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Abstract

This thesis evaluates how well LSM (Least-Squares Monte Carlo) suc-
ceeds in estimating the cost-of-capital margin derived in Engsner,
Lindholm, and Lindskog [1]. Using Gaussian processes to model the
cash flows arising from an insurance portfolio, we can explicitly calcu-
late the value of the margin and thus evaluate how well LSM works.
While Gaussian assumptions are not entirely realistic in the insurance
context we consider, the idea is that LSM might work well also for
non-Gaussian assumptions if it works well under Gaussian assump-
tions.

We consider first an insurance portfolio where the individual risks are
independent and identically distributed. It turns out that LSM can
estimate the margin very well in this one-cohort setting. The results
are less satisfactory in the two-cohort case examined, and more work
would be needed to improve the LSM algorithm used. In particu-
lar, modeling correlation between different cohorts in a heterogeneous
insurance portfolio proved to be complicated

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: adam.gideon.pettersson@gmail.com. Supervisor: Filip Lindskog.
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1 Introduction

This introductory chapter will briefly look at the Solvency 2 Directive. We
then target a specific object, the risk margin defined in the directive. The
design of the risk margin has received some criticism. We look at why and what
alternatives to the risk margin are available.

1.1 Solvency 2

The European Commission transposed the Solvency 2 directive into national
law in January 2016. It includes three pillars and aims to unite the European
insurance market and improve customer protection.

Pillar 1 contains quantitative requirements for technical provisions and solvency
capital. The purpose of technical provisions is to ensure insurers have enough
assets to cover their insurance undertakings. Technical provisions are definied
as a sum of the discounted best estimate of the insurance liabilities and a risk
margin. Even if the best estimates are unbiased estimates of the liability cash
flow, the actual costs will deviate from the estimates due to the stochastic na-
ture of future insurance liability cash flows. Therefore, the insurer needs extra
capital to be prepared for years where actual costs exceed expected costs. En-
suring the availability of this extra capital is not free, and insurers are obliged
to set aside capital for a risk marginal, defined conceptually as the amount that
would have to be paid to another insurance company in order for them to take
on the best estimate liability, and mathematically as:

RM(D) := CoC

T∑
t=1

SCRt(D)

(1 + r0,i)t
. (1)

CoC is a constant representing the cost-of-capital rate, set to 0.06, and ri,j is
the yearly compounded forward rate for period i to j. The values SCRt(D)
are stochastic and represent the Solvency Capital Requirement as calculated at
time t. The Solvency Capital Requirement needs to be calculated yearly and
should cover basically all other risk than those directly connected to insurance
liability costs. It is not necessary to define the SCR’s further here.The key point
is that they are impossible to calculate at time 0. Hence, it is not clear from
equation 1 how to calculate the risk margin.

Insurers can calculate the risk margin either using an internal formula approved
by the national legislator, or a standard formula provided by the European In-
surance and Occupational Pensions Authority, EIOPA (2015, Paragraph 1.114,
Method 2). The standard formula is based on (1) but replaces the stochastic
SCR with expected values,

RM(D) := CoC
SCR0(D)

BEµ,1(D)

T∑
i=1

BEµ,i(D)

(1 + r0,i)i
.
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Here BEµ,i(D) is the best estimate of remaining liabilities at time i, which in a
life insurance context could take the form

BEµ,i(D) :=

T∑
j=1

E[Dj ;µ]

(1 + ri−1,j)j−i+1
, i = 1, ..., T,

where E[Dj ;µ] denotes expected value of Dj using mortality rate µ.

The definition of the risk margin has rendered criticism. For example, the
Society of Actuaries has in an article, Pelkiewicz et al. [3], expressed concerns
that the risk margin is too volatile and too conservative,. In response to the
insurance market’s criticism, the European Commission ordered a draft of re-
worked Solvency 2 guidelines from EIOPA. It is still unknown what shape these
will take and to what extent they will be able to address problems with the risk
margin. In the draft, [4], it is suggested that the risk margin is defined as

RM = CoC ·
∑
t≥0

max (λt; floor ) · SCRt

(1 + rt+1)
t+1

where CoC = 6%, λ = 0.975, floor = 50%

The idea is that the exponential lambda approach, if adopted, will lead to a risk
margin better mimicking the actual cost-of-capital. We will not look further
into this topic, only note that discussions regarding the risk margin are still
ongoing.

1.2 Objective

Alternatives to the solvency 2:s standard formula for the risk margin have been
proposed, as in Möhr [5] and Engsner, Lindholm, and Lindskog [1]. These arti-
cles use dynamic risk measures and dynamic utility functions to define a cost-
of-capital margin. In [1], an expression for a cost-of-capital margin is described.
However, a difficulty is that the cost-of-capital margin is hard or impossible to
calculate analytically without making strong assumptions about the underlying
cash flows, such as Gaussian cash flows. Another possibility is to use simulation,
as in Engsner [6].

In this thesis, we examine a method known as LSM (Least Squares Monte
Carlo) for calculating the cost of capital margin from [1]. We restrict ourselves
to Gaussian cash flows. That way, we can compute the cost-of-capital margin
exactly and thus evaluate the LSM algorithm’s performance. If the LSM algo-
rithm’s margin succeeds in estimating the exact margin value, this may indicate
that the LSM is suitable also for situations where Gaussian cash flows can not
be assumed.
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2 Theoretical background

This section begins with a derivation of the cost-of-capital margin using eco-
nomic arguments. We present the definitions, assumptions, and results needed
to compute the cost-of-capital margin explicitly. The presentation and termi-
nology follows that of [1].

Next comes an introduction to the least-squares Monte Carlo algorithms. We
look first at its original area of use and how to interpret it for our purposes.
The section ends with a description of the life insurance assumptions and models
used throughout this thesis.

2.1 The cost-of-capital margin

In this section, the goal is to provide a more accurate interpretation of the
market-consistent value of a liabilitys’s cash flow. We introduce the margin
for the cost of capital as it is definied in [1]. From that article we also lend
terminology and definitions.

We consider time periods (usually years or quarters) and associated times 0,1,...,
T , where times 0 and T correspond to the start and end point of the insurance
liability, respectively. For this we have a filtered probability space (Ω,F ,P,F).
F = (F)Tt=0 with {∅,Ω} = F0 ⊆ ... ⊆ FT = F . Based on the filtered probability
space, an insurance undertaking’s cost cash flow can be described by means of
a F-adapted stochastic process X0 = (X0

t )
T
t=1.

