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Abstract

In this thesis, we introduce a new method for summarizing data

from heterogeneous sources. Assuming that there is a true data-

generating model for a given phenomenon, we construct a statistical

model that aims to include the true data-generating model as a special

case. Inference on the parameters in the postulated model is made by

performing simulations that replicate the data-generating process be-

hind observed data. If the results from the simulations are sufficiently

close to the observed data, the model is deemed plausible. The plau-

sible model can then be used to calculate quantities of interest, such

as risk measures.

The new method allows us to make inferences based on data from

widely different sources. Examples of these could be summary statis-

tics or raw data; results from research studies with heterogeneous

experimental designs and study populations; general scientific facts or

results of lab experiments.

In this thesis, we limit the applications to data where traditionally

one would use meta-analysis. This is a set of methods that summa-

rize the results of several studies by calculating the weighted average

of reported intervention effects. We argue that meta-analysis faces

disadvantages that the new method can avoid.

The performance of the new method is explored in two extensive

simulation studies, and we also apply the method to data that was

previously used in a traditional meta-analysis.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: par.villner@ki.se. Supervisor: Matteo Bottai.



Acknowledgments

I am deeply grateful to my supervisor Matteo Bottai, both for supervising me and for
conceiving the method that is the topic of this thesis. During the last 20 months, I have
received more advice and encouragement from Matteo than I could have hoped for. I
am also grateful to the Biostatistics Core Facility at Karolinska Institutet for providing
me with an office space and letting me participate in their meetings and workshops.

I would like to extend thanks to David Miller and his colleagues at the Environmental
Protection Agency in Washington D.C. who have been collaborators in the development
of the new method. Their feedback has been extremely valuable, as it has given me an
insight into how the method can be applied in realistic scenarios.

Lastly, I would like to thank my older brother Tomas Villner, without whom I doubt I
would have studied mathematics or taken an interest in biostatistics. For as long as I can
remember, Tomas has been my best friend and my greatest intellectual mentor. Tomas
received his education as a physician at Karolinska Institutet in Solna. Although he
only took a single introductory course in statistics, Tomas was fascinated by probability
theory and took every chance to discuss it. I remember a conversation in which Tomas
made the distinction between the Bayesian and frequentist definition of probability,
although he had never heard of these concepts. In September last year, Tomas passed
away after several years of illness. I dedicate this thesis to Tomas and also his children,
Ines and Lo.

2



Contents

1 Introduction 6
1.1 The aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 An outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 An overview of meta-analysis 8
2.1 The omnibus test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Limitations of the omnibus test . . . . . . . . . . . . . . . . . . . . 9
2.2 Standard methods in meta-analysis . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Calculating a weighted average . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The Fixed Effect model . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 The Random Effects model . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Meta-regression, network analysis and Bayes . . . . . . . . . . . . . . . . . 13
2.5 Limitations of Fixed Effect and Random Effects models . . . . . . . . . . 13

3 An intuitive explanation of the HS method 15
3.1 The Mother Nature’s Model and the Postulated Model . . . . . . . . . . . 15
3.2 The inferential procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Calculating relevant quantities . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 An example of inference with the HS method . . . . . . . . . . . . . . . . 17
3.5 “Meta-analysis” with the HS method . . . . . . . . . . . . . . . . . . . . . 18
3.6 The limitations of standard meta-analysis revisited . . . . . . . . . . . . . 19
3.7 Topics for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Inference with the HS method 21
4.1 Sampling-based inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 An algorithm for finding a plausible θ . . . . . . . . . . . . . . . . . . . . 23
4.3 Density approximation techniques . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Kernel density estimators . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Copula estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Correcting for multiple studies . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Likelihood-based inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Similar methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6.1 Diggle & Gratton’s method . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Approximate Bayesian Computation . . . . . . . . . . . . . . . . . 33
4.6.3 Sensitivity analysis and imputation . . . . . . . . . . . . . . . . . . 34

5 Computational aspects of the inference 35
5.1 Implementation of the kernel density estimator . . . . . . . . . . . . . . . 35
5.2 Implementation of the copula estimator . . . . . . . . . . . . . . . . . . . 35
5.3 Correction for multiple studies . . . . . . . . . . . . . . . . . . . . . . . . 35

3



6 Simulation Study I 37
6.1 The data-generating models . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Mother Nature’s Model 1 . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Mother Nature’s Model 2 . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 The simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Computational details of the inferential procedure . . . . . . . . . . . . . 39
6.4 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Difficulties in the simulations . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5.1 Postulated Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5.2 Postulated Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Simulation Study II 45
7.1 The Mother Nature’s Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 The simulation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Computational details of the inferential procedure . . . . . . . . . . . . . 47
7.4 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 An analysis on the association between Paraquat exposure and Parkinson’s
Disease 48
8.1 The meta-analysis by Ntzani et. al. . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Plan for performing an analysis . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3 Step 1. Construct a Postulated Model . . . . . . . . . . . . . . . . . . . . 50
8.4 Step 2. Recreate the summary statistics and find a plausible θ . . . . . . 51

8.4.1 Computational details of the inferential procedure . . . . . . . . . 52
8.4.2 The effect of adding new statistics and studies . . . . . . . . . . . 53

8.5 Step 3: Calculating a measure of association . . . . . . . . . . . . . . . . . 53
8.6 Adding a study of PD prevalence . . . . . . . . . . . . . . . . . . . . . . . 55
8.7 Comparison with the Ntzani et. al. study . . . . . . . . . . . . . . . . . . 56
8.8 Some suggested improvements . . . . . . . . . . . . . . . . . . . . . . . . . 57

9 Conclusions 59

10 Graphs 61
10.1 Postulated Model 1, J=1, n=10 . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2 Postulated Model 1, J=1, n=100 . . . . . . . . . . . . . . . . . . . . . . . 63
10.3 Postulated Model 1, J=1, n=1000 . . . . . . . . . . . . . . . . . . . . . . 64
10.4 Postulated Model 1, J=5, n=10 . . . . . . . . . . . . . . . . . . . . . . . . 65
10.5 Postulated Model 1, J=5, n=100 . . . . . . . . . . . . . . . . . . . . . . . 66
10.6 Postulated Model 1, J=5, n=1000 . . . . . . . . . . . . . . . . . . . . . . 67
10.7 Postulated Model 1, J=20, n=10 . . . . . . . . . . . . . . . . . . . . . . . 68
10.8 Postulated Model 1, J=20, n=100 . . . . . . . . . . . . . . . . . . . . . . 69
10.9 Postulated Model 1, J=20, n=1000 . . . . . . . . . . . . . . . . . . . . . . 70
10.10Postulated Model 1, J=100, n=10 . . . . . . . . . . . . . . . . . . . . . . 71
10.11Postulated Model 1, J=100, n=100 . . . . . . . . . . . . . . . . . . . . . . 72

4



10.12Postulated Model 1, J=100, n=1000 . . . . . . . . . . . . . . . . . . . . . 73
10.13Postulated Model 1, J=5, n=10, c4 = c6 = 3 . . . . . . . . . . . . . . . . . 74
10.14Postulated Model 1, J=5, n=100, c4 = c6 = 3 . . . . . . . . . . . . . . . . 75
10.15Postulated Model 1, J=5, n=1000, c4 = c6 = 3 . . . . . . . . . . . . . . . 76
10.16Postulated Model 2, J=1, n=10 . . . . . . . . . . . . . . . . . . . . . . . . 77
10.17Postulated Model 2, J=1, n=100 . . . . . . . . . . . . . . . . . . . . . . . 78
10.18Postulated Model 2, J=1, n=1000 . . . . . . . . . . . . . . . . . . . . . . 79
10.19Postulated Model 2, J=5, n=10 . . . . . . . . . . . . . . . . . . . . . . . . 80
10.20Postulated Model 2, J=5, n=100 . . . . . . . . . . . . . . . . . . . . . . . 81
10.21Postulated Model 2, J=5, n=1000 . . . . . . . . . . . . . . . . . . . . . . 82
10.22Postulated Model 2, J=20, n=10 . . . . . . . . . . . . . . . . . . . . . . . 83
10.23Postulated Model 2, J=20, n=100 . . . . . . . . . . . . . . . . . . . . . . 84
10.24Postulated Model 2, J=20, n=1000 . . . . . . . . . . . . . . . . . . . . . . 85
10.25Postulated Model 2, J=100, n=10 . . . . . . . . . . . . . . . . . . . . . . 86
10.26Postulated Model 2, J=100, n=100 . . . . . . . . . . . . . . . . . . . . . . 87
10.27Postulated Model 2, J=100, n=1000 . . . . . . . . . . . . . . . . . . . . . 88
10.28Postulated Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.29Postulated Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

11 Sources 91

5



1 Introduction

Statistical inference is based on data collected in scientific studies. For instance, we may
assess the effect of a medical treatment based on a randomized trial with participants
sampled from a given population. If it turns out that a similar experiment was performed
on another group of participants from the same population, one can pool the groups of
participants together, and perform an analysis on the larger dataset.

There may be other studies that investigate the same research question as the first
study, but that do so in slightly different ways, e.g. because the participants were
sampled from a different population or because the treatment effect was assessed using
a different measure. If we want to use traditional statistical methods in such cases, we
have to choose between two alternatives:

1. Only use a subset of results that came from similar experimental situations. This
can lead to low statistical power.

2. Use a larger subset of results despite the differences. This could result in biased,
or even nonsensical, results.

If several studies investigate the same research question, they should all contain valuable
information. There must be a way of using all the available information.

In this thesis, we describe a new statistical method with the potential of combining
data from heterogeneous data sources. The method is built upon a simple and intuitive
idea: that for any phenomenon, there is a statistical model which generates the data.
We call this the Mother Nature’s Model. Gaining full knowledge of the Mother Nature’s
Model may be impossible, but based on scientific expertise, we may design a statistical
model which is a good approximation of the Mother Nature’s model. We call this
our Postulated Model. To investigate if our Postulated Model is plausible, we perform
simulations where the experimental procedure behind the observed data is recreated. If
the Postulated Model can be used to generate data sufficiently close to the observed data,
the Postulated Model is deemed plausible. We can then use the plausible Postulated
Model to calculate quantities of interests, such as risks. Because the interest is in the
model that generated the data, a very broad range of data sources can be used.

We call the new method the Heterogeneous Sources method (the HS method).
The HS method can be used in a variety of contexts. In this thesis, however, we limit

the applications to meta-analysis. This is a group of statistical methods that aim at
summarizing the results of many research studies, and the HS method has the potential
to enrich this field.

1.1 The aim of the thesis

The HS method is still under development. As explained in sections 3 and 4, a solid
theoretical foundation is yet lacking. With this thesis, we aim to describe the basic ideas
underlying the HS method; provide details for applying the method; and report on the
results of two simulation studies, as well as the result of an analysis of real data. We
also give possible suggestions for further developments of the HS method.
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1.2 An outline of the thesis

The remainder of the thesis is structured as follows:

• In section 2, we introduce meta-analysis. We look at both the history of the field
and the methods that are currently being used, as well as point out limitations of
these methods.

• In section 3, we describe the HS method and explain how it can be applied to
meta-analysis.

• In section 4, we discuss inference with the HS method, which we later use in the
simulation studies.

• In section 5, we outline some computational details regarding the application of
the HS method.

• In sections 6 and 7, we present the results of two simulation studies that show
potentials and limitations of the HS method.

• In section 8, we show how an analysis of real data can be performed with the HS
method.

• In section 9, we give a short summary and make some suggestions for future re-
search.
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2 An overview of meta-analysis

Meta-analysis is a set of methods that aim to use existing research to improve statistical
power. While such methods have existed for a long time, meta-analysis has increased
dramatically in popularity during the last decades.

In this section, we first describe early methods of meta-analysis and then we describe
current methods in closer detail. We end the section by considering some limitations
that the current methods of meta-analysis suffer from.

2.1 The omnibus test

This section is based on Hedges (1992).
Scientists have always taken the results of previous studies into account when conduct-

ing their research. To this day, it often takes the form of a “scientific review”, where the
researcher discusses results from studies that they find relevant. Such an analysis does
not, in general, result in a single conclusion, and what studies are deemed relevant is up
to the researcher.

Systematic summaries of previous research began appearing in 18th century astron-
omy. Adrien-Marie Legendre along with other scientists, combined data from a series
of observations to make precise estimates of general patterns in planetary motion. This
was the foundation of the least-squares method for solving a system of linear equations.

At the start of the 20th century, meta-analysis, as we know it today, started to develop.
Methods were developed to summarize the hypothesis tests from several, independent
research studies. For n studies, each estimating an effect parameter λi, i = 1, .., n, there
are n separate null hypotheses to be tested:

H0,i : λi = 0, i = 1, ..., n.

where large values of the test statistic leads to a rejection of the null hypothesis.
The so-called omnibus test was developed to investigate if the true effect is 0 in all

studies. That is, the null hypothesis of the omnibus test is

H0 : λ1 = ... = λn = 0.

Several ways of testing this hypothesis were suggested. All of them use that the one-
tailed p-value of the ith study is

pi = P (Ti > ti|λi = 0)

where ti is the obtained test statistic of the ith study. All Ti are assumed to be continuous
and independent of each other. Under Hi,0,

pi ∼ U(0, 1), (1)

by the probability integral transform. This property is used in the methods described
below.
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By the minimum-p method, we reject H0 when

min(pi) < 1− (1− α)1/k

for a desired significance level α.
The inverse χ2 method exploits that under H0 and independence, we have that
−2
∑

i log(pi) ∼ χ2
df=2n. This leads to a test where H0 is rejected when

−2
∑
i

log(pi) > C

for a C corresponding to a suitable quantile of the χ2 distribution with 2n degrees of
freedom.

A third method is the inverse normal method. Set Φ(zi) = pi, where Φ(.) is the
standard normal cumulative distribution function. Define Z such that

Z =
z1 + ...+ zn√

n
=

Φ−1(p1) + ...+ Φ−1(pn)√
n

.

It can be shown that Z ∼ N(0, 1), so a hypothesis test with Z as a pivot statistic can
be performed.

