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Abstract

Single-cell ribonucleic acids (scRNA) sequencing technologies have
made it possible to measure genetic information at the cellular level,
thereby facilitating the characterisation of a cell by its gene expres-
sion levels. This thesis sets out to model the messenger RNA (mRNA)
transcriptional and degeneration process of a given gene in a cell by
means of a bivariate Markov Chain as well as to derive its stationary
distribution. The steady-state stationary distribution of the number
of mRNA molecules that are synthesized by a given gene in a cell is
approximated using perturbation techniques and the parameters are
inferred using maximum likelihood. The stationary distributions of
the different genes with the inferred parameters then form the gene
expression profile of the cell. The result is that the negative binomial
distribution is shown to be the exact solution to the simpler problem
in the perturbative solution. Furthermore, it is shown that biologically
relevant quantities such as a gene’s mRNA transcriptional frequency
and transcriptional size are related to the parameters of the nega-
tive binomial distribution. In addition, a comprehensive study of the
probability currents in the Markov Chain has also found them to be
closely connected to the mean of the distribution. The model is then
applied to scRNA sequencing data and the results are presented and
discussed.
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1 Introduction

The human species is one of the most complex living organisms that have evolved in the evo-
lutionary process at large. The relentless quest to understand and decipher the human body is
taken to new heights with rapid advancements in single-cell sequencing technologies [28], which
are used to obtain single-cell genomic information. In particular, single-cell ribonucleic acids
(scRNA) sequencing technologies have enabled the microscopic measurement of the number of
messenger RNA (mRNA) molecules that are synthesised by a given gene in a cell. This pro-
cess of synthesising mRNA molecules is called transcription and the number of such molecules
detected in the cell is used to quantify the gene’s expression level. Hence, the availability of
scRNA sequencing data has enabled the study of the transcriptome of cells at the individual
level, which in turn enables the construction of a cell profile based on the expression levels of
the genes.

This thesis sets out to model the mRNA transcriptional and degeneration process of a given
gene in a cell by means of a bivariate Markov Chain [1] as well as to derive its stationary dis-
tribution. This process is believed to be a series of random biochemical reactions [3], which
often satisfy the Markov property. The steady-state stationary distribution of the Markov pro-
cess is approximated using perturbation techniques [8] and the parameters are inferred using
maximum likelihood. The essense of perturbation theory is to break a complex problem down
into a simpler problem whose exact solution can be derived and other parts that are dependent
on a small, real-valued parameter and dimensionless ε such that the behaviour of the complex
problem can be observed as ε goes to zero. Intuitively, if ε is small enough, then the solution to
the simpler problem serves as a good approximation to the complex problem. The reason for
using perturbation techniques to approximate the stationary distribution is precisely because its
exact distribution is a Poisson-beta mixture distribution, which cannot be solved analytically.
Moreover, the ε parameter is easily identified after taking into account the physical properties of
mRNA transcription such that it is possible to cast the problem into a perturbation framework
. The result is that the negative binomial distribution is shown to be the exact solution to the
simpler problem in the perturbative solution, which lends support to the common use of this
distribution in biology literature [26] [27] and computational tools that model RNA sequencing
data such as DESeq [10], edgeR [9] and NBPSeq [11]. Furthermore, it is shown that biologically
relevant quantities such as a gene’s mRNA transcriptional frequency and transcriptional size
are related to the parameters of the negative binomial distribution. In addition, a comprehen-
sive study of the probability currents in the Markov Chain has also found them to be closely
connected to the mean of the distribution.

This thesis is organized as follows: Section 2 provides a detailed description of the model,
including the derivation of the stationary distribution using generating functions as well as how
it is approximated using perturbation techniques. The discussion on transcriptional frequency
and size as well as probability currents are also in this section. Section 3 presents the results
of maximum likelihood inference on a dataset of mRNA counts sequenced from pyramidal cells
taken from the hippocampus CA1 of the mouse cerebral cortex. Section 4 contains a discussion
of the results and possible extensions of this thesis.
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2 Modelling mRNA transcription and degeneration in a cell

Gene expression is a complex process that involves two main sub-processes. First, genetic
information that is contained in the DNA is decoded by an enzyme which then goes on to
synthesize mRNA molecules. This process is called transcription. Second, the mRNA molecules
are translated into protein molecules. Figure 1 shows a simple schematic picture of the gene
expression process.

Figure 1: Gene expression: The information in DNA is transferred to a messenger RNA (mRNA) molecule
by way of a process called transcription. During transcription, the DNA of a gene serves as a template
for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a
pre-mRNA molecule, which is then processed to form mature mRNA. The resulting mRNA is a single-
stranded copy of the gene, which next must be translated into a protein molecule. Source: Clancy, S.
and Brown, W. (2008) Translation: DNA to mRNA to Protein. Nature Education 1(1):101

Various mathematical models exist to model the gene expression process. A common element
between many of these models, however, is the assumption of stochasticity in gene expression,
which is also observed experimentally. Specifically, the stochasticity comes from the fact that
gene expression is essentially a series of inherently random biochemical reactions whose mea-
surable products are mRNA and protein molecules [4]. And since DNA does not exist in huge
abundance in a cell, variability in the number of mRNA and protein molecules synthesised
by the same genes can be used to differentiate seemingly similar cells. Furthermore, some re-
searchers model only the mRNA synthesis process [3] [14] [5] while some model both the mRNA
and protein synthesis processes [16] [15]. This thesis chooses to use a stochastic model to model
the synthesis of mRNA molecules. For the sake of brevity, from now on, mRNA molecules are
called mRNAs.

As mentioned in the introduction, scRNA sequencing technologies have enabled the collec-
tion of gene expression information at the single cell level, which makes it possible to model
stochasticity in gene expression at the cellular level and apply the model that is described in
the rest of this section. Briefly and simplified, biological samples are carefully collected and the
viable cells are isolated into single cells. Next, these isolated individual cells are lysed to capture
the mRNAs. Each molecule is uniquely identified, tagged to the cell of origin and subsequently
sequenced. By DNA sequencing, it means to identify exactly the sequences of nucleotides in
the mRNA and then match it against sequencing libraries to identify which gene it comes from.
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The result is a gene expression matrix that contains the amount of genetic material expressed
by every gene in individual cells. Figure 2 shows a schematic picture of scRNA sequencing data
analysis pipeline.

Figure 2: A schematic view of how scRNA sequencing data is collected and analysed. Source:
https://learn.gencore.bio.nyu.edu/single-cell-rnaseq/

This rest of this section covers details of the stochastic model. Section 2.1 explains the
application of a bivariate Markov Chain to model mRNA synthesis and degeneration. Section
2.2 outlines the stationary distribution of the Markov Chain and shows how the stationary
distribution is derived using generating functions. Section 2.3 details perturbation techniques
being applied to approximate the stationary distribution. Section 2.4 shows the derivation of
the probability distributions of the mRNA transcriptional frequency and transcriptional size as
well as how their means are related to the parameters of the unperturbed problem in section
2.3. Finally, 2.5 discusses the probability currents of the stationary distribution.

2.1 A bivariate Markov Chain

Similar to the model of gene product synthesis in [1], this thesis models the time evolution of
a gene’s mRNA synthesis and degeneration as a bivariate continuous-time Markov Chain. In
essence, a gene’s mRNA synthesis and degeneration process is modelled as a birth and death
process that is embedded in a two-state Markovian switching process. For a given gene in a
single cell, it is assumed that it switches between two states, namely the active state and the
inactive state. The time it takes to go from being active to inactive is exponentially distributed
at a rate of λ. When the gene is in the inactive state, the time it takes to jump to the active
state is exponentially distributed at a rate of γ.

When a gene is in the active state, it is assumed that it is capable of synthesizing mRNAs
and it does so at a constant rate of µ. This means that the inter-arrival time of a mRNA is
exponentially distributed with parameter µ. Furthermore, the lifetime of a mRNA is exponen-
tially distributed at a rate of δ before it degenerates to something that is not measurable in
the system. The lifetimes and inter-arrival times of all mRNAs are independent and identically
distributed. Finally, when a gene is in the inactive state, it is assumed that it is not capable of
synthesizing mRNAs and only the degeneration of mRNAs can take place.

Figure 3 shows a kinetic scheme that represents the bivariate Markovian Chain of mRNA
synthesis and degeneration in cells. Define a bivariate continuous-time stochastic process
{X(t), t ≥ 0}. The state space of this process is

Ω = {(A,m), (I,m);m ∈ N},
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Figure 3: Kinetic scheme of a gene’s mRNA synthesis and degeneration in a cell. m denotes the number
of mRNAs in the system.

where A denotes active and I denotes inactive. The number of mRNAs in the system is denoted
as m. The kinetic scheme shows that if the process is currently in state (A,m), then for all
s ≥ 0, X(t+ s) can jump to

� (A,m+ 1) at a rate of µ;

� (A,m − 1) at a rate of mδ, since there are m mRNAs in the system and all of them
degenerate at the same rate δ;

� (I,m) at a rate of λ.

On the other hand, if the process is currently in the state (I,m), it can jump to

� (I,m− 1) at a rate of mδ;

� (A,m) at a rate of γ.

Furthermore, the transition probabilities in this Markov Chain are time-homogeneous. This
means that, for any pair of states i and j,

P (X(t+ s) = j|X(t) = i),

is independent of t. In other words, the probability that the process jumps to state j at time
t+ s is independent of how much time the system has been in state i.
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2.2 Stationary distribution and probabilities

The asymptotic behaviour of this bivariate continuous-time Markov process is of main interest
in this thesis, particularly the stationary distribution of the number of mRNAs in the system.
Ycart and Peccoud [1] have shown that when the degeneration rate δ is strictly positive, the
stationary distribution exists. In this thesis, it is assumed that δ is strictly positive.

By stationarity, it means that the continuous-time Markov Chain has transition probabilities
that converge to limiting values that is independent of the initial state. These limiting prob-
abilities, also commonly known as stationary probabilities, satisfy this condition: for a given
state, the rate at which the system leaves it must equal to the rate at which the system enters
it. There are two types of stationary states in Markov Chain: equilibrium and steady-state. For
the equilibrium stationary state to hold, the incoming probability flow must equal the outgoing
probability flow between all pairs of states in the Markov Chain, that is, the net probability flow
is zero. In the case of steady-state stationarity, non-zero net probability flow can exist between
pairs of states. The Markov Chain in this thesis can only have steady-state stationarity as the
vertical probability flow on the left side of the kinetic scheme travels in only one direction, that
is, for a pair of states (I,m) and (I,m − 1), there is only probability flowing from (I,m) into
(I,m− 1) but not in the opposite direction.

Let M be a non-negative and integer-valued random variable that denotes the number of
mRNAs in the cell. Define PI(m) and PA(m) as the stationary probabilities that there are m
mRNAs in the cell when the gene is inactive, respectively active. This implies that the marginal
stationary probability that there are m mRNAs in the cell is P (m) = PI(m) + PA(m). If the
stationary probabilities exist, then the rate at which the system leaves the state (I,m) (and
(A,m)) must equal the rate at which it enters (I,m) (and (A,m)). In essence, they must satisfy
the following conditions according to the transitions above:

(γ +mδ)PI(m) = (m+ 1)δPI(m+ 1) + λPA(m);

(λ+ µ+mδ)PA(m) = (m+ 1)δPA(m+ 1) + µPA(m− 1) + γPI(m).
(1)

Furthermore, it can be shown that the long-run probabilities that the gene is inactive,
respectively active, are λ

λ+γ and γ
λ+γ . That is,

PI =
λ

λ+ γ
;

PA =
γ

λ+ γ
.

The proof can be found in the appendix.
The set of equations in (1) shows a linear recursive relationship in both PI(m) and PA(m).

