantages of both these methods can in this way be obtained. For example
some applications have very long episodes (or no episodes at all for continuing
tasks) and it will be too slow if we delay all learning until the end of the episode.
It has also been showed that TD(0), for any fixed policy π, converge to vπ in
the mean when using a sufficiently constant step-size parameter and with prob-
ability 1 if the step-size parameter decreases according to the usual conditions
regarding stochastic approximation.

An important identity of the theory and algorithms of TD-learning is the term
inside the brackets of the TD(0) update. This term is a sort of error between
the estimated value of St and the better estimate Rt+1 + γV (St+1). This
is accordingly called the TD error and arises in many forms in reinforcement
learning

δt
.
= Rt+1 + γV (St+1)− V (St) .

Since V does not change in MC-methods the MC error can moreover be written
as the sum of TD errors.
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2.6.2 Sarsa: On-policy TD control

In this section we go through the control problem by again following the pattern
of GPI but in this case using TD methods for the policy evaluation part. The
problem of balancing exploration and exploitation is very much relevant here
as well and are again handled using on-policy and off-policy methods. In the
following we present an on-policy TD control method called Sarsa.

As in MC-methods this method also start by learning a action-value function
instead of a state-value function, namely qπ(s, a) following current policy π must
be estimated for all states s and actions a. This can be done using more or less
the same approach as for estimating the value function with TD-methods but
instead of states we consider state-action pairs. Moreover, the theorems that
assure convergence for states values in TD(0) also holds for the corresponding
update algorithm for action values. The update is made after every transition
to a non-terminal state and can be written in the following way

Q (St, At)← Q (St, At) + α [Rt+1 + γQ (St+1, At+1)−Q (St, At)] . (8)

When making a transition from one state-action pair to the next, this update
rule uses every element of the quintuple of events (St, At, Rt+1, St+1, At+1) (this
is also the reason behind the name ”Sarsa”). Constructing a control algorithm
for the Sarsa policy evaluation is made in the same manner as for all on policy
methods. To be precise, it continually estimate qπ for the policy π and at the
same time change π towards a greedy policy with respect to qπ. According to
this, the algorithm for a general Sarsa is given in pseudocode in algorithm 4
below.

Algorithm 4 Sarsa on-policy TD-control (ε-greedy).

Algorithm parameter: small ε > 0, step size α ∈ (0, 1].
Initialize:
Q(s, a) arbitrarily, for all s ∈ S+, a ∈ A(s) except that
Q(terminal state, a, ·) = 0.

for each episode do
Initialize S.
Choose A from S using policy derived from Q (in our case ε-greedy)

for each step of episode until S is terminal do
Take action A and observe R,S′.
Choose A′ from S′ using policy derived from Q (in our case ε-greedy)
Q(S,A)← Q(S,A) + α [R+ γQ (S′, A′)−Q(S,A)]
S ← S′;A← A′ ;

end for
end for
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Convergence of the Sarsa algorithm is dependent on the nature of the pol-
icy’s dependence on Q. When, for example, using ε-greedy (or ε-soft policies in
general), Sarsa converges to an optimal policy and action value function with
probability 1 as long as all state-action pairs are visited an infinite number of
times and the policy converges in the limit to the greedy policy.

2.6.3 Q-learning: Off-policy TD control

In this section we describe the Q-learning algorithm (Watkins, 1989) which
is an off-policy TD method that has been very influential in the development
of reinforcement learning. Independent of the policy being followed, the Q-
learning algorithm directly approximates the optimal action-value function in
the following way:

Q (St, At)← Q (St, At) + α
[
Rt+1 + γmax

a
Q (St+1, a)−Q (St, At)

]
(9)

The policy still has effect on which state-actions that are visited and updated but
as long as all state-action pairs continue to be updated, the algorithm converges
correctly. Following this assumption and the usual stochastic approximation
conditions on the step-size parameters, the learned action-value function Q con-
verge to the optimal action value function with probability 1. The Q-learning
algorithm is given in pseudocode below (algorithm 5).

Algorithm 5 Q-learning off-policy TD-control (ε-greedy).

Algorithm parameter: small ε > 0, step size α ∈ (0, 1].
Initialize:
Q(s, a) arbitrarily, for all s ∈ S+, a ∈ A(s) except that
Q(terminal state, a, ·) = 0.

for each episode do
Initialize S.

for each step of episode until S is terminal do
Choose A from S using policy derived from Q (in our case ε-greedy)
Take action A and observe R,S′.

Q(S,A)← Q(S,A) + α
[
R+ γmax

a
Q (S′, a)−Q(S,A)

]
S ← S′

end for
end for

In many ways, this algorithm is similar to the Sarsa algorithm explained earlier.
The difference is that Q-learning update the value of Q when assuming a greedy
policy action is followed in the next state even though it does not currently
follow a greedy policy. For this reason, the Q-learning algorithm is, in contrast
to Sarsa, considered to be an off-policy method.
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3 Simulation of data

In this section we present how the data will be simulated. The simulation will
be produced using the programming language R.

3.1 Compound distribution

An appropriate way to simulate claims data is by considering the total claim
cost S to be given by a compound distribution. In accordance with Wüthrich
(2020), a compound distribution are defined in the following way. Assume that
N is the total number of claims. Moreover, assume that Xk, k = 1, ..., N is the
size of claim k and that the following three assumptions are fulfilled:

1) N is discrete stochastic variable which only takes values 0, 1, 2.... For N = 0
no claims have been made and the total claim cost is accordingly 0.

2) X1, X2, . . . iid stochastic variables with distribution function G(x) = P (Xk ≤
x), namely the individual claim sizes are assumed to follow the same distribu-
tion.

3) N and (X1, X2, ...) are independent.

If these assumptions are satisfied, the total claim cost S is given by a compound
distribution which can be expressed in the following way

S =

N∑
k=1

Xk

and has the following properties

E[S] = E[N ]E[X1].
Var[S] = Var[N ]E[X1]2 + E[N ]Var[X1].

3.2 Choice of claim distributions

To not make it unnecessary complicated and make use of the compound distri-
bution properties, we assume that the risk exposure of every potential customer
follow the same distribution. The claims are assumed to arrive according to
a homogeneous Poisson process with intensity parameter α, namely the num-
ber of claims Yj,t for customer j up to and including time t are assumed to be
Poisson(α · t)-distributed. The probability mass function of Yj,t is then given by

pk = P (Yj,t = k) = e−α·t
(α · t)k

k!
, for k = 0, 1, 2, ...
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and we have that E[Yj,t] = Var[Yj,t] = α · t.

