
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Statistical generalization and applications of
a robust, fast and fully automated density
based clustering method for big data

Anton Holm

Matematiska institutionen

Masteruppsats 2022:3
Matematisk statistik
Juni 2022

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2022:3

http://www.math.su.se

Statistical generalization and applications of a

robust, fast and fully automated density based

clustering method for big data

Anton Holm∗

June 2022

Abstract

In recent years, machine learning has taken a larger place in data
analysis. The aim is often to predict some response variables based
on other explanatory variables. When only the explanatory variables
are available, it is still possible to do inference on the data. One
way to do so is by performing clustering. Essentially, clustering is
a method where data points with similar characteristics are grouped
while keeping data points with dissimilar characteristics far from each
other. There are currently several different branches of clustering and
this thesis will be focusing on density-based clustering. A comparison
between a kernel density estimator and a k-nearest neighbor (kNN)
density estimator is performed, showing the strength and robustness of
using a kNN approach. The main goal of this thesis is the construction
of a fully automated density-based clustering method. The method is
statistically robust to clusters with varying shape and density, works
fast on large data sets, is easy to understand and interpret even for
non-statisticians, and only relies on a single parameter. The method
is tested on a generated data set showing promising results. Lastly,
future improvements are discussed, suggesting the use of fuzzy clus-
tering and substitution of Euclidean distance by graph-based distance
in efficiently identifying clusters with non-linear shape.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: anton.holm.klang@gmail.com. Supervisor: Chun-Biu Li.

Contents

1 Introduction 4

2 Density Estimation 5
2.1 Kernel Density Estimation . 5
2.2 k-Nearest Neighbor Density Estimation 7

2.2.1 Preliminary Estimator . 7
2.2.2 Generalized Density Estimator 9

3 Density Based Clustering 11
3.1 Clustering by fast search and find of density peaks 12
3.2 Generalized Density-Based Clustering 15

3.2.1 Monotonic Regression . 15
3.2.2 Nadaraya–Watson Kernel Regression 17
3.2.3 Generalization of Clustering Algorithm 20

4 Density Based Clustering for Large Data 22

5 Results 27
5.1 Data . 27

5.1.1 Simulated Data . 27
5.1.2 Transcriptomics Data . 28

5.2 Analysis of Density Estimators 28
5.3 Analysis of Clustering of GMM250 33
5.4 Analysis of Clustering Algorithm 35

5.4.1 Normalization . 35
5.4.2 Spot-based Spatial cell-type Analysis by Multidimensional

mRNA density estimation (SSAM) 36

6 Discussion 39

A Appendix 41
A.1 Derivation of AMISE of Kernel Density Estimation 41
A.2 Derivation of Equation 2 . 44

B Reference 46

3

1 Introduction

Machine Learning has seen a rapid rise in analyzing data across several fields
over the last couple of decades. The applicability is widespread and new methods
are developed continuously. One segment of Machine Learning used in almost
every field is clustering. Clustering is the procedure of grouping similar data
points together while keeping groups of dissimilar points far from each other.
Often the similarity is based on some features or spatial location of the data.
There exist many different branches of clustering such as hierarchical cluster-
ing, graph-based clustering, and partitional clustering. This thesis will however
discuss another branch called density-based clustering.

One of the first approaches to density-based clustering was introduced by
Wishert (1969) as a method for removing chaining effects in hierarchical clus-
tering. In short, the number of neighbors within a given distance of a point was
used in order to remove noise in the data. The first clustering method focused
on density was however introduced by Hartigan (1975). Hartigan proposed to
link all points within some distance threshold r to each other. A cluster would
then be classified as a contour around a set of fully connected points with large
enough densities ρ(x). Most often, different density-based clustering algorithms
differ within three parts. How is the density ρ(x) calculated, how is connectiv-
ity between points defined, and how does the algorithm for finding connected
components work?

At the Science for Life Laboratory, there exists an ongoing project trying to
segment tissues into domains based on cell-type compositions. Most previous
works within cell inference have previously been done using single-cell sequenc-
ing, i.e. looking at the order of the DNA base for individual cells to distinguish
between different cell types. More recent work is trying to perform the same
type of inference on in-situ samples e.g. Partel and Wahlby (2021), Petukhov
et al. (2021), and Park et al. (2021). When using in-situ samples, the cells are
kept intact within their natural habitat, e.g. within intact tissue, in contrast
to single-cell sequencing where the cell has been extracted to be examined. By
examining some tissue from a biopsy, the placement of different genes in the
tissue can be extracted resulting in a transcriptomic data set. However, in do-
ing so, the knowledge of which cell each gene belongs to is lost. Therefore, this
thesis aims to develop an intuitive, simple, and automatized clustering algo-
rithm for application to transcriptomics data. As will be seen throughout this
thesis, due to the simplicity and robustness of the method on large data sets,
the application of this clustering algorithm is not confined to genomics.

The outline of this thesis is as follows. Section 2 will discuss different density
estimators. In Section 3, the density clustering algorithm will be introduced.
Section 4 will combine the previous sections to construct the entire algorithm
specific to large data sets. Section 5 will compare the different density estimators
and evaluate the clustering algorithm. Finally, Section 6 will bring forth some
conclusions and future improvements.

4

2 Density Estimation

One of the fundamental parts in statistics is the use of a probability density
function fX(x) for the random variable X with the property P (a ≤ X ≤ b) =∫ b

a
fX(x)dx for the univariate continuous case. Real-world data rarely follows

some theoretical density distribution exactly and in most cases, it is impossi-
ble to find this distribution. In these cases, would the density of the data be
required, an estimation is necessary.

When some information concerning the underlying distribution of a sam-
ple is available it is possible to perform a parametric approach to estimate the
density. As an example, assume there exists some sample where the family
of distribution is known, e.g. an exponential distribution is a reasonable as-
sumption. This assumption could for example emanate from physics or nature.
Under such assumptions, it is possible to estimate the parameters of the un-
derlying distribution using the sample. In this thesis, the focus will be on a
non-parametric approach, where no assumptions of the underlying distribution
are required.

2.1 Kernel Density Estimation

One commonly used non-parametric method for density estimation is based
on using kernels. As mentioned by Shether (2004), Kernel Density Estimation
(KDE) has widespread use across several fields. The use of KDE is further
prominent in Park et al., (2021) and appears in various research within genetics.
The KDE for a sample x1, x2, ..., xn at some point x is defined as

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

),

where K is a kernel satisfying
∫
K(y)dy = 1 and h is the bandwidth of the

Kernel. One common choice of kernel is a Gaussian kernel where K(y) =
1√
2π

exp(−y2

2). In practice, the estimated density of a point is decided by the

number of other points (neighbors) within the bandwidth h as a function of the
kernel. Often the further away points lie from the original point, the less impact
it has on the estimated density as can be seen in Figure 1.

The KDE is most commonly used in order to get a smooth estimation of
the density. It is also advantageous when the density of the data should be
modeled in a specific way. As an example, consider the Gaussian kernel as
described previously. In this case, only distance between points is taken into
consideration when estimating the density. The direction should not affect the
estimation at all. Depending on the goal of the estimation, a suitable kernel
should be implemented.

Something that could be even more important than a suitable choice of
the Kernel is the choice of bandwidth. The size of the bandwidth has a great
influence on the outcome of the estimator. If the choice of bandwidth is too
large, the estimation will be over-smoothed, possibly removing some important

5

Figure 1: An illustration of using a Gaussian kernel to estimate the density
of a 2-dimensional standard Gaussian sample of 1000 observations. Here h is
the bandwidth of the Kernel. The image shows the impact each point has in
estimating the density of the black point based on the size of the bandwidth.
If a neighbor is close to the black point, it has a larger contribution shown by
a more fragrant red color. The further away a neighbor lies to the black point,
the less impact it has shown by a less fragrant red color until it is completely
absent for neighbors far away. The larger the bandwidth is, the more points are
taken into consideration.

6

characteristics of the data. On the other side, choosing a bandwidth that is too
small could lead to under-smoothing, implementing fabricated characteristics
upon the data. One choice of the bandwidth h as suggested by Sheather (2004)
would be to minimize the Asymptotic Mean Integrated Squared Error (AMISE).
The details and derivations of the AMISE can be found in the Appendix. In
practice, the aim is to choose a bandwidth h which minimizes the bias and
variance of the estimator. An example of over-and under-smoothing can be
seen in Figure 2

A further complication in choosing the size of the bandwidth occurs when
the homogeneity of a data set comes into question. When the density of points
varies a lot, there exists no one-size-fits-all solution in deciding the bandwidth.
When this is the case, an adaptive bandwidth needs to be implemented.