Generating functions are useful in finding a solution to this kind of general linear recurrences.
Hence, define

gI(z) =

∞∑
m=0

zmPI(m);

gA(z) =
∞∑
m=0

zmPA(m)

(2)

as the generating functions of PI(m) and PA(m), respectively. Then it follows that

gI(1) =
∞∑
m=0

PI(m) = PI =
λ

λ+ γ
;

gA(1) =

∞∑
m=0

PA(m) = PA =
γ

λ+ γ
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as stated above. Furthermore, since P (m) = PI(m) + PA(m), then

g(z) = gI(z) + gA(z) =
∞∑
m=0

zmP (m)

is the probability generating function of P (m) and

g(1) =

∞∑
m=0

P (m) = 1.

Multiplying both sides of the equations in (1) with zm and summing over all m, they can
be written in terms of the generating functions in (2) as such:

γgI(z) + δ
∞∑
m=0

mzmPI(m) = δ
∞∑
m=0

(m+ 1)zmPI(m+ 1) + λgA(z);

(λ+ µ)gA(z) + δ

∞∑
m=0

mzmPA(m) = δ

∞∑
m=0

(m+ 1)zmPA(m+ 1) + µ

∞∑
m=0

zmPA(m− 1) + γgI(z).

(3)
The following results are useful to help express (3) in terms of the generating functions:

∞∑
m=0

mzmPI(m) = zg′I(z);

∞∑
m=0

(m+ 1)zmPI(m+ 1) = g′I(z);

∞∑
m=1

zmPA(m− 1) = zgA(z).

(4)

Substituting (4) into (3) and after some simple algebra results in the following set of differ-
ential equations:

δ(z − 1)g′I(z) = −γgI(z) + λgA(z);

δ(z − 1)g′A(z) = γgI(z)− λgA(z) + µ(z − 1)gA(z).
(5)

Recalling that g(z) = gI(z) + gA(z), it is instructive to see that adding the two equations in (5)
together yields the following result:

δ(z − 1)g′(z) = µ(z − 1)gA(z) ⇐⇒ g′(z) =
µ

δ
gA(z), for z 6= 1.

This means that, in general,

g(m+1)(z) =
µ

δ
g
(m)
A (z), for m ≥ 0 and z 6= 1, (6)

where the superscript denotes the mth derivative of the generating function. However, it is
important to take note that the mean and variance of the distribution of M cannot be evaluated
with this equivalence relationship in (6) since it is not valid for z = 1.

It is generally known [2] that setting z = 0 in the probability generating function yields

g(m)(z = 0) = m!P (m).

Using this result in (6) above leads to the exact relationship

P (m+ 1) =
µ

δ

1

m+ 1
PA(m), for m ≥ 0. (7)
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From the set of differential equations in (5), the following higher order differential equations
are derived by taking their mth derivatives.

δ(z − 1)g
(m+1)
I (z) = −(γ + δm)g

(m)
I (z) + λg

(m)
A (z)

δ(z − 1)g
(m+1)
A (z) = γg

(m)
I (z) +

(
µ(z − 1)− λ− δm

)
g
(m)
A (z) + µmg

(m−1)
A (z).

Since the stationary probabilities are of main interest, set z = 0 and denote g(m)(z = 0) = g(m).
Then the above set of equations can be simplified to

g
(m+1)
I = (

γ

δ
+ n)g

(m)
I − λ

δ
g
(m)
A

g
(m+1)
A = −γ

δ
g
(m)
I +

(µ+ λ

δ
+m

)
g
(m)
A − µ

δ
mg

(m−1)
A , for m ≥ 0.

(8)

Using the identity g(z) = gA(z) + gI(z) and (6) in the first equation of (8) yields

g(m+1) − δ

µ
g(m+2) = (

γ

δ
+m)(g(m) − δ

µ
g(m+1))− λ

µ
g(m+1)

⇐⇒

g(m+2) =
(
µ1 + γ1 + λ1 +m

)
g(m+1) − (γ1 +m)µ1g

(m), (9)

where µ1 = µ
δ , γ1 = γ

δ , and λ1 = λ
δ . This is a second order linear recursive equation with

non-constant coefficients for the probability generating function of M , which is approximated
using perturbation techniques in section 2.3. Take note that the unknown parameters µ1, γ1,
λ1 are dimensionless as they are quotients of two rates, which means the time dimension is
cancelled out. Dividing by δ throughout the parameters is just a rescaling of time, thus having
δ1 = 1, which does not change the underlying kinetic scheme.

An exact steady-state solution to the probability mass function of M has been derived
by [3] which involves a confluent hypergeometric function of the first kind. Expressing the
hypergeometric function in its integral form yields an integral expression that depicts a Poisson-
beta mixture distribution (see appendix), where the mRNAs are poisson distributed with its
mean being beta distributed. However, due to the presence of an integral, working with this
distribution to infer the unknown parameters amounts to huge numerical difficulties. On the
other hand, the problem can be simplified once the inherent properties of mRNA transcription
are taken into account.

Consider now the case where both µ1 and λ1 are large but finite. These two parameters
being large implies that the mean time in which an active gene synthesizes a mRNA as well
as the mean time in which an active gene becomes inactive are much shorter than the mean
time in which a mRNA degenerates. In other words, a gene goes into an active state and stays
active for a relatively short period of time. But during this short active period, it synthesizes
many mRNAs such that the number of mRNAs that degenerates during the active period is
negligible relative to the number being synthesized. This is the so-called burst-like behaviour of
mRNA transcription. Raj et al. [3] observed a burst-like behaviour in the synthesis of mRNAs
during the short period of time when the gene was transcriptionally active, which corresponds
to a large µ1 and λ1. Golding et al. [5] also reported burst-like transcription in their study of
single-cell transcription in Escherichia coli. Furthermore, similar burst-like mRNA synthesis in
eukaryotes was also reported by [6] and [7].

When these properties are taken into consideration, it becomes feasible to approximate the
exact Poisson-beta solution by means of perturbation. The key is to identify a small, real-
valued and dimensionless parameter ε so that the original problem can be expressed as a power
series in terms of ε. The idea is that the original problem can be approximated by a truncated
power series made up of an exact solution to a simpler problem plus some perturbative terms.
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When ε is really small, then the perturbative terms are negligible and the exact solution to the
simpler problem serves as a good approximation to the original problem. In the next section,
perturbation techniques are used to approximate the exact Poisson-beta distribution.

2.3 Perturbation analysis

Perturbation techniques are used to find analytical approximations to the solution of (9). It is
not the focus of this thesis to dwell deep into perturbation methods. In essence, the aim of using
perturbation methods is to break a complex problem down into a simpler problem whose exact
solution can be derived and other parts that are dependent on a small, real-valued parameter
and dimensionless ε such that the behaviour of the complex problem can be observed as ε goes
to zero. Intuitively, if ε is small enough, then the solution to the simpler problem serves as a
good approximation to the complex problem. The interested reader is encouraged to consult
[8], in particular Chapter 1, for a general understanding of perturbation methods. Hence, it is
important to first identify the small, real-valued and dimensionless ε parameter in the problem.
It is clear from (9) that the recursive equation depends on a large parameter µ1. The problem
can, therefore, be set in a perturbation framework by letting ε = 1

µ1
. This works because µ1 is

assumed to be large and it is dimensionless, hence ε is small and dimensionless as well. In other
words, the perturbation problem is

g(m+2) = µ1
(
1 +

γ1
µ1

+
λ1
µ1

+
m

µ1

)
g(m+1) − µ1(γ1 +m)g(m)

⇐⇒

εg(m+2) =
((

1 +
λ1
µ1

)
+ ε
(
γ1 +m

))
g(m+1) − (γ1 +m)g(m)

⇐⇒((
1 +

λ1
µ1

)
g(m+1) − (γ1 +m)g(m)

)
− ε
(
g(m+2) − (γ1 +m)g(m+1)

)
= 0 (10)

Using conventional perturbation notation, the perturbation series of g(m) can be expressed as

g(m) = g
(m)
0 + εg

(m)
1 + ε2g

(m)
2 + ..., for m ≥ 0,

where εg
(m)
1 is called the first order correction term and ε2g

(m)
2 the second order correction term

and so on. Substituting the perturbation series into (10) and grouping the coefficients of like
powers of ε together results in((

1 +
λ1
µ1

)
g
(m+1)
0 − (γ1 +m)g

(m)
0

)
+

+ε
(
− g(m+2)

0 +
(
γ1 +m

)
g
(m+1)
0 +

(
1 +

λ1
µ1

)
g
(m+1)
1 − (γ1 +m)g

(m)
1

)
+ ... = 0.

Since this power series in ε is constantly equals to zero, then the coefficients of all powers of
ε must be equal to zero too. It is easy to see this by drawing equivalence to the commonly
known power series

∑
n≥0 anx

n, where an’s are the coefficients of the series. It is known that
this power series is guaranteed to converge for x = 0. If the power series is constantly equals to
zero, then a0 must equal to zero. Furthermore, its first derivative must also equal zero, since
differentiating zero is still zero. Its first derivative then form a new power series that is again
guaranteed to converge for x = 0. This means that a1 = 0. Following the same line of reasoning,
this implies that aj = 0 for all j ≥ 0. Hence, the leading order term of the perturbation series
is

g
(m+1)
0

(
1 +

λ1
µ1

)
= (γ1 +m)g

(m)
0 ⇐⇒ g

(m+1)
0 =

( µ1
µ1 + λ1

)
(γ1 +m)g

(m)
0 . (11)
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It is shown (in the appendix) that (11) depicts the recursive relation of a negative binomial
distribution parameterized by r and p, where

r = γ1, p =
µ1

µ1 + λ1
.

It is useful to take note that the assumptions in the kinetic scheme imply that r > 0 and
0 < p < 1. More discussion about the connection between the distributional parameters and
the kinetic parameters can be found in 2.4. Continuing the perturbation analysis, the first order
term is

g
(m+2)
0 =

(
γ1 +m

)
g
(m+1)
0 +

(
1 +

λ1
µ1

)
g
(m+1)
1 − (γ1 +m)g

(m)
1 . (12)

It is now instructive to express both (11) and (12) in terms of the perturbation series of
the probability mass function of M since it is of main interest in this section. Dividing the
perturbation series of g(m) by m! gives

P (m) = P0(m) + εP1(m) + ε2P2(m) + ..., for m ≥ 0,

which denotes the perturbation series of the probability mass function of M . Furthermore, let

� PA(m) = P0,A(m) + εP1,A(m) + ε2P2,A(m) + ...;

� PI(m) = P0,I(m) + εP1,I(m) + ε2P2,I(m) + ...

denote the perturbation series of the probability mass function of having m mRNAs in the
active and inactive states, respectively. The mathematical derivation in what follows is rather
long and technical. However, the reader should be able to follow the main results and the rest of
this section by referring to the notation of the various perturbation series. Hence, for the sake
of brevity, the results are shown immediately and the interested reader can locate the detailed
mathematical derivation in the appendix. In short, (11) becomes

P0(m+ 1) =
( µ1
µ1 + λ1

)(γ1 +m)

m+ 1
P0(m) = p

(r +m)

m+ 1
P0(m).

This is the recursive relation of the negative binomial distribution depicted in terms of its
probability mass function using the same r and p parameterization (see appendix).