The claim sizes Xk are assumed to be exponentially distributed with parameter
λ and accordingly they have probability density function

f(x) = λe−λx, for x ≥ 0.

Moreover, it follows that E[Xk] = 1
λ and Var[Xk] = 1

λ2 .

Lastly, the number of claims and claim sizes are assumed to be independent of
each other. The total insurance cost St in year t is then said to be given by a
compound Poisson distribution, that is

St =

Yt∑
k=1

Xk,

where Yt =
∑N
j=1 Yj,t is the total number of claims year t. Using the properties

of compound distributions we have that

E[St] = E[Yt]E[X1] = NαtE[X1].
Var[St] = Var[Yt]E[X1]2 + E[Yt]Var[X1] = NαtE[X2

1 ].

In all games considered in this thesis the claim distributions will be simulated
with α = 0.5 and E[X1] = 1

5 , meaning that the yearly mean claim cost for one
customer is 0.1.

Modeling the times and sizes of claims in the above manner leads to the classical
model in ruin theory, the so called Cramér-Lundberg model. The simplest form
of the Cramér-Lundberg model assumes that the considered company has an
initial surplus u > 0 and charges customers with a constant premium rate p > 0.
This means that the total premium payments up to time t is p · t. Moreover,
the cumulative amount of claim payments up to time t is given by S(t). The
ruin event can then be expressed as the time of a negative surplus, namely

Ruin = {U(t) < 0 for some t > 0}, U(t) := u+ pt− S(t).

Because of the constant income of premiums the surplus process (U(t))t≥0 is
increasing between jump times of (S(t))t≥0. This means that ruin only can
occur at these jump times Tn > 0. Since the time of the nth claim is given
by Tn = G1 + · · ·+Gn, where the Gks are iid and exponentially distributed it
follows that

Ruin = {U (Tn) < 0 for some n ≥ 1}

=

{
u+ pTn −

n∑
k=1

Xk < 0 for some n ≥ 1

}

=

{
n∑
k=1

(Xk − pGk) > u for some n ≥ 1

} .
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The ruin event can in this manner be seen as a random walk with iid step sizes
(Xk − pGk) exceeding the surplus µ at some time point (Mikosch, 2009). Given
Ni customers insured at company Ii and initial capital reserve Ri,0 it follows
that the reserve is decided by the dynamics

dRi(t) = (µi +Ri(t))dt+ σidWi(t) (10)

where (Wi,t)t≥0 is a Wiener process, µi = Ni (pi − αx̄) and σ2
i = Niαx̄2. This

can be seen as a so called diffusion approximation to the Cramer-Lundberg pro-
cess. Note that x̄ = E[X1] and x̄2 = E[X2

1 ] are used in order to simplify notation
for the remainder of the thesis (Asmussen et al., 2019).

Furthermore, we will in the remainder of the thesis consider the competition
between two insurance companies I1 and I2 and model the number of customers
choosing company i explicitly using the approach in the following section.

3.3 Customer preferences

In all games we consider two different insurance companies I1 and I2 which
offer an identical insurance product. Moreover, we assume that all N customers
need and reduce their risk when buying insurance from any of the companies.
In this way we focus on the market competition between the two companies and
neglect the case of a customer rejecting insurance. If the insurance companies
offer an identical insurance product, intuitively it feels reasonable that the cus-
tomer will choose the company offering the lowest premium. However, when a
given customer decides which company to buy the insurance from it may face
different market frictions. For example it takes time and effort to search for
the best company or to switch companies. Customers might also have differ-
ent access to information and/or different abilities to process it. These type
of frictions have been studied several times in economics during history. In
this thesis we use a simple approach that can be both used for capturing dif-
ferent type of market frictions and customer preferences. We follow the setting
in Asmussen et al. (2019) which has adopted the method from Hotelling (1929).

In this approach the market is said to be represented by an unit interval [0, 1]
and the two different insurance companies is placed at the end points, I1 is
placed at 0 and I2 is placed at 1. A given customer j is then placed on a point
hj in the interval. This can be seen as a street where a1 = hj describe the
customers distance from I1 and a2 = 1 − hj the distance from I2 (see picture
below). The customer is then assumed to pay an extra cost c · a1 = c · hj to
buy the insurance from I1 and a2 · (1− hj) = c · (1− hj) to buy the insurance
from I2. The parameter c can be viewed as a measure of the degree of market
frictions. By using this marginal friction cost it is possible to model the addi-
tional cost for switching companies or buying insurance from a less preferred
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insurance company.

As stated earlier, we assume that all N customers reduce their risk when buying
insurance from any of the companies and the question is therefore only which
company they will choose. Given premiums p1 and p2 to be insured in I1
an I2 respectively we have that customer j will choose I1 before I2 if p1 −
p2 < c(1 − 2hj) and in contrary I2 if p2 − p1 < c(2hj − 1). In other words,
if hj < 1/2(1 − (p1 − p2)/c) then I1 is chosen and I2 is chosen otherwise. If
the equality holds the customer is indifferent but this will not be a problem
since hj is decided by a continuous distribution H. In our game setups, the
market frictions that every potential customer will face are assumed to be H ∼
beta(a, b). The probability density function of a beta(a, b)-distribution is, for
0 ≤ h ≤ 1, given by

f(h) =
1

B(a, b)
ha−1(1− h)b−1,

where

B(a, b) =
Γ(α)Γ(β)

Γ(α+ β)

is the so called beta function and Γ is the gamma function. Furthermore, we
have that E[X] = α

α+β and Var[X] = ab
(a+b)2(a+b+1) . The beta distribution is

a reasonable choice in this case since we want the market frictions only take
values in [0, 1].

By modeling the market frictions in this manner, the expected portfolio sizes
for the different companies can be written as a function of the premiums p1 and
p2 in the following way.

N1(p1, p2) = NP (H < 1/2(1− (p1 − p2)/c)) = NP (H < h)

N2(p1, p2) = N(1− P (H < 1/2(1− (p1 − p2)/c))) = N(1− P (H < h).
(11)

With H ∼ beta(a, b), it follows that

P(H < h) = B(h; a, b)/B(1; a, b) for h ∈ (0, 1),

where

B(h; a, b) =

∫ h

0

ta−1(1− t)b−1 dt.