2.2 k-Nearest Neighbor Density Estimation

Loftsgaarden and Quesenberry (1965) laid the groundwork for a k-nearest neigh-
bor (kNN) approach to estimating the density function. This is a non-parametric
approach where the neighbors of a data point are used in estimating the density.
The fact that this method is non-parametric means there is no need to decide
the bandwidth. Instead, the number of neighbors k is predetermined. The ma-
jor benefit of a kNN approach is the adaptive bandwidth. When regions become
more sparse, neighbors are further away and the bandwidth becomes larger. In
more dense areas, neighbors are closer meaning the bandwidth is smaller. There
are many variations for kNN density estimation, and some of the more common
methods will be explained in this section.

2.2.1 Preliminary Estimator

The most common method of kNN density estimation derives from Kraskov
et al., (2004) with over 3000 citations. The paper focuses on estimating the
mutual information but in doing so, introduces an intuitive and simple density
estimator using kNN.

Let X be some continuous random variable within some space with distance
function dij = ||xi − xj || between all pairs of observations of X. Assume there
exist some density function µ(x) to be estimated. Denote ϵi as two times the
distance from point xi to its k-nearest neighbor using Euclidean distance. Let
Pi(ϵ) be the probability mass function of the ϵ-ball around xi where

Pi(ϵ) =

∫
||xi−ϵ||<ϵ/2

µ(ξ)dξ.

Let pk(ϵ) be the probability distribution for the distance between a point
and its k-nearest neighbor. In other words, pk(ϵ)dϵ is the probability of having
k − 1 points at smaller distance than ϵ/2 from xi, one point within distance
r ∈ [ϵ/2, ϵ/2 + dϵ/2] and N − k − 1 points further away. From the multinomial
distribution it is derived that the probability of the k-nearest neighbor having
ϵ/2 distance to a point xi is

7

Figure 2: An example of KDE on a sample of 500 observations from a standard
normal distribution (Black line). Here the y-axis represents the density of the
distribution. A Gaussian kernel was used with different sizes of bandwidth.
When h = 0.1 (blue) there is under-smoothing, when h = 2 (red) there is over-
smoothing, and for h = 0.3 (green) the estimation is quite close.

8

pk(ϵ)dϵ =
(N − 1)!

(k − 1)!(N − k − 1)!
· dPi(ϵ)

dϵ
dϵ · Pi(ϵ)

k−1 · (1− Pi(ϵ))
N−k−1.

Under the assumption of having a constant density function µ(x) within the
ϵ-ball, by use of the volume of a sphere, an approximated estimation of µ(x) is
given by

Pi(ϵ) ≈ (ϵ/2)d · Vd · µ(xi),

where d is the dimension of X and Vd = πd/2

(n/2)! is the volume of the unit sphere in

d dimensions. By rearranging terms and taking the expectation an estimation
of log µ(x) is

logµ(xi) ≈ E[logPi(ϵ)]− log Vd − d(E[log ϵ]− log 2). (1)

From the definition of expectation it follows that

E[logPi(ϵ)] =

∫ ∞

0

pk(ϵ) logPi(ϵ)dϵ

= k

(
N − 1

k

)∫ 1

0

ωk−1(1− ω)N−k−1 logωdω

= Ψ(k)−Ψ(N),

(2)

where Ψ(·) is the digamma function. A more detailed derivation of the last
equality can be seen in the Appendix. Combining (1) and (2) yields

logµ(xi) ≈ Ψ(k)−Ψ(N)− log Vd − d(E[log ϵ]− log 2).

As k and N are fixed, the only non-constant term of the density estimator
is E[log ϵ]. In this case, the expectation is only taken over one point, resulting
in reducing the term to log ϵ. Consequently, the rankings from the estimator of
µ(x) only depend on the distance from a point to its k-nearest neighbor. This
removes the spatial information around a local neighborhood of a data point.
As can be seen in Figure 3, this approach would not be robust and could lead to
the same density estimation for two points in areas of different densities. One
simple solution would be to use the distance to every nearest neighbor up to
neighbor k.

2.2.2 Generalized Density Estimator

In order to utilize the spatial information of all nearest neighbors of a point, two
density estimators are proposed motivated by graph theory, and more precisely,
similarity graphs. From graph theory, it is known that the degree di of a point
is defined as

di =

n∑
j=1

wij ,

9

Figure 3: An illustration showing the sensitivity of only considering the distance
to the k-nearest neighbor for density estimation. Here k = 7 and thus only the
distance from point xi to xj is considered. The density estimation for A and B
would be the same when clearly the scenario of A should yield a larger density
estimation for xi.

where wij is the weight between two points xi and xj . Note that, for a kNN
graph, wij = 0 if xj is not a nearest neighbor of xi. Following this, one of the
proposed density estimators is

ρ
(1)
i =

1∑k
j=1 w

(1)
ij

=
1∑k

j=1 dij
=

1

d
(1)
i

,

where again dij is the Euclidean distance between point xi and its j:th nearest
neighbor, and k is the fixt number of neighbors to consider.

Another density estimator that is proposed in this thesis is

ρ
(2)
i =

k∑
j=1

w
(2)
ij =

k∑
j=1

1

1 + d2ij
= d

(2)
i .

Note that, in the context of this thesis, these are not strictly speaking density
estimators and do not signify a true density function as they would for example
not sum up to 1. For the goal of this thesis, a density estimator is meant as a
statistical quantity to measure the fluctuation of the density of points in a local
neighborhood. For the density-based clustering method introduced in Section 3
and Section 4, this is however sufficient.

The two estimators are quite similar with small differences. For ρ(1), the dis-
tances to all neighbors are aggregated before the density is estimated. For ρ(2),

10

the opposite is true. A density estimation based on each neighbor separately
is first calculated before being pooled together for a final density estimation.
In most cases, the outcome of the estimators is similar, just on different scales.
However, there exist some special cases where they differ significantly. One ex-
ample would be in a very dense area where the distance to neighbors is close
to zero meaning the estimation using ρ(1) would go towards infinity. In this
case, the scale of the density between different points could be skewed, where
the difference in the scale between dense areas and other areas could be too
large. This is not as big of a problem when using the second estimator since
it is always at most equal to k. On the other hand, say that two outliers lie
very close to each other but far away from all other points. Using the second
estimator would give these points a density above or close to 1 which could be
larger than for points in some sparse areas. This should not be the case and is
not a problem for the first estimator. Hence both estimators are considered and
an analysis is later performed to compare them.

3 Density Based Clustering

At the start of learning about statistics, a lot of different methods are learned
where the goal is to build a model to predict some labels. Some examples could
be to, based on some characteristics (predictors), predict the price of a house,
make a forecast of the weather or predict how much a customer will spend.
What these examples have in common is the fact that they all have one or more
labels (response variables) on which the model can be trained on. However,
in many real cases, the labels do not exist or are not of interest. An example
of this would be when the data only contains the characteristics of houses or
customers. In these cases, one of the main analyses that are possible is called
clustering.

Clustering is a method where the data is divided into clusters or groups
based on their characteristics. Data with similar characteristics should belong
to the same cluster and data with dissimilar characteristics should be far apart
from each other. An example can be seen in Figure 4 of data over customers for
some company. In this example, there are only two characteristics, the yearly
salary and the number of previous purchases by the customers, but in most
cases, there are many more. The customers are divided into three clusters,
consumers with low salaries who rarely make purchases, consumers with high
salaries who rarely make purchases, and consumers with high salaries who often
make purchases. This could for example be used to know which customers
to target with ads or approach in the store. The use of clustering methods
is widespread, and therefore, many different methods for clustering have been
developed for different areas of use. This thesis will focus on density-based
clustering.

Density-based clustering methods have many advantages that suit the goal
of this thesis. For example, the number of clusters does not need to be decided
in advance which is important when it is impossible to know that information

11

beforehand. It is also possible to cluster arbitrary shapes as opposed to many
algorithms which can only handle spherical clusters. It also deals with large
data sets efficiently since no iterations are needed as for many other clustering
algorithms. Lastly, the methodology is very intuitive and easy to understand.
The most used density-based clustering method is the density-based spatial clus-
tering of applications with noise (DBSCAN) by Ester et al. (1996). However,
this method, similar to Section 2.1, relies on fixing the size of the bandwidth.
Due to this, DBSCAN is not robust to varying density clusters. Hence, another
approach based on the algorithm by Rodriguez and Laio (2014) is taken.