Equation (12), on the other hand, becomes

P1,I(m+ 1) = p
(r +m

m+ 1

)
P1,I(m) + (m+ 2)(p− 1)P0(m+ 2). (13)

This is a recursive equation in P1,I(m), given P0(m+ 2). It is shown (in the appendix) that a
general expression for this recursive relation can be found, which helps to yield an expression
for P1,I(m). The general expression is

P1,I(m+ 1) = pm+1

(
r +m

m+ 1

)
a+

1

2
(m+ 2)(m+ 1)(p− 1)

(2r +m+ 2

r +m+ 1

)
P0(m+ 2),

where a = P1,I(0). Since P0(m) is the probability mass function of a negative binomial distri-
bution, its form is known. This means that solving for a leads immediately to a solution for
P1,I(m), for m ≥ 1. Then from there, the first order correction term of P0(m), that is P1(m),
can also be solved for.
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Multiplying both sides of the recursive formula above by p−1
rp and summing over all m results

in

∞∑
m=0

p− 1

rp
P1,I(m+ 1) =

∞∑
m=0

[
p− 1

r
pm
(
r +m

m+ 1

)
a+

+
1

2rp
(m+ 2)(m+ 1)(p− 1)2

(2r +m+ 2

r +m+ 1

)
P0(m+ 2)

]
⇐⇒

p− 1

rp

∞∑
m=0

P1,I(m+ 1) =
a(p− 1)

rp(1− p)r
∞∑
m=0

P0(m+ 1) + (p− 1)2
∞∑
m=0

(m+ 1)P0(m+ 1)+

+
(p− 1)2

2r

∞∑
m=0

(m+ 1)mP0(m+ 1) +
(p− 1)2

r

∞∑
m=0

(m+ 1)P0(m+ 1),

(14)
where the recursive relation of the negative binomial distribution is again utilised in the right-
hand side of the equation. The expression above can be further simplified but for the sake of
brevity, the simplification mathematics are located in the appendix. Upon substituting all the
simplifications into (14) and after some standard algebraic manipulations, a solution for a is
found to be

a = P1,I(0) = (1− p)r−1rp
(p(r + 1)(2− p)− 2

2

)
. (15)

Inserting (15) into the recursive formula for P1,I(m + 1) and a final formula for P1,I(m), for
m ≥ 0, is obtained as follows:

P1,I(m) = P0(m)

[
rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
.

Then, for m ≥ 0, the first order correction to P0(m) is obtained using the relationship

P1(m) = P1,I(m) + P1,A(m) [ see appendix for derivation of P1,A(m) ]

= P1,I(m) + (m+ 1)P0(m+ 1)

= P0(m)

[
rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p) + p(r +m)

]
.

Finally, the perturbation series of the probability mass function of M can now be expressed
as

P (m) = P0(m) + εP1(m) +O(ε2)

= P0(m)

[
1 + ε

(
rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−

−mrp(1− p) + p(r +m)

)]
+O(ε2).

This implies that, for m ≥ 0,

P (m) ≈ P0(m)

[
1 + ε

(
rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−

−mrp(1− p) + p(r +m)

)]
.

(16)
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Furthermore, approximations of PA(m), respectively PI(m), are derived as follows:

PA(m) = P0,A(m) + εP1,A(m) + ε2P2,A(m) +O(ε3)

≈ P0(m)

(
εp(r +m) + ε2p(r +m)

[
rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

])
;

PI(m) = P0,I(m) + εP1,I(m) +O(ε2)

≈ P0(m)

[
1 + ε

(
rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

)]
.

The solutions above have been checked to fulfill the balance equations in (1) at both the
zeroth and first order. For the sake of brevity in the thesis proper, the calculations of the check
are shown in the appendix.

2.4 mRNA transcriptional frequency and size

It is mentioned in section 2.2 that a gene is assumed to exhibit burst-like mRNA synthesis
behaviour during the relatively short period when it is active. Let us call the event when a gene
exhibits such behaviour a burst. Then it follows that the onset of a burst is the same as the
gene being activated.

Let T be the inter-arrival time of two consecutive bursts from a gene. Then let X be the
time the gene stays active and Y be the time the gene stays inactive. It follows that T is the sum
of X and Y . Recall in section 2.1 that both the time the gene stays active and the time it stays
inactive are exponentially distributed with parameters λ and γ respectively. After rescaling as
in section 2.2, these parameters become λ1 and γ1. Hence,

X ∼ Exp(λ1), Y ∼ Exp(γ1).

Then assuming independence between X and Y , which is reasonable because knowing how long
a gene stays active does not give information about how long the same gene stays inactive, the
probability density function of T is

fT (t) =

∫ t

0
fX(x) · fY (t− x)dx

=
λ1γ1
λ1 − γ1

(
e−γ1t − e−λ1t

)
.

This is recognised as the probability density function of a hypoexponential distribution with
parameters λ1 and γ1. In other words, the inter-arrival time of two consecutive bursts follows
a hypoexponential distribution and its mean is

E[T ] =
1

λ1
+

1

γ1
,

which is the sum of the mean time a gene stays active and the mean time it stays inactive. Using
the r and p parametrization of the negative binomial distribution, the mean can be expressed
as

E[T ] = ε
p

1− p
+

1

r
,
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where the first summand is derived using ε = 1
µ1

and µ1
λ1

= p
1−p . From this reparametrization, it

can be seen that if ε is small, then E[T ] is dominated by the mean time the gene stays inactive.
Hence, the frequency of bursts is predominantly controlled by how many times the gene switches
from inactive to active during one time unit and is approximately r.

Another quantity of interest is the number of new mRNAs that are synthesised whenever
the gene is active. In section 2.1, it is mentioned that mRNAs are synthesised at a constant rate
of µ. Hence, it is reasonable to regard the mRNA synthesis process as a Poisson process where
the event of interest is the arrival of a mRNA and the inter-arrival time of two consecutive
mRNAs is exponentially distributed with rate µ. Then the number of mRNAs synthesised
during an active period t follows a Poisson distribution with parameter µt. Using the rescaled
parametrization µ1 and letting Z denote the number of new mRNAs synthesised during an
active period t, then

Z|X = t ∼ Poi(µ1t), X ∼ Exp(λ1).

The marginal probability mass function of Z can be derived as follows

P (Z = m) =

∫ ∞
0

fZ|X=t(m) · fX(t)dt

=

∫ ∞
0

eµ1t
(µ1t)

m

m!
· λ1eλ1tdt

= λ1µ
m
1

( 1

µ1 + λ1

)m+1
∫ ∞
0

1

Γ(m+ 1)
tm+1−1(µ1 + λ1

)m+1
e−(µ1+λ1)tdt

=
( µ1
µ1 + λ1

)m( λ1
µ1 + λ1

)
= pm(1− p).

The expression above is immediately identified as the probability mass function of geometric
distribution with parameter (1 − p). Using this parametrization, the geometric distribution
should be read as the number of new mRNAs a gene manages to synthesise until the first time
it turns inactive before it manages to synthesise a new mRNA. Then the mean number of new
mRNAs synthesised is

E[Z] =
p

1− p
.

In other words, the average size of each burst is p
1−p . Relating back to the kinetic parameters,

this is the same as µ1
λ1

, which is the quotient of the mean time in which the gene stays active
and the mean time it takes to synthesize a mRNA. This makes perfect sense.

Since both E[T ] and E[Z] are dependent on the parameters of the negative binomial distri-
bution and consequently, the kinetic parameters, it would be interesting to take a deeper look
at what extreme values of p and r entails biologically. For a small value of p, this means that
burst size is small. Given the assumption of a large µ1 holds, then this also implies that λ1
is much larger than µ1, which in turn means that the gene goes into the inactive state more
frequently relative to how fast it synthesises mRNAs. In other words, it stays in the active state
for only very brief periods of time and each time only manages to synthesise small quantities
of mRNAs. Even without the involvement of ε, the expression for E[T ] says that the mean
time between bursts is just the mean time the gene is inactive. And if γ1 is small, then E[T ]
becomes large, which in turn means that the gene is generally very quiet. Putting the pieces
together, this behaviour constitutes a gene that switches rarely to the active state and at the
same time synthesises few mRNAs during the brief moments it is active. While this may occur
biologically, it is questionable if any data about this gene can be captured given finite sampling.
On the other hand, if γ1 is large as well, then E[T ] becomes really small, which essentially means
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bursts happen back to back. A gene as such rapidly switches back and forth between active
and inactive but only manages to synthesise few mRNAs each time it is active. It is plausible
that finite sampling is still able to capture such behaviour. For a large value of p, burst size is
large and the gene synthesise mRNAs faster than it goes into the inactive state. So even if it
still stays in the active state for brief periods of time, it manages to synthesise large quantities
of mRNAs every time it is active. If this is coupled with a large γ1, then this is a gene that is
very active and highly productive that will definitely be captured in finite sampling. In the case
if γ1 is small, this would mean a gene that is generally quiet but very productive whenever it is
active. This scenario fits better with the description of a burst-like mRNA synthesis behaviour
and also agrees well with empirical observations in biological experiments.

At this point, it is evident that meaningful biological quantities related to the mRNA syn-
thesis and degeneration process of a gene can be expressed in terms of the parameters of the
negative binomial distribution from the zeroth order. In the next section, an extensive inves-
tigation of the probability currents in the Markov Chain is conducted and reveals even more
how the negative binomial distribution is able to provide meaningful statistical and biological
insights.

2.5 Probability current

It has been mentioned in section 2.2 that the stationary distribution of the Markov Chain
in Figure 3 is of main interest in this thesis. In order to have a deeper understanding of
the characteristics of the stationary distribution, it is instructive to study and analyse the
probability currents between subsets of states in the Markov Chain.

Consider a continuous-time Markov Chain with state space Ω that has transition rate from
state i to j as qij and from state j to i as qji. Plus, this Markov Chain has a stationary
distribution π, that is, πi is the long-run probability that the chain is in state i. Then the net
probability current between a pair of states i and j is defined as

Ji→j = πiqij − πjqji.

If Ji→j equals to zero for all i and j, then the Markov Chain is said to be in an equilibrium
state. Otherwise, if there exists non-zero Ji→j between some pairs of i and j, then the chain is
said to be in steady state, which is the case for the bivariate Markov Chain in this thesis.

In this thesis, the stationary distribution is approximated using perturbation analysis up
to the first order in ε. It would have been ideal if the investigation of the probability currents
includes the first order terms. This would, however, involve tedious mathematical computations
that may not provide any useful interpretation. Hence, it is decided that this thesis investigates
probability currents involving only zeroth order terms.

2.5.1 Horizontal flow

From the kinetic scheme in Figure 3, it follows that the horizontal probability currents occur
between the active state and the inactive state of the gene at different values of m. In other
words, this net probability current is a function of m.

Using conventional probability current notation and the rescaled kinetic parameters, let
JI→A(m) denote the net probability current from the inactive state to the active state, that is,
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JI→A(m) = γ1PI(m)− λ1PA(m)

≈ γ1P0(m)− λ1εp(r +m)P0(m) [Recall ε =
1

µ1
]

= rP0(m)− (1− p)(r +m)P0(m)

= P0(m)
[
r − (1− p)(r +m)

]
= P0(m)

[
rp−m(1− p)

]
.

It is not difficult to see that for small m, JI→A(m) is positive. When this happens, it implies
that there is net probability current flowing into the active state. Conversely, when m is large,
JI→A(m) turns negative, implying a net probability current flowing out of the active state. In
other words, the number of mRNAs present in the cell acts as a regulatory mechanism that
induces the gene to switch between the active and inactive states. Intuitively, when the cell is
“low” on mRNAs, the gene wakes up more often to mRNA production in order to “top up”
the number of mRNAs until it goes back to sleep again. Conversely, when the cell is “high” on
mRNAs, the gene goes to sleep more often to facilitate the degeneration process.

More precisely, when m is smaller than rp
1−p , the factor

[
rp −m(1 − p)

]
is always positive.