If a cash flow comprises capital costs from capital requirements on both assets
and liabilities, the value of cash flow is affected by the value of the assets.
This dependence on assets is not optimal from a regulatory perspective, as the
cash flows of two identical commitments are then valued differently depending
on the company’s assets. For a more uniform valuation, European Commision
(2015, Article 38) advocates valuing liabilities through a reference undertaking.
The reference undertaking means a hypothetical transfer to a separate entity
whose access only serves to match the liability value. Based on such a reference
undertaking, we will gradually define the value of the liability’s cost of capital
margin.

The valuation takes place in two steps. At time 0, a portfolio is purchased with
the sole purpose of replicating the liability cash flow. The replicating portfolio
has a market price of π and generates a cash flow Xs = (Xs

t )
T
t=1. The value

of the original liability can now be expressed as the sum of π and the value of
the residual cash flow X := X0 −Xs, calculated through repeated one-period
replication. The replication uses capital from a capital provider with limited
liability and requires compensation for capital costs. The value V0(X) of the
residual cash flow is what we define as the cost of capital margin.
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In defining V0(X) mathematically, we need first to clarify what is meant by
capital requirements. We define capital requirements as the insurance company
needing to have a certain amount of capital available, depending on the cost from
the liability cash flow. At time t, the value of the resiudual liability including
costs during the current year is modeled as

−Xt+1 − Vt+1(X).

Note that this is a random variable, as we are looking at costs from year t+1 at
time t. Let Rt be a risk measure that indicates what capital must be available
at a time t linked to next year’s costs. At time t, the insurance company then
needs to hold capital of Rt(−Xt+1 − Vt+1(X)). At the same time, the capital
Vt(X) is available, the current value of the residual cash flow. If Vt(X) is not
sufficient to meet the capital requirement, the missing capital will be

Ct := Rt(−Xt+1 − Vt+1(X))− Vt(X). (2)

We assume that a capital provider agrees to provide Ct at time t. The balance
at time t can now be written as

Rt(−Xt+1 − Vt+1(X))−Xt+1.

Any surplus goes to the capital provider as compensation for assisting with
capital. Moreover, the capital provider has no obligation to provide more than

Rt(−Xt+1 − Vt+1(X))−Xt+1 − Vt+1(X).

For a capital provider to accept providing capital, the deal must be sufficently
good. Using the conditional expectation Et(X) = E[X|Ft] to measure utility,
we express the capital provider’s acceptance conditions at time t as

Et

(
(Rt(−Xt+1 − Vt+1(X))−XT+1 − Vt+1(X))+

)
≥ (1 + ηt)Ct. (3)

Here ηt is a value that quantifies how much utility the capital provider requires
to accept providing capital. A capital provider would accept providing capital
only if the expected return is larger than ηt. All numerical examples and imple-
mentations in this thesis use the conditional expected value as utility function.

Setting Yt+1 := Xt+1 + Vt+1(X), and combining equations (2) and (3), we get
Yt+1 := Xt+1 + Vt+1(X),

Vt(X) ≥ Rt(−Yt+1)−
1

1 + ηt
Et

(
(Rt(−Yt+1)− Yt+1)+

)
.

We replace the inequality with an equality. Otherwise, the interpretation would
be that the capital provider gets a larger compensation than it would need to
accept the deal. Hence we get

Vt(X) = Rt(−Yt+1)−
1

1 + ηt
Et

(
(Rt(−Yt+1)− Yt+1)+

)
. (4)
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2.1.1 Mathematical details

Here the content of the previous section is supplemented with mathematical
definitions and results cited from [1]. We first look into the risk measures used
to express capital requirements.

Definition 1. For p ∈ [0,∞], a dynamic monetary risk measure (Rt)
T−1
t=0 is a

sequence of mappings Rt : L
p(Ft+1)→ Lp(Ft)

if λ ∈ Lp(Ft) and Y ∈ Lp(Ft+1), then Rt(Y + λ) = Rt(Y )− λ, (5)

if Y, Ỹ ∈ Lp(Ft+1) and Y ≤ Ỹ , then Rt(Y ) ≥ Rt(Ỹ ), (6)

Rt(0) = 0 (7)

With the above definition at hand, we can express the cost of capital margin.

Theorem 1 (Proposition 1 in [1] ). Fix p ∈ [0,∞]. Let (Rt)
T−1
0 be given by

Definition 1, let Et : L
p(Ft+1)→ Lp(Ft) be the conditional expectation, and let

ηt ∈ L0
+(Ft).

(i)

Wt(Y ) := Rt(−Y )− 1

1 + ηt
Et

(
(Rt(Y )− Y )+

)
(8)

is a mapping from Lp(F)t+1) to Lp(F)t) having the properties

ifλ ∈ Lp(Ft) and Y ∈ Lp(Ft+1) then Wt(Y + λ) = Wt(Y ) + λ, (9)

if Y, Ỹ ∈ Lp(F) and Y ≤ Ỹ , then Wt(Y ) ≤Wt(Ỹ ) (10)

Wt(0) = 0. (11)

(ii)

Let (Xt)
T
t=1 be a F-adapted cash flow with Xt ∈ Lp(Ft) for every t. The cost-

of-capital margin Vt(X) in (3) satisfies

Vt(X) = Wt ◦ · · · ◦WT−1(Xt+1 + · · ·XT ), (12)

where Wt ◦ · · · ◦WT−1 denotes the composition of mappings Wt, ...,WT−1

The Value-at-risk is the risk measure used when defining the solvency capital
requirements in the Solvency 2 guidelines and will be our risk measure of choice.
Conceptually, the value at risk is the most sizeable loss that can occur if we
exclude the 0.5% most sizeable losses, or more formally as

Definition 2. Let X be a real random variable. The value-at-risk (VaR) at
the quantile level α is defined as
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VaRα(X) = inf{L ∈ R : P (L+X < 0) ≤ α}.

In a dynamic risk measure context, as defined in (2.1), the Value-at-Risk is
slightly different to inclose the cash flow’s time-dependent nature. Based on
example 1 in [1], we make the definition as follows

Definition 3. Let X ∈ L0(Ft+1). The value at risk at time t and level α is

VaRt,α(X) = ess inf{L ∈ L0(Ft) : P (L+X < 0|Ft) ≤ α}.

2.1.2 Cash Flow Models

For an explicit calculation of the risk margin, we need stronger assumptions
about the underlying cash flow. We first assume that cash flows are auto-
regressive time series, leading to theorem 2. Auto-regressive time series is a
sufficiently general class of models to describe many types of cash flows. How-
ever, this generality is at the expense of the feasibility of calculating the cost of
capital margin. Assuming instead that the cash flow follows a Gaussian process
allows for explicit calculation as in theorem 3.