Note that B(1; a, b) is equal to the beta function B(a, b). Using this, we have
that the portfolio sizes can be expressed as

n1 (p1, p2) = N
B (h; a, b)

B(a, b)

n2 (p1, p2) = N

(
1− B (h; a, b)

B(a, b)

) (12)
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The total number of customers needing insurance, N , can be treated in different
ways. In real world it would be reasonable to let N = N(t) vary between
different years but since this will have little impact in the game theoretic part
of the problem we consider we choose to treat N as constant, more exactly
N = 1000 in all our game setups.

4 Game descriptions

In this section we will explain the main parts of the stochastic control problem
that we consider. Usually the premium level of a certain insurance product is
decided by underlying knowledge of the claim processes and make use of Gener-
alised Linear Models. However, in this task we consider the other part of pricing,
the market competition between different insurance companies. In order to do
this we instead view the pricing as a sequential stochastic decision problem
which is inspired by the stochastic differential game considered in Asmussen et
al. (2019). In this article they analyze two competing insurance companies (one
larger than the other) and find a premium strategy (taking market frictions into
account) in which none of the companies are willing to change, a so called Nash
equilibrium. More exactly, the Nash equilibrium is a concept of game theory
in which the optimal result of a game is one where none of the players have
any incentive to change from their chosen strategy given the competitors choice
(Chen, 2021).

In this way the pricing of insurance can be seen as a decision process with a
stochastic environment and we make use of the general idea to model the dif-
ferent games as a MDP. Furthermore, when modeling the different problems,
we assume that the underlying model dynamics not are known for the learning
agent and that we need to make use of model-free methods. Because of this, we
will implement the Monte Carlo and Reinforcement Learning algorithms pre-
sented in the theory part of this thesis aiming to obtain the optimal premium
strategy when facing the different situations. These results will then be com-
pared to theoretical results of the problem. In all games we consider an episodic
finite MDP with the following discrete time components.

Time horizon t = 0, 1, ..., T in episode i where T is the terminal state of the
episode.

State st in time t. The state will be either one-dimensional or two-dimensional
in the different considered situations.

Action At ∈ (A) = [p, p] in time t. The actions we consider are the different
possible premium levels p1t and p2t which the insurance company can decide
between in the different states.

Policy π. The policy decides the premium levels in different states.
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Reward signal rt. The actions made will lead to a reward rt.

In this thesis we will consider two versions of the push and pull game, one where
we assume an equal market and one where the market situation is related to
the number of customers the company has.

4.1 Push and pull: Unchanged market

In the first game scenario we consider two insurance companies I1 and I2 offering
the same insurance product and having capital reserve R1t and R2t respectively
at time t, where R10 > R20. Following Asmussen et al. (2019), we assume
that the initially larger company I1 wants to find an optimal way of pricing
their product in order to maximize the difference ∆t = R1t − R2t (push the
competitor further away) and that the smaller company wants to minimize the
same (pull closer to the competitor). Every year the market friction for every
customer will be simulated from H ∼ beta(2, 2) with mean 0.5, namely none
of the companies are assumed to have any market advantage in this game. To
begin with, we will focus on the strategy for the larger company. Later on, this
will be extended to analyzing the optimal strategy for both of the companies
simultaneously. When analyzing both companies simultaneously we will also
examine the results when I1 has a market advantage. This will be constructed
by instead simulating H from a beta(2, 4)-distribution with mean 1/3. The
purpose of finding the optimal strategies simultaneously is to see if the results
of the algorithms match the strategy from which none of the companies earns
by deviating from (Nash equilibrium) derived in Asmussen et al. (2019). The
task can be formulated as an undiscounted episodic finite MDP.

We let the capital reserve decide the current economic status s1t and s2t of
the different companies at time t. To simplify the state variable it could be
reasonable to ignore the possibility of ruin. The motivation behind this is that
in real life the initial capital reserve of the companies can be assumed to be so
large that the probability of ruin is minimal or that investors would reinvest in
the case of ruin. This simplification is also assumed in our problem and instead
of using the capital reserve of the different companies as state variable we say
that the current state st are decided by the difference of the economic status
of the companies dt = s1t − s2t. In this way we are able to reduce the number
of states and make the pricing competition problem easier to survey and apply
when implementing the methods considered in this thesis. The time horizon T
is decided by the time until the terminal state is reached (game is over). In
this case, the terminal state is reached when dt is either 0 or 50, namely when
the smaller company has equalled the status of the larger company or when the
the larger company has increased the difference between the companies to 50.
Related to this, we allow dt to vary on the discrete values in the interval [0, 50]
and the considered system will accordingly contain 51 states.
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In the game, we assume that both of the companies are assumed to have some
prior knowledge of the underlying dynamics of the claims processes. The ex-
pected value of the individual total claim cost is 0.1. Related to this, the
insurance company I1 will use MC and reinforcement learning approaches to
choose actions At among different premium levels

p1 = (0.09, 0.1, 0.11, 0.12, 0.13, 0.14)

with the goal of maximizing the difference between the capital reserves of the
two companies in the following T years. Since I1 has 6 different actions to
choose from in the states 1, 2, ..., 49, the total number of state action pairs will
be 49 ·6 = 294. To begin with, we will assume that the other company, I2, takes
a constant approach and set the premium to the expected value plus a 10 %
safety margin. Namely, the premium will be 0.11 during the whole game. As
described earlier, this will be extended to simultaneously using MC and rein-
forcement learning approaches for I2 as well. Actions made will lead to rewards
rt. The reward will differ slightly depending on which method that is used.
This will be described in more detail when the algorithms are implemented in
the upcoming sections.

4.2 Push and pull: Changing market

In the second scenario the distribution of the friction variable H will be related
to which company the customer currently is insured. The first year every po-
tential customer again will face market frictions according to H ∼ beta(2, 2),
meaning an initial equal market. However, for years t = 2, ..., T the customers
market friction will give favour to the company in which the customer currently
is insured. If customer j currently is insured at I1 the market friction will be
distributed as H ∼ beta(2, 4) and if the customer currently is insured at I2 it
will be distributed as H ∼ beta(4, 2). Adjusting the market friction in this way
is done to represent the cost of changing company. A possible pricing strat-
egy might then be to win the market by first offering a lower premium and
then make use of this advantage to win the game. A new market friction value
H = hj for each customer j is generated every year. Again, we will focus on
the larger company I1 and the task is formulated as an undiscounted episodic
finite MDP.