This, in turn, means that the net current’s behaviour on this range of m is induced by that of the
negative binomial probability mass function P0(m) up to its mean, which is rp

1−p . This further
implies that the net current will typically increase first, peak at some point, then decreases to
the zero mark at m equals to rp

1−p . In other words, the probability current flow from the inactive
state to the active state is the same as that from the active state to the inactive state when
the number of mRNAs is equals to the mean of the negative binomial distribution. Intuitively,
at this m, the gene is at its most “comfortable” state since the system is in balance. However,
JI→A(m) can go into the negative region when m is larger than rp

1−p . But it does not go into
negativity indefinitely because P0(m) goes quickly to zero as m becomes large. This implies that
the net current decreases to a certain point before it starts to increase again until it eventually
plateaus out to zero. It is important to take note that plateauing out to zero does not mean
that it reaches long-term equilibrium. This is because since P0(m) exists in both PI(m) and
PA(m), then JI→A(m) essentially becomes zero minus zero as m becomes large. In essence, as
m becomes large, the probability currents in both directions become increasingly weak to the
extent they plateau out to zero. See Figure 4 for an intuitive understanding of how JI→A(m)
behaves for various values of r > 1. It is evident that for a moderate value of p, a larger r
has the effect of pushing out the “wave” along the x-axis. This is because P0(m) is small for
relatively small values of m, which is characteristic of a negative binomial distribution with a
large r and moderate p. Statistically, if r is the predefined number of failures (see appendix for
definition of negative binomial distribution) and is large, then the probability of getting only
a small number successes with a moderate p should be small. So for a gene with a large r
and moderate p, the probability of observing a small number of mRNAs is small. Hence, the
beginning of the net current is also a zero minus zero case. From a burst frequency point of
view, a large r means that the gene is quite active. Coupled with a moderate burst size, it is
likely that it is seldom very low on mRNAs, which agrees well with the behaviour of its P0(m).
In other words, this means that the gene has a higher threshold of m before it considers itself
low on mRNAs and needs to be more active. This appropriately explains why the net current
starts to ascend only at larger values of m. For a moderate value of r, a larger p also seems to
have the effect of pushing out the wave along the x-axis. However, upon taking a closer look
at the y-axes of the second column of Figure 4, it is evident that the range of the net current
shrink tremendously as p gets larger. This means that the wave straightens out almost to a flat
line as p becomes increasingly close to one. Again, this is characteristic of a negative binomial
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distribution with a moderate r and a large p. Statistically, if the probability of success is so
large, then the probability of ever observing even a moderate number of failures is very small.
From a burst size point of view, a large p implies a large burst size, which means that this gene
is very productive every time it is active. Hence, there is no necessity for a strong net current
into the active state to top up the number of mRNAs.

Figure 4: JI→A(m) for different values of r > 1 and p.

For 0 < r ≤ 1, the maximum net current already occurs at m equals to zero for all values
of p since the maximum value of the probability mass function of P0(m) occurs at this value of
m. It then decreases until it hits the zero mark when m equals to rp

1−p . Similar to the r > 1
case above, it then goes into the negative region until a certain point before it starts to increase
again, where it also eventually plateaus out to zero. Figure 5 shows how the current behaves for
various combinations of 0 < r ≤ 1 and p. Values of r that are between zero and one corresponds
to a quiet gene that has a long mean time between two consecutive bursts. Juxtaposing the
top-right plot in Figure 4 and the top plot in Figure 5, it can be seen that they are very similar
except for the magnitude of the y-axis. For a gene that has a larger burst frequency, that is
r = 2.5, there is higher net probability current flow from the inactive to the active state as
compared to the gene with r = 0.1.
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Figure 5: JI→A(m) for different values of 0 < r ≤ 1 and p

The straightforward way to find the m values where the current peaks and troughs is to find
the stationary points of JI→A(m). However, since m is discrete, it does not make mathematical
sense to derive the first derivative of JI→A(m) and then solve for m. One way to locate these
points is to construct ratios of two consecutive currents in the upward as well as downward
directions, that is,

JI→A(m)

JI→A(m+ 1)
;

JI→A(m)

JI→A(m− 1)
.

Let m∗1 denote the value of m where the current is at its maximum. Then it must hold that

JI→A(m∗1)

JI→A(m∗1 + 1)
> 1 ;

JI→A(m∗1)

JI→A(m∗1 − 1)
> 1.

The mathematical calculations to solve these two inequalities are lengthy and technical, and
hence are put into the appendix. In brief, the m∗1 that gives rise to maximum JI→A(m) fulfills
the following compound inequality

2rp− (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

< m∗1 <
2rp+ (1− p)

2(1− p)
−
√

4rp+ (1− p)2
2(1− p)

, (17)

for r > 2−p
p and 0 < p < 1.

It can be seen from (17) that the difference between the bounds of the strict inequality is
exactly one, which means that m∗1 can be uniquely determined since it is clamped between two
real numbers. In other words, m∗1 can take either the ceiling of the lower bound or the floor
of the upper bound. The case where the bounds are integers is considered in the appendix. It
is now instructive to express (17) in terms of the mean and variance of the negative binomial
distribution at zeroth order to facilitate interpretation of what this inequality entails. Let E[M0]
and V ar(M0) denote these two values respectively. Then (17) can be rewritten as

E[M0]−
1

2
−
√
V ar(M0) +

1

4
< m∗1 < E[M0] +

1

2
−
√
V ar(M0) +

1

4
. (18)

It follows from (18) that m∗1 is approximately E[M0] −
√
V ar(M0) rounded to the nearest

integer. In other words, the value of m which gives rise to maximum JI→A(m) is approximately
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equals to the mean of the negative binomial distribution at the zeroth order minus one standard
deviation. Intuitively, this implies that when the number of mRNAs in the cell is one standard
deviation away from rp

1−p to the left, the inactive process starts kicking in at a faster rate than
the active process to progressively slow down the mRNA production process in order for the
number of mRNAs to reach rp

1−p . This is where the net current is zero.

It is instructive to take note that the case of r > 2−p
p essentially covers the scenarios where

r > 1 for all values of p. For the case of 0 < r ≤ 1, it has been mentioned earlier that the
maximum of JI→A(m) occurs at m equals to zero.

Let now m∗2 denote the value of m where the current is at its minimum. Take note that m∗2
must be larger than rp

1−p since the current has passed the zero mark. Constructing the ratios
of two consecutive currents to find m∗2 requires careful consideration because now the currents
are in the negative region. This means that

−JI→A(m∗2)

−JI→A(m∗2 + 1)
> 1 ;

−JI→A(m∗2)

−JI→A(m∗2 − 1)
> 1,

which is the same as

JI→A(m∗2)

JI→A(m∗2 + 1)
< 1 ;

JI→A(m∗2)

JI→A(m∗2 − 1)
< 1.

Similar to the mathematical calculations that resulted in (17), the ones to solve for these two
inequalities are put into the appendix for the sake of brevity. The result is that the m∗2 that
gives rise to minimum JI→A(m) fulfills the following compound inequality

2rp− (1− p)
2(1− p)

+

√
4rp+ (1− p)2

2(1− p)
< m∗2 <

2rp+ (1− p)
2(1− p)

+

√
4rp+ (1− p)2

2(1− p)
. (19)

Standard calculations show that r > 0 is the only constraint in order for (19) to hold as the
left-hand side of (19) fulfills the general criteria of of m ≥ 0 given any value of 0 < p < 1. Hence,
this constraint can be encompassed into the constraints for (17) and (19) still holds. Similar
to (17), m∗2 is clamped between two real numbers and hence can be uniquely determined by
either taking the ceiling of the lower bound or the floor of the upper bound. The case of integer
bounds is considered in the appendix. Furthermore, (19) can be rewritten in terms of E[M0]
and V ar(M0) as such

E[M0]−
1

2
+

√
V ar(M0) +

1

4
< m∗2 < E[M0] +

1

2
+

√
V ar(M0) +

1

4
.

This gives the same interpretation as above that the value of m which gives rise to minimum
JI→A(m) is approximately equals to the mean of the negative binomial distribution at the zeroth
order plus one standard deviation. In contrast to the maximum of JI→A(m) above, when the
number of mRNAs in the cell is one standard deviation away from rp

1−p to the right, both the
active and inactive processes start to weaken until JI→A(m) gradually plateaus out to zero.

2.5.2 Vertical flow I

Let J(A,m)→(A,m+1)(m) denote the net probability current when the gene is in the active state,
then

J(A,m)→(A,m+1)(m) = µ1PA(m)− (m+ 1)PA(m+ 1)

≈ p(r +m)P0(m)

Since only the zeroth order terms are of interest here, the second term in the first equality is
omitted due to it being of order ε. It can be seen that J(A,m)→(A,m+1)(m) is always positive at
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the zeroth order. Intuitively, this implies that when the gene is active, there is consistently more
mRNA production than degeneration independent of the value of m. However, the magnitude
of the current changes as m increases as it follows the shape of the probability mass function
P0(m). This means that there is one m where the current peaks, after which it progressively
plateaus out to zero. Similar to the interpretation above, plateauing out to zero does not
mean that J(A,m)→(A,m+1)(m) reaches long-term equilibrium but rather the net current dies out
as P0(m) approaches zero. See Figure 6 and Figure 7 for an intuitive understanding of how
J(A,m)→(A,m+1)(m) behaves for various values of r and p. Similar to Figure 4, for a fixed value
of p, a larger r has the effect of pushing out the “wave” as well as increasing the magnitude
of the peak. This agrees well with the functional form of J(A,m)→(A,m+1)(m) since the mode
occurs at the approximately the mean of P0(m) when r is large.

Figure 6: J(A,m)→(A,m+1)(m) for different values of r > 1 and p.

Figure 7: J(A,m)→(A,m+1)(m) for different values of 0 < r ≤ 1 and p

Using the same technique as the horizontal flow, it is possible to locate the value of m where
the current peaks. Let m∗ denote this value of m where the current is at its maximum. Then
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it must hold that

J(A,m)→(A,m+1)(m
∗)

J(A,m)→(A,m+1)(m∗ + 1)
> 1 ;

J(A,m)→(A,m+1)(m
∗)

J(A,m)→(A,m+1)(m∗ − 1)
> 1.

From these two inequalities, it can be shown (in the appendix) that m∗ fulfills the following
compound inequality

rp

1− p
− 1 < m∗ <

rp

1− p
. (20)

Standard computations reveal that r ≥ 1−p
p and 0 < p < 1 in order for (20) to hold. It can

be seen that m∗ is essentially the mean of the negative binomial distribution in the zeroth order.
Similar to the compound inequalities for m∗1 and m∗2, the difference between the upper and lower
bound of (20) is always one. This means that the value of m∗ can be uniquely determined if
rp
1−p is a real number. The case of integer bounds is similar to that of (17) and (19), which is
mentioned in the appendix. From a biological perspective, this means that the optimal number
of mRNAs in a cell when the gene is active is approximately the mean of the negative binomial
distribution. Essentially, when there are not enough mRNAs, the gene’s mRNA production
process will work faster than the degeneration process to top up the number of mRNAs to the
ideal level. This connects very well with the horizontal net current JI→A(m) above where it
has been shown that the mean of the negative binomial distribution is the value of m where the
gene is at its most “comfortable” state.

2.5.3 Vertical flow II

Let J(I,m)→(I,m+1)(m) denote the net probability current when the gene is in the inactive state,
then

J(I,m)→(I,m+1)(m) = 0− (m+ 1)PI(m+ 1)

≈ −(m+ 1)P0(m+ 1)

= −p(r +m)P0(m).