2.1.1 Limitations of the omnibus test

In many fields, including biostatistics, we are interested in the size and direction of
the intervention effect λi. The omnibus test is in general not well-suited for drawing
conclusions on these matters. Rejection of H0 only tells us that one H0, i false. This is
a rather weak claim, especially if there are many λi’s.

2.2 Standard methods in meta-analysis

Meta-analysis as we know it today is centered around the idea of estimating the size
of an intervention effect, rather than simply testing the hypothesis that the effect is
different from zero. The phrase “meta-analysis” was coined by Gene Glass (1977). In
the following decades, meta-analysis became increasingly popular, particularly in the
social sciences. Lately, applications in natural science and biostatistics have become
more common. A meta-analysis is usually performed using the following steps:

1. Decide on the intervention effect of interest, e.g. the effect of a new diet on BMI;
the change in survival for patients who undergo a cancer treatment; or the possible
increase in the risk of Parkinson’s disease for farmers exposed to a pesticide.

2. Decide a statistic with which to measure the intervention effect, e.g. odds ratio,
risk ratio or hazard rate.

3. Set methodological standards that all research studies should live up to. The
methodological standards can specify major issues, such as what experimental

9



design can be used, or they can specify minor details, such as the number of
participants included in the studies or the age ranges of the participants.

4. Collect research articles. This is done by searching databases containing scientific
journals, and potentially also by collecting unpublished papers.

5. After removing the articles that do not live up to the methodological standards
that were set, a weighted average of the reported intervention effects is calculated.
The weighted average of the intervention effect usually serves as the main result
of a meta-analysis.

6. Additionally, an analysis of the variation of reported intervention effects can be
performed. For instance, one may investigate how features of the participants or
the study design affect the intervention effect.

2.3 Calculating a weighted average

The weighted average of the intervention effect is the main result of almost all meta-
analyses. There are two dominant frameworks for generating the weights: Fixed Effect
and Random Effects models. These two frameworks make different assumptions about
the collected research studies and how they are related to each other.

2.3.1 The Fixed Effect model

This section is based on Borenstein, et. al. (2007, p 6-12).
Within the Fixed Effect framework, we assume that all studies are estimating the same

underlying intervention effect. If different studies report different results, it is merely
due to random sampling error. The reported intervention effect of the ith study can be
represented as

ti = µf + εi

where µf is the true effect common to all studies and εi is the sampling error of the ith
study, var(εi) = v2

i .
When using a Fixed Effect model, we are implicitly assuming that all studies used the

same methodology and sampled participants from the same population. These assump-
tions lead to a natural process for calculating the weighted average:

t̄w =

∑n
i tiwi∑n
i wi

, (2)

where wi = 1
v̂2i

and v̂2
i is the observed variance of the ith study. The size of v̂2

i largely

depends on the sample size of the ith study. Therefore, using the Fixed Effect model to
calculate an average intervention effect is very similar to pooling together results from
different studies and taking the average.

A natural estimate of the true intervention effect µf is the weighted average of the
intervention effect:

10



µ̂f = t̄w.

2.3.2 The Random Effects model

With a Random Effects model, it is assumed that different studies are estimating different
true intervention effects. This is because the studies differ in ways that are relevant for
the intervention effect, e.g. that they use different experimental designs and sample
participants from different populations.

Despite these differences, it makes sense to calculate a weighted average of intervention
effects. This is because we are assuming that there is a distribution of intervention effects.
We consider the true intervention effects of the studies included in a meta-analysis to be
a random sample from this distribution of intervention effects. The weighted average of
intervention effects is an estimate of the average in this distribution.

The reported intervention effect of the ith study is defined as

ti = θi + ei

where ei is the sampling error with variance var(ei) = v2
i .

θi is the true intervention effect of the ith study and θi = µr+δi. Here, µr is the mean
of the distribution of intervention effects, and δi represents how the true intervention
effect of the ith study deviates from µr. V ar(δ) = ∆2 is a measure of the variation of
true intervention effects in the distribution.

Thus, the Random Effects model assumes that two types of sampling are taking place.
First, we are taking a random sample from the distribution of true intervention effects
θ. The expected true intervention effect is µr and the variance is ∆2. Then, traditional
sampling error occurs due to the selection process of study participants.

There exist several methods for estimating the parameters in the Random Effects
model. As Bodnar (2016) notes, the differences are small with a large sample size, and
are not relevant for this thesis. Therefore, we will only describe the estimation method
proposed by DerSimonian & Laird (1986) in an influential paper. Their estimator of µr

is

µ̂r =

∑
iw

r
i ti∑

iw
r
i

.

Here wri = (v̂2
i + ∆̂2)−1 is the inverse of the sample variance estimate and an estimate

of the between-study variance ∆2 . The latter can be found by considering

Q =

n∑
i

wi(ti − t̄w)2, (3)

for t̄w and wi as in (2). Q is a measure of the variation among the reported intervention
effects. Under the assumption that there is no between-study variance, meaning that
∆2 = 0, Q is asymptotically χ2 distributed with n− 1 degrees of freedom. This implies
that Q has the degrees of freedom n− 1 as its expected value.
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We can use this to estimate ∆2 by

∆̂2 =
max(0, (Q− (n− 1)))

C

for

C =

n∑
i

wi −
∑n

i w
2
i∑n

i wi
.

This estimator is derived from

E(Q) = ∆2(
∑
i

wi −
∑

iw
2
i∑

iwi
) + n− 1.

∆̂2 can now be inserted into wri and used with the estimator µ̂r.

Measures of heterogeneity

This section is based on Higgins & Thompson (2002a).
Meta-analyses often provide a measure of the heterogeneity of the reported study

results. In particular, it is common to assess whether all studies included in the meta-
analysis can be assumed to share the same true intervention effect. These assessments
often guide whether a Fixed Effect or Random Effects model is used.

We have seen that if all studies share the same intervention effect, then Q ∼ χ2
df=n−1.

If Q > C for a C corresponding to a suitable quantile in the χ2
df distribution, we reject

the hypothesis that all studies have the same intervention effect, because ∆2 > 0.
The Q statistic is only asymptotically χ2 distributed, however. With few studies, the

Q test is underpowered. There are alternatives, with greater statistical power. One
popular such measure is the I2 statistic, which gives a measure of the proportion of
between-study variation that is due to differences in the true intervention effect rather
than sample variance:

I2 =
∆̂2

∆̂2 + v̂2
,

with v̂2 = E(v̂2
i ).

Using the Q or I2 statistics to decide between a Fixed Effect and Random Effects
model may seem reasonable since both of these tests are easy to perform. However, the
Random Effects and the Fixed Effect models use different assumptions regarding how
the summary statistics were generated. It is not obvious that the Q or I2 statistics are
good indicators of which model we should choose. It seems wiser to look at the actual
methodology behind the studies, as this is what should guide the decision of what model
framework we use.
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2.4 Meta-regression, network analysis and Bayes

Calculating the average intervention effect with a Fixed Effect or Random Effects model
is likely the most common meta-analytical method, but there are other tools as well.

Meta-regression is a method to further explore potential sources of heterogeneity of
study results. As the name suggests, meta-regression is a type of regression analysis used
to estimate the effect that a particular study feature has on the expected intervention
effect. For instance, if participants in different studies were of different ages, we may
estimate the effect age has on the intervention effect. Unfortunately, meta-regression is
seldom applicable because many studies are required. (Thompson 2002)

Network analysis is a way of indirectly comparing the effects of several related inter-
ventions, in situations where they have not been compared in a single study. The idea
is that if interventions A and B were compared in study 1, and intervention B and C
were compared in study 2, then assuming transitivity, we can compare A and C via B.
(Hu, et.al. 2020)

Lastly, although it has historically been common to perform meta-analysis within a
frequentist framework, it is increasingly popular to use Bayesian methods. As pointed
out in Bodnar (2016), there are several benefits to applying a Bayesian perspective. For
example, uncertainties regarding the between-study variance ∆2 can be modeled, and
subject-matter knowledge (for instance grounded in previous meta-analyses) can be used
in formulating the prior distributions of the µ and ∆2 parameters.

2.5 Limitations of Fixed Effect and Random Effects models

Several criticisms have been directed against meta-analysis. The most common critique
is that by combining results of studies that are different from each other, a comparison is
not meaningful. A related critique is that we risk averaging over poorly designed studies,
so that the conclusion is similarly poor. Meta-analysis is also prone to publication bias,
since it is predominantly published studies that are included in an analysis. (Borenstein,
et. al. 2009, chapter 43)

In this thesis, we focus our attention on two difficulties that are related to each other:

1. If we set strict methodological standards on the studies included in our meta-
analysis, then the studies share similarities in terms of experimental design and
study populations, meaning that the weighted average that we calculate is easy
to interpret. However, the stricter our standards are, the fewer studies can be
included in the analysis.

2. If we set loose methodological standards, we can include more studies in our anal-
ysis, but it is less clear what the weighted average is an average of.

If we try to avoid the first problem, we get more of the other problem and vice versa.
The Fixed Effect model avoids the second problem, by assuming that all studies in-

vestigate the same question in the same way. However, in biostatistics, it is very seldom
the case that several studies are sufficiently similar. Therefore, the Fixed Effect model
is usually not applicable in biostatistics.
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The Random Effects model should be able to avoid the first problem, since it allows for
differences between studies. The consequence of having loose methodological standards,
however, is that the impact of differences between studies is included in the random
effects parameter. The interpretation of this parameter is often unclear. Some questions
that might come up include: what does it mean that there is a population of intervention
effects? Does it consist of the true intervention effects of all possible ways of conducting
a study? Is there any reason to believe that our sample from this population is random?

A meta-analysis could suffer from both problems at once. According to Davey et.
al. (2011), the number of studies included in a Random Effects meta-analysis in the
Cochrane meta-analysis database is fewer than five in 75% of the cases. As Bodnar
(2016) points out, this also means that the estimator of the between-study variance ∆2

becomes unstable.
An example of the selection procedure of studies in a Random Effects meta-analysis

can be seen in the flow-chart by Meyer-Baron, et. al. (2014) which has been reproduced
in Figure 1. We see that out of 1165 potentially relevant articles, only 22 are used. Many
studies that investigated the same research question were excluded because they used a
slightly different study design from what the authors of the meta-analysis had set out
for.

If many studies are investigating related research questions there is valuable infor-
mation in all of them. It is important to find a way of extracting this information.
Calculating a weighted average may just not be the best approach.

Figure 1: A flowchart from Meyer-Baron (2014) showing the process of including studies
in a Random Effects meta-analysis.
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3 An intuitive explanation of the HS method

The topic of this thesis is a new statistical method conceived by Matteo Bottai at
Karolinska Institutet. We refer to it as the HS method, since it is a method that lets us
synthesize data from heterogeneous sources. While the method could potentially be used
in a broader context, we mainly discuss it here from the perspective of meta-analysis in
biostatistics.

In this section, we describe the central idea behind the the method and briefly explain
how it can be used to analyze data. We also argue that the HS method has the potential
to avoid the limitations of standard meta-analysis.

No proofs are given and mathematical notation is limited to the strictly necessary.
The aim is to convey the intuition underlying the HS method.

3.1 The Mother Nature’s Model and the Postulated Model

For a specific set of variables of interest, we consider the true data-generating model,
marginalized over the non-relevant variables. We call this the Mother Nature’s Model.

Definition 3.1 (The Mother Nature’s Model). Let Y ∈ Rq be a vector with variables of
scientific interest andXM ∈ Rp be a vector of explanatory variables. SetWM = (XM , Y )
and parameter vector θM ∈ ΘM ⊆ Rd where ΘM is a finite subset of values in a
well-defined d-dimensional real hyperspace. The Mother Nature’s Model of WM is a
parametric joint probability function fM (wM |θM ) : Rp+q ⊗ Rd 7→ R+.

Definition 3.2 (Non-relevant variables). For Z ∈ Rv such that Z 6∈ WM , we say that
Z is non-relevant with regard to WM if fD(wM ) ≈ fD(wM |z), where fD is a true data-
generating model.

Remark 3.1. We can view the Mother Nature’s Model as a theoretical universal data-
generating model fD marginalized over the non-relevant variables Z, fM (wM |θM ) =∫
Z fD(wM , z)dz. Albeit an interesting philosophical question, we do not go deeper into

what the true data-generating model fD is. Whether we consider it an entity existing
in the Platonic sense, or merely a useful fiction, should matter little for this thesis.

The Mother Nature’s Model of any phenomenon is unknown to us, but based on
scientific expertise and prior research, we can construct a model that we postulate for
Mother Nature’s.

Definition 3.3 (The Postulated Model). Define Y as in Definition 3.1 and let X ∈
Rk, k ≥ p be a vector of explanatory variables. Set W = (Y,X) and let θ ∈ Θ ⊆ Re
where Θ is a finite subset of values in a well-defined e-dimensional real hyperspace. The
Postulated Model fP (w|θ) : Rq+k ⊗ Re 7→ R+ is a parametric joint probability function
that aims at containing the Mother Nature’s Model as a special case, in the sense that
the parametric family of fP contains the parametric family of fM .

Remark 3.2. We assume that there is a value of θ ∈ Θ such that the Postulated Model
is approximately equal to the Mother Nature’s Model over the relevant variables, that
is
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fM (w|θM ) ≈ fP (w|θ).

for some θ ∈ Θ.

3.2 The inferential procedure

The role of scientific experts is vital in applying the HS method. Without scientific ex-
pertise, it is extremely difficult to identify a Postulated Model belonging to a parametric
family that includes the parametric family of the Mother Nature’s Model, as required
by Definition 3.3. In the remainder of the thesis, we do not discuss the role of scientific
experts in detail.

However, scientific expertise alone is likely not sufficient to find a fP and θ such that,
by Remark 3.2, fP ≈ fM . For that, we need to make inference based on data. If the
model that we postulate for Mother Nature is a good approximation, it should be able to
produce data that is similar to the real data. This assumption leads us to the following
inferential procedure:

We begin by gathering data related to the Postulated Model. We then use our Postu-
lated Model to perform simulations where we recreate the experimental procedure used
to generate the data. Any kind of data is useful, as long as it is related to the Postulated
Model and it is possible to replicate the experimental procedure. It can be data from
cohort studies, randomized trials, case-control studies or studies with any other exper-
imental design. The data itself may come in different forms. Raw data with variable
values for each study participant can be used, as well as summary statistics, such as
mean values and odds ratios. Participants in the studies may come from different popu-
lations with different characteristics. The data can also come in the form of facts about
a whole population, such as the true proportion of males and females in Germany, or
the number of deaths in Finland in a given year. The only limit to the type of data that
can be used is that it must relate to the variables in the Postulated Model and we must
know enough about how the data was generated so that we can replicate the procedure.