In this MDP, the state st in time t is given by a tuple (dt, nt), where dt is
the same as in the first scenario (reserve difference) and nt contain information
about the market situation. In order to not increase the number of states ex-
ceedingly, the market situation variable is given by the number of customers
currently insured by I1 rounded to hundreds. This is enough to know the full
current market situation since we know that the total number of potential cus-
tomers is N = 1000. The need for this extra variable comes from the fact that
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the number of customers (as explained above) affects the market friction vari-
able and because of this influence the optimal strategy. Again, the terminal
state is reached when dt is either 0 or 50, namely dt will vary in the interval
[0, 50]. Since we have added the market situation variable the total number of
states in the system we consider will be 51 · 11 = 561.

We assume that the companies initially have the same knowledge about the
underlying dynamics of the claim processes as in the first scenario, namely
that the expected value of the individual total claim cost is 0.1. Moreover, the
insurance company I1 has the possibility to choose among the premium levels

p1 = (0.08, 0.085, 0.09, 0.095, 0.1, 0.105, 0.11, 0.115, 0.12)

and takes machine learning approaches with the goal of maximizing the differ-
ence between the capital reserves of the two companies in the following T years.
Since I1 has 9 different actions to choose from in the states

(1, 0), (1, 100), ..., (1, 1000), (2, 0), ..., (2, 1000), ..., (49, 0), ..., (49, 1000),

the total number of state action pairs will be 49 · 11 · 9 = 4851. The other
company, I2, will in this case only be assumed to use a constant premium level.
This time, the constant premium level will match the optimal one in the equal
market scenario, namely 0.12. Actions made will lead to a reward rt. The re-
ward will differ slightly depending on which method that is implemented and
will be described in more detail in the upcoming sections. The goal is to find
the optimal premium strategy for the larger company in the considered game.
In this way, we will see how the optimal strategy vary for different states.

5 Results

In this section we present the results of the considered games using different
approaches. We begin with the push and pull problem where the friction variable
is simulated from the same beta-distribution every year and then we examine
when it is changed related to the number of customers currently insured at
the different companies. First we will present theoretical results. Later on,
we will present the results derived by dynamic programming and lastly, the
reinforcement learning results.

5.1 Push and pull: Unchanged market

5.1.1 Theoretical solution

We start by analyzing the first scenario where the friction variableH is simulated
from a beta(2, 2) during the whole game procedure. Following a simplified
version of Asmussen et al. (2019), the problem considers the current premium
strategy to only be dependent of the current reserve difference d (Markovian) of
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Dπ(t) = Rπ1 (t)−Rπ2 (t) between the controlled reserves Rπ1 (t) and Rπ2 (t). Using
the fact that the uncontrolled reserves behaves like (10) it follows that Dπ(t) is
a diffusion process, namely

dDπ(t) = µπ (Dπ(t)) dt+ σπ (Dπ(t)) dW (t)

where
µπ(d) = µ1 (pπ1 (d), pπ2 (d))− µ2 (pπ1 (d), pπ2 (d)) + d,

σπ(d)2 = σ1 (pπ1 (d), pπ2 (d))
2

+ σ2 (pπ1 (d), pπ2 (d))
2
,
.

W = (W1 −W2) /
√

2 is a Wiener process and following the problem formulation
we have that D(0) = R1(0) − R2(0) > 0. Combining the equations (10) and
(11) we have that

µ1 (p1, p2) = NP (H < h) (p1 − αx̄)

σ1 (p1, p2)
2

= NP (H < h)αx2

µ2 (p1, p2) = N (1− P (H < h)) (p2 − αx̄)

σ2 (p1, p2)
2

= N (1− P (H < h))αx2

Following a quite long and complicated discussion in Asmussen et al. (2019, p.
95-96), the considered problem can be simplified to the problems of point-wise
maximization/minimization of the real valued ratio

k (p1, p2; d) =
µπ(d)

σπ(d)2
=
µ1 (pπ1 (d), pπ2 (d))− µ2 (pπ1 (d), pπ2 (d)) + d

σ1 (pπ1 (d), pπ2 (d))
2

+ σ2 (pπ1 (d), pπ2 (d))
2

=
NP (H < h) (p1 − αx̄)−N (1− P (H < h)) (p2 − αx̄) + d

NP (H < h)αx2 +N (1− P (H < h))αx2

=
NP (H < h) (p1 − αx̄)−N (1− P (H < h)) (p2 − αx̄) + d

Nαx2

From the last expression, we see that the denominator and also the term d does
not depend on the premium strategy. Because of this, they can be omitted in
optimization with respect to the premium. We also note that N cancels in the
remaining term which explain why it is not necessary to let N fluctuate in this
problem. That the optimal premiums strategy is independent of the current
reserve difference make it possible to derive the theoretical optimal premiums
p1 by only considering the difference in drift. Using equation (12) we have that
the value function to optimize then can be expressed in the following way

v (p1, p2) = N
B (h; a, b)

B(a, b)
(p1 − αx̄)−N

(
1− B (h; a, b)

B(a, b)

)
(p2 − αx̄) .

In the first case, we consider the premium level of p2 to be constant and because
of this, the value function will simplify to

v(p1) = N
B (h; a, b)

B(a, b)
(p1 − αx̄)−N

(
1− B (h; a, b)

B(a, b)

)
(p2 − αx̄) .
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Differentiating with respect to p1 and setting to 0 we have that

dv(p1)

dp1
=

d

dp1
N
B(h; a, b)

B(a, b)
(p1 + p2 − 2αx̄) =

N
B(h; a, b)

B(a, b)
+

N

2c ·B(a, b)
· ha−1(1− h)b−1(p1 + p2 − 2ax̄) = 0,

where h =
1

2
(1− p1 − p2

c
)

.

In our problem, we have that a = 2, b = 2, p2 = 0.11. For different fric-
tion marginal costs c = (0.02, 0.04, 0.06) we get that the respective solutions are
given by p1 = (0.1068543, 0.1134247, 0.1205201). The result is also illustrated in
figure 1 where the different functions are plotted for p1 in the interval [0.09, 0.13].

Figure 1: Theoretical optimal premium in push and pull game derived based
on market friction H ∼beta(2, 2), for different marginal friction costs c =
(0.02, 0.04, 0.06) and constant premium level p2 = 0.11 for the competing insur-
ance company I2.