3.1 Clustering by fast search and find of density peaks

A more recent method in density-based clustering was established by Rodriguez
and Laio (2014). They proposed a density-based clustering algorithm more
robust to the choice of threshold and varying cluster densities. The underlying
assumptions of the algorithm lie in the idea that cluster centers are characterized
by having a larger density than their neighbors and a relatively large distance
to other cluster centers.

For each data point xi, two quantities are calculated, the local density esti-
mation ρi and the distance to the closest neighbor with a larger density, denoted
as δi. To estimate the density, a distance threshold dc is set giving rise to the
quantity

ρi =

n∑
j=1

1{(dij − dc) < 0},

where 1{·} is the indicator function being equal to 1 if the input is true, and 0
otherwise. In words, ρi is equal to the number of points within a neighborhood
of radius dc around the point xi as can be seen in Figure 5A.

The second quantity δi is simply computed as

δi = min
j:ρj<ρi

{dij},

where the point with the largest density by convention is given a value as the
maximum distance to any point from itself. Under the assumptions of the
algorithm, all cluster centers are characterized as having large δ and ρ.

For simpler cases, where the number of data points and clusters are relatively
small, a manual approach is taken in finding cluster centers by the use of a
decision graph as illustrated in Figure 5B. Any point that sticks out having both
large δ and ρ in comparison to all other points are chosen as cluster centers.
This can be seen as large gaps between points. When the cluster centers have
been found, every other data point is assigned to the same cluster as its nearest
neighbor with a larger density, removing any need for iterations.

In many real-world cases, finding the cluster centers in the decision graph
could be difficult. When the number of clusters is too large, it is impossible to
manually identify them. When that is the case, the authors propose to look at

12

Figure 4: A simple clustering example. The data is of customers containing their
yearly salary and number of previous purchases. The customers are divided into
three different clusters in order to know which customers are more likely to spend
money.

13

Figure 5: An adaptation of Figure 1 in Rodriguez and Laio (2014). This figure
illustrates how cluster centers are found. A) Data containing two clusters (green
and red) with two outliers (black). The size of dc is shown with a blue dashed
line. B) The decision graph where the user manually picks cluster centers.
Points 14 and 15 are the only two points with large δ and ρ and as such become
cluster centers. Points with large δ and small ρ are likely candidates for being
outliers. Note that the points have been slightly shifted in the x-axis for clearer
visualization and should in practice only take on integer values.

14

the statistic γ = ρδ in descending order instead. However, this could prove to be
problematic. One issue could appear when the scale of δ is much larger than ρ.
In such scenarios, the density of the points loses its importance, resulting in only
focusing on δ in deciding cluster centers. Furthermore, the decision still needs
to be done manually, whether it be in picking out cluster centers one by one or
setting some threshold of γ. This opens up the possibility for human errors and
the number of clusters could be different between users. Since the selection of
cluster centers is done manually, it will be very time-consuming whenever the
procedure needs to be done a large number of times.

The strong element of the method lies in its speed and simplicity. As the
name suggests, the algorithm is quick. In contrast to many other clustering
methods, there is no need for iterations or convergence criteria, making it suit-
able for larger data sets. Additionally, the only parameter in need of being fixt
is dc opposed to most clustering algorithms having at least 2 hyper-parameters
to be tuned. On the other hand, the choice of dc has a great influence on the
accuracy of the result and as such, is important to get right. One of the larger
complications in deciding dc appears when the size and density of clusters as
well as the distance between clusters vary greatly. In parallel to section 2.1, as
for the KDE, there exists no one-size-fits-all size of dc. As seen in Figure 6,
this could induce over-clustering in parts of the data where dc is too small or
under-clustering when dc is too big.

Lastly, one part of the core of this algorithm lies in calculating δ, the distance
from a point to its nearest neighbor with a larger density. Since the density
estimator suggested by the authors by its definition only take on integer values,
the robustness of the algorithm is questioned. There are possibilities for ties
within the density estimator and as such, it is impossible to decide on which
point has the larger density. This is especially fragile for sparse data where the
density will often be quite small.

In light of these observations, this thesis proposes a generalized version of
Rodriguez and Laios (2014) density-based clustering algorithm.

3.2 Generalized Density-Based Clustering

In this section, a generalization of the method in Section 3.1 is presented. The
generalization of Rodriguez and Laios (2014) algorithm focuses on preserving
the advantages of the method while making the method more robust against
its weaknesses. This is done by retaining a fast algorithm with a single hyper-
parameter. At the same time, a different density estimator is introduced and
the method of finding cluster centers is automatized with the use of monotonic
regression and kernel smoothing.

3.2.1 Monotonic Regression

Given some data set with pairwise observations (xi, yi) where xi is the covariate
and yi is the response variable, it is possible to construct models explaining the
data. One of the first methods that are taught in statistics is fitting a regression

15

Figure 6: An illustration of one example when the fixt size of dc in the algorithm
by Rodriguez and Laio fails. The data contains two smaller Gaussians with 200
points each and two larger Gaussians with 2000 points each. A stronger red
color indicates a larger estimated density. The green points are cluster centers
as decided by the algorithm. A) In this example, the size of dc is set based on
the size of the larger Gaussians. This results in under-clustering of the smaller
Gaussians where only one cluster center (green points) appears in between them.
This is the result of too large of a bandwidth, resulting in some of the border
points getting contributions from both Gaussians. B) In this example, the size
of dc is smaller, in an attempt to avoid the over-clustering in A. However, in
this case, over-clustering of the larger Gaussians occurs.

16

line. In order to find a regression line, for two-dimensional data, the following
is minimized

f(β0, β1) =

N∑
i=1

(yi − β0 − β1ϕ(xi))
2.

Here β0 is the intercept, β1 the effect parameter (or slope), and ϕ some basis
function. In some cases, for example, when only the rank of xi is available,
this parametric approach does not work. Barlow et al. (1972) proposed a non-
parametric method, namely Monotonic Regression.

Under the assumption that all observations xi of X are unique and ordered
such that x1 < x2 < ... < xN , the monotonic regression line is found by mini-
mizing

f(z) =

N∑
i=1

(yi − zi)
2,

where it is assumed that z1 ≤ z2 ≤ ... ≤ zN . If ẑ is the solution minimizing that
function, then the best increasing function to fit to the data is the pair of points
(xi, ẑi) (Leeuw, 2005). When finding the monotonic regression line in practice,
it is used that, whenever yi > yi+1, breaking the monotonicity, ẑi = ẑi+1. Under
these circumstances, the algorithm for finding the regression line is quite simple.

The procedure for finding the monotonic regression line can be seen in Figure
7. Whenever yi > yi+1, breaks monotonicity, their values are replaced by their
combined average. This procedure is continued until the monotonicity is no
longer broken. This procedure must come to an end where the most simple
regression line would be a straight horizontal line which is clearly monotonic.

3.2.2 Nadaraya–Watson Kernel Regression

In many instances, it is difficult to calculate statistics and do inference on func-
tions that are not smooth. Hence, there exist plenty of methods to make a
function smooth whilst maintaining the important statistics and information it
contains. Both Nadaraya (1964) and Watson (1964) proposed such a method
now called the Nadaraya-Watson Kernel Regression.

Given some value of x, the conditional expectation m(x) = E[Y |X] is to be
estimated, where m(x) is some function. Similar to section 2.1, this is done by
the use of a kernel Kh. Below is the estimator for m(x).

m̂(x0) =

∑n
i=1Kh(x0 − xi)yi∑n
i=1Kh(x0 − xi)

.

In practice, by aggregating the values within the bandwidth and applying
some kernel function, the overall trend of the function is captured. An example
of this can be seen in Figure 8. There are many applications for performing
such smoothing. One such example could be for finding the maximums and
minimums of a function. For the function in Figure 8A, there are two problems.