The reason why the HS method can handle such heterogeneity is that all data was
generated by the same Mother Nature’s Model. If the Postulated Model is plausible,
it should be able to generate similar data. Differences in terms of experimental design,
study population and reported statistics are accounted for in the simulation process,
where we sample participants from the same populations, perform the same experiments
and calculate the same statistics as those in the experiments.

If the data generated with the Postulated Model is not close to the observed data,
then the Postulated Model is deemed implausible. We make changes and perform new
simulations. Once the observed data and the simulated data are sufficiently close, we
say that the Postulated Model is plausible.

3.3 Calculating relevant quantities

A plausible Postulated Model can be interesting in itself, but in most cases, we imagine
that the main interest lies in calculating a conditional probability, f(y|x∗), where X∗ ⊆
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X, or a function thereof, such as an odds ratio, a risk difference or a hazard rate. For
example, we may be interested in how the risk of contracting cancer is different between
people exposed to and those not exposed to a pesticide, and how this difference depends
on the age or sex of a person.

A plausible Postulated Model can be used to approximate the quantity of interest,
using fP (y|x∗) with X∗ ⊆ X.

This makes a plausible Postulated Model an extremely powerful tool. We can use it
to calculate any quantity of interest. This is in stark contrast to statistical methods in
general and standard meta-analysis in particular, where the result of an analysis is the
quantity of interest expressed with a particular measure.

3.4 An example of inference with the HS method

As an example of how the HS method could be used, assume that we have the following
Postulated Model:

MODEL 1

Z ∼ Be(g[θ1])

X ∼ Be(g[θ2 + θ3Z])

Y ∼ Be(g[θ4 + θ5X + θ6Z + θ7XZ])

with g(a) = (1 + exp(−a))−1, {X,Y, Z} ∈ {0, 1} and θi ∈ R, i ∈ {1, ..., 7}.
Further assume that we are interested in the association between X and Y , and that

we have gathered the following data from three different studies:

• Observations of the X and Y variables for m individuals: (xi, yi), i = 1, ...,m

• The proportion out of o participants for which X = 1.

• The coefficients of a logistic regression model of Y given Z, based on k participants.

All this data can be used to make inference, since we can perform simulations with the
Postulated Model.

For the first data set, we could generate X and Y values for m individuals and compare
the simulated values and the real values with a suitable distance function. For the second
data set, we could simulate o individuals and calculate the proportion that has X = 1,
and compare this proportion with the proportion reported in the research study. For
the third data set, we could generate k individuals and perform logistic regression of Y
given Z. The coefficient estimates from our simulation can then be compared with the
reported coefficient estimates.

Plausible values on the θ coefficients in our Postulated Model are found by searching
for θs that can reproduce results similar to the results from the research studies. Once
we have a plausible Postulated Model, we can use it to calculate any probability or
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association measure related to the phenomenon we are interested in. For instance, we
can use Model 1 with plausible θ values to express the association between X and Y in
terms of an odds ratio, risk rate, risk difference or any other measure we can think of,
using the marginal probability distribution.

3.5 “Meta-analysis” with the HS method

As already stated, a Postulated Model can be used to recreate any type of data and
functions of data, including summary statistics. This is useful as meta-analyses are
typically based on summary statistics. The equivalent of a meta-analysis with the HS
method can be performed in the following way:

1. Based on scientific knowledge, design a Postulated Model of the phenomenon that
we are interested in. This means that even if we are interested in the association
of e.g. a exposure to a pesticide and Parkinson’s disease, we design a Postulated
Model of Parkinson’s disease, with more variables than just pesticide exposure, to
the extent we believe them to be important.

2. Collect data related to the Postulated Model. The data can be related to any
variables in the Postulated Model, not only the variables whose association we
are ultimately interested in. The experiments that generated the data may follow
different designs, and participants may be sampled from different populations.

3. Perform simulations that recreate the collected data. This includes sampling par-
ticipants from the same population as in the studies; simulating exposure to the
same treatment; and calculating the same summary statistics. When performing
these simulations, we may also model the biases we suspect to be present in the
available studies, e.g. non-response bias, self-report bias or publication bias.

4. If the results from the simulations are not sufficiently close to the results reported
in the studies, the Postulated Model is implausible. In that situation, we must
make changes to our model and try again.

5. Once we can generate results that are sufficiently close to the reported results, we
say that we have a plausible Postulated Model that we can use to calculate the
association measures of interest.

This procedure is quite different from a standard meta-analysis. Not only can we include
a much wider range of data in our analysis – it is required if we are to make precise infer-
ence for the parameters in our Postulated Model. Fortunately, much useful information
that we often bypass can be used from research papers. For instance, if a study reports
on the association between pesticide exposure and cancer, a standard meta-analysis only
looks at the measure of that particular association. With the HS method, we can use
the distribution of age, sex, education level and many other variables. Journal papers
are usually full of these facts, and using the HS method we can exploit them.
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3.6 The limitations of standard meta-analysis revisited

In section 2, we pointed out two limitations of traditional meta-analysis, namely that
we have to choose between imposing strict methodological standards – meaning that the
weighted average still makes sense but there are few studies to include. Or imposing
looser methodological standards – meaning that we can include more studies but the
weighted average is less meaningful.

As we have seen, the HS method has the potential to handle both of these problems.
We can include a wide range of studies in our analysis in a way that makes sense. Differ-
ences in experimental design and sampling populations are considered in the simulations.
With regards to the flowchart in Figure 1, using the HS method, we would be able to
include all of the 60 studies that were reviewed in detail, rather than having to ignore
38 of them.

The HS method also has the potential to handle the other limitations that were briefly
mentioned, namely publication bias and problems caused by poor studies. The publi-
cation bias can be modeled in the simulation procedure, as can other biases such as
non-response bias. Poor study design is not a problem. As long as we can follow the
steps that the original researchers took, the results of the studies are useful with the
HS method. This point is elaborated on in Simulation Study II, where we show that a
flawed study can be included in an analysis.

3.7 Topics for future research

Making inference on the Postulated Model is different from traditional statistical infer-
ence. Below we list some of the questions that have to be further explored.

The size of the Postulated Model

According to Definition 3.3, the Postulated Model can be larger than the Mother Nature’s
Model, as long as the Mother Nature’s Model is included in the Postulated Model. How
large can the Postulated Model be? When employing traditional statistical methods,
we prefer parsimonious models because they (a) are easy to interpret and because (b)
unnecessary parameters may absorb noise from the sampling procedure. Regarding (a),
if our interest is in the Postulated Model in itself, then the interpretability issue is
relevant for us as well. But as we pointed out in Section 3.3, we are often interested
in a conditional probability, and a comprehensive Postulated Model does not affect our
appreciation of that probability. Regarding (b), we see in section 4 that the sampling
procedure is taken into account when estimating the parameter values.

Still, large models are difficult to work with, particularly if we have to make inference
for many parameters, so there is no reason to use extravagant Postulated Models. Strik-
ing the balance between having a Postulated Model that includes the Mother Nature’s
Model as a special case, and having a Postulated Model that is easy to work with is
certainly not a trivial concern.
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Sampling and asymptotics

Similar to the Random Effects model, it is not obvious how data included in an analysis
with the HS method should be considered to have been sampled. Is it a sample from
all research studies that could have been performed? Or is it rather not a sample in the
traditional sense? Should we treat it as facts about the world?

Similarly, if we want to consider the asymptotic results of our analysis, then does the
asymptotic relate to the number of studies or the number of participants included in
studies?

Finding the answers to these questions may be difficult, and it may have a big impact
on the theoretical foundation of the HS method. For instance, it may determine if we
place the method in a frequentist or Bayesian framework.

Sufficient data

A Postulated Model is plausible when it is consistent with observed data. What data
are we referring to? A natural starting point is to include data related to the variables
that are most pertinent to our research question. This gives information about the
parameters related to the observed data – but as we see in Simulation Study I in section
6, it also gives information about parameters related to variables in the model that are
not in the observed data.

However, including observed data on all the variables in the Postulated Model should
yield more precise estimates of all parameters. Therefore, it is not a good strategy to
only include studies in an analysis that are similar to each other. Rather, we want to
use studies that are investigating different aspects of our Postulated Model: studies that
report on different variables for different subpopulations. This point is elaborated on in
sections 6, 7 and 8.

At the same time, recreating data related to many variables is time-consuming and
for high-dimensional data, the curse of dimensionality may make it difficult to compare
simulated and observed data.

For these reasons, we have to find a way to determine what data is sufficient in
order to make decent inference on our Postulated Model, given that we are interested in
calculating a particular conditional probability, as described in section 3.3.

Generalizing over populations

Different studies may have sampled participants from different strata of the total pop-
ulation. Ideally, we would have data related to all important variables for all relevant
strata of the population, but this is unlikely to be the case. It is more likely that some
studies report on some variables for one population stratum, and other studies are report
on different variables for other strata. It is not obvious how to combine these results
into inference on a single Postulated Model.
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4 Inference with the HS method

Inference on the Postulated Model is performed by simulating data with a Postulated
Model and determining whether it is sufficiently close to the observed data. We can
imagine many different measures of the distance between the observed data and sim-
ulated data, e.g. Euclidean distance. In this section and the remainder of this thesis,
we focus on a particular way of measuring the distance between observed and simulated
data, based on the sampling distribution of the simulated data. It is a natural start-
ing point in a meta-analytical context, and it is the inferential method that we use in
the simulation studies in sections 6, 7 and 8. After a description and justification of
the algorithm that is used, we outline two methods for density approximation that the
sampling-based method relies on.

We then briefly discuss another approach to inference, namely likelihood-based infer-
ence. This method is still being developed and several theoretical considerations have
to be dealt with before an application of this method can be fully understood. We also
briefly discuss some other methods that show similarities to the HS method.

As already pointed out, the HS method is described in the context of meta-analysis in
this thesis. Among other things, this has the consequence that we only consider inference
based on summary statistics in this section, although any kind of observed data could
be used with the HS method.

4.1 Sampling-based inference

Our primary interest is in the Postulated Model fP (w|θ), as described in Definition
3.2, with θ ∈ Θ ⊆ Re. In order to make inference on θ, we have access to summary
statistics from research studies. For the jth study, wj ∈ Rnj×(q+k) is a matrix of data
on all variables in the Postulated Model for all participants in the study, with nj being
the number of participants of the jth study and q + k the number of variables in the
Postulated Model. Note that wj is the true data matrix and the researchers of the jth
study most likely only recorded information on some of the variables. The summary
statistic of the jth study is sj(wj) : Rnj×(q+k) 7→ Rdj , where dj can differ between
studies.

Given θ, the sampling distribution of sj(·) is

sj(W ) ∼ fj(sj(w)|fP (w|θ)),

with the unknown function fj : Rdj⊗Re 7→ R+. The characteristics of fj depend not only
on θ, but also on what summary statistics sj are used, how participants were sampled
and other details of the experimental design. This means that the fj ’s may differ in
many ways; what they have in common is fP (w|θ).
fj can be approximated by using simulated data from the Postulated Model with a

density approximation method, such as a kernel density estimator or a copula density
estimator. The approximation is denoted

f̂j(sj(w)|fP (w|θ)). (4)
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We want to make an inference on θ based on how unlikely the reported summary statistics
are according to the f̂js. To this end, we introduce some concepts.

Definition 4.1 (Significance πj(θ)). Significance with regard to a parameter vector θ
and summary statistic sj(wj) is

πj(θ) = Pr[f̂j(sj(w)|fP (w|θ)) < f̂j(sj(wj)|fP (wj |θ))] =∫
W
f̂j(sj(w)|fP (w|θ))dsj(w),

where W = {w ∈ R(q+k)×nj : f̂j(sj(w)|fP (w|θ)) < f̂j(sj(wj)|fP (wj |θ))}. Since πj is a
probability, πj(θ) ∈ [0, 1]. Furthermore

π(θ) = ∩Jj=1πj(θ),

where π(θ) ∈ [0, 1].

Remark 4.1. By Definition 4.1, significance is defined in terms of the sampling distri-
bution f̂j . Since the samples are from simulations, the approximation can be as close to
the true fj as desired, since the number of simulations can be increased.

Definition 4.2 (Plausibility). We say that θ is plausible at the 1− α level if

π(θ) > α,

for α ∈ (0, 1).

Deciding whether a θ is plausible can be viewed as a hypothesis test, where the null-
hypothesis H0 is that fP (·|θ) generated the observed data, and H0 is only rejected if
π(θ) ≤ α. f̂j approximates the true distribution for any sample size and does not rely
on asymptotic results of large samples. Hence, the test described in Definition 4.2 can
be viewed as an exact test rather than an approximate, large-sample test.

When making inference with the HS method, we are looking for all possible θ’s that
are plausible. We call this the Plausible Region of θ.

Definition 4.3 (The Plausible Region R(α)). The 1− α Plausible Region of θ is

R(α) = {θ ∈ Θ : π(θ) > α}

for α ∈ (0, 1).

Remark 4.2. Let θ∗ denote the parameter vector of the same length as θ such that:

1. θ∗ has the same value as θM for all parameters that are both in θ and θM .

2. For the parameters which are in θ but not in θM , the value in θ∗ corresponds to
the parameters having no impact (direct or indirect) on the variables WM in the
Mother Nature’s Model.
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A characteristic of the Plausible Region is that we expect it to contain the value of θ∗

with probability 1− α, that is

P [θ∗ ∈ R(α)] = 1− α.

R(α) gives us a region of plausible parameter values, but it does not give us a particular
value of θ which is deemed the most plausible. Neither does it enable us to say which of
the several plausible models is the most plausible.

How these facts should be handled likely depends on the context. In some contexts, we
may choose the θ with the highest significance value as our point estimate. In other cases,
it may be wiser to refrain from drawing a conclusion and propose more research. Or it
may be possible to choose a θ over others based on practical or theoretical considerations.
For instance, if exposure to a pesticide is deemed highly dangerous according to some θ
but not according to another, we may be best to assume that the most pessimistic θ is
the correct one.