This shows how the optimal premium level vary for different values of the
marginal friction costs. When c is higher, the number of customers choosing the
company is more affected by the friction and less of the premium level. Because
of this, it is optimal to charge a higher premium in order to maximize revenue.
When c = 0.04, the optimal premium level is close to 0.11 which means that
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it is close to the premium chosen by I2. Since the strategy of I2 is close to
optimal in this case it will be hard to find a better suited premium level and the
value function has its maximum close to 0. When implementing the algorithms
in the upcoming sections we will assume that c = 0.06, namely the theoretical
optimal premium level derived is 0.1205201. In this way we are able to see if
the considered methods are able to take the market friction into consideration
and adapt the premium to this higher level.

Next, we consider the case where the smaller company simultaneously tries to
find the optimal premium. This relates to finding the strategy where none of
the companies have any incentive to change from their chosen strategy given the
competitors choice (Nash equilibrium). In Asmussen et al. (2019) the following
theorem is stated:

Theorem 5.1. Let H ∼ beta(a, b) and let mβ be the median of beta(a, b). Then
a Nash equilibrium exists at

p∗1 = αx̄+
ρc

2

(
B(a, b)

ma−1
β (1−mβ)

b−1 + 1− 2mβ

)
,

p∗2 = αx̄+
ρc

2

(
B(a, b)

ma−1
β (1−mβ)

b−1 − 1 + 2mβ

)
,

provided that p∗1, p
∗
2 are in a feasible region and that

− 4 ≤
(
a− 1

mβ
− b− 1

1−mβ

)
B(a, b)

ma−1
β (1−mβ)

b−1 ≤ 4. (13)

In equilibrium, n1 (p∗1, p
∗
2) = n2 (p∗1, p

∗
2) = N/2.

The feasible region and parameters a and b in equation (13) for which the
theorem holds is analyzed thoroughly in the article by Asmussen et al.. It
turns out that, in the range 0 ≤ a, b ≤ a, the conditions for the theorem are
only violated if a or b is very close to 0. In particular, the theorem holds for the
distributions considered in this thesis. For the sake of keeping a common thread,
these results will not be described further but, for the interested reader, a more
extensive discussion can be found in Asmussen et al. (2019, p. 98). In the first
case H ∼ beta(2, 2), the median mβ is 0.5 and c = 0.06. Following theorem 5.1,
the Nash equilibrium premiums are the same for both companies and they can
be calculated to 0.12. In the second case, we assume H ∼ beta(2, 4) and the
median mβ is 0.25. In this case the Nash equilibrium premiums are computed
to p∗1 = 0.1292 and p∗2 = 0.0992. Since company I1 has a market advantage in
this case, it should charge a higher premium. The results are also illustrated by
the surfaces in figure 2 which shows the value of k (p1, p2; d) when d = 25. The
points illustrate the Nash equilibrium in the two different cases.

39



Figure 2: Premium levels p1 and p2 and value of k (p1, p2; d) in push and
pull game, derived based on market friction H ∼beta(2, 2) (left plot) and
H ∼beta(2, 4) (right plot), marginal friction cost c = 0.06 and d = 25. The
black point shows the derived Nash equilibrium.

As explained earlier, the theoretical solutions derived above assume that the
optimal strategy is independent of the current reserve difference. This means
that the derived premium should be taken no matter the current state. How-
ever, in the considered game, another premium level could be less risky than
the optimal premium level and because of this preferable in states with small
reserve difference to reduce the risk of losing. This will be examined more in
the next section where we take a DP approach that more accurately describe
the dynamics of the considered game.

5.1.2 Dynamic programming

As described in section 3.4 we need to know the model of the environment to
solve the problem using dynamic programming. The environment is fully de-
scribed by the state transition probabilities and to get reliable estimates of these
we will take a simulation approach. For large enough iterations, the claim pro-
cesses should behave as the theoretical compound distribution described earlier.
Moreover, in each iteration, we simulate a new market friction parameter hj
for every customer and for large enough N , the behaviour of this parameter
should correspond to the desired theoretical beta-distribution. For all states
st ∈ [0, 50] and all actions p1 = (0.09, 0.1, 0.11, 0.12, 0.13, 0.14) we will simulate
10000 transitions to the next state st+1 = s′. The state transition probability
P (st+1 = s′ | st = s,At = p1) is then estimated as the percentage of transi-
tions from s to s′. An extract of the estimates is shown in table 1 in appendix B.
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In order to solve the problem we implement the value iteration algorithm (2).
The results after 1, 2, 10, 50, 100 iterations are presented in figure 3 below.

Figure 3: Value iteration algorithm. The optimal premium policy (left plot) and
state-value function (right plot) for push and pull game, with market friction
H ∼beta(2, 2), for marginal friction costs c = 0.06 and constant premium level
p2 = 0.11 for the competing insurance company I2.

In the left plot of figure 3 we can conclude that the value iteration algorithm
converges to the optimal premium level p1 = 0.12 in only 2 iterations. However,
in the right plot, we see that the value function still gets updated and that it
takes around 50 iterations until it converges.

5.1.3 RL-methods

In this part we implement some of the model-free RL-methods that we pre-
sented in section 3.5 and 3.6. We compare the results with the theoretical and
dynamic programming solutions. First we implement the ε-greedy on-policy
first-visit MC control algorithm (3). In this algorithm the reward +1 is given
to all first visit state-actions during an episode if the episode ends in state 50
or higher (the larger company wins). If the episode ends in 0 or lower (smaller
company equals the economic status of the larger company), the reward −1 will
be given to all first visit state-actions.

We also implement the Sarsa TD(0)-learning (4) and Q-learning algorithm (5)
with ε-greedy as decision rule. In these methods the action value function are
updated every year of the episode according to the equations (8) and (9) respec-
tively. The immediate reward rt in the equations will be given as the difference
of the companies revenue the given year. This means that the reward will cor-
respond to the actual value that the state approach the goal. When ending in
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state 50 or higher (winning) an extra reward of +25 will be given to the last
state-action pair and when ending in state 0 or lower (losing) a punishment
reward of −25 will be given to the last state-action pair. In all methods we
choose ε = 0.1 and α = 1

Ns(a)
, where Ns(a) is the number of times the action a

has been performed in state s. Since we want to examine the premium level for
all reserve differences, we do not assume any specific starting state. Instead, we
will sample the first state of every episode from all possible non-terminal states,
namely 1 − 49. In some of the games this does not really matter but in oth-
ers, we see that this is essential to keep visiting and updating some of the states.