As implied by the kinetic scheme in Figure 3, the probability current flow when the gene is inac-
tive is one-directional because only mRNA degeneration occurs. Similar to J(A,m)→(A,m+1)(m),
it has always the same sign. Since its difference from J(A,m)→(A,m+1)(m) is the sign, its be-
haviour is a mirror reflection of the latter. This means that it is the same m∗ that gives rise
to J(I,m)→(I,m+1)(m)’s minimum and J(A,m)→(A,m+1)(m)’s maximum. In other words, the m∗

where the minimum of J(I,m)→(I,m+1)(m) occurs fulfills the compound inequality in (20), which
in turn means that this current shares the same optimal m as J(A,m)→(A,m+1)(m). Intuitively,
the degeneration process works to reduce the number of mRNAs back to the optimal level in
the event the gene produces too many mRNAs when it is active. Again, this result connects
very well with that of the horizontal net current JI→A(m).

Concluding, the mean of the negative binomial distribution is an important quantity since
it is the quantity where the gene is at its most comfortable state. As described at the beginning
of this section, scRNA sequencing data is a matrix containing the gene expression counts of
multiple genes in a sample of cells. This makes it possible to use standard inference methods
such as maximum likelihood inference to estimate the r and p parameters. The ε parameter,
while not taken into account here, can also be inferred if the perturbative solution that includes
the first order term is used in the likelihood function.
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3 Application

In this section, the model presented in section 2 is applied to a set of single-cell RNA sequencing
data consisting of mRNA counts in 939 pyramidal cells taken from the hippocampus CA1 of the
mouse cerebral cortex. Each cell has corresponding numbers of mRNAs synthesized by 19,972
genes. This data set is curated by Ziesel et al [17]. Maximum likelihood estimation is used to
infer the parameters of the model. From now on, the first order model denotes the one that
includes the first order ε term while the zeroth order model denotes the one that only has the
negative binomial distribution.

3.1 Exploring pyramidal cells from mouse cerebral cortex

It is commonly known that single-cell RNA sequencing data has a large number of zeros counts.
The same can be said for this data set, as shown in Figure 8 below, where an overwhelmingly
large number of genes have very few mRNAs detected in most of the 939 cells. In fact, a total
of 763 genes do not have any counts at all in any of the 939 cells. Figure 9 shows a collage of
histograms of the number of mRNAs detected in the cells for some selected genes. It is evident
that besides having large number of zero counts, the distribution of mRNAs is often skewed
with a long right tail.

Figure 8: Zoomed-in view of histogram showing the number of zero-count cells among the genes.
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Figure 9: Histograms of mRNAs of randomly selected genes. The name of each panel is the name of the
gene to which the histogram corresponds to.

Furthermore, it is generally acknowledged that single-cell RNA sequencing data is overdis-
persed, although the degree of dispersion can vary across datasets. This is one common reason
why a negative binomial model, instead of Poisson, is often used to model this kind of data.
However, equidispersed and underdispersed are not unheard of either. Figure 10 shows the
sample variance versus sample mean of 19,209 genes on logarithmic 10 scale. It can be seen
that most of the genes have sample variance larger than sample mean, but there is a sizable
number of them whose sample variance is less than or equals to the sample mean. As shown in
the next section, these equidispersed and underdispersed genes do not have maximum likelihood
estimates and hence are removed.
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Figure 10: Density plot of sample variance versus sample mean for 19,209 genes on logarithmic 10 scale.
763 genes are removed due to zero count in all 939 cells. Dash line is y = x.

3.2 Determining r̂ML, p̂ML and ε̂ML

As mentioned in section 3.1, it is not possible to do any parameter inference for genes that do
not have any counts at all. Hence these genes are removed from further analysis. Furthermore,
when both parameters in the negative binomial distribution are unknown, maximum likelihood
inference is possible only if sample variance is larger than sample mean [18]. In other words,
genes whose sample variance is smaller than or equals to the sample mean are also discarded
from further analysis. After removal of all these genes, there are 15,115 genes left in the data
set.

Assuming the first order model, the log-likelihood function takes the form of

l(θ;m) =

n∑
k=1

log
[
Γ(mk + r)

]
−

n∑
k=1

log
[
mk!

]
− nlog

[
Γ(r)

]
+ nrlog(1− p) + log(p)

n∑
k=1

mk+

+

n∑
k=1

log

[
1 + ε

( rp

1− p
p(r + 1)(2− p)− 2

2
− p(1− p)mk(mk + 1)

2
−mkrp(1− p) + p(r +mk)

)]
,

where θ = (r = γ1, p = µ1
µ1+λ1

, ε)T . Its partial derivatives with respect to r, p and ε are

∂

∂r
l(θ) =

n∑
k=1

Γ′(mk + r)

Γ(mk + r)
− nΓ′(r)

Γ(r)
+ nlog(1− p) +

n∑
k=1

ε ∂∂rh(r, p,mk)

1 + εh(r, p,mk)
;

∂

∂p
l(θ) = − nr

1− p
+

∑n
k=1mk

p
+

n∑
k=1

ε ∂∂ph(r, p,mk)

1 + εh(r, p,mk)
;

∂

∂ε
l(θ) =

n∑
k=1

h(r, p,mk)

1 + εh(r, p,mk)
,

(21)
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Figure 11: Histogram showing the spread of ε̂ML on logarithmic 10 scale. 5,231 values are removed because
they are exactly zero on the linear scale.

where

h(r, p,mk) =
rp

1− p
p(r + 1)(2− p)− 2

2
− p(1− p)mk(mk + 1)

2
−mkrp(1− p) + p(r +mk).

There are no analytical solutions to these three parameters and hence, they have to be estimated
numerically. Since the set of equations in (21) is solved by numerical approximation, there is a
need to make choices about initial values. For the negative binomial parameters r and p, method
of moments estimates are used as initial values. In other words, each gene has a different pair
of r and p initial values. As for ε, since it is expected to be small, its initial value is a random
real number sampled from [0, 0.005] and is the same for every gene.

The Nelder-Mead method is used to solved (21). More discussion on numerical methods
is found in section 4. While the Nelder-Mead method is generally used for unconstrained
optimisation problems, modifications have been made that enable constraints to be placed on
the unknown parameters. In this thesis, since the r and p parameters must satisfy the properties
of the negative binomial distribution, they have to be positive and p has to be between 0 and 1.
Furthermore, according to the assumption of ε, it has to be positive too as µ1 must be positive.
All computations are done in R [19] and Nelder-Mead optimisation of the log-likelihood function
is done using the Nelder Mead function in R package lme4 [20].

The result is that all of the ML estimates of r and p stay well within the constraints, which
means none of them hit the boundaries of the constraints placed on them. The ML estimates
of ε is problematic, on the other hand, as more than 43% of them are larger than one, which
essentially violates the model assumption of a small ε. Figure 11 shows the spread of ε̂ML minus
those that are exactly zero. The 43% corresponds to the conjoined masses to the right of the
zero mark . Furthermore, approximately 35% of them have values that are exactly zero, which
is the lower bound of ε. This can mean that these ε’s may have wanted to cross into the negative
region but hit the wall instead at the boundary of the constraint. Indeed, a cross-check with the
unconstrained maximum likelihood estimates of ε shows that over 99% of them are negative,
albeit quite a number of them are close to zero. See Figure 12 that shows the spread of negative
ε̂ML that are between 0 and -1.
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Figure 12: Histogram showing the spread of negative ε̂ML that are between 0 and -1.

Hence, disregarding genes that have either large ε̂ML or exactly zero ε̂ML, there are 3,352
genes, which is about 22% of the total number of genes, that have ε̂ML values that reasonably
fulfill the assumption of the model. Their values have a distribution that corresponds to the
two masses on the left of Figure 11. A sanity check of the r̂ML and p̂ML values of these 3,352
genes shows reasonably acceptable values with approximately 76% of them having r̂ML ranging
between 0.50 and 3.00 while p̂ML ranging between 0.25 and 0.75. This means that most of them
have an estimated mean burst frequency ranging between 0.50 and 3.00 and estimated mean
burst size ranging between of 0.33 and 3.00. Figure 13 shows all 3,352 value pairs of estimated
mean burst frequency and estimated mean burst size on logarithmic 10 scale. It can be seen
that there are no genes with the combination of low burst frequency and low burst size, which
makes sense because it is likely that there may not be enough mRNAs captured for these genes
due to finite sampling. It is now instructive to examine how different burst frequencies and
burst sizes manifest in the spread of the mRNAs. See Figure 14 for such a comparison.

The upper-left panel in Figure 14 features a gene that is randomly chosen from those in the
yellow blob in Figure 13. Contrasting this with a gene that has a higher burst frequency and
larger burst size like Actb that is featured in the upper-right panel, it is evident that the cells
contain larger numbers of mRNAs synthesised by the latter. This is reasonable since in addition
to the gene being frequently active, it also synthesizes many mRNAs each time it switches to
active. This implies that Actb “tops up” the number of mRNAs much faster than Nr2f1 .
The two panels in the second row features genes that have the exact opposite burst frequency
and burst size characteristics. It can be seen, however, that a common feature between these
two genes is the disproportionately large number of zero-count cells. For Madcam1, this can be
explained by its low burst frequency, meaning that it is inactive most of the time. For Ldlrad4,
the small burst size implies that even though it is a very active gene, it does not do much
synthesis work when it is active. The striking difference between them is the length of the tail.
For a gene like Madcam1, on the rare occasion that it switches to active, it synthesizes a large
number of mRNAs, which explain the exceptionally long tail. But this also means that if the
sample size is not large enough, then there is a high chance that no mRNAs are captured for
this gene at all.
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Figure 13: Estimated mean frequency and mean burst size of the 3,352 genes on logarithmic 10 scale.

Figure 14: Histograms showing the spread of mRNAs (grey) for genes with different burst frequency and
burst size characteristics, each superimposed with the fitted negative binomial distribution (red) using
the individual gene’s estimated r and p parameters.

Finally, as an informal check that the model assumption of a small ε holds, the log-likelihood
function values of the zeroth order model are juxtaposed against those of the first order model.
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The idea is if just the negative binomial model alone, that is the zeroth order model, is a
good enough approximation for the exact distribution, then its log-likelihood value should be
at least as good as that of the first order. As shown in the left panel of Figure 15, most of
the log-likelihood values pairs lie very close to the straight line, which indicates that adding a
small correction to the zeroth order model does not help to materially increase the likelihood
of observing the given data. In fact, only 1,413 genes have their first order log-likelihood
values larger than their zeroth order ones. In addition, the difference between the two values
is very small. This is evident in the right panel of Figure 15, which shows that almost all of
them are less than 10−5. Hence, the negative binomial model alone can be said to be a good
enough approximation to the exact distribution of M for these 3,352 genes. It is instructive,
however, to take note that this is only a qualitative comparison. A more mathematically rigorous
comparison is to first ascertain that the maximum likelihood optimisation indeed locates the
global maximums of both log-likelihood functions, otherwise this can well be a comparison of
two local maximums. This problem is exacerbated by the fact that the first order model is
more non-linear than the zeroth order model as can be seen in (16), which means the chances
of hitting a local maximum are higher. Also, as shown in the left panel of Figure 15, a small
number of genes have zeroth order log-likelihood values that are much higher than their first
order ones. Since ε is small, it quite surprising to observe the occurrence of such large differences.
It is believed that this is due to numerical issues in the maximum likelihood optimisation of the
first order model, which is discussed in more details in section 4.

Figure 15: Left: density plot of log-likelihood function values of the first order model against the zeroth
order mode; Right: spread of difference in log-likelihood values among genes whose first order log-
likelihoods are larger than zeroth order log-likelihoods.