4.2 An algorithm for finding a plausible θ

The Plausible Region R(α) can be found by performing a hypothesis test for each θ that
we are interested in. In the simplest case, there are K different θ vectors (θ1, ..., θK)
that we test with the following algorithm:

For θk ∈ (θ1, ..., θK):

H0 : fP (·|θk) generated the data.

If π(θk) < α→ reject H0, else do not reject H0.

For high-dimensional θ the above procedure becomes computationally costly, particularly
if we want to consider the whole Θ. Therefore, it is desirable to develop a numerical
method that can identify R(α). No such method has yet been developed.

4.3 Density approximation techniques

To evaluate π(θ), we rely on methods of approximating the probability density function
of the summary statistics based on simulated data. We have explored two alternatives:
kernel density estimators (KDEs) and copula density estimators (CDEs). While the term
“estimator” is established, a more fitting term for our application is “approximator”.
This is since the data we use with the estimator is simulated data from the assumed data-
generating process, such that the copula or kernel method approximates this probability
density function.

We discuss both methods in the next sections, although CDEs are used in the simu-
lations in sections 6, 7 and 8.
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4.3.1 Kernel density estimators

The kernel density estimator is an established method of estimating an unknown prob-
ability density function based on observed data from this distribution.

Definition 4.4 (Kernel density estimator). Given d-dimensional datapoints {xi}, i =
1, ..., n, xi ∈ Rd from an unknown probability density function f , the kernel density
estimator f̂ : Rd 7→ R+ is

f̂H(x) =
1

n

n∑
i=1

KH [(xi − x)].

Here, KH(x) = |H|−1/2K(H−1/2x) with K : Rd 7→ R+. H is a symmetric, positive-
definite d× d bandwidth matrix (sometimes called smoothing matrix). K and H can be
chosen so that f̂H is f̂H(x) ≥ 0 and

∫
X f̂H(x)dx = 1, as is required from a probability

density function. (Duong 2007)

There is an abundance of kernel functions to choose from. Most common, and the de-
fault option in most statistical software, is the Gaussian kernel: K(x) = (2π)−d/2 exp(−1

2x
tx).

Generally, the choice of kernel has little impact on the performance of f̂H , while the band-
width matrix H has a large influence. A natural measure of performance of f̂H is the
mean integrated square error (MISE).

Definition 4.5 (MISE). MISE measures the average (over data-samples) squared dis-
tance between the estimated function and the true function:

MISE(f̂H) = E[

∫
X

(f̂H(x)− f(x))2dx] =

∫
Rd

Bias[f̂H(d)]2dx+

∫
Rd

V ar(f̂H(x))dx.

Remark 4.3. Based on the MISE, the optimalH matrix isHMISE = arg minHMISE(f̂H),
where H can be selected from the space of symmetric, positive definite d × d matrices.
(Duong 2007)

MISE is in general impossible to express in closed form, so to find a suitable H one
often relies on the asymptotic mean squared error (AMISE).

Definition 4.6 (AMISE). AMISE can be derived from the MISE via Taylor-series
expansion:

AMISE(f̂H) =
|H|−1/2

n
R(K) +

µ2(K)2(vech(H)t)Ψ4(vech(H))

4
. (5)

Here, R(K) =
∫
X K(x)2dx; µ2(K)Id =

∫
X x

txK(x)dx; and
Ψ4 =

∫
X vech[2Hf − dgHf ]vech[2Hf − dgHf ]tdx.

Hf is equal to the Hessian matrix of f . dgA is the matrix A with all off-diagonal
elements set to zero. vech(H) is a d(d + 1)/2 vector containing all entries in H on or

below the diagonal, listed column by column. E.g. for H =

(
h1 h2

h3 h4

)
, then vech(H) =

(h1, h3, h4). (Wand & Jones 1996)
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Remark 4.4. Based on AMISE, the optimalH matrix isHAMISE = arg minH AMISE(f̂H).

As Wand & Jones (1996) notes, AMISE(f̂H) depends on the unknown f , since Ψ4

is defined in terms of the Hessian of f . In order to find HAMISE , a common approach
is to estimate f based on the data, and insert this estimate into AMISE(f̂H). To this
end, we note that Ψ4 is a 1

2d(d + 1) × 1
2d(d + 1) matrix, the elements of which are the

integrated density derivative functionals

ψr =

∫
Rd

f (r)(x)f(x)dx,

where r = (r1, ..., rd) and |r| =
∑d

i=1 ri. Moreover,

f (r)(x) =
∂|r|f(x)

∂r1x1 · · · ∂
rd
xd

,

with a ψr 6= 0 if and only if |r| is an even integer. For instance, in the two-dimensional
case,

Ψ4 =

 ψ4,0 2ψ3,1 ψ2,2

2ψ3,1 4ψ2,2 2ψ1,3

ψ2,2 2ψ1,3 ψ0,4

 .

Note that since f is a density, we have that

ψr =

∫
X
f (r)(x)f(x)dx = E(f (r)(x)). (6)

Below we describe two common ways of estimating ψr: plug-in estimators and cross-
validation estimators.

1. Plug-in estimator: A plugin-estimator uses a kernel estimator Ψ̂PI of Ψ4 in
formula (5), so that the f which is used in the true ψr is replaced with f̂G(x) =
1
n

∑
jKG(x−Xj). Ψ̂PI has elements

ψ̂r(G) = E(f̂
(r)
G ) =

1

n2

n∑
i

n∑
j

K
(r)
G (Xi −Xj)

with G as a pilot bandwidth matrix. Here we used result (6) in the second step.

According to Duong (2007), the choice of G is less important than the choice of H.
It is common to use the diagonal matrix G = g2I, where g can be chosen based on
several criteria, for instance the mean squared error of ψ̂r.

2. Cross-validation estimators: There are several types of cross-validation esti-
mators: least squares, biased and smoothed cross-validation estimators. As the
names suggest, all of them are based on leave-one-out cross-validation estimators.
In the case of biased cross-validation estimators, we can either replace ψr with
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ψ̂1
r (H) =

1

n2

n∑
i=1

n∑
j=1,j 6=i

K
(r)
2H(Xi −Xj)

or with

ψ̂2
r (H) =

1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

K
(r)
H (Xi −Xj).

See Sain, Baggerly & Scott (1994) for further details on these estimators, and
also for more on the smoothed cross-validation estimator and the least-squares
cross-validation estimator; the latter is based on minimizing an altogether different
loss-function than AMISE.

Both plug-in estimators and cross-validation estimators can be used to identify diagonal
and unrestricted matrices.

A benefit of KDEs is that they are very flexible and can be used to approximate
complicated densities. Their non-parametric nature means that we impose few restric-
tions on the data. A negative aspect of the KDE method is that it is computationally
demanding in higher dimensions.

KDEs are almost exclusively used for continuous variables, and several of the features
outlined above rely on continuous data. KDEs may also be used with discrete and
ordinal data as well, but performance is in general not as good, and different kernels
and bandwidth matrices are preferred. For mixed data, consisting of both discrete and
continuous data, there is less research, but the interested reader can consult Li & Racine
(2003).

4.3.2 Copula estimators

Copulas are used to model the dependence between several random variables. The name
copula comes from the Latin word copulare, which means “connect”, since the copula
connects marginal distributions.

Definition 4.7 (Copula estimator). A copula estimator is a multivariate cumulative
distribution function C : [0, 1]d 7→ [0, 1] such that, by Schmidt (2006),

1. C(u1, ..., ud) = 0 if ui = 0 for any i ∈ {1, ..., d}.

2. C has standard uniform univariate margins, so that C(1, 1, ..., ui, ..., 1) = ui for all
ui ∈ [0, 1] and all i ∈ {1, ..., d}.

3. C is d-non-decreasing, so that for any d-rectangle K ⊆ [0, 1]d,
∫
K C(k)dk ≥ 0.

Remark 4.5. Provided that the partial derivatives of C exist, the copula estimator of
the probability density function is

c(u) =
∂dC(u)

∂ui · · · ∂ud
.

26



Theorem 4.1 (Sklar’s theorem). Mathematician Abe Sklar showed that for every mul-
tivariate cumulative distribution function F , there is a copula C such that

F (x1, ..., xd) = C(F1(x1, ..., Fd(xd)),

for all xi ∈ (−∞,∞), i ∈ {1, ..., d}. When all the Fi are continuous, the copula C is
unique; otherwise it is uniquely defined on Range(F1)× ...×Range(Fd). (Nielsen 2006,
p 46)

Remark 4.6. If Ti is a strictly increasing function; Xi, i ∈ {1, ..., d} are continuous
random variables; and if C is a valid copula for Xi, i ∈ {1, ..., d}, then C is also a valid
copula for Y1 = T1(X1), ..., Yd = Td(Xd). (Nielsen 2006, p 25)

Definition 4.8 (The generalized inverse). The generalized inverse of F is

F←(t) = {x : F (x) ≥ t}.

Remark 4.7. By definition 4.8, we can write a copula as

C(u1, ..., ud) = F (F←1 (u1), ..., F←d (ud)).

This is the definition used in the simulation studies in sections 6, 7 and 8. (Schmidt
2006)

The question is what cumulative distribution functions Fi and F should be used. There
are many alternatives. It is possible to estimate the marginal cumulative distribution
functions with kernel estimators or to simply use the empirical marginal cumulative
distribution function. Most common, however, are parametric cumulative distribution
functions. While there is a risk of model misspecification, parametric distribution func-
tions are computationally efficient. Some noteworthy parametric copulas are:

1. Gaussian copula:
The Gaussian copula is defined

CGR (u) = ΦR(Φ−1(u1), ...,Φ−1(ud)),

with ΦR as the multivariate standard normal distribution with covariance matrix
R, and Φ the univariate standard normal distribution. It is due to Remark 4.6
that we only need to consider the standard normal distribution, as standardizing
a variable is a strictly increasing function.

2. t-copula:
The t-copula is defined

Ctv,R(u) = Tv,R(T−1
v (u1), ..., T−1

v (ud)),

with Tv,R the multivariate cumulative distribution function of the t-distribution
with v degrees of freedom and correlation matrix R. Tv is the cumulative distri-
bution function of the univariate t-distribution with v degrees of freedom; as v
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increases the t-copula approximates the Gaussian copula. As we would expect,
a t-copula is preferable to a Gaussian copula when events in the tails are more
pronounced.

3. Archimedean copulas:
There is an abundance of Archimedean copulas. Their main characteristic is that
they use a single parameter to model the dependence between the variables, no
matter the dimension. At the heart of Archimedean copulas are so-called generator
functions, g. These are continuous, strictly increasing and convex functions, g :
[0, 1]× θ 7→ [0,∞). It follows that S =

∑d
i g(ui) ∈ [0,∞), so that g(S)−1 ∈ [0, 1].

An example of an Archimedean copula is the Gumbel copula g(t, θ) = (− log(t))θ,
and g−1(t) = exp(−t1/θ), so that

CGu(u1, ..., ud) = exp[(

d∑
i

[− log(ui)]
θ)1/θ]

with θ ∈ [1,∞). This assumes a non-negative correlation between the marginal
distributions; other copulas make different assumptions about the correlation.

It is possible to compose a copula out of a single type of cumulative distribution function,
or by using a mixture of distributions. The choices can be made based on theoretical
or practical considerations. For example, when analyzing summary statistics such as
log odds ratios, we know that they are expected to follow a normal distribution, and
therefore a Gaussian copula or a t-copula makes sense. In the case of parametric copulas,
the parameters can be estimated from the data. Goodness-of-fit measures can also be
used to select the copula.

A central aspect of copulas is the modeling of the dependence structure between the
variables. Pearson’s r, which is a measure of linear correlation, can be selected as the
correlation matrix for copulas composed of elliptical distributions, for instance the Gaus-
sian copula and the t-copula. Outside of elliptical distributions, rank-based correlation
such as Kendall’s τ or Spearman’s ρ are more suitable. Rank-based correlation is used
in Archimedian copula. (Schmidt 2006)

Just as with KDEs, copula estimators are best suited to continuous variables. In
particular, by Sklar’s theorem, we know that there is not necessarily a unique copula for
discrete data. Also, the fact that there are likely to be ties with discrete data makes the
covariance more complicated to model. Copula estimators for discrete and mixed data
is a field that has not been thoroughly investigated, but the interested reader can find
more information in Genest & Neslehova (2007).

To the best of our knowledge, it is not common to use the copula estimator as a
way of approximating a probability density in the way that we are interested in. The
approach was conceived because the KDE approach is computationally untenable in
higher dimensions. Compared with KDEs, the great benefit of the copula approach is
that it is highly computationally efficient, in particular with a parametric copula. The
danger of using copulas in this way is that it is sensitive to model misspecification, which
is less of a problem with KDEs.
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4.4 Correcting for multiple studies

This section is based on Agresti & Coull (1998).
As stated in section 4.2, inference with the HS method can be viewed as a hypothesis

test where H0 is that fP (w|θ) generated the data. H0 is not rejected when

π(θ) ≥ α⇔ ∩Jj=1 πj(θ) ≥ α.

When J > 1, this hypothesis test has to be adapted to the fact that several tests are
being performed. Otherwise, if the studies are independent of each other, we have that
under H0

P (π(θ) > α) = (1− α)J < (1− α).

There are several ways of avoiding this. One option is Bonferroni correction, which sets
the confidence level to 1− α/J . The test then becomes

∩Jj=1πj(θ) > α/J,

which yields a test on the desired confidence level, approximately.
Bonferroni correction is problematic when used with a kernel or copula density esti-

mator. As J increases, 1 − α/J becomes more fine-grained, and more simulations are
required for the density estimator to make the distinction between different confidence
levels. Therefore, if J is large and the data is in a high dimension, Bonferroni correction
becomes extremely computationally costly.

Another option is to consider the statistic

L =
J∑
j=1

I(πj(θ) > α).

Under H0, L ∼ Bin(J, p0), with p0 = 1 − α. Based on the observed L value, we can
calculate an estimation p̂ of p0 and reject H0 if p̂ 6= p0 on significance level α. There are
several ways of performing this hypothesis test.