17

Figure 7: Workflow of finding the monotonic regression line. Here xi = i and yi
takes on some integer between 0 and 6. The black line A is the fitted function
running through all pairs (xi, yi). This is altered in the following panels to
generate a monotonic function. In each panel, the red line represent the earliest
contradiction to having a monotonic function. Whenever yi > yi+1, both of their
values are replaced with the average between them. This is done until no such
contradiction exists. A) The first contradiction is in y2 = 2 > 1 = y3. Their
values are replaced with 1.5 resulting in B. B) Next contradiction is y5 > y6
where the same procedure is performed. C) Previous corrections resulted in a
new contradiction between y4 and y5. D) There are no more contradictions. In
the end, the best fit line is a step-function as shown by the green dashed line.

18

Figure 8: An illustration showing the use of Nadaraya-Watson Kernel Regression
to smooth a function. A) This shows the shape of the true function. The size
of the bandwidth of the kernel is showcased by the purple dashed rectangle. All
y values within this rectangle are aggregated using some kernel and the value
replaces the old value of the center point within the bandwidth. B) The result
after applying kernel regression.

19

First of all, each maximum and minimum contains sharp points where the func-
tion clearly is not differentiable. Hence, it would not be possible to find the
maximum or minimum by the use of conventional methods such as setting the
derivative to zero. Secondly, there exist 4 distinct local maximum values of the
functions and several less distinct local maximums. If only the 4 major local
maximums should be considered, smoothing has to be applied as illustrated by
Figure 8B.

It is, just as in section 2.1, important that the size of the bandwidth is cor-
rectly chosen. If the bandwidth is too large there will be over-smoothing which
could remove some of the 4 distinct maximums in Figure 8. If the bandwidth
is too small there could be under-smoothing where the less distinct maximums
would remain or more could be introduced. If a fixt bandwidth is to be used
anyways, it could be determined by using the h that minimizes the AMISE as
explained in Section 2.1.

3.2.3 Generalization of Clustering Algorithm

In this thesis, there are two major generalizations to the algorithm in Section 3.1,
a different density estimator and automatization of the decision graph. Using
a kNN density estimator introduces an adaptive neighborhood size instead of
the fixed dc. This reduces the issues of using a fixed size of dc as mentioned in
Section 3.1. The adaptive neighborhood helps in making the algorithm more
robust on data with varying densities and sizes of clusters. The kNN-density
estimator additionally removes the possibilities of ties. In practice, k should
be chosen to represent a reasonable-sized neighborhood around a point. If k
is chosen too small, the neighborhood also becomes too small and introduces a
large variance. If k instead is chosen too large, the neighborhood becomes too
big and introduces a lot of bias.

A schematic showing the process of automating the choice of cluster centers
from the decision graph is shown in Figure 9. First of all, a monotonic regression
line f(log ρ) is constructed as in Section 3.2.1, using log ρ as a covariate and
log δ as the response variable. The monotonic regression line is fit in the log
scale since ρ and δ have more of a linear relation in the log-scale than in the
original scale. This can easiest be seen in Figure 5. In real-world cases, in the
example of Figure 5, there would exist more outliers. Since the outliers have a
very large δ and small ρ, there would be a decreasing exponential trend in the
decision graph as points get closer to some cluster, decreasing their δ quickly
while slightly increasing the value of ρ. This regression line is then placed on
the decision graph as a decision line (see Figure 10). The decision line can be
moved vertically with the following relation

log δi = f(log ρi) + c

⇐⇒ δi = ef(log ρi) · ec.
(3)

By changing the value of the constant α = ec the decision line is moved
up and down (see Figure 9A). As the decision line is moved vertically on the

20

Figure 9: A schematic showing the automated process of finding cluster centers.
A) A monotonic regression line f(x) is fit on the data with pairwise entries
(log ρi, log δi) and then applied on the decision graph as a decision line. For
better visualization, the decision graph use δ over log δ where the regression
line is transformed as by equation 3. The regression line is moved up and down
by changing the constant α in the equation δi = ef(log ρi) · α. B) Any points
above the decision line are chosen as cluster centers. As α change, the number
of clusters also change. This graph shows the number of clusters as a function
of the constant α. C) The step-function in B after linear detrending. This
simply mean that y = C − α ∗ b where C is the number of clusters in B and b
is the ordinary least square estimation of the function in B. Now the start of
a plateau is signified by a local minimum and the end of a plateau by a local
maximum. D) Finally, the Nadaraya-Watson kernel regression is used on the
projected step-function for smoothing. The 20% quantile of the longest upward
trend is taken as the optimal α (orange dashed line).

21

decision graph, the cluster centers are any points lying above the decision line.
This approach yields two new quantities, different values of the constant α and
the number of clusters as a function of α (see Figure 9B). This creates a step-
function where large gaps between points in the decision graph are shown as
long plateaus. Since large gaps between points in the decision graph signify
profound cluster centers as described in Section 3.1, this also means that long
plateaus signify profound cluster centers.

One way to decide on the optimal value of α could be to simply pick a value
within the longest plateau since this represents the largest gap in the decision
graph. One way to find this is by linear detrending, i.e. projecting the step-
function on its own linear regression line as seen in Figure 9C. Now the goal is
to simply find the longest distance between a local minimum and its subsequent
local maximum. In Figure 9A this would work. However, that is not always the
case and is the reason why the smoothing step in Figure 9D is needed.

Imagine that in Figure 9A, δ14 = 2. The largest gap would then instead be
between point 15 and 14, meaning the longest plateau in Figure 9B would be for
number of clusters equal to 1. This is clearly wrong since there are two clusters.
By applying smoothing, the two plateaus for 1 and 2 clusters are merged into
one as seen in Figure 9D. By choosing one of the smaller values of α in the new,
merged line, the problem is resolved. For this thesis, the optimal value of the
constant α is chosen as the lower 20% quantile of the longest upward trend. If
the constant α is chosen too big, some cluster centers may be missed. Since it
is impossible to add back missed cluster centers later, but possible to remove
improper ones in a later stage, it is preferred to pick too many cluster centers.

The use of monotonic regression instead of e.g. linear regression is needed
to prevent the inclusion of outliers (points with large δ and small ρ) as can
be seen in Figure 10. If the linear regression line would have been used, point
number 23, an outlier, could be picked up as a cluster center. Using monotonic
regression greatly reduces this risk as illustrated by the figure.

4 Density Based Clustering for Large Data

In this section, a description of the full algorithm will be explained when used on
large data such as in-situ transcriptomics data. A simplified flowchart showing
the steps of the algorithm can be seen in Figure 11 and a more detailed algorithm
can be seen in Algorithm 1.

The first step of the process is to compute the density estimation ρ. A
comparative analysis between the KDE approach and the kNN approach was
made and can be seen in section 5. Based on these results, the kNN approach
described in section 2.2.2 is recommended. The value of k is set to 7 to maintain
reasonable-sized neighborhoods.

One of the core parts of the method lies in choosing the appropriate δ.
However, when the data set is too big, it is not feasible to calculate the distance
between every pair of data points. Hence, a modification for large data sets is
needed. To compute δ, the feature space is divided into a grid as can be seen in

22

Figure 10: A decision graph for the generalized method similar to the decision
graph in Figure 5. Here the density estimator is based on a kNN approach.
A monotonic regression line and a linear regression line have been fit to the
response log δ and covariate log ρ and then applied to the decision graph as a
decision line. Note that δ is used over log δ as per equation 3 for easier visual-
ization. The cluster centers are any points lying above the decision line. The
decision line placement is chosen automatically as shown in Figure 9. As can be
seen, it is more likely to pick up outliers using linear regression than monotonic
regression which is why the monotonic regression approach is recommended.

23

Estimate ρ

Divide feature space inte a grid

Choose a square

Calculate δ for points within the square

Find cluster centers

Assign non-cluster centers to clusters

Figure 11: Simplified flowchart showing how the automated algorithm works
for large data. First, the density is estimated for every data point. Next, the
feature space is divided into a grid as in Figure 12. For each square within the
grid, δ is calculated and cluster centers are found automatically by following
the method from Section 3.2.3. When all squares are processed, clustering is
performed as in Section 3.1.

24

Figure 12: An illustration of grid-based use of the method in Section 3.2.3.
In order to calculate δ for large data, the feature space is divided into a grid.
Computations of δ and the automatized process of finding cluster centers as
described in Section 3.2.3 are applied within each square one at a time. A)
The value of δ is only calculated for points within the blue square using points
within the red square followed by finding cluster centers. B) The same process
as in A is done for the subsequent square. Note that, for points within squares
at the edge, there are only neighboring squares in some directions. Computing
δ and ρ for these squares would be biased and as such, the method of finding
cluster centers is not applied to border squares.