The result when assuming p2 = 0.11 is shown in figure 4 below. The left part
of the figure illustrates the produced optimal policy for different states after
j = 10000 episodes and the right part shows the scaled values of the action-
value function for all states when following this policy. In figure 9 and 10 in
appendix B, the results of the methods after j = 100 and j = 1000 episodes are
also illustrated.

Figure 4: MC, Sarsa and Q-learning: The optimal premium policy (left plot) and
action-value function (right plot) for push and pull game, with market friction
H ∼beta(2, 2), for marginal friction costs c = 0.06 and constant premium level
p2 = 0.11 for the competing insurance company I2.

In the left part of the figure we conclude that, after 10000 episodes the optimal
premium is 0.12 for most states in all methods. This also match the theoretical
and DP results. In the right part, we also see that all reinforcement learning
algorithms provide similar results of the action value function. As expected,
when the reserve difference increase, the larger company has a higher possibil-
ity of winning the game. The action value function also has a similar shape as
the action value function achieved with DP. We also conclude that Q-learning
seem to be the method that converges the fastest against the theoretical results.
However, we notice in both plots that the optimal premium and the correspond-
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ing action value function still fluctuate, even for states that are close to each
other and should provide similar results. This suggests that, even though the
algorithm converges in the direction of the optimal result, it still struggles to
converge to the policy for all states. One reason behind this is that some state-
actions not are performed as frequently as others in the considered game.

The are several ways to get faster convergence and improve the unstable results.
For example, we could use an appropriate kernel function to update the action
value function for several states simultaneously. Another simple approach is to
just aggregate states that are close and because of this should be related. Of
course, using this procedure has its limitations but it is fairly reasonable in this
case since close states (reserve differences) should have similar rewards. We will
make use of this approach in the game where we consider the case of a changing
market but for now we settle for the results obtained above.

Instead, we examine the case where both companies implement the reinforce-
ment learning methods to decide premiums in an optimal way. As discussed
earlier, the goal of the larger company is to increase the reserve difference to 50
and the goal of the smaller company is to close the gap (reserve difference is 0).
Because of this, the rewards for the larger company will be the same as before
and the rewards for the smaller company will be the same but in the opposite
direction (-reward). The extra reward when losing or winning the game will be
modified in the same way.

We will examine this both when the market is equal and when we assume a
market advantage for the larger company. Since the results obtained with the
different algorithms are similar and Q-learning seem to be the best, we settle
for only showing the results from this algorithm in this task. In figure 5 the
optimal policies after 10000 episodes are illustrated for the two different cases.
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Figure 5: Simultaneous optimal policy with Q-learning when assuming market
friction H ∼beta(2, 2) (left plot) and H ∼beta(2, 4) (right plot) for push and
pull game with marginal friction costs c = 0.06.

From figure 5, we conclude that in both cases, the optimal premiums converge
in the direction of the optimal theoretical premiums in Nash-equilibrium. In
the case where we assume an equal market, the results are, despite a few points,
very clear and the premium is 0.12 (Nash-equilibrium) in most cases. When
the larger company has a market advantage, p1 = 0.13 and p2 = 0.1 (Nash-
equilibrium) for most cases but we also notice some deviations, especially for
the smaller company. When implementing the method, we also noted some com-
putational difficulties in this case. Because of the market advantage, it leads
to less observations in the lower reserve difference states and the corresponding
actions. In this particular game the arbitrary sampling of the first state in every
episode is essential to keep exploring some of the states.

In figure 11 in appendix B, the corresponding action value functions are also
illustrated. In this figure, the fact that both of the companies have equal but
opposite action value functions is illustrated in a clear way.

5.2 Push and pull: Changing market

5.2.1 Theoretical solution

We take the same approach as in the theoretical solution when beta does not
change. In this case we have that the value function for the N1 customers
belonging to I1 will be

v(p1; I1) = N1
B (h; a, b)

B(a, b)
(p1 − αx̄)−N1

(
1− B (h; a, b)

B(a, b)

)
(p2 − αx̄) ,
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with a = 2 and b = 4. For the N2 customers belonging to I2 the value function
will be

v(p1; I2) = (1000−N1)
B (h; a, b)

B(a, b)
(p1 − αx̄)−(1000−N1)

(
1− B (h; a, b)

B(a, b)

)
(p2 − αx̄) ,

with a = 4 and b = 2. Adding these two we get the value function for all
customers

v(p1) = N1
B (h; 2, 4)

B(2, 4)
(p1 − αx̄)−N1

(
1− B (h; 2, 4)

B(2, 4)

)
(p2 − αx̄) +

(1000−N1)
B (h; 4, 2)

B(4, 2)
(p1 − αx̄)− (1000−N1)

(
1− B (h; 4, 2)

B(4, 2)

)
(p2 − αx̄)

where h =
1

2
(1− p1 − p2

c
).

For p2 = 0.12, c = 0.06 and N1 = (100, 200, 300, 400, 500, 600, 700, 800, 900), we
get that the respective solutions are given by

p1 = (0.1087, 0.1130, 0.1174, 0.1212, 0.1240, 0.1260, 0.1275, 0.1286, 0.1294).

This is also illustrated in figure 6 below where the different functions are plotted
for p1 in the interval [0.08, 0.15]. The points illustrates the maximums in the
different cases.
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Figure 6: Theoretical optimal premium derived based on market friction
H ∼beta(2, 4) or H ∼ beta(4, 2) depending on which company the customer
currently belongs, c = 0.06 and constant premium level p2 = 0.12 for the com-
peting insurance company I2.

In figure 6 it gets clear that the desired behaviour is achieved. When I1 has
more customers, the company has a market advantage and can make use of this
to get higher revenues and increase the reserve difference. From these derived
theoretical optimal premiums, we also conclude that for more customers N1, the
company can afford and gain from charging a higher premium without losing
to many customers. However, this is just the optimal theoretical solution if
we want to maximize the reserve difference the given year. In our game setup,
we want to maximize the revenue in the long run and then it could be more
optimal to charge a lower premium to gain a market advantage in the following
years. In the next section, we analyze this further by estimating the dynamics of
the environment and take a dynamic programming approach in the considered
game.
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5.2.2 Dynamic programming

In order to get reliable estimates of the environment model we take the same
approach as in the first problem. Again we simulate the transitions 10000 times.
For the interested, an extract of the estimates is shown in table 2 in appendix B.