One option is the Clopper-Pearson exact confidence interval. With l denoting the ob-
served value of L, the lower limit of the confidence interval is ωl = inf{p : P (Bin(J, p) ≤
l) > α/2)} and the upper limit is ωu = sup{p : P (Bin(J, p) ≥ l) > α/2)}. The confi-
dence interval is given by

CICP = (ωl, ωu).

The Clopper-Pearson interval contains the true p with at least probability 1− α. With
small J , it has too great a coverage.

An alternative is to calculate a 1− α Wald confidence interval

CIWa = p̂± zα/2

√
p̂(1− p̂)

J
,

with p̂ = l/J and za the 1 − a quantile of the standard normal distribution. The Wald
confidence interval relies on a normal approximation of the binomial distribution which
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is reasonable for large J , but not for small J . In most applications of the HS method
that we can imagine, it may not be a wise choice.

Several modifications of the Wald confidence interval have been proposed to better
handle situations with small J . A simple modification of the Wald confidence interval
was suggested by Agresti & Coull (1998), although they did not invent it. We add two
successes and two failures to our data and calculate a standard Wald confidence interval
based on the modified test data. This simple modification makes the Wald test work
much better when there are a small number of trials.

A more elaborate improvement of the Wald confidence interval was proposed by Edwin
B. Wilson. It replaces the estimated variance with the null variance, and the upper and
lower limits of the confidence intervals are: ω∗u = inf{p : (p̂−p0)/

√
[p0(1− p0)/J ] ≥ zα/2}

and ω∗l = sup{p : (p̂− p0)/
√

[p0(1− p0)/J ] ≤ −zα/2}, with the confidence interval

CIWi = (ω∗l , ω
∗
u).

In Figure 2, we compare the performance of the Wilson, Coull-Agresti and Clopper-
Pearson tests for 1, .., 100 trials. As we can see, there is little difference between the
tests for more than 40 trials, but for fewer trials, there are large oscillations and no
method is consistently better than the others. Therefore, the choice of test reasonably
depends on the number of studies included in an analysis.

Figure 2: A graph comparing the proportion of time that three different binomial test
confidence intervals contain the true parameter p = 0.9. The proportions are
based on 1000 repetitions per number of trials.
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4.5 Likelihood-based inference

The sampling-based inference method outlined in section 4.1-4.3 is used in the simulation
studies in sections 6, 7 and 8. As noted, this method has limitations. Going forward,
it is desirable to develop a more sophisticated method and to ground this method in
probability theory.

One possible direction is to use likelihood-based inference. A benefit of this option
is that methods that resemble the HS method have already been developed within the
likelihood framework, both frequentist and Bayesian.

Based on J studies and approximate sampling distributions f̂j(sj(w)|fP (w|θ)), j ∈
{1, ..., J} as in (4), we define the approximate likelihood as

l̂(θ) = ΠJ
j=1f̂j(sj(wj)|fP (w|θ)).

The approximate maximum likelihood estimator is

θ̂ = arg max
θ∈Θ

l̂(θ).

Assuming that standard likelihood theory is applicable, θ̂ has the asymptotic distribution

θ̂
apx∼ N(θ, Σ̂),

with Σ̂ being the estimator of the covariance matrix Σ. Assuming a large number of
summary statistics, we could make inference on θ based on the asymptotic distribution,
to produce a point estimate of θ̂ as well as a 1− α confidence region.

However, it is far from obvious how such an inference method can be properly devel-
oped. Compared to standard situations where maximum likelihood estimation is used,
there are some important differences with the HS method. Some of these were high-
lighted in section 3, but they are worth repeating in this context:

1. Small sample size:
While we can use a wide range of studies with the HS method, we cannot in
general expect to have so many studies that large-scale asymptotics can be used
with reliable results.

2. Summary statistics:
We need to be able to make reliable inference from summary statistics. This is
certainly possible if the summary statistics are sufficient, meaning that for the
sufficient statistic t(x), we have that f(x|t(x)) is independent of the θ we are
estimating. However, this is not often likely to be the case. As far as we know,
little research has been done on how to make inference based on summary statistics
in similar cases. Proponents of Approximate Bayesian Computation (discussed in
the next section) have considered it to some extent.

3. The sampling process:
The confidence region for the estimate θ̂ is valid under the assumption that the
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data used to perform inference is sampled from a population. It is unclear what
the population is and how data was sampled for the summary statistics that are
included in an analysis with the HS method. The result of a particular study de-
pends not only on the participants who were sampled but also on the experimental
design, association measures and many other details of the study. Are we sampling
from all possible study designs or some subset? This question is similar to the one
we asked regarding the Random Effects model.

4. Asymptotics of what?
Related to the question about the sampling process, is how approximations based
on asymptotic results should be interpreted. Is it the number of people that are
being sampled in studies that goes to infinity, or is it rather the number of studies
that go to infinity?

4.6 Similar methods

In this section, we look at two methods that share similarities with the HS method:
a method suggested by Diggle & Gratton and Approximate Bayesian Computation.
Neither of these two methods is meant to be used for data from heterogeneous sources in
the way that the HS method is. Rather, they have been developed to handle complicated
likelihoods. We also briefly describe sensitivity analysis and imputation, which share
similarities with the HS method.

4.6.1 Diggle & Gratton’s method

Diggle & Gratton (1984) suggest a method for approximating the maximum likelihood
estimates of the parameters in an “implicit model”, that is a model of the data-generating
process, in situations where this model cannot be expressed analytically. Diggle &
Gratton estimate the maximum likelihood estimator of θ in an implicit model from
simulated realizations from such an implicit model, according to the following algorithm.
For a model g(.|θ) and observed data y:

1. For k = 1, ...,K:

a) Pick θk from the K-vector of possible θ vectors: (θ1, ..., θK).

b) Generate y∗j ∼ g(y|θk), j = 1, ...,m.

c) Based on y∗j , j = 1, ...,m create a kernel-density estimator ĝ(y|θk), which

serves as an approximation of g(y|θk)

2. Approximate θ̂ML by maxθk ĝ(y|θk)

Diggle & Gratton also suggest a numerical method for finding the optimal θ instead of
being reliant on a vector of θ values.

While Diggle & Gratton’s method is similar to the HS method in the sense that both
methods rely on simulating from a complicated statistical model, there are differences in
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the imagined applications. Using a large-sample approximation of the likelihood makes
less sense in a situation where there are few data sources to use, and it is not clear how
the method works in situations where the only data available are non-sufficient summary
statistics.

A suggestion for future research is to look more closely at applications of the Diggle
& Gratton method, and to investigate if the numerical method they suggest is relevant
for the HS method.

4.6.2 Approximate Bayesian Computation

This section is based on Beaumont (2010).
Just like the method by Diggle & Gratton, Approximate Bayesian Computation (ABC)

is developed to handle situations where the likelihood function of our statistical model is
complicated. But as suggested by the name, ABC is used within a Bayesian framework,
meaning that we do not consider the parameters in the model to be fixed; instead, we
think of them as random variables. Bayesian inference is centered around the concept
of the posterior distribution of the parameters θ, given data x and a prior distribution
of θ, γ(θ):

p(θ|x) =
p(x|θ)γ(θ)

p(x)
.

The numerator p(x) =
∫
p(x|θ)γ(θ)dθ is a normalizing constant that can often be ig-

nored. It remains to evaluate p(x|θ) and γ(θ). If p(x|θ) is too complex to work with
analytically, Monte Carlo simulation can be used.

There are several ABC methods, that differ from each other mostly concerning details
of the simulation scheme. The simplest ABC method works in the following way, given
observed data y and a fixed ε:

1. Repeat until N θ∗ are accepted:

a) Sample θ∗ from γ(θ)

b) Simulate y∗ ∼ p(y|θ∗)
c) If ρ(s(y∗), s(y)) < ε, then θ∗ was accepted, otherwise discarded

Here, ρ(., .) is a distance function, e.g. Euclidian distance, and s(.) is a summary statistic.
The outcome of the algorithm is a sample of parameter values from an approximation

of the posterior distribution p(θ|y). A kernel-density estimator can be used to visualize
this distribution, and to give mean, mode or median values, as well as measures of
dispersion, such as credible intervals.

The ABC method resembles the HS method in the sense that both are based on sim-
ulations and both often rely on making inference based on summary statistics. This
means that ABC users have dealt with the problem of making inference based on sum-
mary statistics that are not necessarily sufficient. The solutions proposed by Beaumont
(2010) and Joyce & Marjoram (2008) is to include many jointly sufficient summary
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statistics. However, if many statistics are included, the simulation algorithm becomes
inefficient due to the curse of dimensionality, and the estimate of θ may be plagued by
stochastic noise. To deal with this, Hamilton (2005) suggests that we weigh the statis-
tics according to their association with the parameters in the model. Joyce & Marjoram
(2008) suggest that statistics are selected based on how they contribute to the posterior.

For future research, it may be relevant to look further into how statistics are selected
in ABC. In case the HS method is used within a Bayesian framework, the inference
procedure may end up looking very much like the ABC method.

4.6.3 Sensitivity analysis and imputation

Sensitivity analysis is a broad range of methods where the aim is to investigate how
sensitive the conclusions of a statistical analysis are to the assumptions behind the
analysis. A common application is to test how the conclusion of an analysis changes
depending on the potential effects of an unmeasured confounder. For instance, if we
have a measure of the association between cancer and resin exposure, we may wonder if
the observed association is due to the smoking habits of the participants. Even if there
is no information on smoking habits, we can model the possible relationship between
resin exposure and smoking, and explore how extreme the assumptions need to be for
the apparent association between resin and cancer to be explained by the smoking habits
of the participants exposed to resin. (Greenland 1998)

Imputation is a method used to handle missing data. When there is missing data,
applying traditional statistical methods directly to the observed data may lead to bias.
The idea behind imputation techniques is to handle the missing data in such a way that
our estimations become unbiased. (Rubin 1996) Sometimes, imputation can be consid-
ered to be a special type of sensitivity analysis, because we can investigate how extreme
the missing data would had to have been to change the conclusion of our investigation.

Imputation can be directly applied with the HS method, for instance when we want
to model the effect of non-response bias, publication bias and other types of bias due to
missing data. Similarly, if we are lacking observations related to a possible confounder
in our Postulated Model, then the Plausible Interval for the parameter related to the
confounder can be considered the outcome of a sensitivity analysis, since the interval
tells us under what values for this parameter our model remains plausible.
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5 Computational aspects of the inference

In this section, we describe some of the technical details in performing inference according
to the algorithm described in section 4.

5.1 Implementation of the kernel density estimator

Although the kernel density estimator plays a minor role in the simulation studies, it
was implemented and used. We used the R package ks, which includes the function kde,
that produces a kernel density estimator based on simulated data. A Gaussian kernel is
default, and we did not attempt to use any other kernel.

The ks packages lets us estimate the bandwidth matrix H with several different meth-
ods. We used a plug-in estimator and three types of cross-validation estimators: biased,
smoothed, and least-squares estimators. Each of these estimators comes with different
options. For instance, in the case of plug-in estimators, we can choose how to select g
in the pilot matrix G = g2Id, and whether the input data should be scaled or sphered.
While we explored the different options, no interesting results came out of this in the
simulation studies described in sections 6, 7 and 8.

5.2 Implementation of the copula estimator

In the simulation studies in sections 6, 7 and 8 we implemented our own copula density
estimator in the following way:

1. Collect d-vectors of summary statistics si, i ∈ {1, ..., I} from I simulated studies in
a matrix S, such that each row corresponds to a simulated study and each columns
corresponds to a particular statistic. Insert the observed statistics s∗ to S, such
that S is a (I + 1)× d matrix.

2. Calculate the empirical distribution function for each column in S. Transform S by
applying the inverse of the cumulative probability density function of the standard
normal distribution, Φ−1(x), for each cell in S.

3. Set R = Cor(S) with the correlation being Pearson’s r or Spearman’s ρ.

4. The row in S corresponding to the observed statistic s∗ is now transformed into
an observation from a N(0d, R) distribution. Call this row s′.

5. Evaluate φR(s′) and check whether it belongs to the 1− α highest density region
of the distribution.

5.3 Correction for multiple studies

To approximate the plausible level 1 − α when there is more than one study, we im-
plemented the tests by Clopper-Pearson, Coull-Agresti and Wilson. In the simulation
studies in sections 6 and 7, we are using 1, 5, 20, 100 research studies with plausible level
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0.9, and the Coull-Agresti test is expected to be closest to the true confidence region
with these particular numbers. Therefore we implemented the Coull-Agresti test via the
R package fastR2, and the function wilson.ci. The name wilson.ci suggests that we
estimate a Wilson confidence interval. This is because in the literature, the Coull-Agresti
and Wilson tests are used interchangeably.
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6 Simulation Study I

We have undertaken two simulation studies to confirm that the HS method performs as
expected, and to answer some of the relevant questions regarding its performance. In
the first simulation study, the following questions are answered:

1. Is a true model accepted 100(1− α)% of the time?
This question is important to investigate since we claim that the plausible interval
R(α) should contain the true θ in 100(1− α)% of the time.

2. What is the effect of the number J of studies and the number n of
participants in a study on the inference?
We would expect more studies with more participants to yield a narrower R(α).
If this were not the case, it would seem futile to include more data in an analysis.

3. Are we able to extract information about variables that are not directly
observed in any study; in particular, can we extract information about
unmeasured confounders?
This question is interesting concernign the question of what data can be used
to make inference on our Postulated Model. If we can gain information about
variables that are not directly observed, it makes the method much more useful.

4. Is inference possible for heterogeneous/homogeneous populations?

To answer these questions, we have performed simulations with two data-generating
models. In both cases, the variables are X, Y and Z, where Y is an outcome of interest.
X impacts Y and Z impacts both X and Y . Hence, Z is a confounder. We assume that
the available research studies report the association between X and Y , and do not take
Z into account. Hence, Z is an unmeasured confounder.

Next, we describe the data-generating models, and then describe how the simulations
were performed.