25

Figure 12. The size of each square is L/3×L/3, where L is the average distance
between cluster centers. The value of L is estimated by previous works and
expertise within the field the data is taken from. If L is too small, the estimation
of δ will not be robust and for large clusters, it is possible to get multiple cluster
centers. If L is too big, the computational time is not sustainable.

Calculations for δ and finding cluster centers are done one square at a time.
For every point within a square, δ is computed by only using data within that
square and neighboring squares. For that same square, cluster centers are found
by the automatic process described in Section 3.2.3, before moving on to the
next square in the grid. These calculations are however not made for the squares
at the edges. This restriction is made since when evaluating points in squares
at the edges of the feature space, there will not exist any points on one side of
the square. This makes the estimations biased. In a real-world example, the
boundary of a tissue slice should not be evaluated anyhow. This is because
the tissue has been cut, and as such, any cells near the boundary risk being
incomplete. Finally, every non-cluster center is assigned to the same cluster as
its nearest neighbor with a larger density.

This method is fully automated with no need for manual input by the user.
Furthermore, it is a simple and intuitive algorithm that only requires one pa-
rameter k to be tuned and inserted into the algorithm. The method is quick
due to having no iterative process like many other clustering methods and can
easily be interpreted. Since it can find clusters of arbitrary and varying shapes,
can manage large data, and is robust to varying densities of clusters the method
works well for in-situ transcriptomics data.

26

Algorithm 1: The Algorithm

Input: Coordinates, k
Output: Clusters

Estimate densities ρi for every point xi
Divide feature space into a grid with squares {j, k} ∈ [0, J]× [0,K]
for j = 1, 2, ..., J do

for k = 1, 2, ...,K do
Only using points within squares [j − 1, j + 1]× [k − 1, k + 1];
Estimate δi for points within square {j, k}

Automatically find cluster centers within square {j, k} using ρi
and δi

end

end
for i = 1, 2, ..., N do

Give each cluster center a unique cluster ID
if xi is not a cluster center then

xi is assigned the same cluster as its nearest neighbor with larger
density ρ

end

end

5 Results

In this section, a comparison between different density estimations is performed.
Furthermore, an analysis of the algorithm in section 4 is given.

5.1 Data

In order to evaluate the method in Section 4 and check the assumptions made in
previous methods, two different data sets will be used. One generated data set
for evaluating the performance of the method and one transcriptomics data set.
The in-situ transcriptomics data set named osmFish by Linnarsson Lab, comes
from a part of a mouse brain and was used by Park et al. (2021) in evaluating
their method. This data set will be used to check whether the assumptions of
previous methods can be expected to be true, mainly the normalization process
described in Section 5.4.1.

5.1.1 Simulated Data

For real-life in-situ transcriptomics data, it is unknown what cluster each gene
belongs to. This makes it difficult to evaluate whether or not the clustering
by a method is correct. Hence, a simulated data set Gaussian Mixture Model
with 250 Gaussians (GMM250) is used. Doing so opens up the ability to better
evaluate the performance of the method. To make a realistic comparison of the

27

model, the data set needs to resemble the real data. Therefore, a sample is
taken from a GMM where each Gaussian represents a cell and each data point
illustrates a gene.

The number of Gaussians in the GMM250 data is set to 250, with a total
of 57047 data points distributed over a field of size 400 × 400 µm. The size of
the field was set such that both sparse and dense areas were to be generated
while ending up with a moderate amount of overlapping clusters. The size and
shape of each Gaussian are randomly decided by generating variances for x and
y from a uniform distribution within an interval from

√
3 to

√
11.6 µm. The

mode of each Gaussian was randomly generated from a two-dimensional uniform
distribution within the square [0, 400]×[0, 400]. The number of points generated
for each Gaussian was based on its size with some added randomness in the form
of Gaussian noise. The data set is illustrated in Figure 13. The methodology
and parameters for generating the data set were all based on characteristics
from the data in Section 5.1.2.

Figure 14 show the position of each data point around the true mode of
the Gaussian it belongs to. Every Gaussian has been projected such that its
mode lies on the origin. This figure shows that the vast majority of points lie
quite close to the mode of its Gaussian component and the density of points
fades further from the mode. This is to be expected when simulating data from
Gaussian distributions. Furthermore, it can be seen that the distribution of
the data points is quite symmetric around the origin, illustrating that the data
points are generated fairly and were not biased towards any particular direction.
This is further shown in the top-right table showing that the mean position in
both directions is close to 0 and hence not biased in any particular direction.
The standard deviation is on average around 2.9, similar to the data used by
Park et al. (2021), and as such, using the kernel bandwidth suggested by that
paper should be close to the optimal bandwidth size for this data set.

5.1.2 Transcriptomics Data

The osmFish data set by Linnlarsson Lab consist of 1.976.659 observations of 33
different types of genes within a specific region of a mouse brain. This data will
be used in order to check the assumptions made in the normalization method
described in Section 5.4.1.

5.2 Analysis of Density Estimators

In previous attempts of performing clustering on in-situ transcriptomics data
such as in the work of Park et al. (2021), KDE is used. As mentioned in section
2.1, there exists no one-size-fit-all bandwidth when the size of clusters varies
a lot. The data gathered from images of tissues will almost always contain
cells of varying size and shape and as such, using a KDE could prove problem-
atic. Hence, a comparison between the KDE and a kNN density estimator is
performed.

28

Figure 13: The GMM250 data set. The data was generated from a Gaussian
Mixture Model containing 250 Gaussian components and 57047 data points.
Each cluster is characterized by a different color and the mode of the Gaussians
is shown as a red dot.

29

Figure 14: Distribution of the position of all data points from every Gaussian
in the GMM250 data set in relation to its respective mode. Each of the 250
Gaussians has been projected such that each mode is positioned at the origin.
This illustrates that the data points are generated around the true mode in a fair
manner. The density indicates how many data points lie in that area. The data
points are not more likely to lie in any particular direction than another. The
smaller table in the top right corner shows the mean and standard deviation
of the position of the data points. Since the mean is close to 0, it further
strengthens the reasoning that the data points are generated around the mode
fairly and not biased in any direction. The standard deviation of the Gaussians
is on average around 2.9 in both directions and as such the bandwidth size of
2.5 as suggested by Park et al. (2021) is a good choice for the KDE.

30

Both methods were evaluated by first performing a point-wise density esti-
mation of the GMM250 data. For the KDE, a Gaussian kernel was used where
the size of the bandwidth was set to 2.5µm as suggested by Park et al. (2021).
The kNN estimators used are the same as in section 2.2.2 with k = 7. Since the
main interest of the algorithm is the position of the cluster center, the evaluation
of the density estimators was done by examining the distance of the estimated
mode to the true mode of the Gaussian. The direction of the estimated mode
compared to the true mode was also examined to detect any possible bias in the
position of the estimated modes.

To evaluate the position of the estimated mode in relation to each true mode,
the methodology in Algorithm 2 was implemented. In practice, the search area
around a true mode is expanded until there is a clear decrease in density. The
estimated mode is then the data point with the largest density estimation within
that search area. The Euclidean distance and spatial location between the true-
and estimated modes are then calculated.

Algorithm 2: Estimated Mode Search

Input: Coordinates, Estimated Density, True Modes
Output: Estimated Modes

Denote M as the number of Gaussians in the data
Denote N as the number of data points
for m = 1, 2, ...,M do

Let zm be the true mode of Gaussian m
Let ρ(i) be the estimated density of the i-nearest neighbor x(i) of zm
Let S be the number of consecutive neighbors with smaller density
than any previous neighbor
Let Φm = ρ(1) be the density of the current estimated mode of
Gaussian m.
Set i = 2
while S < 30 do

if ρ(i) > Φ(m) then
Φ(m) = ρ(i)
S = 0
i = i+ 1

end
else

S = S + 1
end

end
Let the estimated mode of Gaussian m be the neighbor with the
corresponding density estimation Φm

end

The distribution of the distance and spatial location of the estimated modes

31

Figure 15: Analysis of density estimators. A) The spatial placement of each
estimated mode in relation to the true mode of the GMM250 data set. The
position of the estimated mode was found as described in Algorithm 2. B) The
distribution of the distance of the estimated mode to the true mode. It is quite
clear that using KDE results in many estimated modes lying far away from the
true mode of the Gaussians.

in relation to their respective true mode can be seen in Figure 15. Figure 15A
clearly shows that both kNN-density estimators perform very similarly to each
other. It further shows that the location of the estimated modes towards the
true modes seems to not be biased in any direction. However, the result of the
KDE differs quite significantly. It is possible to see that a large amount of the
estimated modes using KDE lie closer to the true mode in comparison to the
kNN estimator. This is most likely the result of clusters where the kernel and
the bandwidth of the kernel fit well with the underlying distribution. However,
many of the estimated modes lie far away from the true mode as illustrated by
the small but continuing peaks in Figure 15B. This problem arises when the
bandwidth no longer fits the cluster size.