Theorem 2 (Proposition 5 in [1]). Fix p ∈ [1,∞] and let Wt be given by (8),
with Rt and Et satisfying the condition in Proposition 4, described in appendix
A2. Let (Zt)

T
t=1 be an F-adapted sequence of random variables such that, for each

t, Zt+1 ∈ Lp (Ft+1) is independent of Ft. Let (αt)
T
t=1 be a nonrandom sequence

of real numbers. Let X0 := 0, Xt+1 := αt+1Xt+Zt+1, t = 0, . . . , T − 1, and
set

βT := 1, βt := 1 + βt+1αt+1, t ∈ {1, . . . , T − 1},
δT := 0, δt := δt+1 + |βt+1|Wt (sign (βt+1)Zt+1)

t ∈ {0, . . . , T − 1}

Then, for t = 0, . . . , T − 1, δt ∈ L0 (F0) and

Vt(X) = δt + βt+1αt+1Xt ∈ Lp (Ft) .

In particular,

V0(X) =

T−1∑
t=0

|βt+1|Wt (sign (βt+1)Zt+1)

The result above allows us to calculate the cost of capital margin with a back-
ward recursion. However, it generally becomes difficult to calculate the cost-of-
capital margin using theorem 2 unless the underlying distribution has quantiles
easy to calculate. We therefore move on to theorem 3, which uses Gaussian
assumption and leads to an explicit formula for the cost-of-capital margin.
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Theorem 3 (Proposition 6 in [1]). Let (X,G) be a zero mean Gaussian model,
ϵ1 standard normal and suppose that ηt = η0 ∀ t ∈ {0, ..., T}. Let Wt be given
by (8), with Rt and Et satisfying the condition in Proposition 4. Then, for
t ∈ {0, ..., T − 1},

Vt,G(X) =E

[
T∑

s=t+1

Xs | Gt

]

+

T∑
s=t+1

Var

(
E

[
T∑

u=s

Xu | Gs

]
| Gs−1

)1/2

W0 (ϵ1) .

Moreover,

V0,G(X) =

T∑
s=1

(
Var

(
T∑

u=s

Xu | Gs−1

)

−Var

(
T∑

u=s

Xu | Gs

))1/2

W0 (ϵ1) .

We may decompose and rewrite the latest expression as,

T∑
s=1

Var

(
Xs + E

[
T∑

u=s+1

Xu | Gs

]
−E

[
T∑

u=s

Xu | Gs−1

]
| Gs−1

)1/2

W0 (ϵ1) ,

meaning that the cost of capital margin is proportional to the sum of conditional
standard deviations of the prediction error of the remaining residual cash flow.
Proofs and further details on topics in this subsection can be found in [1].

2.1.3 Example calculation

To provide some intutition and clarity regarding the cost-of-capital margin, we
here consider an example small enough to allow for calculations by hand while
still being non-trivial. Rt will be as in definition 4 and Et the conditional
expectation. Let T = 3 and the cash flow (Xt)

T
t=0 follow a Gaussian process

with mean zero and covariance matrix given by

Σ =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

, ρ = 0.5.

Our aim is to calculate the cost-of-capital margin using the formula from theo-
rem 3:

T∑
s=1

(
Var

(
T∑

u=s

Xu | gs−1

)
−Var

(
T∑

u=s

Xu | gs

))1/2

W0 (ϵ1) .
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We calculate (numerically) beforehand

W0(ϵ0) = R(ϵ0)−
1

1 + η
E
[(
R(ϵ0)− ϵ0

)
+

]
= 2.575829− 1

1.06
2.577202 = 0.1442583.

If we define Y = (Xt)
T
t=s and Z = (Xt)

s−1
t=0 , the conditional covariance matrix

for (Xt)
T
t=s|(Xt)

s−1
t=0 ⇔ Y |Z is given by

ΣY |Z = ΣY Y − ΣY ZΣ
−1
ZZΣZY , where Σ =

(
ΣZZ ΣZY

ΣY Z ΣY Y

)
.

This allows us to, as an intermediate step, calculate conditional covariance ma-
trices. Below Σ

Gi

denotes the conditional covariance matrix given Gi.

Σ
G0

= Σ, Σ
G3

= 0

Σ
G1

=

(
1 0.5
0.5 1

)
−
(
0.5
0.25

)
1−1
(
0.5 0.25

)
=

(
0.75 0.375
0.375 0.9375

)
,

Σ
G2

= 1−
(
0.5 0.25

)( 1 0.5
0.5 1

)−1( 0.5
0.25

)
= 0.75.

.

We now get (
Var

(
T∑

u=1

Xu | G0

)
−Var

(
T∑

u=1

Xu | G1

))1/2

W0 (ϵ1)

+

(
Var

(
T∑

u=2

Xu | G1

)
−Var

(
T∑

u=2

Xu | G2

))1/2

W0 (ϵ1)

+

(
Var

(
T∑

u=3

Xu | G2

)
−Var

(
T∑

u=3

Xu | G3

))1/2

W0 (ϵ1)

⇔(
(3 · 1 + 4 · 0.5 + 2 · 0.25)− (0.75 + 0.9375 + 2 · 0.375)

)1/2
W0 (ϵ1)

+
(
0.75 + 0.9375 + 2 · 0.375)− (0.75)

)1/2
W0 (ϵ1)

+
(
0.75)− (0)

)1/2
W0 (ϵ1)

= (3.06251/2 + 1.68751/2 + 0.751/2) · 0.14425 = 0.565.

Deploying the backwards recursion from theorem 4, with implementation de-
scribed in appendix A1, returns the exact same value.
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2.2 Monte Carlo methods

Monte Carlo simulation is a technique used to calculate a value by random
sampling. The goal is to calculate a deterministic value that is too difficult
to calculate with analytical or numerical methods. In mathematical statistics,
a common area of application of Monte Carlo simulation is calculating some
expected value of a function of a random variable. For a random vector X with
density function f(x), and a function g(·), we might want to determine the value
of

E[g(X)] =

∫
g(x)f(x)dx. (13)

Using Monte Carlo simulation, this is estimated as∑n
i=1 g(xi)

n
, xi:s sampled from X. (14)

The strong law of large numbers would now guarantee that the expression (14)
converges to the value in (13) for large enough values on the sample n.

The cost-of-capital margin does typically not allow for explicit computation
of the margin unless we restrict our attention to special cases, such as Gaussian
cash flows. However, a straightforward Monte Carlo approximation would not
be a realistic option for calculating the cost-of-capital margin. To see why, we
recognize from theorem 1 that

Vt(X) = Wt ◦ · · · ◦WT−1(Xt+1 + · · ·XT ) = Wt

(
Xt+1 + Vt+1(X)

)
.