4 Discussion

In this thesis, the mRNA synthesis and degeneration process of a gene in a cell is modelled
with a bivariate Markov Chain. A kinetic scheme is drawn up to represent this Markov Chain.
Under the assumption that a gene synthesizes mRNAs in a burst-like manner when it is active,
perturbation techniques are then used to derive an approximation of the steady-state stationary
distribution of the number of mRNAs, whose exact distribution is a Poisson-beta mixture
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distribution. The negative binomial distribution emerges as the solution to the unperturbed
problem. In other words, the negative binomial distribution can be a good approximation to
the stationary distribution. A number of literature that model the synthesis of gene products
[3] [21] [22] have also arrived at the negative binomial distribution as the limiting distribution
of the number of mRNAs (and proteins). The work in this thesis provides an alternative
mathematical explanation. Furthermore, this thesis derives the distribution of the inter-arrival
time of bursts as well as that of the number of new mRNAs synthesised at each burst. It is
shown that the means of these two distributions are related to the parameters of the negative
binomial distribution. Besides, an in-depth investigation of the probability currents shows
further relevance of the negative binomial distribution. All these help to connect the negative
binomial distribution to interesting quantities that are related to mRNA transcription and adds
depth to a cell’s gene expression profile. Maximum likelihood inference using the first order
model is applied on a set of scRNA sequencing data that is collected from pyramidal cells of the
hippocampus CA1 of the mouse cerebral cortex. A total of 3,352 genes return parameter values
that reasonably fulfill the model assumptions and hence can be used to profile the pyramidal
cells.

As seen in section 3, there are some problems in maximum likelihood fitting when the first
order model is used. But this is within expectation since P (m) in the first order model may
not even be a proper probability mass function when it turns negative for certain combinations
of r, p, ε and m. Indeed, as shown in section 3, the inclusion of the epsilon parameter in
maximum likelihood fitting has shown to render the model invalid for a large number of genes
in the dataset. First, because µ1 is positive, this implies that ε has to be positive. But there
is actually no such constraint in pertubation analysis. Hence, in cases where a negative ε̂ML is
obtained, the gene is discarded for further analysis as it does not fulfill the model assumption,
even though the fit is good. A case in point is gene Mrpl43 shown in Figure 16. The first order
model (green) with a negative ε̂ML actually fits the observed data quite well. Another example
that exemplifies problem with the first order model is illustrated using gene Nr2f1 in Figure 17.
It can be seen that there are (r, p, ε) values that are quite far from the Nelder-Mead estimates
but are close in the log-likelihood values. For example, r = 1.51, p = 0.891 and ε = 0.460
returns a log-likelihood value of -1,745, which is lower than the log-likelihood that is computed
using the Nelder-Mead estimates. Hence the first order model is not unimodal and may not
even be continuous. Even with ε just slightly larger than zero, the model can become unphysical
as P (m) turns negative for some values of m and log-likelihood becomes infinite.
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Figure 16: Spread of mRNAs. Grey: Observed counts. Red: Fitted distribution using zeroth order
model, i.e. ε = 0, where r̂ML = 1.48 and p̂ML = 0.561. Numerical method is Nelder-Mead. Green: Fitted
distribution using first order model, where r̂ML = 1.61, p̂ML = 0.521 and ε̂ML = −0.044. Numerical method
is Newton-Raphson.

Figure 17: 4-dimensional view of the log-likelihood function values for gene Nr2f1 for 1,000 randomly
selected values of r, p and ε. The black diamond locates the coordinates of the Nelder-Mead maximum
likelihood estimates (r̂ML = 1.47, p̂ML = 0.569, ε̂ML = 0.0040), which has a log-likelihood value of -1,755.
Green points locate the coordinates for which the log-likelihood is undefined.

Second, different numerical methods return quite different results on the first order model.
The optimisation method used in this thesis for the maximum likelihood optimisation problem
is the Nelder-Mead method, which does not require derivatives. While it is commonly used
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in unconstrained problem, there is also a box constraint version where both lower and upper
bounds on the parameter values can be imposed. This method works well when used to esti-
mate parameters in the zeroth order model without the need to impose constraints. However,
problems arise when it is used to estimate parameters in the first order model. Quite a sizable
number of ε̂ML hit the lower bound of zero while some others return unphysical results. The
ε̂ML for gene Mrpl43, for example, is 29,243 while r̂ML is 5.10 and p̂ML is 0.660. With such a
large ε̂ML, the first order model is no longer valid since P (m) is no longer a probability function.
On the other hand, the estimates in the zeroth order model are 1.48 and 0.561 for r̂ML and p̂ML

respectively. As shown in Figure 16, this model fits the observed data reasonably well. A deeper
investigation into why the algorithm does not end up with a small ε̂ML would be instructive but
is likely to fall into the realm of numerical analysis, which is beyond the scope of this thesis.
Besides Nelder-Mead, this thesis has also considered the gradient descent method, which is a
commonly used method in optimisation problems. However, the first order model again presents
some difficulties for this method.

The presence of a presumably small parameter ε in the denominator of the third partial
derivative in (21) can become problematic. This is because if h(r, p,mk) becomes large, which
is highly possible since it is a quadratic function in mk, then division by a small ε can cause some
of the summands to become really large, which in turn causes the gradient to become very large.
This can throw the descent process off-track and return spurious results, as attested by running
this method on some genes (code is available). While the choice of learning rate can help to
mitigate this problem, this involves making yet another choice of parameter value. Finally, the
Newton-Raphson root search method is another viable method and also tested on some genes,
in particular those that end up with large ε̂ML (code is available) with the Nelder-Mead method.
As shown in Figure 16, the numerical solution returned by the Newton-Raphson method is a
good fit for the observed data albeit with a negative ε̂ML. It has also returned unphysical results
for many other genes, mainly due to negative ε̂ML. When tested on the zeroth order model,
however, an overwhelming majority of the estimates from this method and the Nelder-Mead
method are consistent with one another. Unphysical results aside, the main reason it is not
chosen as the optimisation method is the lengthy computation time because the Hessian needs
to be computed for so many genes. All in all, while the assumption of a large µ1 has made it
possible to approximate the exact Poisson-beta mixture distribution by means of perturbation
techniques, its inclusion in the optimisation problem causes numerical instability and results in
unphysical values. More work needs to be done to better ascertain if this is a numerical issue
or wrong assumptions of the kinetic parameters in the model.

Finally, up to this point, there is no mention of dependence between a gene’s mRNA synthesis
and degeneration process and the type of cell that it resides in. In this thesis, it has been
assumed that cell type is known and maximum likelihood inference is done on cells that of
the same type. In biology literature [17] [23] [24] [25] , the same gene that resides in different
cell types is believed to behave differently. In other words, the gene expression profiles of cells
are not homogeneous. However, it is rare that the gene expression data available for analysis
contains information about cell types. Hence, cell type is a latent variable that is not directly
observed. Inclusion of cell type into parameter inference is definitely a possible extension of
this thesis. This is a general idea of how it can be taken into consideration: Let U denote the
discrete latent variable of cell type with a finite set of J types. Let m = {mg} denote a vector
of mRNA counts from g = 1, 2, ..., G genes. In other words, m is the number of mRNA counts
of G genes in a cell. Then given J cell types, m comes from the following joint probability mass
function

P (m|θ) =
J∑
j=1

πjP (m|θj),

where θj holds the parameters of the joint distribution of (m1,m2, ...,mG) condition on cell
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type j and πj is the mixing coefficient (which can be fixed or inferred). θ denotes all unknown
parameters in the model. Intuitively, πj is the probability that a randomly selected cell is
of type j and all J of them need to sum to one. If the components in the conditional joint
distribution are independent of one another and assuming the negative binomial model for the
mRNAs, then P (m|θj) is a product of G negative binomial distributions and θj = {rgj , pgj}.
Then given an observed set of N independent distributed cells, the likelihood is given by

P (m,u|θ) =
N∏
n=1

J∏
j=1

[
πjP (mn|θj)

]unj

,

where u denotes the indicator vector of {unj} such that it is one if mn is of cell type j and zero
otherwise. Markov Chain Monte Carlo methods such as Gibbs sampling can be used to draw a
sample from the posterior P (θ,u|m).
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5 Appendix

1. Definition of Negative Binomial Distribution, NB

Let M be a discrete, integer-valued and non-negative random variable that denotes the
number of successes observed in a sequence of Bernoulli experiments until a predefined
number of failures are attained, that is,

M ∼ NB(r, p).

The predefined number of failures is r and p is the probability of success in each ex-
periment. Take note that r > 0 and p ∈ [0, 1]. The probability mass function of M
is

P (M = m) =

(
m+ r − 1

m

)
pm(1− p)r, for m ≥ 0.

While r is defined here as integer-valued, it can be extended to real-valued which comes
from the negative binomial distribution being a Poisson distribution with gamma dis-
tributed Poisson rate with parameters r and (1 − p)/p. Take note that the negative bi-
nomial distribution implemented in the R package stats has the opposite interpretation,
that is, it describes the number of failures observed in a sequence of Bernoulli experiments
until a predefined number of successes are attained.

It is also known that the following recurrence relation holds for the negative binomial
distribution

(m+ 1)P (m+ 1) = p(r +m)P (m), for m ≥ 0.

Let g(z) denote the probability generating function of M . Then using the commonly

known formula of g(m)(0)
m! = P (m), where g(m)(z) denotes the mth derivative of g(z), the

recurrence relation above can be expressed in terms of the probability generating function
as

(m+ 1)
g(m+1)(0)

(m+ 1)!
= p(r +m)

g(m)(0)

(m)!

⇐⇒
g(m+1)(0) = p(r +m)g(m)(0).

2. Proof of long-run probabilities PI and PA.

Recall in section 2.2 that

PI =
λ

λ+ γ
;

PA =
γ

λ+ γ
.
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This can be shown by summing over all m in the first equation in (1) as such

∞∑
m=0

(γ +mδ)PI(m) =
∞∑
m=0

(
(m+ 1)δPI(m+ 1) + λPA(m)

)
⇐⇒

γ
∞∑
m=0

PI(m) + δ
∞∑
m=0

mPI(m) = δ
∞∑
m=0

(m+ 1)PI(m+ 1) + λ
∞∑
m=0

(
P (m)− PI(m)

)
⇐⇒

γ

∞∑
m=0

PI(m) + δ

∞∑
m=0

(m+ 1)PI(m+ 1) = δ

∞∑
m=0

(m+ 1)PI(m+ 1) + λ− λ
∞∑
m=0

PI(m)

⇐⇒
∞∑
m=0

PI(m) = PI =
λ

λ+ γ
.

And the proof for PA follows as

∞∑
m=0

P (m) =

∞∑
m=0

PI(m) +

∞∑
m=0

PA(m)

⇐⇒

1 =
λ

λ+ γ
+

∞∑
m=0

PA(m)

⇐⇒
∞∑
m=0

PA(m) = PA =
γ

λ+ γ
.

3. Derivation of higher order differential equations from (5)

δ
∂m

∂zm
(z − 1)g′I(z) = −γg(m)

I (z) + λg
(m)
A (z)

δ
∂m

∂zm
(z − 1)g′A(z) = γg

(m)
I (z)− λg(m)

A (z) + µ
∂m

∂zm
(z − 1)gA(z)

⇐⇒

δ
(
mg

(m)
I (z) + (z − 1)g

(m+1)
I (z)

)
= −γg(m)

I (z) + λg
(m)
A (z)

δ
(
mg

(m)
A (z) + (z − 1)g

(m+1)
A (z)

)
= γg

(m)
I (z)− λg(m)

A (z) + µ
(
mg

(m−1)
A (z) + (z − 1)g

(m)
A (z)

)

4. Poisson-beta distribution

Using equation 1 in the supplementary information of [3], the exact solution to the steady-
state marginal stationary distribution of the number of mRNAs M is

P (m) =
Γ(γ1 +m)

Γ(m+ 1)Γ(γ1 + λ1 +m)

Γ(γ1 + λ1)

Γ(γ1)
µm1 1F1(γ1 +m, γ1 + λ1 +m,−µ1).