In many cases of the generated data, there are smaller clusters close to each
other. In this scenario, when the bandwidth is too large, using the KDE results
in merging the two clusters, ending up with a cluster center lying in between
the two clusters as illustrated previously in Figure 6. This is further clear when
noticing that the number of unique estimated modes using KDE is 228. Since
the number of Gaussians in the data is 250, clearly a number of the Gaussians
share an estimated mode. Using a kNN approach results in 249 unique modes.
The kNN approach is showcased to be more robust than a KDE for cells of
varying sizes and hence a kNN approach is suggested.

32

5.3 Analysis of Clustering of GMM250

In this section, an analysis of the complete method as described in Section 4 is
performed. In light of the robustness of using a kNN approach as seen in Section
5.2 for estimating densities, this approach will be used. Both of these estimators
performed very similarly, but since ρ(1) had a slight edge, this estimator is used.

To evaluate the effectiveness of the method, it was applied to the GMM250
data set. This resulted in finding 203 out of 250 clusters. A majority of the
missed clusters were due to heavy overlapping between several clusters as can
be seen in Figure 16. The remaining missed clusters lie at the boundary of the
feature space and are shown with a black color. These clusters are not evaluated
as mentioned in Section 4. Furthermore, in a real-world example, the number of
clusters lying at the boundary of the feature space will be a very small fraction
of the total number of clusters. If the clusters around the boundary of the
feature space are disregarded, over 90% of the data is correctly clustered, where
the only data wrongly clustered are from overlapping clusters. The final result
of clustering is shown in Figure 16.

33

Figure 16: Result of using Algorithm 1 on the GMM250 data set. Each cluster
is characterized by its own color where the true mode is shown as a red dot
and the estimated mode as a blue triangle. The algorithm finds 203 clusters
where a majority of missed cluster centers lie outside the grid, resulting in
points belonging to those cluster centers not getting assigned to any cluster
(Black colored points). The remaining missed cluster centers are due to largely
overlapping clusters.

34

5.4 Analysis of Clustering Algorithm

This section will present one of the more recent methods for performing inference
on in-situ transcriptomic data named Spot-based Spatial cell-type Analysis by
Multidimensional mRNA density estimation (SSAM) by Park et al. (2021). The
assumptions, robustness, interpretability, and the simplicity of this method will
be compared to those for the method in Section 4.

5.4.1 Normalization

In most analysis, when the clustering of cells is performed, the gene counts in
each cell is normalized due to bias in analyzing the tissue. There are different
normalization methods, and one of the standards is sctransform by Hafemeister
and Satija (2019). The method is based on the assumption that, when the
clustering is completed, each cluster can be seen as a single cell sample, and as
such, methods from previous works on single-cell analysis can be used.

For a cell j and some gene-type i, denote yij as the count for gene i in
cell j, and xj as the total number of genes in cell j. The authors then make
the assumption that log yij and log10 xj have a linear relationship and as such,
the expected gene count yij can be modeled using a Generalized Linear Model
(GLM) with log-link function and negative binomial error distribution. This
results in the relation

logE[yij] = β0i + β1i log10 xj ,

where β0i is the intercept and β1i is the effect parameter for gene-type i. The
parameters of each gene type are decided such that there is a best fit across all
cells. Furthermore, the dispersion parameter of the negative binomial distribu-
tion ri for each gene type is estimated using the data. For a given gene-type i,
this parameter is assumed to be independent of cell size and the total number
of genes within cells.

One problem that occurs in this normalization method is that modeling each
gene individually results in over-fitting. The solution suggested by the authors
is to regularize the parameters by using the Nadaraya-Watson kernel regression.
In doing so, the information across genes is shared and global trends can be
learned. The regularized parameter estimators are given by

β̃0(x) =

∑n
i=1Kh(x− xi)β0i∑n
i=1Kh(x− xi)

β̃1(x) =

∑n
i=1Kh(x− xi)β1i∑n
i=1Kh(x− xi)

r̃(x) =

∑n
i=1Kh(x− xi)ri∑n
i=1Kh(x− xi)

,

35

where the kernel Kh is a Gaussian kernel with a bandwidth size of 3 times the
Sheather-Jones plug-in bandwidth (Sheather & Jones, 1991). This bandwidth
is a variation of the bandwidth derived in Appendix A.1. Lastly, the expected
gene count in cell j of gene-type i, zij , is defined as

zij =
yij − µij

σi

µij = exp(β̃0i + β̃1i log10 xj)

σi =

√
µij +

µ2
ij

r̃i
.

This normalization method rely heavily on the assumption that there exists
a linear relationship between log yij and log10 xj . From discussions with the
team of experts within the field at SciLifeLab, this rarely holds. It is further
visible in Figure 17 where the relation between the above mentioned statistics
is illustrated for 4 different gene-types. The Tbr1 gene seems to have some
logarithmic relation, while the other 3 genes have some quadratic or exponential
relation. Furthermore, the assumption that the dispersion parameter ri should
be the same across cells is questionable.

An important part in distinguishing between different cell-types, which is
one of the goals of this project, is based on the biological heterogeneity between
different cells. That is, it is important to maintain the heterogeneity of the gene
composition of cells. When performing normalization on the gene composition of
cells, there exists a risk of normalizing this biological heterogeneity on top of the
difference from technical errors of e.g. equipment. This would be detrimental
to the analysis and could yield false results. Since there currently does not exist
any well established normalization methods except for sctransform, and this
method is based on several assumptions that does not always hold, the only
normalization that is made for this method is a log-transformation as suggested
by the experts at SciLifeLab.

5.4.2 Spot-based Spatial cell-type Analysis by Multidimensional mRNA
density estimation (SSAM)

One of the more recent methods for clustering and inference on in-situ tran-
scriptomics data is SSAM, constructed by Park et al. (2021). This is the only
density-based clustering method for this type of data and is what some of the
structure and ideas of the method in Section 4 were based on. SSAM is based
on 3 steps.

First, the density of the genes is estimated using only one gene type at a
time. The density estimation is done using a KDE as described in Section 2.1
with a Gaussian kernel and a bandwidth of 2.5µm. The gene types are then
merged onto the same feature space. The feature space is then divided into
pixels of size 1µm by 1µm where each pixel is a vector with one element for
every gene. Each element is the sum of the density of every such gene within
that pixel.

36

Figure 17: Testing the linearity assumption between log yij and log10 xj as as-
sumed by Hafemeister and Satija (2019) for 4 different gene-types in the osmFish
data set. The x-axis shows the log10 of the total gene count per cell. The y-axis
shows the natural logarithm of the gene count per cell for 4 different genes. A
slight smoothing has been applied for better visualization of the trend using the
method of Section 3.2.2. It is quite clear that the linearity assumption does not
hold. The Tbr1 gene seems to have some logarithmic relation to the total gene
count while the other genes have some quadratic or exponential relation. This
result raises question to the robustness of sctransform.

37

Secondly, a down-sampling takes place by using a variation of max-pooling.
In short, a maximum filter is applied to the pixelated feature space to dilute the
image. The size of the filter is 3×3 pixels meaning, as the filter is moved across
the image, every pixel within the filter copies the vector of the pixel with the
largest density within this filter. The largest density is decided by the L1-norm
applied to the vector of each pixel. In the end, only the pixels in the original
space with a vector corresponding to a vector in the filtered space are kept as
local maximums and potential cluster centers. Simplified, the down-sampling is
done by selecting the pixels with the largest density while making sure no local
maximum lies too close to another. These local maximums are considered to
represent the gene composition of the entire cell. The normalization process as
described in Section 5.4.1 is then applied to each pixel in the feature space.