To solve the problem we again implement the value iteration algorithm (2). The
results after 1, 2, 10, 50, 100 iterations are presented in figure 7 below.

Figure 7: Value iteration algorithm. The optimal premium policy (left plot) and
state-value function (right plot) for push and pull game, with market friction
H ∼beta(2, 4) or H ∼beta(4, 2) depending on which company the customer cur-
rently belongs, c = 0.06 and constant premium level p2 = 0.12 for the competing
insurance company I2.

In the left plot of figure 7 we see that the value iteration algorithm converges to
some optimal premium level in the different states in about 50 iterations (the
blue line). We see that this also is the case for the value function. From the
figure, we can also distinguish that the optimal premium level depends on the
current state. For small N1 and larger reserve difference it is better to offer a
very low premium to attract more customers and increase the reserve difference
in the upcoming years. However, as the current reserve difference gets lower,
the optimal premium increases. The reason behind this is that the company no
longer can afford to take a year of losses because of the risk of losing the game.

For larger N1 it is in general, as was expected from the theoretical solutions,
better to offer a higher premium in order to maximize the reserve difference.
This also makes the pattern between reserve difference and premium for large N1

(700, 800, 900, 1000) to be less clear compared to when N1 is small. It is optimal
to charge a a higher premium, both for smaller current reserve difference and
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very high reserve difference. In the middle states we note some tendencies that
premiums offered should be a bit lower. The reason for this is probably that
the game still will go on for some years before winning and the company cannot
risk losing the current market advantage for the future years. For higher reserve
difference the game is won in a short period and losing some customers is not
that big of a deal. Of course, in a real life insurance scenario, the competition
is ongoing and this sharp line of losing and winning the game does not really
apply. Losing customers is not good for the years after the reserve difference has
increased to over 50 either but since we do not consider these years in this game,
this explains the result obtained by the algorithm. To connect this particular
situation to real-life we could see it as impossible for the smaller company to
catch up when the reserve difference is over 50.

5.2.3 RL-methods

The state space of this problem has increased tremendously in comparison to
the first problem. Since the algorithms struggled to converge for all the states
separately even in the first game, we directly consider RL-method approaches
that make it possible to update more than one state at a time. We don’t want
to over-complicate things and choose the simple approach of to aggregating the
reserve differences close to each other (5 and 5). This approach end up with the
following 99 states

((1, 2, 3, 4, 5), 0), ((6, 7, 8, 9, 10), 0), ..., ((46, 47, 48, 49), 0), ...,

((1, 2, 3, 4, 5), 100), ((6, 7, 8, 9, 10), 100), ..., ((46, 47, 48, 49), 100), ...,

((1, 2, 3, 4, 5), 1000), ((6, 7, 8, 9, 10), 1000), ..., ((46, 47, 48, 49), 1000)

.

We settle for only implementing the Q-learning algorithm and the rewards are
structured in the same way as in first problem. The results after 50000 episodes
are shown in figure 8 below.
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Figure 8: Q-learning with aggregated states. The optimal premium policy (left
plot) and action-value function (right plot) for push and pull game, with mar-
ket friction H ∼beta(2, 4) or H ∼beta(4, 2) depending on which company the
customer currently belongs, c = 0.06 and constant premium level p2 = 0.12 for
the competing insurance company I2.

From the figure, we see some patterns that are similar to the DP-results. For
example, except for the case when N1 = 0, it is better to offer a low premium
when N1 ≤ 500 and the current reserve difference is large enough. The figure
also indicate that, for larger N1, the optimal premium increases for larger re-
serve differences. This also match the pattern of the DP results.

That N1 provides so unstable results can be explained by the fact that these
states not are entered as frequently. Actually, most state-action pairs when
N1 = 0 are only updated one time. This could be adjusted, by for example
considering another decision rule. However, since this case is very unrealistic
and not that interesting we choose to not examine this further.
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6 Discussion and conclusions

In this thesis we have analyzed an insurance market where two different com-
panies offer the same product and compete for customers by choosing premium
level and taking market frictions into consideration. More precisely, we have
examined the push and pull game where we consider the two companies I1 and
I2 with initial capital reserves R1(0) > R2(0) (one larger than the other) and
the goal of the larger company is to push the smaller company further away. By
modeling the market frictions explicitly and assuming that the smaller company
use a constant premium approach, theoretical optimal premiums for the larger
company have been derived in two different push and pull scenarios. In one
of the scenarios, we assume that the market friction is given by a beta(2, 2)-
distribution every year for every customer j. In the other scenario we let the
market friction variable give favour to the company which the customer cur-
rently is insured. The market friction will then be simulated from a beta(2, 4)
if it belongs to the larger company I1 and a beta(4, 2) if it belongs to I2. We
have also computed the Nash equilibrium premiums for two games with differ-
ent market conditions, based on results in Asmussen et al. (2019).

After deriving theoretical solutions, we have considered the same push and pull
games played until either the larger company has increased the reserve differ-
ence to 50 or the smaller company has equalled the larger company. In order
to derive optimal pricing strategies in the different situations, we gain complete
knowledge of the environment using simulation and the problems then can be
solved using dynamic programming. In both games, the DP-method converge
quickly when we have a well simulated model of the environment and the results
correspond to the derived theoretical results.

In real-life, the full model of the environment is not known and we need to
rely on other methods. Because of this, we have implemented the model-free
learning methods MC, Sarsa and Q-learning to see if these methods converge
to similar results as those achieved with DP. Analyzing the competition part of
pricing using reinforcement learning was also one of the main objectives in this
thesis. The results show that the methods converge, at least, in the direction of
the DP results. The results when simultaneously deciding the optimal policy for
both companies also match the theoretical Nash equilibrium derived. Indeed,
this shows that it is possible to model the problem using reinforcement learn-
ing and gain knowledge from viewing the problem in this manner. However,
in the particular methods implemented in this thesis, we note some struggles
with convergence. For reinforcement learning methods to be applicable in the
insurance industry it requires much faster and appropriate on-policy updates.
Fortunately, there are many helpful extensions of these methods that could be
used to achieve this if implemented correctly.