6.1 The data-generating models

6.1.1 Mother Nature’s Model 1

For the participants in a study, the true data-generating model (that is, the Mother
Nature’s Model) is:

ZB ∼ Be(g(0))

XB ∼ Be(g(−0.5 + ZB))

Y B ∼ Be(g(−1 +XB + ZB +XBZB))

where g(a) = [1 + exp(−a)]−1

The corresponding Postulated Model 1 is:
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ZB ∼ Be(g(c7))

XB ∼ Be(g(c5 + c6Z
B))

Y B ∼ Be(g(c1 + c2X
B + c3Z

B + c4X
BZB))

As we can see, the Postulated Model 1 has the same form as the Mother Nature’s Model
1; the only difference is that the parameter values are unknown.

6.1.2 Mother Nature’s Model 2

For the participants in a study, the true data-generating model (that is, the Mother
Nature’s Model) is:

ZN ∼ Norm(mean = 0, sd = 1)

XN ∼ Norm(mean = 0 + ZN , sd = 1)

Y N ∼ Norm(mean = 0 +XN + ZN +XNZN , sd = 1)

The corresponding Postulated Model 2 is:

ZN ∼ Norm(mean = d9, sd = d10)

XN ∼ Norm(mean = d6 + d7Z
N , sd = d8)

Y N ∼ Norm(mean = d1 + d2X
N + d3Z

N + d4X
NZN , sd = d5)

As we can see, the Postulated Model 2 has the same form as the Mother Nature’s Model
2; the only difference is that the parameter values are unknown.

6.2 The simulation algorithm

We assume that J ∈ {1, 5, 20, 100} studies with n ∈ {10, 100, 100} participants have
investigated the same research question with the same statistical analysis and sampling
procedure. Below, we describe the simulation procedure for Postulated Model 1:

1. Set K coefficient vectors ck, k ∈ {1, ..,K} that we wish to test.

2. Use the true data-generating model to generate J datasets wj , j ∈ {1, ..., J}, where
each dataset consists of XB, ZB and Y B values for n participants. Estimate the
corresponding summary statistic sj , j ∈ {1, ..., J}, where sj is the intercept and
slope in a logistic regression model of Y B given XB.

3. For k ∈ {1, ...K}:
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a) Use parameter vector ck with Postulated Model 1 to create 1000 simulated
datasets wk,i

∗, i ∈ {1, ..., 1000}, where each dataset contains XB, ZB and Y B

values for n participants. For each dataset, estimate the intercept and slope
s∗k,i in a logistic regression model of Y B given XB.

b) Use {s∗k,i}, i ∈ {1, ..., 1000} to create a density estimator of π(ck).

c) If π(ck) > α, then ck is deemed plausible, otherwise it is deemed implausible.

4. Repeat step (2)-(3) 100 times and calculate the proportion of simulations in which
ck, k = 1, ...,K was deemed plausible.

The above algorithm is repeated for all possible combinations of n ∈ {10, 100, 100}
participants and J ∈ {1, 5, 20, 100} studies.

The simulation procedure is used to investigate one parameter in the parameter vector
at a time. When investigating a particular parameter, the K parameter vectors are such
that all parameters except for one are fixed at the true value, according to the Mother
Nature’s Model. The value of the remaining parameter varies across the vectors. For
instance, we could investigate c1 by testing the following vectors, where only the first
digit changes:

(−2, 1, 1, 1, 0, 1, 0)

(−1, 1, 1, 1, 0, 1, 0)

(0, 1, 1, 1, 0, 1, 0)

By plotting the results in a graph, we can see how often a given coefficient vector ck is
deemed plausible.

For Postulated Model 2, the simulations are performed analogously, meaning that we
use Mother Nature’s Model 2 and Postulated Model 2, and the statistic which is reported
is the intercept and slope from a linear regression model of Y N given XN .

6.3 Computational details of the inferential procedure

In order to evaluate π(.), we need to determine which density estimation method to use.
As pointed out in section 5, we have used both kernel density estimators and copula
density estimators with no notable difference. The results presented were produced with
the copula estimator, using a Gaussian copula.

The Gaussian copula was used for several reasons. Firstly, we know that the statistics
we are estimating are expected to follow a normal distribution: this is the case both for
the maximum likelihood estimators of the coefficients in a linear regression model and
the maximum likelihood estimates of the log odds ratio from a logistic regression model.
This has been confirmed by graphical analysis. Secondly, we could see that the copula
estimator was performing similarly to how the kernel density estimator performed. No
further analysis of the behavior of the copula density estimator has been performed, and
no comparison has been done to other potential copula estimators, such as the t-copula.
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In the presented results, the correlation coefficient used is Pearson’s r. It made sense
to use r since it is calculated based on values converted into values from a Gaussian
distribution, and they are assumed to originally be normally distributed.

While we could have made a more thorough investigation into the details of the kernel
density estimator and copula estimator, the main purpose of the current study is to see
if the HS method works. Optimizing the method can be the subject of another study.

6.4 Simulations results

Graphs illustrating the results of all simulations are found in section 10. We refer to
these in the text below.

1. Is the true model accepted 100(1− α)% of the time?

For both the Postulated Model 1 and Postulated Model 2, we can see on all of the graphs
that the true parameter value is accepted 100(1 − α)% of the time. In the simulation
study, we set α = 0.1, and it is indeed the case that the true model is deemed plausible
in around 90% of the simulations.

Table 1 shows the proportion of simulations when the true coefficient vector was
deemed plausible depending on the number of research studies included in the analysis.
As we can see, both Postulated Model 1 and Postulated Model 2 perform as expected
given that we used the Coull-Agresti method to correct for the number of studies.

This means that the Plausible Region R(α) seems to work as expected with a wide
range of number of studies, and for data that is both binary and continuous.

No. studies Coull-Agresti Postulated Model 1 Postulated Model 2

1 0.9 0.91 0.89
5 0.92 0.92 0.92
20 0.87 0.88 0.86
100 0.9 0.89 0.89

Table 1: This table shows the proportion of the simulations in which the true vector
was deemed plausible, depending on the number of research studies included in
the analysis. The reported proportions are averages over all possible numbers
of participants n, for a given number of studies. The column Coull-Agresti
shows the expected proportions using a Coull-Agresti test, based on a simulation
study.

2. What is the effect of the number of participants?

The impact of the number of participants is large, in particular for Postulated Model 1.
With n = 1000 participants and J = 20 studies we can make precise inference for all
parameters except for c5. We discuss this in section 6.5. With n = 10 and J = 20, the

40



inference is much less precise. In particular for parameters related to the unmeasured
confounder ZB, it is hard to say what the true value of the parameters is based on the
graphs. In section 6.5.1, we return to these difficulties. Having n = 100 participants
gives a marked improvement from n = 10, but there is still a probability that extreme
values for the parameters related to ZB are deemed plausible.

For Postulated Model 2, the effect of having more participants is also strong, but not
as apparent as for Postulated Model 1. With n = 10 participants, it is very difficult to
make inference on the variance parameters d5, d8 and d10, and for parameter d4. With
n = 100, 1000 participants, we can make quite exact inference for all parameters except
for d5, which is discussed in section 6.5.2.

In summary, the effect of the number of participants is large. In particular, inference
is greatly improved if we are able to avoid studies with only a few participants.

3. What is the effect of the number of studies?

A greater number of studies lead to more precise inference, but the effect is not as
large as the effect of the number of participants. For both Postulated Model 1 and 2, a
single study with n = 1000 participants lets us make inference which is approximately
as precise as the inference we can make with J = 100 studies with n = 100 participants.
This suggests that even though all studies in our simulation are exploring the same
research question, the effect of including more studies is different from the effect of
pooling participants from different studies.

There are exceptions to the general trend that the number of studies J has a limited
impact on inference. This is coefficient d5, the variance parameter for Y N . With J =
1, 5, 20, high values of d5 and extreme values of c5 are always deemed plausible for all n
values. When J = 100, however, the pattern changes and inference becomes reasonable.
This is because we are performing a double-sided hypothesis test, meaning that we
are rejecting the null hypothesis if the coefficient vector is accepted too often. When
J ≤ 20, this cannot happen, but when J = 100 it can happen. Of course, the fact
that the problem disappears with so many research studies is of little use in practical
scenarios.

Taking into consideration the effect of the number of participants and the number
of research studies, it seems wise to focus on making inference from fewer studies with
many participants. At least, this is true for studies that are investigating similar research
questions. In realistic scenarios, studies differ from each other in relevant ways, and it
is wise to include many of them because they provide different pieces of information.

4. Is inference related to unmeasured confounders possible?

We can make inference on the parameters related to unmeasured confounders, although
the precision of the inference is not as good as for parameters related to measured
variables. With n = 1000 participants the general level of precision of the inference is so
high, that we can make inference on parameters related to the unmeasured confounders
ZB and ZN . This is clear with J = 20 studies in Figures 10.9 and 10.24.
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With n = 10, the possibilities of making inference are much weaker, in particular for
ZB in Postulated Model 1. As we can see in Figure 10.7 with n = 10 participants and
J = 20 studies, we cannot say much at all about c6 and c7. For c3 and c4, the possibilities
of inference are better: we can at least say that the true value is likely positive. With
J = 100 studies, we can feel confident in this conclusion, as we see in Figure 10.10. It
is not surprising that inference of c3 and c4 is better, since these parameters directly
impact the outcome Y B whereas c6 and c7 have an indirect impact.

With n = 100 participants there is a marked improvement from n = 10 participants.
With J = 20 studies and n = 100 participants, except for the fact that extreme values
for c4 and c6 are at times deemed plausible, we can make quite good estimations for the
parameters related to ZB. See Figure 10.8.

In summary, it is possible to make inference from unmeasured confounders. To do so,
it is of utmost importance to have studies with many participants, in particular when
dealing with binary data.

5. Is inference possible for heterogeneous/homogeneous data?

In Postulated Model 1, by letting c4 and c6 have high or low values, we are making the
data homogeneous or heterogeneous. If c6 is high, it means that the observations that
had ZB = 1 likely have XB = 1 as well. Again, holding everything else constant, if we
give c4 a high value, then observations that had XB = ZB = 1 almost certainly have
Y = 1. When both c4 and c6 are high, it means we have a group where if ZB = 1, then
both XB and Y B tend to be 1. To investigate the effect of heterogeneity, we have used
a modified Mother Nature’s Model 1, with c4 = c6 = 3. We performed simulations with
J = 5 research studies and n = 10, 100, 1000 participants. The results can be found in
Figures 10.13-10.15.

The values of all parameters are more difficult to estimate with this setup compared to
when c4 = c6 = 1. In particular, c4 and c6 are difficult to estimate. Even with n = 1000
participants, in most simulations we can only gather that the c4 and c6 are non-negative.

This is not surprising given that with this setup, it is hard to separate the effect of
XB and ZB, since if ZB = 1 then almost certainly XB = 1. Moreover, with c4 = c6 = 3
there are very few participants for which XB = 1 but Y B = 0. This leads to an unstable
estimator of the log odds ratio, for reasons described in section 6.5.1.

6.5 Difficulties in the simulations

Problems encountered in Simulation Study 1 have been mentioned above. Here we
describe them more in-depth.

6.5.1 Postulated Model 1

We have seen that with Postulated Model 1, there are difficulties in making inference on
parameter c5. It is also generally difficult to make inference on the model when n = 10.
Moreover, in a situation when the true values of c4 and c6 are 3, inference was more
difficult, in particular for c4 and c6.

42



This is not surprising in light of properties of the odds ratio statistic. When XB and
Y B are binary variables, the data can be presented in a 2× 2 table as

X = 1 X = 0

Y = 1 n11 n10

Y = 0 n01 n00

When performing logistic regression, the log odds ratio is estimated using the maxi-
mum likelihood method. The estimate follows an approximate normal distribution with
variance 1/n11 + 1/n10 + 1/n01 + 1/n00. (Agresti 2014, p 70; Held & Bov 2014, p 97-98)

However, the normal distribution breaks down when the number of observations is
small, or when there are only a few observations per cell in the 2× 2 table; less than 5
observations per cell is the traditional rule of thumb. The estimates of the intercept and
slope in the logistic regression model may then start to oscillate between high and low
values, and it becomes difficult to detect the statistics reported in the research studies
as extreme relative to the simulated statistics.

This is the root of the problems that occur. When c5 takes on very high or low values,
very few or very many participants may have XB = 1. When c4 = c6 = 3, participants
with XB = 1 and Y B = 0 may be practically non-existent. When n = 10, we have very
few observations in general, making the log odds ratio statistic unreliable, in particular
when c6 and c7 take on extreme values so that almost all or almost no participant has
XB = 1.

More than a limitation of the HS method, however, this is a known limitation of odds
ratios and of the logistic regression model that is often used to model odds ratios. These
considerations show that users of the HS method have to be careful when analyzing
binary data with few observations; when probabilities modeled are very large or small;
and when the data contains only a few observations from one of the categories.

We suspected that the problems are strengthened by the copula estimator. Since
this estimator ranks all input values and performs a Gaussian transform, it would seem
similar to a situation where the simulated values are oscillating between high and low,
the statistics from the research studies are given middle ranks, and hence be deemed
plausible. Then a kernel density estimator may be wiser to use. While this is an issue to
have in mind, the problems were not solved by implementing a kernel density estimator
instead of a copula estimator in this particular case.

6.5.2 Postulated Model 2

For Postulated Model 2, we encounter problems estimating d4 with n = 10 participants,
and d5 with any number of participants. Both problems are related to the variance
of Y N . Extreme values on d4 yield oscillating Y N values, and with n = 10 this leads
to oscillating intercepts and slopes from the linear regression model. Similarly, since
d5 is the variance of Y N , high d5 values leads to a wide range of Y N values, resulting
in a similarly varying collection of simulated intercepts and slopes. This means that
the intercept and slope from the real studies are not extreme relative to the simulated
statistics, even though the parameter values are completely wrong.
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As we noted before, the problem disappears with J = 100, due to the Coull-Agresti
test. In practical situations, this is not very helpful as we seldom have that number of
identical studies. Regarding d5, this problem can be solved easily if we use information
regarding the variance of Y N . If we let the research studies report this and we also
recreate this statistic in our simulations, inference on d5 is quite precise.