Thirdly, the local maximums are clustered based on similarities between their
gene expression vectors using some density-based clustering method e.g. DB-
SCAN where each cluster gets a unique cell-type ID. Before clustering, another
down-sampling of the local maximums is performed. This process is controlled
by a large number of thresholds and hyper-parameters, checking if the local max-
imum is in a dense enough area and contains enough genes. This down-sampling
is done manually by the user. Finally, each pixel in the pixelated feature space
is given a cell-type ID. This is done by comparing the gene expression vector of
each pixel with those of the unique cell types using Pearson correlation. In the
end, SSAM does not cluster cells but instead assigns each pixel of the image a
cell type.

For SSAM to perform well, Park et al. (2021) assumes that cells are spheri-
cal and do not alter too much in size. This is often not the case for real data,
and as such, the use of KDE for density estimation could be problematic as seen
in Section 5.2 and Figure 6. Furthermore, since SSAM only performs density
estimation on one gene type at a time, the data will be quite sparse and the
density estimation will not be as robust. SSAM also has a lot of parameters
that need to be input, e.g. bandwidth of the kernel in the KDE, the size of the
filter in down-sampling, different thresholds, and any parameters needed for the
clustering method of the local maximums. On top of the parameters, a manual
down-sampling needs to be made by the user. This results in a rather compli-
cated algorithm with many areas susceptible to errors, and many parameters in
need of tuning whenever the result is not satisfactory. The method also relies
heavily on the user to make decisions throughout the process. Furthermore, the
use of sctransform for normalization can be questioned as seen in Section 5.4.1.

In light of this, the algorithm presented in Section 4 was constructed for
clustering this type of data. This method uses a kNN density estimator instead
of KDE, making it more robust to data with clusters of varying shape and
density. Furthermore, the density estimation is performed on all the data instead
of one gene type at a time. This makes it more robust to data with sparse
regions where density estimations could be unreliable if only one gene type is
used. While SSAM has a lot of parameters that need to be predetermined, the
method in Section 4 only has one, k in the kNN density estimation. This gives
a much simpler method that is easier to interpret. Furthermore, it minimizes

38

the risk of user error and makes it easier to fine-tune if the results do not look
correct. The new method is also completely automatized, meaning it becomes
much quicker to use and is less susceptible to human error. Furthermore, the
authors mention that several parts of SSAM need to be altered when data from
other tissues should be analyzed. However, the method in Section 4 is fully
data-driven and directly applicable to any data set. Lastly, the normalization
method in Section 5.4.1 is not used in the method of this thesis considering that
the assumptions do not always hold.

6 Discussion

In this section, the primary discoveries of the thesis are reviewed and discussed.
Some opportunities for improving the method in future works are also discussed.

In Section 2 different variations of estimating the density of a sample were
introduced. The shortcomings of the KDE were described, mainly the inability
of robust estimations for data containing areas with varying densities. Fur-
thermore, another approach using kNN for estimating density was introduced.
Section 3 contains the theory and analysis of density-based clustering. A gener-
alization of the method by Rodriguez and Laio (2014) is stated. The generalized
method is focused to preserve the speed and simplicity of the original method
while making the process fully automated, removing the need for any manual
decision making by the user. For Section 4, a further layer is added to the
density-based clustering algorithm in order to tailor it towards large data sets,
specifically in-situ transcriptomics data. In Section 5, different results are pre-
sented. A simulation for analyzing different density estimators was performed,
showing that a kNN approach is more robust than a KDE for data with clus-
ters of varying size and density. The method in Section 4 was analyzed on a
generated data set where all clusters without major overlap were found.

The goal of this thesis was fulfilled when a completely automatized algo-
rithm for clustering genes from in-situ samples into cells was constructed. The
algorithm is quick, robust to large data sets, easy to interpret, simple, and only
relies on a single parameter, k, for the density estimation. In contrast to previ-
ous methods, the algorithm is further robust when the data set varies a lot in
densities, cluster size, and shape, and is built upon assumptions that have been
confirmed to be true.

The use of Euclidean distance is often standard practice but may not always
be usable. One of the major problems with using Euclidean distance to measure
δ is when working with non-linear shapes. For example, if a cluster is shaped
like the letter C and both end-points are dense areas, points in both of those
areas will have a large density estimation ρ. Now, if the Euclidean distance
between the end-points is also big, one point at each end of the shape could
end up with a large δ. This results in one cluster having two cluster centers
meaning over-clustering is introduced. At the same time, as seen in Figure
6A, the use of Euclidean distance can also introduce under-clustering when two
clusters are close to each other. In order to prevent both of these problems,

39

future improvements of the method will replace Euclidean distance for a graph
distance. This will be useful for smaller data sets when the similarity graph can
be computed. One suggestion for the choice of graph distance is the Commute
Time Distance (CTD). In short, the CTD is a measure of how much time it
would take to get from a data point i to a data point j and back by performing
a random walk on the graph. If there are many short paths between two points,
the CTD will decrease while if the paths are long and scarce, the time increase.
Hence, two points close to each other within the same dense area will have a
small CTD while two points close to each other in separate dense areas will have
a large CTD. This is very beneficial for clustering when clusters intertwine. For
the over-clustering scenario, since this is a single cluster, there would be many
short paths between the two points at the end-points of the C shape and as
such, the CTD would be small. Since δ was computed as the distance between
a point to its nearest neighbor with a larger density, and the point with the
second-largest density would have a short distance to the point with the largest
density within the shape according to the CTD, it would have a small δ and
not be classified as a cluster center. For the under-clustering case, even if two
clusters are close to each other, there will not be many paths crossing between
them. Hence, the CTD between the points with the highest density in each
cluster would be large, and as such both points would have large ρ and δ,
meaning they would become cluster centers solving the under-clustering issue.

Another improvement of the method lies in the clustering. When a data
point is close to the cluster center, it is clear which cluster that point belongs
to. However, a large portion of points will be seen at the edges of clusters
and sometimes in between two different clusters. In these cases, the assignment
to clusters is not as clear. Therefore a fuzzy-clustering approach should be
introduced to the algorithm. By using fuzzy clustering, the probability of a point
belonging to some cluster is used instead of a yes or no as for hard clustering.
This gives flexibility since points can contribute to more than one cluster.

40

A Appendix

In the paper by Kraskov et al. (2004) and the paper by Sheather (2004), many
of the derivations are left out. Hence, in this appendix, the derivation for the
choice of bandwidth by minimizing the asymptotic mean integrated squared
error (AMISE) is performed as well as a more detailed derivation of equation 2
in Section 3 which was left out by Kraskov et al. (2004).

A.1 Derivation of AMISE of Kernel Density Estimation

The AMISE consists of the bias and variance of the kernel density estimate.
Hence the derivation of those is first shown. Denote X1, X2, ..., Xn as an inde-
pendent sample from some random variable with density f . The kernel density
estimation (KDE) at point x0 is then defined as

f̂h(x0) =
1

hn

n∑
i=1

Kh(
Xi − x0

h
),

for some Kernel K with bandwidth h. The kernel K is chosen to be a unimodal
distribution symmetric around 0 and as such fulfills the following statements∫

K(z)dz = 1∫
K(z)zdz = 0.

(4)

The bias is then defined as

Bias(f̂h(x0)) = E[f̂h(x0)]− f(x0)

= E[
1

hn

n∑
i=1

K(
Xi − x0

h
)]− f(x0)

=
1

hn

n∑
i=1

E[K(
Xi − x0

h
)]− f(x0).

Since X1, X2, ..., Xn are independent and identically distributed

E[X1] = E[X2] = ... = E[Xn].

Therefore,

E[f̂h(x0)]− f(x0) =
1

h
E[K(

Xi − x0
h

)]

=
1

h

∫
K(

x− x0
h

)f(x)dx− f(x0),

where the last equality follows from the definition of expectation. Furthermore,
substituting y = x−x0

h and dx = h · dy yields

41

E[f̂h(x0)]− f(x0) =

∫
K(

x− x0
h

)f(x)
dx

h
− f(x0)

=

∫
K(y)f(x0 + yh)dy − f(x0).

(5)

By taylor expansion around the point x0

f(x0 + yh) = f(x0)− yhf ′(x0) +
h2y2

2
f ′′(x0) + o(h2).

Using this in equation 5 yields

E[f̂h(x0)]− f(x0) =

∫
K(y){f(x0)− yhf ′(x0) +

h2y2

2
f ′′(x0) + o(h2)}dy − f(x0)

=

∫
K(y)f(x0)dy −

∫
K(y)yhf ′(x0)dy +

∫
K(y)

h2y2

2
f ′′(x0)dy + o(h2)− f(x0)

= f(x0)

∫
K(y)dy − hf ′(x0)

∫
K(y)ydy + f ′′(x0)

h2

2

∫
K(y)y2dy + o(h2)− f(x0).

