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Abstract

This thesis study sets out to investigate the topic of fair insurance
liability valuation. Considering a discrete multi-period time setting,
we explore a class of fair dynamic valuations that combine market
consistency, actuarial judgment as well as time consistency. Further-
more, we show how to construct a fair dynamic valuation using a
backwards iteration procedure. This procedure is implemented nu-
merically through the usage of Least Square Monte Carlo (LSMC)
approximation techniques. As part of this, we focus on investigating
two main aspects; the choice of underlying regression models used in
the LSMC approximations as well as the choice of actuarial valuation
function. Moreover, we assess how these choices affect the resulting
fair dynamic valuation. Our results indicate that the choice of regres-
sion models has an evident impact on the subsequent valuations. In
particular, we identify smoothing splines and LOESS regression mod-
els as promising candidates that achieve improved estimates in the
LSMC approximations.
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Chapter 1

Introduction

Insurance liability valuation is a fundamental part of an insurance business.
In addition, modern insurance solvency legislation, including Solvency II
and the Swiss Solvency Test (SST), obligates a fair valuation of insurance
liabilities. In the case of Solvency II, the regulation1 requires that such a
valuation should reflect the amount that another insurance entity would pay
to take over the corresponding insurance obligations. Furthermore, the value
must be consistent with financial market information as well as available
underwriting risk data. In this sense, a fair valuation needs to combine
techniques from both finance and actuarial mathematics.

The topic of fair valuation of insurance liabilities has been investigated in
numerous studies. Pelsser & Stadje (2014) introduced a two-step procedure
for market consistent evaluations, which was later used by Dhaene et al.
(2017) to define a two-step fair valuation that was both market consistent
and actuarial. This work was further extended by Barigou et al. (2019) who
considered a multi-period setting, in which the notion of time consistency
was introduced and the concept of fair dynamic valuations formalized. Ad-
ditional work on the topic has been done by Barigou & Dhaene (2019), who
investigated mean-variance hedging as a tool for valuation in a multi-period
setting, as well as Chen et al. (2020) and Chen et al. (2021), who researched
the use of convex hedging approaches.

In this thesis project, we investigate the topic of fair dynamic valuations and
extend the work by Barigou et al. (2019). This includes an exploration of the
mathematical theory of fair dynamic valuations, i.e. where we combine con-
cepts of market consistency, actuarial judgment and time consistency. Also,
we study the methods of constructing a fair dynamic valuation in practice.

1For a more detailed specification regarding the regulatory requirements of liability
valuation in Solvency II, see Official Journal of the European Union: Solvency II Directive
(2009/138/EC) Articles 75-84.
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These techniques are implemented and used as part of a numerical analy-
sis. For this we use concepts in risk minimization, such as those presented
by Föllmer & Schweizer (1988) and Černý & Kallsen (2009). Furthermore,
we utilize Least Square Monte Carlo (LSMC) methods. Originally intro-
duced by Carriere (1996), LSMC methods have become an important tool
in mathematical finance for the valuation of American-style options, see for
example Longstaff & Schwartz (2001), Tsitsiklis & Van Roy (2001) and Clé-
ment et al. (2002). Additionally, we explore the usage of a cost-of-capital
valuation approach, similar to that analyzed by Engsner et al. (2017).

The report is structured as follows: Chapter 2 outlines the mathematical
theory and specifies the financial-actuarial framework. This part takes a the-
oretical approach to the topic and defines, among other thing, the concept of
dynamic valuations and their related properties. Next, Chapter 3 presents
the choice of setup as well as the utilized techniques, focusing more on prac-
tical methods and implementation. This section also lays the foundation for
the numerical analysis results, which are given in Chapter 4. Thereafter,
Chapter 5 contains a discussion, which ties back to the obtained results as
well as the study’s scope and objectives. Finally, Chapter 6 presents the
main conclusions of the study.
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Chapter 2

Mathematical Framework

In this chapter, we provide the mathematical theory underlying this thesis.
This includes formalization of the combined financial-actuarial framework
as well as concepts of claims, valuations and hedgers. Most importantly, we
define what constitutes a fair dynamic valuation.

2.1 General framework

We consider a time horizon T ∈ N as well as the set of trading times defined
as {0, 1, . . . , T}. That is, the trading times are represented by a set of discrete
points in time. Here, time zero represents today.