If we were to draw samples X
(i)
t+1 of Xt+1, the value Vt+1 conditional on a draw

X
(i)
t+1 is deterministic but incalculable in most cases. To find this unknown value,

we would need to estimate Vt+1 using new simulations for each draw X
(i)
t+1. I.e.,

we need to use simulations within a simulation, so-called nested simulations.
The nested simulation approach is illustrated in figure 1. Since the liabilities
we consider in this thesis might span over decades, a nested simulation could
require too many simulations to generate stable estimates of the cost-of-capital
margin.

Instead of a full-scale nested Monte Carlo approach, we consider a method
called least-squares Monte Carlo. The following section describes the method’s
original area of use. After that, we will move on to a more general description,
and lastly, we will consider an insurance setting.

2.2.1 The Longstaff-Schwartz Algorithm

In Longstaff and Schwartz [8], the Longstaff-Schwartz algorithm for pricing op-
tions was introduced. The key idea is to replace the inner simulations in a nestled
simulation with a regression model. This elimination of nested simulations can

12



Figure 1: A figure of a nested simulation, illustrating how it for each path is
necessary to simulate new paths at each time step. In particular, we see for the
black path how new paths are simulated to calculate the t = 6 value from the
t = 5 value.

significantly reduce the size of the computational task while maintaining a low
error in the right circumstances.

For the algorithm, a complete probability space (Ω,F , P ) and a finite number
of times t ∈ 0, ..., T are assumed, where T is the option’s expiration date. The
option has a payout-function g(St), where St is the price vector of the option’s
underlying random assets at time t. The value Vt of an American option equals
the earnings from at all times t ∈ 0, ...T deploying an optimal strategy. This
means that for any t, the alternative that provides the greatest expected dis-
counted earning is selected. At time T , the expiration date, the optimal strategy
is clear. The holder triggers the option if it is in the money, otherwise not. To
find the most fruitful alternative at any other time ti ∈ 0, ..., T , we need to com-
pare the earnings from immediate triggering of the option, with that of holding
on to the option. I.e, we consider

max
(
g(Sti),E[Vti+1

|Sti ]
)
. (15)

The conditional expecation in (15) is represented using basis functions Φ(·) and
constants β,

E[Vti+1 |Sti ] =

m∑
j=0

βjΦj(Sti). (16)

The parameters β from (16) are estimated using an ordinary least-squares
method.
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Algorithm 1 LSM for a simple put option

1 Simulate m paths S
(i)
t , i ∈ 1, ...,m and t ∈ 1, ...T .

2 Set V̂
(i)
T = (K − S

(i)
T )+ for all i ∈ 1, ...,m.

3 Fit coefficients βt with V̂
(i)
T as response variables and S

(i)
T−1 as explanatory

variables, using some form of regression.

4 Estimate the conditional expectation E[V
(i)
T |S

(i)
T−1] from the regression model

in step 3 and denote this value by Ĉ
(i)
T .

5 Set V̂
(i)
T−1 = max

(
Ĉ

(i)
T , (K − S

(i)
T−1)+

)
.

6 Proceed with steps (3 to 5) until V̂
(i)
0 is found for all i:s.

7 The LSM estimate is given by V̂0 = mean(V̂
(i)
0 ).

To examplify the algorithm we consider an American put option with value
depending on a single risky asset St. For this example, we assume that the
risky asset St = S(t) behaves according to assumptions from a Black - Scholes
market.

At times t ∈ 0, 1, 2, ..., T , the owner has the opportunity to sell the underlying
stock for a settled amount K. Say K = 100. If the current stock price is 85
dollars, triggering the option would mean a 15-dollar surplus for the put options
owner. On the other hand, the surplus might increase further if the owner waits
longer to trigger the option. Hence, the optimal strategy for the owner is to
compare the surplus gained from triggering at time t with the surplus expected
from holding on to the option. Mathematically, we say that at time t,

Vt = max ((K − St)+,E[Vt+1|Ft]) , (17)

where Vt is the option’s value at time t. Algorithm 1 shows how the option’s
value at time 0 is calculated using the Longstaff-Schwartz algorithm.

2.2.2 Least Square Monte Carlo

In the previous section, an American option was valued using a least-squares
Monte Carlo approach. In that context, the problem consists of an optimal
stopping part and a part where we estimate a conditional expectation. Our in-
terest lies in the latter part, where least-squares is used to find the conditional
expectation without additional Monte Carlo simulations. In the previous sec-
tion’s example, St was the price of a risky asset. In our upcoming explorations,
St will be the number of survivors at time t Formally, for t in 0, ..., T − 1 and
VT = 0, we want to solve a recursion on the form

Vt = Wt

(
g(St+1) + Vt+1

)
. (18)

with Wt defined as in theorem 1, g(St+1) = St+1 − St is the number of deaths
and Rt the Value-at-risk. To find an approximate solution for (18) we require
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M simulated paths of St, i.e. S
(i)
t for i in 1,...,M and t in 1,...,T. We also need

a set of basis functions

Φ(x) = {1,Φ1(x), ...,ΦN (x)},

required to be linearly independent. One simple example is the set of basis
functions Φ(x) = {1, x, x2, ..., xN}. In relation to the basis functions, we have
for each t a vector βt = (β0, ..., βN ). Next we define

Φt =


1 Φ1(S

(1)
t ) ... ΦN (S

(1)
t )

...
...

...

1 Φ1(S
(M)
t ) ... ΦN (S

(M)
t )

, Yt =


Y

(1)
t
...

Y
(M)
t

,

and that for such Φt and Yt,

β̂t :=
(
ΦT

t Φt

)−1

ΦT
t Yt.

The LSM version of (18) is now, when Y
(i)
t = Wt

(
g(S

(i)
t ) + V

(i)
t+1

)
,

V̂t = β̂t Φt(St). (19)

2.2.3 Life Insurance setting

In our upcoming calculations, we will consider life insurance portfolios consist-
ing at time t = 0 of individuals in some age cohorts. In general, each age cohort
will be individuals of a certain age. So one cohort for people who are 50, one
cohort for 51, for all cohorts present in the portfolio. The insurance contracts
considered in this thesis all concern mortality. No other elements of risk are
present or examined. Therefore, some care will be given to model the mortal-
ities properly. We will first have some assumptions outlined, followed by our
method of choice and some examples illustrating the behaviors of mortality.