35



This can be rewritten by using the integral representation of the confluent hypergeometric
function of the first kind, that is,

1F1(γ1 +m, γ1 + λ1 +m,−µ1) =
Γ(γ1 + λ1 +m)

Γ(λ1)Γ(γ1 +m)

∫ 1

0
e−µ1ttγ1+m−1(1− t)λ1−1 dt.

Then the exact solution becomes

P (m) =

∫ 1

0

µm1
m!

e−µ1t
Γ(γ1 + λ1)

Γ(γ1)Γ(λ1)
tγ1+m−1(1− t)λ1−1 dt

=

∫ 1

0

(µ1t)
m

m!
e−µ1t

Γ(γ1 + λ1)

Γ(γ1)Γ(λ1)
tγ1−1(1− t)λ1−1 dt

=

[
change of variables: x = µ1t

]

=

∫ µ1

0

xm

m!
e−x

1

µ1

Γ(γ1 + λ1)

Γ(γ1)Γ(λ1)

( x
µ1

)γ1−1(
1− x

µ1

)λ1−1
dx

=

∫ µ1

0

xm

m!
e−x

Γ(γ1 + λ1)

Γ(γ1)Γ(λ1)

xγ1−1(µ1 − x)λ1−1

µγ1+λ1−11

dx.

By the law of total probability, this is the unconditional distribution of M , where

M |µ1X = x ∼ Po(x) with µ1X ∼ Beta(γ1, λ1).

5. Rewriting (11) and (12)

Matching the corresponding terms between the perturbation series of gm and P (m), (11)
can be expressed as

P0(m+ 1) =
( µ1
µ1 + λ1

)(γ1 +m)

m+ 1
P0(m) = p

(r +m)

m+ 1
P0(m).

Since P0(m) is the probability mass function of the negative binomial distribution, then
it follows that

�

∑∞
m=0 P0(m) = 1

�

∑∞
m=0 Pi(m) = 0, for i ≥ 1

This is because

1 =
∞∑
m=0

P (m) =
∞∑
m=0

(
P0(m) + εP1(m) + ε2P2(m) + ...

)
.

Since
∑∞

m=0 P0(m) = 1, it follows that
∑∞

m=0 Pi(m) = 0 for i ≥ 1.

Using the same parametrization of r and p, (12) can similarly be rewritten as

(m+ 2)P0(m+ 2) =
(
r +m

)
P0(m+ 1) +

1

p
P1(m+ 1)− r +m

m+ 1
P1(m). (22)

It turns out that (22) can be further simplified. The first manipulation is to use µ1 = µ
δ

and ε = 1
µ1

, after which (7) is rewritten as

εP (m+ 1) =
1

m+ 1
PA(m).
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The second manipulation is to substitute the perturbation series of PI(m) and PA(m) into
the rewritten (7), which results in

εP0(m+ 1) + ε2P1(m+ 1) + ... =
1

m+ 1

(
P0,A(m) + εP1,A(m) + ε2P2,A(m) + ...

)
.

Expanding the equation and grouping the coefficients of like powers of ε together yields

1

m+ 1
P0,A(m) + ε

(
− P0(m+ 1) +

1

m+ 1
P1,A(m) +

)
+ ε2

(
− P1(m+ 1) +

1

m+ 1
P2,A(m)

)
+ ... = 0.

Using the same argument in the thesis proper about the coefficients of a constantly zero
perturbation series, the following results are obtained:

P0,A(m) = 0;

P0(m+ 1) =
1

m+ 1
P1,A(m);

P1(m+ 1) =
1

m+ 1
P2,A(m).

(23)

These are important results because this means that the zeroth order of the stationary
distribution of M , which is a negative binomial distribution, is determined by the zeroth
order term from the inactive status of the gene. That is

P0(m) = P0,A(m) + P0,I(m) = P0,I(m).

Furthermore, the entire first order correction from the active status of the gene can be
determined by the zeroth order negative binomial distribution. But this also means that

P0,I(m+ 1) =
1

m+ 1
P1,A(m).

Inserting the second result of (23) as well as the identity Pi(m) = Pi,I(m) + Pi,A(m), for
i ≥ 0, into (22) gives the following:

(m+ 2)P0(m+ 2) =
(
r +m

)
P0(m+ 1) +

1

p
P1,A(m+ 1) +

1

p
P1,I(m+ 1)−

− r +m

m+ 1
P1,A(m)− r +m

m+ 1
P1,I(m)

⇐⇒

(m+ 2)P0(m+ 2) =
(
r +m

)
P0(m+ 1) +

m+ 2

p
P0(m+ 2) +

1

p
P1,I(m+ 1)−

−
(
r +m

)
P0(m+ 1)− r +m

m+ 1
P1,I(m)

⇐⇒

P1,I(m+ 1) = p
(r +m

m+ 1

)
P1,I(m) + (m+ 2)(p− 1)P0(m+ 2),

which is (13).

6. Deriving a general expression for the recursive relation in (13)

In order to derive a general expression from this recursive relation to solve for P1,I(m),
define P1,I(0) = a. Then for
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� m = 0

P1,I(1) = p
(r

1

)
a+ 2(p− 1)P0(2)

� m = 1

P1,I(2) = p
(r + 1

2

)
P1,I(1) + 3(p− 1)P0(3)

= p2
(r + 1

2

)(r
1

)
a+ 3

(r + 1

r + 2

)
(p− 1)P0(3) + 3(p− 1)P0(3)

= p2
(r + 1

2

)(r
1

)
a+ 3(p− 1)

(2r + 3

r + 2

)
P0(3).

The second last equality is derived from (11), that is, the recurrence relation of a
negative binomial distribution.

� m = 2

P1,I(3) = p
(r + 2

3

)
P1,I(2) + 4(p− 1)P0(4)

= p3
(r + 2

3

)(r + 1

2

)(r
1

)
a+ 4(p− 1)

2r + 3

r + 3
P0(4) + 4(p− 1)P0(4)

= p3
(r + 2

3

)(r + 1

2

)(r
1

)
a+ 4(p− 1)

(3r + 6

r + 3

)
P0(4).

It follows by mathematical induction that, in general,

P1,I(m+ 1) = pm+1
(r +m

m+ 1

)(r +m− 1

m

)
· · ·
(r

1

)
+

+ (m+ 2)(p− 1)
((m+ 1)r + 1 + 2 + 3 + ...+ (m+ 1)

r +m+ 1

)
P0(m+ 2)

= pm+1

(
r +m

m+ 1

)
a+ (m+ 2)(p− 1)

((m+ 1)r + (m+1)(m+2)
2

r +m+ 1

)
P0(m+ 2)

= pm+1

(
r +m

m+ 1

)
a+

1

2
(m+ 2)(m+ 1)(p− 1)

(2r +m+ 2

r +m+ 1

)
P0(m+ 2).

7. Simplification of (14)

To simplify the right hand side, take note that since P0(m) is the probability mass function
of a negative binomial distribution with parameters r and p, then it follows that the
summations in the second and fourth summands can be simplified as

rp

1− p
=

∞∑
m=0

mP0(m) =

∞∑
m=0

(m+ 1)P0(m+ 1).

The second equality holds since the summand at m = 0 does not contribute to the sum.
Furthermore, the third summand can be simplified as follows:

(p− 1)2

2r

∞∑
m=0

(m+ 1)mP0(m+ 1) =
(1− p)2

2r

∞∑
m=0

(m+ 1)m

(
r +m

m+ 1

)
(1− p)rpm+1

=
(1− p)2

2r

∞∑
m=1

(r +m)!

(m− 1)!(r + 1)!
(1− p)r+2pm−1

r(r + 1)p2

(1− p)2

=
[
Let n = m− 1

]
=

(1− p)2

2r

r(r + 1)p2

(1− p)2
∞∑
n=0

(
r + 2 + n− 1

n

)
(1− p)r+2pn

=
p2(r + 1)

2
.
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The second last equality follows as the summands in the summation is the probability
mass function of a negative binomial distribution with parameters r + 2 and p. Hence,
the sum is equals to one.

To simplify the left hand side, recall that
∑∞

m=0 Pi(m) = 0 for i ≥ 1. This means that∑∞
m=0 P1(m) = 0. Then using Pi(m) = Pi,I(m) + Pi,A(m) and the result P0(m + 1) =
1

m+1P1,A(m) gives

∞∑
m=0

P1(m) =
∞∑
m=0

(
P1,I(m) + P1,A(m)

)
= 0

⇐⇒
∞∑
m=0

P1,I(m) = −
∞∑
m=0

P1,A(m)

⇐⇒
∞∑
m=0

P1,I(m) = −
∞∑
m=0

(m+ 1)P0(m+ 1)

⇐⇒
∞∑
m=0

P1,I(m) =
rp

p− 1
.

Using this result, the left-hand side becomes

rp

p− 1
=
∞∑
n=0

P1,I(n) = P1,I(0) +
∞∑
n=0

P1,I(n+ 1) ⇐⇒
∞∑
n=0

P1,I(n+ 1) =
rp

p− 1
− a.

Substituting the above simplifications into (14) results in

p− 1

rp

( rp

p− 1
− a
)

=
a(p− 1)

rp(1− p)r
(

1− P0(0)
)

+ (p− 1)2
rp

1− p
+
p2(r + 1)

2
+

+
(p− 1)2

r

rp

1− p
,

which upon rearranging of terms gives the solution to a.

8. Do the stationary probabilities fulfill the balance equations?

Recall (1):

(γ +mδ)PI(m) = (m+ 1)δPI(m+ 1) + λPA(m);

(λ+ µ+mδ)PA(m) = (m+ 1)δPA(m+ 1) + µPA(m− 1) + γPI(m).

Zeroth order

First equation:

(γ +mδ)P0(m) +O(ε) = (m+ 1)δP0(m+ 1) + λεp(r +m)P0(m) +O(ε)

δrP0(m) +mδP0(m) +O(ε) = δp(r +m)P0(m) + δ(1− p)(r +m)P0(m) +O(ε)

δrP0(m) +mδP0(m) +O(ε) = δp(r +m)P0(m) + δ(r +m)P0(m)− δp(r +m)P0(m) +O(ε)

δrP0(m) +mδP0(m) +O(ε) = δ(r +m)P0(m) +O(ε). [ balanced ]
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Second equation:

λεp(r +m)P0(m) + µεp(r +m)P0(m) +mδεp(r +m)P0(m) =

= δεp2(r +m+ 1)(r +m)P0(m) + µεp(r +m− 1)P0(m− 1) + γP0(m)

δ(1− p)(r +m)P0(m) + δp(r +m)P0(m) +O(ε) = δmP0(m) + δrP0(m) +O(ε)

δ(r +m)P0(m) +O(ε) = δ(r +m)P0(m) +O(ε). [ balanced ]

First order

First equation:

(γ +mδ)εP1,I(m) +O(ε2) = (m+ 1)δεP1,I(m+ 1) + λεP1,A(m) + λε2P2,A(m) +O(ε3).

LHS:

(γ +mδ)εP0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
+O(ε2) =

= δ(r +m)εP0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
+O(ε2).