When applying the HS method to real data, we may have to work in this manner:
first try to make inference based on available data; and when inference is too imprecise,
we have to look for more data or request more research.
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7 Simulation Study II

In the second simulation study, our goal is to answer the following questions:

i. Can we make inference based on studies that investigate different re-
search questions and report different statistics, as long as the investiga-
tions are related to the Postulated Model?
It is vital for the method that this is possible. If we are unable to make inference
based on studies that are reporting on the association between different variables
using different statistics, the HS method has a much more limited use than if it is
possible.

ii. Can we make inference with an overparameterized Postulated Model?
We claimed in section 3 that if the Postulated Model contains all important variables
from the Mother Nature’s Model, then the estimates of the parameters related to
those variables should not be biased because we also included variables that are
not part of the Mother Nature’s Model. Rather, we should be able to see that the
unnecessary parameters have little or no impact on the outcome. This has to be
confirmed.

iii. Can we make inference when a study reports results from statistical
analyses which are flawed?
If our Postulated Model can generate the same data as the true data-generating
model, then it should not matter for the HS method if the statistical method that
is used to analyze the data is flawed, for instance in the sense that it gives biased
estimates. As long as we follow the same procedure, our results should be the same
if we have a plausible Postulated Model.

iv. Can we make inference when the variables in the Postulated Model are
following different distributions (binary, continuous, categorical)?
In realistic scenarios, different variables follow different distributions, so the HS
method must be able to handle this.

7.1 The Mother Nature’s Model 3

In order to answer the questions, we use the following Mother Nature’s Model 3:

ZW ∼ Be(g(0))

WW ∼ Exp(1)

XW ∼ Be(−1 + ZW + 0.5WW )

{Q1, Q2, Q3} ∼Multi(1/3, 1/3)

Y W ∼ Be(−4.5 +XW + ZW +XWZW + 0.5WW +XWWW + 2Q2 −Q3)
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The Postulated Model 3 is the same as the Mother Nature’s Model 3, except that it has
an additional variable WW

2 :

ZW ∼ Be(e1)

WW ∼ Exp(e2)

WW
2 ∼ N(mean = e3, sd = e4)

XW ∼ Be(g[e5 + e6Z
W + e7W

W ])

{Q1, Q2, Q3} ∼Multi(e8, e9)

Y W ∼ Be(g[e10 +e11X
W +e12Z

W +e13X
WZW +e14W

W +e15X
WWW +e16W

W
2 +

e17Q2 + e18Q3])

7.2 The simulation algorithm

There are 5 studies reporting on variables related to Postulated Model 3. Each study has
1000 participants each. However, all the studies investigate different research questions
and they are reporting different measures of association between different variables in
the Mother Nature’s Model 3.

Study 1: Intercept and slope in a logistic regression model of Y W given XW .

Study 2: Intercept and slope in a logistic regression model of Y W given WW .

Study 3: Intercept and slope in a logistic regression model of XW given WW .

Study 4: Mean values of XW and WW .

Study 5: Coefficients from a linear regression of Y W given the {Q1, Q2, Q3}
variables. However, the authors behind this study treated {Q1, Q2, Q3} not as
three different binary variables. Instead they created a new variable Q such that
Q = 1 if Q1 = 1; Q = 2 if Q2 = 1; and Q = 3 if Q3 = 1. Such an analysis is not
sensible, since Y is binary, so performing a linear regression in the sense described
above should give a biased estimate.

The simulations were performed according to the algorithm described in section 5. The
only difference is that this time every study reported a unique statistic, and the same
statistic was calculated when performing simulations to recreate the same study. Also,
we only created J = 5 research studies with n = 1000 participants.
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7.3 Computational details of the inferential procedure

Just as in Simulation Study I, all the summary statistics are continuous and can be
expected to follow a normal distribution – visual inspection confirmed this. Hence, the
plausibility π(.) can be modeled with a Gaussian copula estimator with Pearson’s r as a
correlation coefficient. A kernel density estimator was also implemented, with very sim-
ilar results. Our preference for the copula estimator is, again, due to its computational
efficiency.

7.4 Simulations results

Results from the estimation of all parameters can be found in Figures 10.28 and 10.29.

i. Can we make inference based on studies that investigate different questions and
report different association measures?

We can make precise inference on all parameters in the model. In particular, we can
make inference on the unmeasured confounder ZW . Compared with Simulation Study
I, with n = 1000 participants and J = 5 studies, the intervals of plausible parameter
values are broader. This could be because the Postulated Model is more comprehensive
and also because the studies are reporting different association measures.

ii. Can we make inference with an overparameterized model?

The value of coefficient e16, describing the association between Y W and WW
2 , which is

deemed plausible most often is 0. For the other variables related to WW
2 , namely e3 and

e4, all values are deemed plausible 100(1− α)% of the time. This is what we expect to
see, since WW

2 does not affect on any variable in the true data-generating model.

iii. Can we make inference when a study reports results from a statistical analysis
that is flawed?

Since we can make inference on all parameters in the model even though study 5 is
included in the analysis, the answer is yes. In particular, we are able to make inference
on parameters e8, e9, e17 and e18, which are all related to {Q1, Q2, Q3}. The only study
in which these variables are reported is in the flawed study 5, so we can make inference
based on the flawed study.

iv. Can we make inference when the variables are following different types of
distributions (binary, continuous, categorical)?

Since our analysis was successful in all other senses, it is clearly possible to make inference
in a situation where the different variables are following different distributions.
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8 An analysis on the association between Paraquat exposure
and Parkinson’s Disease

In this section, we apply the HS method to data regarding the association between
exposure to the pesticide Paraquat and Parkinson’s Disease. While the analysis is still
a work in progress, it illustrates how the HS method can be applied to real data.

Parkinson’s Disease (PD) is a neurological illness that affects approximately 1% of the
US population. Almost all PD patients are over 50 years of age, and men are more likely
than women to contract the disease. It is also believed that exposure to pesticides can
increase the risk of contracting PD. However, the evidence is mixed and comes mostly
from epidemiological studies (Tanner 2009).

Paraquat dichloride (hereafter Paraquat) is a herbicide that is commonly used in
farming to control weeds. Handling Paraquat can be very dangerous and potentially
lethal. Therefore, Paraquat products can only be used by certified applicators in the
USA. Other countries, including the EU, have forbidden Paraquat use altogether (EPA
2021).

We investigated a meta-analysis of studies estimating the association between exposure
to Paraquat and risk of PD by Ntzani et. al. (2013), and set out to perform an analysis
of the same data, using the HS method. This decision was made after a suggestion from
the Environmental Protection Agency (EPA) in the USA, which is a collaborator in the
development of the HS method.

In the next section, we briefly describe the meta-analysis by Ntzani et. al. After that,
we describe how the analysis was performed using the HS method. We then discuss
some difficulties that we encountered during the analysis.

8.1 The meta-analysis by Ntzani et. al.

The meta-analysis by Ntzani et. al. is based on eight research studies estimating the
association between exposure to Paraquat and PD. The studies have many similarities:
all report the association in terms of an odds ratio; all used participants from the USA;
and most studies had study participants with similar characteristics in terms of age, sex
and other relevant variables. Seven studies are case-control studies, the remaining one
is a cohort study.1

Three studies are based on the same participant data, namely Gatto (2009), Wang
(2011) and Costello (2008). All three studies use data from the same three counties in
California, but measure the association between different types of Paraquat exposure
and PD. The obvious dependence between the results from these studies is not taken
into account by Ntzani et. al.

Two studies are based on data from the Agricultural Health Study cohort. Kamel
(2006) uses data from the whole cohort, whereas Tanner (2011) performs a case-control
study based on a sample from the cohort.

1The studies are Gatto (2009), Wang (2011), Costello (2008), Kamel (2006), Tanner (2011), Firestone
(2010), Dhillon (2008) and Tanner (2009).
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While the studies share similarities, there are also potentially important differences
between them, for example:

• The definition of what it means to be “exposed to Paraquat” differs between the
studies. For instance, in Dhillon (2008), exposure is to have “personally applied or
mixed” Paraquat at least once; in Costello (2008), a person is considered exposed
if they live within a particular distance of a site where Paraquat is used.

• All studies except one uses PD as the health outcome, whereas Tanner (2009) uses
Parkinsonism as the outcome. Parkinsonism is a diagnosis with slightly different
symptoms and is more common than PD.

• The reported odds ratios provide different information, since they are adjusted for
different variables. For example, Firestone (2010) adjusts for smoking, sex, age
and ethnicity whereas Dhillon (2008) adjusts for no other variable.

Despite the differences between the studies, Ntzani et. al. use a Fixed-Effect model to
summarize the findings of the studies. This means that all studies are considered to
estimate the same intervention effect, and differences are merely due to sampling error.

As we can see in Figure 3, the only information used from each study is an estimate
of the odds ratio (with corresponding confidence interval) describing the association be-
tween Paraquat exposure and PD. The exception is Costello (2008) from which two odds
ratio estimates were used: one odds ratio measures the association between exposure to
Paraquat and PD, and the other odds ratio measures the association between expo-
sure to both Paraquat and the pesticide Rotenone, and PD. In several of the studies,
more than one statistic measuring the effect of Paraquat on PD is reported; why certain
statistics were selected in favor of others is unknown to us.

8.2 Plan for performing an analysis

In order to perform an analysis of the eight research studies with the HS method, we
pursued the following steps:

1. Construct a Postulated Model, fP (w|θ).

2. Perform simulations to recreate the reported summary statistics, using different
possible values of θ.

3. Once a plausible θ is found, use the Postulated Model to calculate association
measures of interest.

In the next subsections, we describe each of these steps.
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Figure 3: A forest plot of the reported odds ratios, from the meta-analysis by Ntzani et
al. The leftmost column contains the id numbers of the eight studies, and the
rightmost column has point estimates of the odds ratio, with a 95% confidence
interval.

8.3 Step 1. Construct a Postulated Model

As previously explained, a Postulated Model should be constructed based on scientific
expertise. Due to time limitations, we were not able to construct our Postulated Model
of Parkinson’s Disease this way. Instead we constructed a Postulated Model based on
layman’s knowledge and common sense.

When deciding what variables to include, we paid attention to the information pro-
vided by the research studies. Fortunately, all eight research studies had tables with
summary statistics of the participants’ distribution of age, sex, smoking habits, educa-
tion level, and many other variables relevant for the PD risk. We limited ourselves to
the following initial model:

Postulated Model A

State ∼Multinom(θ1, θ2, θ3, θ4, θ5)

Age ∼ Normal(Mean = θ6 + θState7 , V ar = θ8)

Sex ∼ Be(g[θ20])

Smoker ∼ Be(g[θ9])
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Farmer ∼ Be(g[θ10])

Paraquatb ∼ Be(g[θ11 + θ12Age+ θ13Sex+ θ14Farmer + θState15 ])

If Paraquatb = 1:

Paraquatc ∼ Exp(θ16 + θ17Age+ θ18Sex+ θ19Farmer + θState20 )

If Paraquatb = 0 :

Paraquatc = 0

Parkinson ∼ Be(g[θ21 + θ22Age +θ23Sex+ θ24Farmer+ θ25Paraquat
b])

We used the variable State because Paraquat may be used to different extents in different
states and the study participants were sampled from different states; we used Age, Sex
and Smoker (ever/never) because these variables are strongly correlated with PD. The
variable Farmer is a latent variable and the name is arbitrary.

All eight studies report on all the variables used in the model, except for the latent
variable Farmer.

Paraquat exposure is measured with two variables. Paraquatb is binary and deter-
mines whether a person has been exposed at all to Paraquat. Paraquatc is continuous
and determines how much Paraquat exposure a person had. It is the binary variable
that is associated with the risk of PD. The continuous variable is used to determine if
a person has been exposed to Paraquat by the definition of Paraquat exposure used in
the different studies. This is detailed further in Section 8.4.

This is the biggest flaw in Postulated Model A. If Paraquat is associated with the risk
of PD, then more Paraquat exposure should be associated with an increase or decrease
in the PD risk. By that reasoning, it would be more reasonable to let Paraquatc be
associated with the PD risk, instead of Paraquatb. However, we chose to treat Paraquat
exposure as a binary variable in order to make our analysis easier to compare with the
study by Ntzani et. al., since it treats Paraquat exposure as binary.

We return to how this and the many other flaws of Postulated Model A can be remedied
at the end of this section.

8.4 Step 2. Recreate the summary statistics and find a plausible θ

To recreate the summary statistics reported in a study, we followed the experimental
design described in each of the studies. Since most studies were case-control studies,
the procedures shared many similarities. Here is an outline of how the simulations were
performed for study j and a particular θ:

1. For i ∈ {1, .., 1000}

a) Generate a large number of individuals living in the state where participants
in study j were sampled from.

b) Randomly select the nj PD cases and mj matched controls that participated
in study j.
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c) Based on the nj cases and mj controls, calculate the number of cases and
controls exposed to Paraquat, the mean age, the proportion of males and the
proportion of those who have ever smoked. Save the vector of statistics as s∗i .

2. Use {s∗i }, i = 1, ..., 1000 to create πj(θ).

3. Evaluate πj(θ) > α.

This procedure was repeated for all seven case-control studies. The remaining study was
a cohort study that reported the age distribution in a slightly different manner. The
algorithm for recreating this study was very similar to the above algorithm, except that
no sampling took place and the statistics calculated were the number of people exposed
to Paraquat among cases and controls; the proportion of participants below age 50; the
proportion of smokers; and the proportion of males.

Whether a simulated person is considered exposed to Paraquat in step 1(c), is deter-
mined by their value on the Paraquatc variable. If this variable has a higher value than
the threshold value, the person is considered exposed. The threshold values were set to
reflect the fact that different studies had different definitions of Paraquat exposure. The
threshold values should ideally be set by scientific experts, and our decisions were likely
flawed.

The method for finding a plausible θ was to make guesses based on common sense and
trial and error. It was possible to make educated guesses for almost all parameters. For
instance, it makes sense that the mean age for the population in question is around 70;
that the impact of age on PD risk is positive; and that tobacco smoking has a slightly
negative association with the PD risk. It was also helpful to plot graphs of the kernel
density estimator and to print quantiles from the marginal distribution functions of the
copula estimator. Clearly, the process would be smoother with the help of scientific
expertise and a numerical method for exploring the relevant θ.