We assume first that fatalities occur independent of each other. The proba-
bility that an x years old individual starting at time t dies in the next year is
denoted by

qx(t) = 1− Sx(t+ 1)

Sx(t)
. (20)

Note that the individuals of an age cohort will not of the exact same age. Some
will be a few months older than the others. Still, they are all assumed to have
the same probability of dying in the next 1-year period. This is in generally
assumed to even out.

Sx(t) in (20) is here the survival function for an x years old individual. The
survival function can be calculated as

Sx(t) = exp

{
−
∫ x+t

x

µx(s)ds)

}
,
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where µx(s) is the hazard rate at time s for an x years old individual. Details
about fitting a hazard rate model are found in appendix 2, together with some
graphs.

3 Computational approach

This section looks at implementing the explicit formula for the cost-of-capital
margin given Gaussian cash flows. After that, we look at implementing an LSM
algorithm for a homogenous underlying insurance portfolio. Finally, we look
at a more advanced approach with a heterogeneous portfolio consisting of two
cohorts.

Throughout this section, we ignore time effects on the value of money; 1 SEK
today is assumed to be worth as much as 1 SEK is in 30 years. Of course, such
an assumption is not realistic but allows us to focus on how the LSM algorithm
performs. Discounting cash flows with some deterministic interest rate would
not be difficult, but would require focusing on something that does not affect
the LSM algorithm.

3.1 Gaussian Cost-of-Capital margin

In the previous sections, we estimated the mean and covariance-variances of a
stocastic cash flow describing a life insurance portfolio,

µ = (µ0, ..., µT )
T , Σ =

σ11 ... σ1T

...
...

...
σT1 ... σTT

 .

We assumed that these estimates are the actual characteristics of the cash flow.
However, we exchanged the underlying distribution with a normal distribution
to allow for explicit computation of the cost-of-capital with theorem 3. The-
orem 4 provides an alternative that is less cumbersome to implement. For all
numerical results in this thesis, theorem 4 was used. The implementation is
described in algorithm 4 in appendix A1.

Theorem 4 (Proposition 10 in [1]). Let X = (Xt)
T
t=1 ∼ NT (0,Σ) where Σ is

invertible, with G as its natural filtration. Let Wt be given by (8), with Rt and
Et satisfying the condition in Proposition 4. Then

Vt(X) =


0, t = T(
v(t)
)T

X1:t + kt, t ∈ {1, . . . , T − 1}
k0, t = 0,

with kt ∈ R and vt ∈ Rt to be calculated recursively as
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kt := kt+1 +Wt

((
1 + v

(t+1)
t+1

)
Σ

1/2
t+1|1:tϵt+1

)
(
v(t)
)T

:=
(
v
(t+1)
1:t

)T
+
(
1 + v

(t+1)
t+1

)
Σt+1:1:tΣ

−1
1:t,1:t

and initial conditions kT = 0, v(T ) = 0, v(0) = 0. Here (ϵt)
T
t=1 is a sequence of

independent standard normally distributed random variables such that ϵt+1 is
Gt+1-measurable and independent of Gt.

3.2 Set-up and assumptions

3.2.1 One-cohort case

We consider first a cohort of 1000 individuals signing life insurance paying out
one SEK at the time of death, with a duration of 30 years. We assume that the
entire portfolio consists of 50 years old men with identical mortality law. The
yearly number of deaths is assumed to follow a binomial process. Under these
binomial assumptions, we calculate the yearly number of expected mortalities
and the covariance matrix. We fix these values as the true characteristics of
the stochastic process. However, we exchange the binomial assumption with a
normal assumption at this point. In other words, we consider a Gaussian process
with the binomial process’ characteristics so that we can compute the cost-of-
capital margin using theorem 3. Note that despite this change of distribution,
the process is still Markovian. While there is a correlation between the number
of deaths at different time steps, we can calculate the upcoming year’s death
toll’s expectancy and variance if we know the number of survivors at time t.
Since the process is Markovian, equally well as sampling the entire vector of
deaths, we may start at time 0 and simulate the number of deaths year by year.

The Markov property enables us to use an LSM algorithm that does not need
empirically estimated variances and covariances. Algorithm 2 describes this
algorithm from the point where sample paths have been simulated using µ and
Σ computed using standard results regarding binomial distributions. The design
of the algorithm is similar to the design used in Engsner [6]. In figure 2, the
results are illustrated and compared to the true values.

3.2.2 Two-cohort case

In a real-life insurance portfolio, there are usually many different cohorts. We
consider such a two-cohort portfolio to evaluate the LSM algorithm’s ability
to estimate the cost-of-capital margin of aggregated cash flows arising from
correlated cohorts. The starting point will be a Gaussian process where we pre-
condition on a covariance structure. Since the overall purpose is to evaluate the
LSM algorithm, we will prioritize computability over realism.

In the one-cohort case, we pre-conditioned on a covariance matrix. This was
straightforward, since we were able to use the moments from a corresponding
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Algorithm 2 LSM algorithm for the one-cohort life insurance portfolio

1: β̂T = (0, 0)
2: Dstatic

t = static repliacating portfolio, t ∈ 1, ..., T

3: S
(i)
t , i ∈ 1, ...,M and t ∈ 0, ..., T simulated paths

4: for t in T-1:0 do
5: for i in 1:M do
6: µt+1 = S

(i)
t q50(t)

7: σ2
t+1 = S

(i)
t q50(t)p50(t)

8: Sample S
(i,j)
t+1 from N(µt+1, σt+1), j ∈ 1, .., n

9: D
(i,j)
t+1 = S

(i,j)
t+1 − S

(i)
t

10: Y
(i,j)
t+1 = D

(i,j)
t+1 −Dstatic

t+1 + β̂t+1 · (1, S
(i,j)
t+1 )

T

11: R
(i)
t = sort

(
Y

(i,j)
t+1

)
[ceil(0.995n))] ▷ Empirical Value-at-Risk

12: E
(i)
t = 1

n

∑
j

(
R

(i)
t − Y

(i,j)
t+1

)
+

13: W
(i)
t = R

(i)
t − 1

1+ηE
(i)
t

14: end for
15: αt, βt = OLS parameters from redressing Wt on St

16: β̂t = (αt, βt)
17: end for

18: V0 = 1
M

∑
W

(i)
0 ▷ The cost-of-capital margin
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binomial process. When we now consider a 2-dimensional stochastic process,
it is still possible to use the binomial moments, but we also need to handle
the cross-covariances. The sum of two Gaussians is not necessarily Gaussian.
To ensure normality in the aggregated cash flows, we need to make stronger
assumptions. The idea is to simulate the two-dimensional length T stochastic
process as a one-dimensional length 2T Gaussian process. Such a setup lets us
control the cross-covariances, and the Gaussian aggregated cash flow is a linear
transformation away.