RHS:

(m+ 1)δεP0(m+ 1)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p)
]

+ λεp(r +m)P0(m) + λε2(m+ 1)P1(m+ 1) +O(ε3) =

= δεp(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p)
]

+O(ε0) + λε2(m+ 1)P0(m+ 1)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
+O(ε3) =

= δεp(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p)
]

+ δε(1− p)(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
+O(ε2) =

= δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p) + p(r +m+ 1)
]
− δεp2(r +m+ 1)(r +m)P0(m) +O(ε2) =

= δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)−

− p(1− p)(r +m+ 1) + p(r +m+ 1)
]
− δεp2(r +m+ 1)(r +m)P0(m) +O(ε2) =

= δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
+

+ δεp2(r +m+ 1)(r +m)P0(m)− δεp2(r +m+ 1)(r +m)P0(m) +O(ε2). [ balanced ]
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Second equation:

(λ+ µ+mδ)
[
εP1,A(m) + ε2P2,A(m)

]
+O(ε3) = (m+ 1)δεP1,A(m+ 1) + µ

[
εP1,A(m+ 1)+

+ ε2P2,A(m)
]

+ γεP1,I(m) +O(ε3).

LHS:

λεp(r +m)P0(m) + µεp(r +m)P0(m) +mδεp(r +m)P0(m)+

+ λε2p(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p) + p(r +m+ 1)
]

+ µε2p(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
+

+mδε2p(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p) + p(r +m+ 1)
]

+O(ε3) =

= O(ε0) +O(ε0) + δεpm(r +m)P0(m) + δε(1− p)(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
+

+ δεp(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p) + p(r +m+ 1)
]

+O(ε2) =

= δεpm(r +m)P0(m) + δεp(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
+O(ε2).
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RHS:

(m+ 1)δεp(r +m+ 1)P0(m+ 1) + µεp(r +m− 1)P0(m− 1)+

+ µε2P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p) + p(r +m)

]
+

+ δrεP0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
+O(ε3) =

= δεp2(r +m+ 1)(r +m)P0(m) +O(ε0) + δεmP0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)m(m+ 1)

2
−mrp(1− p) + p(r +m)

]
+ δrεP0(m)

[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)m(m+ 1)

2
−mrp(1− p)

]
+O(ε2) =

= δεp2(r +m+ 1)(r +m)P0(m) + δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
− δεmpP0(m)+

+ δεm(m+ 1)p(1− p)P0(m) + δεmrp(1− p)P0(m)− δεrp(r +m+ 1)P0(m)+

+ δε(m+ 1)rp(1− p)P0(m) + δεr2p(1− p) +O(ε2) =

= δεp2(r +m+ 1)(r +m)P0(m) + δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
−

− p(1− p)(m+ 1)(m+ 2)

2
− (m+ 1)rp(1− p) + p(r +m+ 1)

]
−

− δεp2(r +m+ 1)(r +m)P0(m) + δεpm((r +m)P0(m)− δεrp(r +m+ 1)P0(m)+

+ δεrp(m+ 1)P0(m) + δεr2pP0(m) +O(ε2) =

= δε(r +m)P0(m)
[ rp

1− p

(p(r + 1)(2− p)− 2

2

)
− p(1− p)(m+ 1)(m+ 2)

2
−

− (m+ 1)rp(1− p) + p(r +m+ 1)
]

+ δεpm((r +m)P0(m) +O(ε2). [ balanced ]

9. Deriving the compound inequality (17) for m∗1

From the first inequality,

JI→A(m∗1)

JI→A(m∗1 + 1)
=

δP0(m
∗
1)
[
rp−m∗1(1− p)

]
δP0(m∗1 + 1)

[
rp− (m∗1 + 1)(1− p)

]
=

(m∗1 + 1)
[
rp−m∗1(1− p)

]
p(r +m∗1)

[
rp− (m∗1 + 1)(1− p)

] > 1.

After some extensive algebra and simplification yields the following inequality

|m∗1 −
2rp− (1− p)

2(1− p)
| <

√
4rp+ (1− p)2

2(1− p)
,

which is the same as

2rp− (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

< m∗1 <
2rp− (1− p)

2(1− p)
+

√
4rp+ (1− p)2

2(1− p)
,

Recall earlier that it is assumed that both µ1 and λ1 are always positive, then 0 < p < 1
must hold since p = µ1

µ1+λ1
. Consequently, there is no issue of divergence caused by
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division with zero in the denominator. Furthermore, the following needs to hold in order
for m∗1 ≥ 0,

2rp− (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

> 0,

which, in turn, implies that r > 2−p
p . This agrees well with the constraint that p > 0.

In addition to the check above, the compound inequality needs be checked that both
summands are smaller than rp

1−p since the maximum current must happen before it hits

zero. Upon checking, only the left summand is smaller than rp
1−p . Hence, for

JI→A(m∗1)
JI→A(m∗1+1) >

1,

m∗1 >
2rp− (1− p)

2(1− p)
−
√

4rp+ (1− p)2
2(1− p)

. (24)

The upper bound of m∗1 must then come from the second current ratio inequality, which
is

JI→A(m∗1)

JI→A(m∗1 − 1)
=

δP0(m)
[
rp−m(1− p)

]
δP0(m∗1 − 1)

[
rp− (m∗1 − 1)(1− p)

]
=
p(r +m− 1)

][
rp−m(1− p)

]
m
[
rp− (m∗1 − 1)(1− p)

] > 1.

The following inequality is derived

|m∗1 −
2rp+ (1− p)

2(1− p)
| >

√
4rp+ (1− p)2

2(1− p)
,

which is the same as

m∗1 >
2rp+ (1− p)

2(1− p)
+

√
4rp+ (1− p)2

2(1− p)
or m∗1 <

2rp+ (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

.

(25)
A meticulous check shows that the left summand in (25) is larger than rp

1−p while the right

summand is smaller than rp
1−p and definitely positive when r > 2−p

p . Besides, it has the
correct inequality sign that is needed to constrain m∗1 within an interval. Finally, it is

larger than the summand in (24). Hence, for
JI→A(m∗1)
JI→A(m∗1−1)

> 1, the right inequality in (25)

holds.

Summarizing, for r > 2−p
p and 0 < p < 1, the m∗1 that gives rise to maximum JI→A(m)

fulfills the following compound inequality

2rp− (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

< m∗1 <
2rp+ (1− p)

2(1− p)
−
√

4rp+ (1− p)2
2(1− p)

.

10. Deriving the compound inequality (19) for m∗2

The expressions for these ratios are the same as the ones for positive currents except for
the reversal of the inequality sign. Hence, they are not repeated for the sake of brevity.
The following inequality is yielded from the first inequality

|m∗2 −
(2rp− (1− p)

2(1− p)

)
| >

√
4rp+ (1− p)2

2(1− p)
,

43



which is the same as

m∗2 >
2rp− (1− p)

2(1− p)
+

√
4rp+ (1− p)2

2(1− p)
or m∗2 <

2rp− (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

.

(26)
Recall from the earlier checks that the left summand in (26) is larger than rp

1−p . Hence,

for
JI→A(m∗2)
JI→A(m∗2+1) < 1, the left inequality in (26) is the valid one. Similar to the maximum

current case, the upper bound for m∗2 must then come from the second current ration

inequality, that is,
JI→A(m∗2)
JI→A(m∗2−1)

< 1. From this inequality, the following result is obtained

2rp+ (1− p)
2(1− p)

−
√

4rp+ (1− p)2
2(1− p)

< m∗2 <
2rp+ (1− p)

2(1− p)
+

√
4rp+ (1− p)2

2(1− p)
.

Again, from earlier checks, the right summand is the one that is larger than rp
1−p . Besides,

it has the correct inequality sign that is needed to constrain m∗2 within an interval. Hence,

for
JI→A(m∗2)
JI→A(m∗2−1)

< 1,

m∗2 <
2rp+ (1− p)

2(1− p)
+

√
4rp+ (1− p)2

2(1− p)
.

Summarizing, the m∗2 that gives rise to minimum JI→A(m) fulfills the following compound
inequality

2rp− (1− p)
2(1− p)

+

√
4rp+ (1− p)2

2(1− p)
< m∗2 <

2rp+ (1− p)
2(1− p)

+

√
4rp+ (1− p)2

2(1− p)
.

11. A note about the bounds of (17) and (19)

In the unlikely event that the bounds are integers, then there are no unique values for m∗1
and m∗2. This implies that it will not be possible to know the exact value of m that give rise
to the peak or the trough of the net probability current. However, as an approximation,
one can consider the value of either the lower and upper bound with immaterial difference.

12. Deriving the compound inequality (20) for m∗

From the first inequality,

J(A,m)→(A,m+1)(m
∗)

J(A,m)→(A,m+1)(m∗ + 1)
=

p(r +m∗)P0(m
∗)

p(r +m∗ + 1)P0(m∗ + 1)

=
m∗ + 1

p(r +m∗ + 1)
,

which yields the following result

m∗ >
rp

1− p
− 1.

From the second inequality,

J(A,m)→(A,m+1)(m
∗)

J(A,m)→(A,m+1)(m∗ + 1)
=

p(r +m∗)P0(m
∗)

p(r +m∗ − 1)P0(m∗ − 1)

=
p(r +m∗)

m∗
,

which yields the following result

m∗ <
rp

1− p
.

Combining the two results yields the following compound inequality
rp

1− p
− 1 < m∗ <

rp

1− p
.
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Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz,
C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., & Linnars-
son, S. (2015). Brain structure. Cell types in the mouse cortex and hippocampus
revealed by single-cell RNA-seq. Science (New York, N.Y.), 347(6226), 1138-1142.
https://doi.org/10.1126/science.aaa1934

45



[18] Aragón, J., Eberly, D., & Eberly, S. (1992). Existence and uniqueness of the
maximum likelihood estimator for the two-parameter negative binomial distribution.
Statistics & Probability Letters, 15(5), 375 - 379

[19] R Core Team. (2020). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing.

[20] Douglas, B., Martin, M., Ben, B. & Steve, W. (2015). Fitting Linear Mixed-
Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48

[21] Vahid Shahrezaei & Peter S. Swain. (2008). Analytical distributions for stochas-
tic gene expression. Proceedings of the National Academy of Sciences, 105(45), 17256
- 17261

[22] Bokes, P., King, J. R., Wood, A. T., & Loose, M. (2012). Exact and ap-
proximate distributions of protein and mRNA levels in the low-copy regime of gene
expression. Journal of mathematical biology, 64(5), 829-854.

[23] Goldman, Samantha L., MacKay, M., Afshinnekoo, E., Melnick,
Ari M., Wu, S., and Mason, Christopher E. (2019). The Im-
pact of Heterogeneity on Single-Cell Sequencing. Frontiers in Genetics, 10.
https://www.frontiersin.org/article/10.3389/fgene.2019.00008

[24] Harris, Kenneth D., Hochgerner, H., Skene, Nathan G., Magno, L., Ka-
tona, L., Bengtsson Gonzales, C., Somogyi, P., Kessaris, N., Linnarsson,
S., & Hjerling-Leffler, J. (2018). Classes and continua of hippocampal CA1
inhibitory neurons revealed by single-cell transcriptomics. PLoS Biol, 16(6), 1-37.
https://doi.org/10.1371/journal.pbio.2006387

[25] Ralston, A. & Shaw, K. (2008) Gene expression regulates cell differentiation.
Nature Education 1(1):127

[26] Grün, D., Kester, L. & van Oudenaarden, A. (2014). Validation of
noise models for single-cell transcriptomics. Nature Methods, 11, 637-640.
https://doi.org/10.1038/nmeth.2930

[27] Soneson, C. & Delorenzi, M. (2013). A comparison of methods for dif-
ferential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91.
https://doi.org/10.1186/1471-2105-14-91

[28] Tang, X., Huang, Y., Lei, J., Luo, H., & Zhu, X. (2019). The single-cell se-
quencing: new developments and medical applications. Cell & Bioscience, 9, 53.
https://doi.org/10.1186/s13578-019-0314-y

46