A full investigation of R(α) was not performed, due to time limitations. Instead, we
paid particular attention to the parameter θ20, which describes the association between
exposure to Paraquat and the risk of PD in terms of a log odds ratio. We focused on
how much θ20 could vary while keeping the rest of θ fixed.

8.4.1 Computational details of the inferential procedure

The association between Paraquat exposure and PD is presented with an odds ratio in
all eight studies. All studies also present the number of cases and controls that have
been exposed to Paraquat. In most cases, the number of exposed was rather small – in
several cases less than 5 exposed among the cases and/or controls. We saw in Simulation
Study I that this yields unstable estimators of the odds ratio. For this reason, we chose
not to recreate the odds ratio in our simulations; instead the numbers of exposed cases
and controls were recreated. This means that we are dealing with discrete data, and as
we saw in section 4, it is unclear whether several of the features of copulas and kernel
density estimators apply to discrete data. How this affected the performance of the
inference has not been further explored.
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To approximate π(θ), both kernel density estimator and Gaussian copula estimator
were tested, with equivalent results. The results presented in the thesis are based on the
Gaussian copula estimator, a choice motivated by its computational efficiency.

8.4.2 The effect of adding new statistics and studies

We started by replicating two statistics from a single study: namely the number of
exposed PD cases and the number of exposed controls in Dhillon (2008). We then tried
to add more studies and more statistics, related to age, sex and smoking.

This had the following impact on the Postulated Model:

1. Adding new studies meant that the interval of values that the coefficients in our
model could take was reduced. In particular, when only including Dhillon’s study
in the analysis, keeping all other parameters fixed, θ20 could vary in the interval
[−2, 4]. This means that the Postulated Model is consistent with both a strongly
negative and strongly positive association between Paraquat exposure and PD.
With all eight studies included in the analysis, the interval of plausible values for
θ20 had shrunk to [−0.1; 0.3]. An important factor in how the width of the plausible
interval changed was the number of participants in a study. More participants
meant a narrower interval. These results confirm what we saw in Simulation Study
I regarding the number of studies and the number of participants. In particular,
Dhillon (2008) uses rather few participants, 184 in total. Only 4 cases and 1 control
had been exposed to Paraquat, making it very hard to make precise inference. This
partly explains why the plausible interval was so wide with only this study in the
analysis.

2. Adding new statistics meant that we had to make changes to the model. As an
example, when we only recreated statistics related to Paraquat exposure, all states
had the same mean age and proportion of males. When we added statistics of
age distribution and proportion of males to the analysis, we had to change the
parameters so that different states had different mean ages and proportions of
males. This illustrates that by adding new types of information to our analysis, we
can make more precise information about the parameters in our Postulated Model.

8.5 Step 3: Calculating a measure of association

Once we had a plausible θ, we used the Postulated Model A with θ to calculate a
measure of association. There are many interesting measures that we could calculate.
For instance, we could calculate the PD risk conditional on Paraquat exposure and use
this to give an odds ratio, risk ratio or risk difference. We could make predictions for
the numbers of PD cases in a certain region and time period. These possibilities would
certainly not have been open to us if all we had was an estimate of an odds ratio, which
would have been the case if we had performed a standard meta-analysis.

The measure we chose to calculate was the prevalence of PD in the whole population
at various age intervals, and conditional on having been exposed or not exposed to
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Paraquat. The figures are plotted in Figure 4.
The value of θ20 used to create this graph is 0.2, which was picked simply for the

reason that it is in the interval [−0.1, 0.3]. The other parameters in θ could likely also
have taken other values, with θ remaining plausible. Had we been able to explore the
full R(α), we would have been able to calculate an interval of plausible PD prevalence.
In a real application of the HS method, this is what we would like to do.

Along with the PD prevalence estimated from our Postulated Model, we also plotted
the observed PD prevalence in a research study by Tanner (2010). As we can see, the
PD prevalence according to our Postulated Model is much higher than the observed
prevalence. The fact that our Postulated Model is consistent with a PD prevalence so
far from the observed prevalence, indicates that our Postulated Model is flawed. This
should not come as a surprise. We constructed the model without consulting scientific
expertise and in the inferential procedure, we did not recreate statistics of PD prevalence.
Our Postulated Model must be improved, and one way of doing this is to make sure it
is consistent with observed data regarding PD prevalence.

Figure 4: Graph showing the prevalence of PD according to Postulated Model A, for
people exposed and not exposed to Paraquat. The θ used to generate the
graphs was deemed plausible based on eight research studies, with θ20 = 0.2.
As a comparison, we also plot the observed prevalence of PD in a research
study by Tanner (2010).
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8.6 Adding a study of PD prevalence

To improve Postulated Model A, we included the results of the study by Tanner (2010)
in the analysis. Tanner (2010) reports the PD prevalence among men and women across
several age intervals in four counties in California – the same counties from which Gatto
(2009), Wang (2011) and Costello (2008) sampled participants.

The result of the Tanner (2010) study was recreated by using our Postulated Model
to generate the same number of people with the relevant age interval residing in the four
counties, and calculating the proportions of PD cases. This was repeated 1000 times
and a copula estimator was approximated. Of course, the Postulated Model still had to
be consistent with the original eight studies.

To recreate the observed PD prevalence, we lowered the coefficient θ16, describing the
baseline risk of PD. We were also forced to model the effect of age on the PD risk with
a linear spline. Whether a linear spline is the right choice is something that should be
decided by consulting scientific expertise. A natural cubic spline would probably work
better. This resulted in a new Postulated Model:

Postulated Model B

State ∼Multinom(θ1, θ2, θ3, θ4, θ5)

Age ∼ Normal(Mean = θ6 + θState7 , V ar = θ8)

Sex ∼ Be(g[θ20])

Smoker ∼ Be(g[θ9])

Farmer ∼ Be(g[θ10])

Paraquatb ∼ Be(g[θ11 + θ12Age+ θ13Sex+ θ14Farmer + θState15 ])

If Paraquatb = 1:

Paraquatc ∼ Exp(θ16 + θ17Age+ θ18Sex+ θ19Farmer + θState20 )

If Paraquatb = 0 :

Paraquatc = 0

Parkinson ∼ Be(g[θ21 + θ22(Age − θ23) +θ24(Age − θ25)+ + θ26(Age − θ27)+

+θ28Sex+ θ29Farmer+ θ30Paraquat
b])

Here, (a)+ = max(a, 0).
We used Postulated Model B to estimate the PD prevalence again. The result is

shown in Figure 5, and as we can see, our model is now much more consistent with the
observed data.

This is an illustration of how an analysis should proceed with the HS method: we
should make sure that our Postulated Model is consistent with all relevant data, and
continually make improvements so that this is the case.
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Figure 5: Graph showing the prevalence of PD according to our updated Postulated
Model B. The θ used to generate the graphs was deemed plausible based on
nine research studies, with θ20 = 0.2. As a comparison, we also plot the
observed prevalence of PD in a research study by Tanner (2010).

8.7 Comparison with the Ntzani et. al. study

In the meta-analysis by Ntzani et. al., the point estimate of the odds ratio is 1.32 with
a 95% confidence interval [1.1; 1.6]. A naive “plausible interval” for the parameter θ20 is
[−0.1; 0.3], which can be interpreted as an interval of plausible odds ratios [0.91; 1.35].
This interval is naive because ignores how the other parameters in θ can vary.

A direct comparison of the confidence interval of the Ntzani et. al. study and the
“plausible interval” based on the HS method is difficult for several reasons. First of
all, the Ntzani et. al. study calculates a 95% confidence whereas we calculated a 90%
plausible interval, which has a different interpretation. Secondly, θ20 is the log odds
ratio adjusted for age, sex, smoking and an unknown variable that we call Farmer. The
odds ratio that Ntzani et. al. report is an average of odds ratios that are individually
adjusted for different variables.

Nevertheless, the point estimate that Ntzani et. al. report is within the plausible in-
terval of our study, suggesting that the conclusions of the two analyses are not completely
inconsistent.
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8.8 Some suggested improvements

The analysis of the association between Paraquat and PD is far from finished. Here we
list some of the improvements that should be made before finalizing the analysis. A
general point regarding these suggestions is that the eight research studies included in
the Ntzani et. al. study provides us with a lot of highly relevant information about the
participants that is related to our Postulated Model. With the HS method we can use all
of this information, which would have been impossible with a standard meta-analytical
method.

1. Paraquat exposure on a continuous scale
As discussed, it makes sense to measure Paraquat exposure and its effect on the PD
risk on a continuous scale. The studies included in our analysis reports different
types of Paraquat exposure, and it would be advantageous to use this information.
This requires help from scientific experts, both to understand how Paraquat ex-
posure should be measured and how different amounts of Paraquat exposure may
impact the risk of PD.

2. The relationship between Paraquat and other pesticides
Most studies report on the association between PD and other pesticides besides
Paraquat. It would be useful to include such pesticides in the model. This way,
we may find out how harmful Paraquat is relative to other pesticides; if there are
interaction-effects; and if the apparent effect of Paraquat is due to confounding
from other pesticides.

3. More comprehensive PD definition
The PD diagnosis is given when several symptoms show. Several studies report
on each of these symptoms. We could incorporate this into our model, by adding
the symptoms as variables. This may help us discover new patterns. For instance,
Paraquat exposure may be related specifically to one of the symptoms but not to
the others.

4. Improvement of Copula estimator
We are using summary statistics which are both discrete and continuous, while
using a Gaussian copula. We have not explored what effect this has on our esti-
mation.

5. Including different studies
In Simulation Study I, we saw that using many studies that are investigating the
same question has little benefit. The studies included in the Ntzani et. al. meta-
analysis are similar to each other. Therefore, it would make sense to look for studies
investigating different questions and include them in our analysis, just as we did
with the Tanner (2010) study to make the Postulated Model more reasonable.

6. Account for biases
Epidemiological studies are prone to biases that we may model in our simulations.
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For instance, all studies have non-responses that may bias the results, and most
studies rely on the information given by the study participants, meaning that there
is a risk of self-report bias.
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9 Conclusions

In this thesis, we introduce a new method for making inferences based on data from
heterogeneous sources. We have given intuitive reasons to believe that the method can
be useful and we have shown that the method works in two simulation studies. While
the method can potentially be used in many different contexts, we limit our attention
to situations where we currently would use meta-analytical methods.

The conclusion that we draw from this thesis is that more research is warranted to
further develop the HS method. The topics of future investigations can broadly be
divided into two categories: theoretical and practical. Below we describe some of the
most pertinent questions.

Theoretical investigations

In sections 3 and 4, we mentioned some topics that require further development. We
repeat them here:

1. What is the sample?
It is unclear whether the data should be considered a sample from a population
(and in that case what sort of population) or if we should simply consider it as
facts about the world which our Postulated Model can either be consistent or
inconsistent with.

2. Inference based on summary statistics
To the extent that we only include summary statistics in a study, there is the
question of how we can make inference based on such statistics most efficiently. In
particular, how reliable is the inference when the statistics are not sufficient?

3. Bayesianism or frequentism?
In light of the answers to the above two questions, we can choose to set the HS
method in a frequentist or Bayesian framework.

4. Is likelihood-based inference possible?
In light of the answers to the previous questions, we may attempt to develop
a likelihood-based method of inference. This could be superior to the method we
have used in this thesis, as we would be able to point to one value of the parameter
θ as the most plausible one.

Practical investigations

1. Efficient calculation of R(α)
The way that the Plausible Region R(α) is currently calculated is slow and incon-
venient; an algorithm that does this efficiently would be needed.

2. Use of scientific expertise
As pointed out, the design of any Postulated Model should be performed with
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subject-matter experts. An interesting question is how this may work in practice:
there is the possibility that the cooperation may be more difficult than we imagine
and that the fruits of the cooperation may be more valuable than we imagine. For
instance, subject-matter experts may be able to nail down a much smaller interval
that a parameter value could reasonably take than we can on our own. But the
opposite could also be true.

3. Suitable area of application
What type of deficiencies in the HS method are acceptable largely depends on the
application. For instance, the method is much more time-consuming to apply than
traditional methods of meta-analysis, meaning that we most likely only want to
apply it to questions of great scientific value. Similarly, we have seen that in some
scenarios, the interval of plausible parameter values can be wide. This is a big
problem if we need a very precise measure of an intervention effect; it is less of a
problem if all we need to know is if the effect is outside of a particular interval,
e.g. if the effect is positive and not negative.
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10 Graphs

The following pages show graphs from Simulation Study 1 and 2. In each graph, the
x-axis shows the parameter values tested and the y-axis shows the proportion of the
simulations that a parameter value was deemed plausible. The red dot in each graph
represents the true parameter value, from the Mother Nature’s Model.
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10.1 Postulated Model 1, J=1, n=10
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10.2 Postulated Model 1, J=1, n=100
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10.3 Postulated Model 1, J=1, n=1000
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10.4 Postulated Model 1, J=5, n=10
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10.5 Postulated Model 1, J=5, n=100
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10.6 Postulated Model 1, J=5, n=1000
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10.7 Postulated Model 1, J=20, n=10
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10.8 Postulated Model 1, J=20, n=100
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10.9 Postulated Model 1, J=20, n=1000
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10.10 Postulated Model 1, J=100, n=10
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10.11 Postulated Model 1, J=100, n=100
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10.12 Postulated Model 1, J=100, n=1000
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10.13 Postulated Model 1, J=5, n=10, c4 = c6 = 3
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10.14 Postulated Model 1, J=5, n=100, c4 = c6 = 3
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10.15 Postulated Model 1, J=5, n=1000, c4 = c6 = 3
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10.16 Postulated Model 2, J=1, n=10
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10.17 Postulated Model 2, J=1, n=100
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10.18 Postulated Model 2, J=1, n=1000
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10.19 Postulated Model 2, J=5, n=10
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10.20 Postulated Model 2, J=5, n=100
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10.21 Postulated Model 2, J=5, n=1000
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10.22 Postulated Model 2, J=20, n=10
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10.23 Postulated Model 2, J=20, n=100
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10.24 Postulated Model 2, J=20, n=1000
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10.25 Postulated Model 2, J=100, n=10
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10.26 Postulated Model 2, J=100, n=100
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10.27 Postulated Model 2, J=100, n=1000
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10.28 Postulated Model 3
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10.29 Postulated Model 3
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