Let NA
t , NB

s be the number of survivors for cohort A and B, at times t and s,
and DA

t , D
B
s the corresponding number of year-wise fatalities. Let t ≤ s and

c ∈ [0, 1]. For the purpose of testing the LSM algorithm’s ability to estimate
the cost-of-capital margin when the cash flow comes from correlated cohorts,
we use a structure where

corr(DA
t , D

B
s ) =

c

s− t+ 1
⇔ cov(DA

t , D
B
s ) =

c
√
V(DA

t )V(DB
s )

s− t+ 1
.

The in-cohort expectancies and variances are modelled as in the one-cohort case,

cov(Dt, Ds+1) = n0S(t)qtS(s+ 1)qs+1,

V(Dt+1) = Ntqtpt, E[Dt+1] = Ntqt.

We consider for ease of notation only the case where T = 2. Then we define
XAB = (DA

1 , D
A
2 , D

B
1 , DB

2 ) and

ΣAB
0 =


σ2
A,1 σ2

A,12 σ2
AB,11 σ2

AB,12

σ2
A,12 σ2

A,2 σ2
AB,21 σ2

AB,22

σ2
AB,11 σ2

AB,21 σ2
B,1 σ2

B,12

σ2
AB,12 σ2

AB,22 σ2
B,12 σ2

B,2

,

where the components of the covariance matrix has been estimated using the
covariance structure defined above. We simulate from this Gaussian process and
create an aggregate cash flow as

KXAB , K =

(
1 0 1 0
0 1 0 1

)
.

It follows that the aggregate cash flow is Gaussian too, with

µ = KµAB , Σ = KΣABK
T .

We may now compute the exact CoC margin using the explicit formula from
theorem 4. Figure 2 illustrates the impact of the implictly definied c parameter
when the 1000 individuals from the one-cohort case are divided into two equally
sized cohorts. As expected, the margin stays the same when c = 0, increases
when the correlation is positive and decreases otherwise.

We will proceed similarly to the one-cohort case but with some modifications to
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Figure 2: The cost-of-capital margin for increasingly long durations, with c =
0.1 (green), c = 0 (blue) and c = -0.1 (red)

handle the added dimension. Most importantly, the model’s inner simulations
will be drawn from a 2-dimensional normal distribution with a covariance that
has to be estimated, and the regression part will include at least one additional
parameter. With these modifications at hand, the only pre-requirement for the
LSM algorithm will be M simulated paths of the two-dimensional vector of
survivors and estimated cohort-correlations at times 1,..,T . Algorithm 3 in the
appendix describes the modified LSM algorithm used for the two-cohort case.

4 Results

This section contains the results from the one-cohort and two-cohort cases,
carrying out calculations in the programming language R. We use the built-in
function LM for regression and the function corr to estimate correlation in the
two-cohort case.

4.1 One-cohort case

For the one-cohort case, we test two different models. In the first model, the
regression model consists of only an intercept term, without regard to the num-
ber of survivors. The second model uses an intercept parameter and a slope
parameter. All runs use 1000 external simulations. The number of internal
simulations is 1000, 5000, and 10000. Table 1 shows how the respective models
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Figure 3: One-cohort CoC margins V0 for duration ranging from 1 to 30

LSM (red) compared to Gaussian (blue)

Table 1: Results from the one-cohort case

T M n intercept intercept + slope Gaussian

15 1000 1000 4.95 4.74 4.67
15 1000 5000 4.92 4.68 4.67
15 1000 10000 4.89 4.68 4.67
30 1000 1000 13.68 10.82 10.73
30 1000 5000 13.39 10.72 10.73
30 1000 10000 13.55 10.71 10.73

perform. The model with only an intercept term estimates the margin reason-
ably well but with a significant deviation. The more advanced model estimates
the margin almost entirely without deviation for sufficiently large values of n.
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Table 2: Results from the two-cohort case, with models 1-6 definied as in table
2

c M n M1 M2 M3 M4 M5 Gaussian

-0.1 1000 1000 12.55 10.31 10.32 10.34 10.22 3.86
-0.1 1000 5000 12.32 10.17 10.16 10.13 10.14 3.86
-0.1 1000 25000 12.26 10.11 10.13 10.13 10.18 3.86
0.1 1000 1000 12.10 13.36 11.36 11.39 11.36 14.83
0.1 1000 5000 11.95 11.21 11.26 11.24 11.20 14.83
0.1 1000 25000 12.14 11.29 11.19 11.24 11.25 14.83

Table 3: Description of models in table 2

Model Expression

M1 β0 + β1A
M2 β0 + β1A+ β2B
M3 β0 + β1A+ β2B + β3AB
M4 β0 + β1A+ β2B + β3AB + β4A

2 + β5B
2

M5 β0 + β1A+ β2B + β3AB + β4A
2 + β5B

2 + β6A
3 + β7B

3

4.2 Two-cohort case

In the case of two cohorts, we examine the performance of the LSM algorithm
for three different values of parameter c. We use five different basis functions.
When c = 0, the same layout is obtained as in the one-cohort case. Quite
rightly, we also get the same value on the cost-of-capital margin. In this case,
the LSM algorithm has no problem estimating the margin as long as the base
function considers the number of survivors of both cohorts. When c deviates
from 0, The Gaussian margin becomes as in Figure 4, and the LSM algorithm’s
estimates for T = 30 become as in Table 2. Although gradually more advanced
sets of basis functions are used, the algorithm does not succeed in estimating
the margin. The algorithm understands that the margin becomes larger when
c is positive and smaller otherwise, but without converging towards the correct
value.

5 Discussion

We have seen how to value a residual cash flow due to imperfect replication
based on the cost of capital. Under assumptions about Gaussian cash flows,
we calculated this cost-of-capital margin exactly for an insurance portfolio and
compared this margin with that of a valuation based on a least-squares Monte
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Figure 4: Cost-of-capital margins from the two-cohort case. The red dots are
estimates from the LSM algorithm run with M = 1000, n = 5000 and model
M3 for the basis functions.

(a) c = 0.1 (b) c = -0.1

Carlo estimation. It was possible to estimate the exact value without deviation
for a homogeneous insurance portfolio.

We split the insurance portfolio into two correlated cohorts and compared two
different scenarios - one with a positive correlation between the cohorts and one
with a negative correlation. A positive correlation led to an increased value of
the cost-of-capital margin and a negative correlation to a decreased value. In
this more complex case, the LSM algorithm did not succeed in estimating the
cost-of-capital margin. Different basic functions of varying valence were tested
but did not significantly affect the estimate. The LSM algorithm captured the
direction the cost-of-capital margin moved due to the correlation but failed to
estimate the magnitude.