The results also show that modeling the competition explicitly using market
friction costs, can lead to different insights compared to modeling fair pricing
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with a classical approach. For example, in this case, how to balance the con-
tradicting tasks of attracting customers and increasing marginals in order to
maximize/minimize the reserve difference between the companies. In the first
considered game when the second company offers a constant premium level 0.11,
the results actually suggest that the company should charge a higher premium
to maximize the reserve difference for these particular market friction costs.
The result itself, namely that we can use the imperfect market conditions and
gain from charging higher premiums is not very surprising. Also, this way of
maximizing profits at the expense of customers could be questionable for several
reasons.

In the second game, the results show that the optimal premium strategy dif-
fers between states. When the current reserve difference is large, it is better to
charge a lower premium to attract customers and gain a market advantage for
the future. In particular, this is the case when the current number of customers
is low and the company needs an increase in this area. For states where the cur-
rent reserve difference is low, the risk of offering a low premium is substantial.
The larger company can not afford a year of losses because of the risk of losing
the game. Because of this, it is more appropriate to choose a a higher and less
risky premium for states where the reserve difference is lower. From the results,
we could also distinguish that we in general should charge a higher premium
when having the market advantage. This is also in agreement with the results
in Assmussen et al. (2019).

To summarize, the results provided show that it is indeed possible to view the
problem of pricing as a sequential decision process and with an appropriate
model of the market frictions we can gain insights from this way of viewing
the problem. Of course, the simplified situations considered in this thesis have
limited applicability in real world but the problem and solution methods can
be extended in several ways so that it can be applied to more complex tasks.
For example, it could be possible to combine the more traditional methods
of pricing with machine learning approaches to evolve premium strategies for
different customer segments. Of course, the implementation of powerful data-
driven methods could also lead to risks. For example, price discrimination and
companies, at the expense of customers, only setting the premium in order to
maximize revenue. However, if implemented correctly, the premiums could be
decided more fairly by taking more individual data into consideration.

7 Future work

The main purpose of this paper was to see if the competition between compa-
nies could be modeled using reinforcement learning in a simplified setting. The
study have many drawbacks and limitations. For example, we only consider a
small set of premiums to choose from and the state variable is very simplified
for computational reasons. However, both the problem formulation and the
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solving methods could be adapted and extended in several ways to be more
reasonable in a real-life insurance context. It would, for example, be interesting
to implement the methods in a more advanced model where the claim processes
is allowed to differ between individuals. The methods could then make use of a
more complex state that contain more information about the specific customers.
In this way, information from classical pricing could be combined with reinforce-
ment learning to make updates in a reasonable way.

However, since this would make the state space increase extensively, the models
would have to be extended with some appropriate function approximation that
make it possible to update the value function for several states simultaneously.
With appropriate update and pricing functions, it would also be interesting
to examine reinforcement learning against other pricing methods in a more on
demand dynamic pricing setting. Instead of using a few number of actions and
states as we have done in this thesis, these could be given by some appropriate
distribution which is updated according to some decision rule. The extensions
are many and the results could be improved in several ways.
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Appendix A

Policy improvement theorem

The proof is fairly intuitive to understand. We start from the result vπ(s) ≤
qπ(s, π′(s)) and expand qπ (s, π′(s)) using (6) and applying vπ(s) ≤ qπ (s, π′(s))
until we end up with vπ′(s), namely the value function following the new policy.

vπ(s) ≤ qπ (s, π′(s))

= E [Rt+1 + γvπ (St+1) | St = s,At = π′(s)]

= Eπ′ [Rt+1 + γvπ (St+1) | St = s]

≤ Eπ′ [Rt+1 + γqπ (St+1, π
′ (St+1)) | St = s]

= Eπ′ [Rt+1 + γE [Rt+2 + γvπ (St+2) | St+1, At+1 = π′ (St+1)] | St = s]

= Eπ′
[
Rt+1 + γRt+2 + γ2vπ (St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ (St+3) | St = s

]
...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · | St = s

]
= vπ′(s).

Extended to the ε-greedy case:

Conditions of the policy improvement theorem holds since for any s ∈ S:

qπ (s, π′(s)) =
∑
a

π′(a | s)qπ(s, a)

=
ε

|A(s)|
∑
a

qπ(s, a) + (1− ε) max
a

qπ(s, a)

≥ ε

|A(s)|
∑
a

qπ(s, a) + (1− ε)
∑
a

π(a | s)− ε
|A(s)|

1− ε
qπ(s, a)

=
ε

|A(s)|
∑
a

qπ(s, a)− ε

|A(s)|
∑
a

qπ(s, a) +
∑
a

π(a | s)qπ(s, a)

= vπ(s),

where the inequality follows because the sum is a weighted average of non-
negative weights summing to 1 and because of this it must be less or equal to
the largest number averaged (Sutton and Barto, 2018).
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Appendix B

Plots

Figure 9: MC, Sarsa and Q-learning: The optimal premium policy (left plot)
and action-value function (right plot) for push and pull game after 100 episodes,
with market friction H ∼beta(2, 2), for marginal friction costs c = 0.06 and
constant premium level p2 = 0.11 for the competing insurance company I2.

Figure 10: MC, Sarsa and Q-learning: The optimal premium policy (left plot)
and action-value function (right plot) for push and pull game after 1000 episodes,
with market friction H ∼beta(2, 2), for marginal friction costs c = 0.06 and
constant premium level p2 = 0.11 for the competing insurance company I2.
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Figure 11: Simultaneous optimal policy with Q-learning when assuming market
friction H ∼beta(2, 2) (left plot) and H ∼beta(2, 4) (right plot) for push and
pull game with marginal friction costs c = 0.06.

Tables

Table 1: Simulated state transition probabilities when H ∼beta(2, 2).

R1 −R2 Next R1−R2 p1 %
1 0 0.09 0.933
1 0 0.1 0.700
1 0 0.11 0.464
1 0 0.12 0.394
1 0 0.13 0.444

Table 2: Simulated state transition probabilities when H ∼beta(2, 4) or
H ∼beta(2, 4) depending on which company customer j is insured.

R1 −R2 N1 Next R1−R2 Next N1 p1 %
1 0 0 100 0.12 0.0009
1 0 0 200 0.125 0.66
1 0 0 200 0.12 0.969
1 0 0 300 0.105 0.018
1 0 0 300 0.11 0.942
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