Now, using the properties of the Kernel K from equation 4 simplifies this
expression of the bias

E[f̂h(x0)]− f(x0) = f(x0) · 1− hf ′(x0) · 0 + f ′′(x0)
h2

2

∫
K(y)y2dy + o(h2)− f(x0)

= f ′′(x0)
h2

2

∫
K(y)y2dy + o(h2).

Hence, the bias can be expressed as

Bias(f̂h(x0)) = f ′′(x0)
h2

2
µ2(K) + o(h2),

where

µ2(K) =

∫
K(y)y2dy

is the second moment ofK. An upper bound of the variance follows from similar
calculations

Var(f̂h(x0)) = Var(
1

hn

n∑
i=1

K(
Xi − x0

h
))

=
1

h2n
Var(K(

Xi − x0
h

))

=
1

h2n
(E[K(

Xi − x0
h

)2]− E[K(
Xi − x0

h
)]2)

≤ 1

h2n

∫
K(

x− x0
h

)2f(x)dx,

42

where the second equality follows again from the fact that X1, X2, ..., Xn is an
i.i.d. sample and the third equality follow from the definition of variance. Using
the same substitution as for the bias as well as the same taylor expansion, the
variance can continued be written as

Var(f̂h(x0)) ≤
1

h2n

∫
K(y)2f(x0 + yh)hdy

=
1

hn

∫
K(y)2{f(x0) + yhf ′(x0) + o(h)}dy

=
1

hn
{f(x0)

∫
K(y)2dy + o(h)}

=
1

hn
f(x0)

∫
K(y)2dy + o(

1

hn
).

Hence, an upper bound to the variance of the KDE is

Var(f̂h(x0)) ≤
1

hn
f(x0)R(K) + o(

1

hn
), (6)

where R(K) =
∫
K(y)2dy. In fact, Sheather (2014) states that there is an

equality for equation 6.
As n becomes large, o(1

hn) is negligible. Hence, by squaring the bias and
combining it with the leading variance produce the asymptotic mean squared
error (AMSE) (Sheather, 2014)

AMSE(f̂h(x0)) =
1

hn
R(K)f(x0) +

h4

4
µ2(K)2(f ′′(x0))

2,

and integrating the AMSE produce the AMISE.

AMISE(f̂h(x0) =
1

hn
R(K) +

h4

4
µ2(K)2R(f ′′),

where

R(f ′′) =

∫
(f ′′(z))2dz.

When performing KDE, a suitable bandwidth h needs to be chosen. One
way would be to choose h minimizing the AMISE. Since the kernel K is known,
the only unknown part of the AMISE is R(f ′′). Sheather (2014) mention that
the h minimizing the AMISE is

hAMISE = (
R(K)

µ2(K)2R(f ′′)n
)1/5.

Since R(f ′′) is unknown, one approach in finding hAMISE is by replacing

R(f ′′) with an estimate R(f̂ ′′g) where g is some bandwidth predetermined by
the user. In that case, the bandwidth h that minimize the AMISE becomes

hAMISEg
= (

R(K)

µ2(K)2R(f̂ ′′g)n
)1/5.

43

A.2 Derivation of Equation 2

This is a more detailed derivation of equation 2 in Section 2.2.1. Note that by
basic derivative rules and simple calculations

d

dk
ωk−1(1− ω)N−k−1 = xk−1(1− x)N−k−1(log(x)− log(1− x))

d

dN
ωk−1(1− ω)N−k−1 = xk−1(1− x)N−k−1 log(1− x).

Hence, the integral in equation 2 can be rewritten as

∫ 1

0

ωk−1(1−ω)N−k−1 logωdω =
d

dk

∫ 1

0

ωk−1(1−ω)N−k−1+
d

dN

∫ 1

0

ωk−1(1−ω)N−k−1.

The integrals on the right-hand side are the definition of the Euler integral
of the first kind

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

=
Γ(x)Γ(y)

Γ(x+ y)
,

where the derivation for the last equality has been shown by Artin (2015).
Further note that the digamma function is defined as

ψ(x) =
Γ′(x)

Γ(x)
.

Thus, the integral becomes

∫ 1

0

ωk−1(1− ω)N−k−1 logωdω =
d

dk
B(k,N) +

d

dN
B(k,N)

=
d

dk

Γ(k)Γ(N − k)

Γ(N)
+

d

dN

Γ(k)Γ(N − k)

Γ(N)

=
Γ′(k)Γ(N − k)− Γ(k)Γ′(N − k)

Γ(N)
+ Γ(k)

Γ′(N − k)Γ(N) + Γ′(N)Γ(N − k)

Γ(N)2

=
Γ(k)Ψ(k)Γ(N − k)− Γ(k)Γ(N − k)Ψ(N − k)

Γ(N)

+ Γ(k)
Γ(N − k)Ψ(N − k)Γ(N) + Γ(N)Ψ(N)Γ(N − k)

Γ(N)2

=
Γ(k)Γ(N − k)

Γ(N)
{Ψ(k)−Ψ(N − k)}+ Γ(k)Γ(N − k)

Γ(N)
{Ψ(N − k) + Ψ(N)}

=
Γ(k)Γ(N − k)

Γ(N)
{Ψ(k)−Ψ(N)}.

44

By definition, Γ(x) = (x − 1)!, showing the last equality in equation 2 in
Section 2.2.1

k

(
N − 1

k

)∫ 1

0

ωk−1(1− ω)N−k−1 logωdω = k

(
N − 1

k

)
Γ(k)Γ(N − k)

Γ(N)
{Ψ(k)−Ψ(N)}

= k
(N − 1)!

k!(N − k − 1)!

(k − 1)!(N − k − 1)!

(N − 1)!
{Ψ(k)−Ψ(N)}

=
k

k!
(k − 1)!{Ψ(k)−Ψ(N)}

= Ψ(k)−Ψ(N).

45

B Reference

Artin, E. (2015). The gamma function. Courier Dover Publications.
Barlow, R. E. (1972). Statistical inference under order restrictions; the

theory and application of isotonic regression (No. 04; QA278. 7, B3.).
Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-

based algorithm for discovering clusters in large spatial databases with noise.
In kdd (Vol. 96, No. 34, pp. 226-231).

Hafemeister, C., & Satija, R. (2019). Normalization and variance stabiliza-
tion of single-cell RNA-seq data using regularized negative binomial regression.
Genome biology, 20(1), 1-15.

Hartigan, J. A. (1975). Clustering algorithms. John Wiley & Sons, Inc..
Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual

information. Physical review E, 69(6), 066138.
Leeuw, J., D. (2005). Monotonic Regression. Encyclopedia of Statistics in

Behavioral Science 3, 1260-1261
Loftsgaarden, D. O., & Quesenberry, C. P. (1965). A nonparametric estimate

of a multivariate density function. The Annals of Mathematical Statistics, 36(3),
1049-1051.

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability
Its Applications, 9(1), 141-142.

Park, J., Choi, W., Tiesmeyer, S., Long, B., Borm, L. E., Garren, E., ... &
Ishaque, N. (2021). Cell segmentation-free inference of cell types from in situ
transcriptomics data. Nature communications, 12(1), 1-13.

Partel, G., & Wählby, C. (2021). Spage2vec: Unsupervised representation
of localized spatial gene expression signatures. The FEBS journal, 288(6), 1859-
1870.

Petukhov, V., Xu, R. J., Soldatov, R. A., Cadinu, P., Khodosevich, K.,
Moffitt, J. R., Kharchenko, P. V. (2022). Cell segmentation in imaging-based
spatial transcriptomics. Nature Biotechnology, 40(3), 345-354.

Rodriguez, A., & Laio, A. (2014). Clustering by fast search and find of
density peaks. science, 344(6191), 1492-1496.

Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth
selection method for kernel density estimation. Journal of the Royal Statistical
Society: Series B (Methodological), 53(3), 683-690.

Sheather, S. J. (2004). Density estimation. Statistical science, 588-597.
Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian

Journal of Statistics, Series A, 359-372.
Wishert, D. (1969). Mode analysis: a generalization of nearest neighbour

which reduces chaining effects (with discussion). Numerical taxonomy, 282-311.

46