Future work that implements more well-thought-out approaches to the LSM
algorithm in the two-cohort case would be interesting. The thesis used a perhaps
naive direct generalization of the one-cohort modeling the cash flow as if it were
Markovian. More consideration in estimating the actual conditional covariance
matrix at each time step of the iteration could help improve the LSM algorithm.

The LSM algorithm used could have been better evaluated if an underlying
covariance structure that preserves the Markov property of the cash flow had
been used. As table 2 shows, increasing the degree of the basis functions did
not improve performance, indicating that the estimated covariance matrix was
biased.
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A next step given a better LSM algorithm would be to replace the covariance
structure with estimates from actual data. The theory presented in appendix
A3 could be a good breeding ground for such estimation. It is also possible to
increase the number of cohorts by generalizing the simulation approach used in
the two-covariance case.
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Appendix

A Implementation details

In section 3, the Gaussian cost-of-capital margin is calculated using theorem 6
through the implementation in algorithm 4 below.

Algorithm 3 Computing the Gaussian CoC margin

1: Import(mean, cov) ▷ Importing Gaussian characteristics for yearly number
of fatalities

2:

3: function R(mean, sd) ▷ Value at risk for normal variable
4: return quantile(0.995, mean, sd)
5: end function
6: function U(mean, sd) ▷ Selected utility function
7: R ← R(mean, sd)
8: integrand(x) ← (x+R)· density(x, mean, sd)
9: U ← integrate(integrand(x), lower = -R, upper = ∞)

10: return U
11: end function
12: function W(mean, sd) ▷ W used in the recursion
13: eta ← 0.06
14: R ← R(mean, sd)
15: U ← U(mean, sd)
16: W ← R - U/(1 + eta)
17: return W
18: end function
19: T ← 30
20: v, k ← list(T), list(T)
21: v[T] ← rep 0 T+1 times
22: k[T] ← 0
23:

24: for t in (T-1):2 do
25: cVar ← C[t+1, t+1] - C[t+1, 1:t] * inv(C[1:t, 1:t]) * C[1:t, t+1]
26: sd ← (1 + v[t+1][t+1]) * sqrt(cVar)
27: Wt ← W(0, sd)
28: k[t] ← k[t+1] + Wt
29: v[t] ← v[t+1][1:t] + (1+v[t+1][t+1]) * C[t+1, 1:t] * inv(C[1:t, 1:t])
30: end for
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Algorithm 4 LSM algorithm for a two-cohort life insurance portfolio

1: β̂T = repeat(0, N) ▷ length N vector of 0’s
2: Dstatic

t = static repliacating portfolio, t ∈ 1, ..., T

3: S
(i)
t , simulated 2-dimensional paths with i ∈ 1, ...,M and t ∈ 0, ..., T

4: corr = length T vector of estimated correlations

5: for t in T-1:0 do
6: for i in 1:M do
7: µt+1 =

(
S
(i,A)
t qA50(t), S

(i,B)
t qB50(t)

)
8:

(
σ2
A,t+1, σ2

B,t+1

)
=
(
S
(A,i)
t qA50(t)p

A
50(t), S

(A,i)
t qA50(t)p

A
50(t)

)
9: Σt+1 =

(
σ2
A,t+1 corrt+1σA,t+1σB,t+1

corrt+1σA,t+1σB,t+1 σ2
B,t+1

)
10: Sample S

(i,j)
t+1 from N(µt+1,Σt+1), j ∈ 1, .., n

11: D
(i,j)
t+1 = S

(i,j)
t+1 − S

(i)
t

12: Y
(i,j)
t+1 = D

(i,j)
t+1 · (1, 1)−Dstatic

t+1 + β̂t+1 · Φ(S(i,j)
t+1 ), j ∈ 1, .., n

13: R
(i)
t = sort

(
Y

(i,j)
t+1

)
[ceil(0.995n))] ▷ Empirical Value-at-Risk

14: E
(i)
t = 1

n

∑
j

(
R

(i)
t − Y

(i,j)
t+1

)
+

15: W
(i)
t = R

(i)
t − 1

1+ηE
(i)
t

16: end for
17: β̂t = OLS parameters from redressing Wt on St

18: end for

19: V0 = 1
M

∑
W

(i)
0 ▷ The cost-of-capital margin
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A2 Additional mathematical details

In section 2 some details about risk measures were omitted. These details are
necessary to derive theorems 2, 3 and 4. Although the conditional expectation
Et has been sufficient for our purposes, we here include a more general definition
of a dynamic utility function to bring justice to theorem 5. We cite straight off
[1].

Definition 4. For p ∈ [0,∞], a dynamic monetary utility function (Ut)
T−1
t=0 is

a sequence of mappings Ut : L
p(Ft+1)→ Lp(Ft) satisfying

if λ ∈ Lp(Ft) and Y ∈ Lp(Ft+1), then Ut(Y + λ) = Ut(Y ) + λ, (21)

if Y, Ỹ ∈ Lp(Ft+1) and Y ≤ Ỹ , then Ut(Y ) ≤ Ut(Ỹ ), (22)

Ut(0) = 0 (23)

We also define, for probability measuresMR andMU on (0, 1), for Y ∈ Lp (Ft+1),

Rt(Y ) :=

∫ 1

0

F−1
t,−Y (u)dM

R(u), (24)

Ut(Y ) :=

∫ 1

0

F−1
t,Y (u)dM

U (u). (25)

Theorem 5 (Proposition 4). Suppose there exist µ0 ∈ (0, 1/2) and m̄ ∈ (0,∞),
such that, for k = R, U,

max
(
Mk((u, v)),Mk((1− v, 1− u))

)
≤ m̄(v − u) for all 0 < u < v < u0.

Fix p ∈ [1,∞].

(i) Rt in (24) and Ut in (25) are well-defined as mappings from Lp
(
F̃t+1

)
to

Lp (Ft) and satisfy (5)− (7) and (21)− (23), respectively.
(ii) If Y ∈ Lp (Ft+1) and, for any Borel set A ⊂ R

P (Y ∈ A | Ft) = P
(
Y (1) + Y (2)Y (3) ∈ A | Ft

)
,

where Y (1) ∈ Lp (Ft) , 0 < Y (2) ∈ L0 (F0), and Y (3) ∈ Lp (Ft+1) is independent
of Ft, then

Rt(Y ) = −Y (1) + Y (2)Rt

(
Y (3)

)
,

Ut(Y ) = Y (1) + Y (2)Ut

(
Y (3)

)
,

where Rt

(
Y (3)

)
, Ut

(
Y (3)

)
∈∼0 (F0). Moreover, Rt

(
Y (3)

)
= R0

(
Ỹ

(3)
(3)

)
and

Ut

(
Y (3)

)
= U0

(
Ỹ (3)

)
for Ỹ (3) ∈ Lp

(
F̃1

)
with Y (3) and Ỹ (3) equally dis-

tributed. For Wt in (13), Wt(Y ) = Y (1) + Y (2)Wt

(
Y (3)

)
, and if ηt ∈ L0

+ (F0),

then Wt

(
Y (3)

)
∈ L0 (F0). Further, if ηt = η0, then Wt

(
Y (3)

)
= W0

(
Ỹ (3)

)
for

Ỹ (3) ∈ LP (F1) with Y (3) and Ỹ (3) equally distributed.
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A3 Life insurance details

For modelling the hazard rates, we used a Makeham distribution with parame-
ters α = 0.001, β = 0.000012 and γ = 0.101314 throughout the thesis.

Definition 5. Makeham law of mortality states that the hazard rate for an x
years old individual is given by

µx = α+ βeγx, for α, β, γ > 0.

We could equally well have used the Lee-Carter inspired model described in
Brouhns, Denuit, and Vermunt [9]. The later approach offers a statistically
sound way of forecasting and simulating future years. The thesis never got to
a stage where this was relevant, but there are several ways the Brouhn model
could have enrichened the thesis.

In implementing the model from Brouhn, the number of fatalities Dx(t) in the
period starting at t are assumed to be Poisson distributed. With exposure wx(t),
we assume that

Dx(t) ∼ Po (wx(t)µx(t)) .

The hazard rate itself is modelled as

log(µx(t)) = αx + βxκt, (26)

where αx is the age dependent effect, βx the trend sensitivity at age x and κt

the general mortality trend. Fitting the model to human mortality data, we can
use the hazard rate to simulate a life insurance portfolio.

Let Nx(t) be the number of x years old alive at time t. Assuming a portfolio ini-
tially consisting of k+1 age groups, we start off with (Nx0

(0), . . . , Nxk
(0)) , This

is modelled as a discrete multivariate stochastic process where t ∈ 0, 1, 2, ..., T .
In particular, using the Brouhn assumptions from this section, t + 1 given t is
assumed to be distributed as

Nx+1(t+ 1) ∼ Binom(Nx(t), px(t)), with px(t) = 1− qx(t).

Note that even if the different age groups are be modelled independently, condi-
tional on the values on Nx(t) and px(t), correlation between the age groups will
still be present, since we use (21) to model the hazard rate. The second term,
the time-effect, is what gives rise to age group correlation.

Simulating data

In this section, we implement the mortality model from Brouhn. Using the R
package StMoMo from Villegas, Kaishev, and Millossovich [10], we generate a
Gaussian cash flow model corresponding to a specific life insurance portfolio.

As a starting point, we consider 1000 males in each of the ages from 50 to
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60. Hence we start with 11000 individuals all signed up for the same type of
insurance product. These numbers are chosen to give a somewhat realistic rep-
resentation of an insurance portfolio without requiring too much extra work, but
the starting position can easily be simplified or widened. We could equally well
restrict our attention to one age group of 50 years old males, widen it to a larger
span of ages and not only men. The insurance product analyzed is a traditional
life insurance product paying one SEK if a fatality occurs and otherwise noth-
ing, over the years 0, ..., T . The LSM method and the normal approximation
allow for more complex insurance products, but this set-up is sufficient since it
possesses interest’s underlying cash flow structure.

Fitting the mortality model

Based on the HMD [11], we fit a Lee Carter model. We use ages 30-90 and years
1960-2017. This gives a poisson model with predictor

log (µx(t)) = αx + βxκt, (27)

where α, βx and κt all are fitted using the fit function provided in StMoMo.
Figure 2 shows the estimated parameters. From the same model we simulate
future mortality rates for years beyond 2017. The simulation uses techqnique
from time-series analysis to simulate the κt. We use the StMoMo function sim-
ulate for this purpose.

The StMoMo package simulates a realistic life insurance portfolio development
using a Lee Carter model. This corresponds to fitting parameters αx(t), βx(t)
and κx(t) for x and t values such that the outcome is observable. For future
time values, αx(t), βx(t) are extrapolated and κx(t) simulated as a time series.
This means that each round of simulation renders a set of hazard rates and
corresponding portfolio set-up.

Based on these simulated trajectories, we simulate year-by-year fatalities re-
sulting in a cash flow. We fit a multivariate normal variable on these cash flows.
From the fitted normal cash flow, we can simulate new cash flows. While a Gaus-
sian distribution is not the go-to choice for modelling mortalities, approximating
the aggregated cash flow with a normal distribution is not so far fetched. More
importantly, simulating from a Gaussian distrubtion allows for explicit compu-
tation of the cost-of-capital margin, using theorem 5. This is necessary, since
this allows us to evaluate the performance of the least squares Monte carlo al-
gorithm. This fatality development is illustrated in figure 3. Clearly, since the
analyzed insurane product only pays out at deaths, the quantities illustrated
in figure 3 correspond to accumulated costs and yearly costs, respectively. We
perform a large number of simulations, N = 5 · 105 providing us with the same
of number of aggregated cash flows. Each cash flow is now a vector X of length
10, such that element 1 is the number of deaths in year 1, and so on. Examples
of such simulations are shown in figure 3. We estimate the cash flows mean
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(a) αx as a function of age (b) βx as a function of age

(c) κt as a function of time (d) α50 as a function of time

Figure 5: Above graphs of first the three fitted parameters, and in the bottom
right we see resulting mortality rates for 50 years old men.

vector and covariance matrix using empiricial estimators

x̂ =
1

N

N∑
i=1

x(i), where x(i) = (x
(i)
1 , ..., x

(i)
T )

Σ̂ =
1

N − 1
(X − 1N x̂)T (X − 1N x̂),

X =
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x
(1)
1 ... x

(1)
t

...
...

...

x
(N)
1 ... x

(N)
t

.

Since the number of simulations N is large, the empirical covariance matrix con-
verges element-wise to the fourth decimal value. We may simulate similar cash
flows from a multivariate normal distribution using these estimates. Figures 3
to 4 illustrate simulated cash flows from the Lee-Carter model and Gaussian
flows’ corresponding approximations.
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Figure 6: Below the development for six simulated sets of parameters.

(a) Fatalities counted cumulative (b) Fatalities counted incrementally

Figure 7: Incremental cash flows from simulated parameter sets

(a) Lee Carter simulation (b) Gaussian approximation simulation
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