To model the financial-actuarial framework, we use the filtered probability
space (Ω,F ,F,P). Here, Ω is the sample space, F is a σ-algebra of Ω,
and P : F → [0, 1] is the real world (sometimes also called the physical)
probability measure. Moreover, F = {Ft}t∈{0,1,...,T} denotes the filtration,
where for each t ∈ {0, 1, . . . , T}, Ft is the σ-algebra representing the available
information at time t. The term available information here should be thought
of in a rather wide sense. That is, Ft includes both financial information,
such as stock prices and interest rates, as well as actuarial information,
e.g. death/survival of life insurance policyholders, available at time t. It
is also worth noting that the sequence of σ-algebras contained in F is non-
decreasing, i.e. we have that {∅,Ω} = F0 ⊆ F1 ⊆ . . . ⊆ FT = F . In other
words, more information becomes available as time passes.

In this study, all introduced random variables are defined on the filtered
probability space (Ω,F ,F,P). Furthermore, we will always assume that the
second moment of random variables is finite. That is, for any random variable
X, we always assume E

[
X2
]
< ∞. This guarantees that the variance of X is

well-defined. Additionally, whenever we formulate relations between random
variables, these should be interpreted in the P almost surely (P a.s.) sense.
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For instance, if X1 and X2 are random variables and we write X1 = X2,
what we actually mean is that P(X1 = X2) = 1.

2.2 The financial market & trading strategies

The financial market, i.e. the market of tradable assets2, is assumed to con-
tain n + 1 assets, where n ∈ N0. To specify, for each i ∈ {0, 1, . . . , n}
and t ∈ {0, 1, . . . , T}, Y (i)(t) denotes the market price of the asset with in-
dex i at time t. Moreover, we denote Y (t) =

(
Y (0)(t), Y (1)(t), . . . , Y (n)(t)

)
as the vector of market prices at time t. Notably, we always assume that
{Y (t)}t∈{0,1,...,T} is adapted to the filtration F. This means that Y (t) is
Ft-measurable for each t ∈ {0, 1, . . . , T}.

The asset with index 0 will always denote a risk free zero-coupon bond (ZCB)
which pays the amount 1 at the time horizon T . It is worth noting that this
asset is assumed to always exist. Moreover, we let the risk free short rate
(i.e. the continuously compounded risk free interest rate) be denoted r(t), t ∈
[0, T ]. In this general setting, we treat this short rate as stochastic3.

Given the formalization of the financial market, we can now introduce the
concept of trading strategies, as specified in Definition 1.

Definition 1 For a chosen t ∈ {0, 1, . . . , T − 1}, a time t trading strategy
is an (n+1)-dimensional and F-predictable process θt = {θt(u)}u∈{t+1,...,T}.

Here, θt(u) =
(
θ
(0)
t (u), θ

(1)
t (u), . . . , θ

(n)
t (u)

)
is referred to as a position vec-

tor, where θ
(i)
t (u) is the number of invested units in asset with index i over

the time interval (u− 1, u].

The F-predictable property here is rather important, since it implies that,
for each u ∈ {t+1, . . . , T}, θt(u) is Fu−1-measurable. In other words, given
the information available at time u− 1, θt(u) is fully determined.

Given a time t trading strategy θt, there is a possible rebalancing of positions
at each time point u ∈ {t + 1, . . . , T − 1}. The portfolio values before and
after this rebalancing are expressed in Equations (2.1) and (2.2) respectively.
Given these equations we can define the property of self-financing trading
strategies, as specified in Definition 2. We note that no rebalancing occurs
at the time horizon T .

θt(u) · Y (u) =
n∑

i=0

θ
(i)
t (u)Y (i)(u), (2.1)

2We do not model any financial market imperfections, such as transaction costs or any
limits in the amount of bought or sold assets. In other words, the market is assumed deep,
liquid and transparent. Also, we do not consider any assets as paying dividends.

3For some examples of stochastic short rate models, see Brigo & Mercurio (2006)
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θt(u+ 1) · Y (u) =

n∑
i=0

θ
(i)
t (u+ 1)Y (i)(u). (2.2)

Definition 2 A time t trading strategy θt is said to be self-financing if for
each u ∈ {t+ 1, . . . , T − 1} it holds that

θt(u) · Y (u) = θt(u+ 1) · Y (u).

Moreover, the set of all self-financing time t trading strategies is denoted Θt.

The self-financing property ensures that no additional value needs to be
invested or withdrawn at any rebalancing time. We can also note that the
initial investment of a time t trading strategy θt is given by Equation (2.3),
and the final portfolio value at the time horizon T is given by Equation
(2.4). Naturally, a special case of these concepts is when t = 0, i.e. when the
trading strategy starts at time zero and the portfolio is managed over the
whole time span.

θt(t+ 1) · Y (t) =

n∑
i=0

θ
(i)
t (t+ 1)Y (i)(t), (2.3)

θt(T ) · Y (T ) =

n∑
i=0

θ
(i)
t (T )Y (i)(T ). (2.4)

Another important assumption is the notion of a financial market without
arbitrage. This is formalized in Definition 3 below.

Definition 3 A market is said to have no arbitrage (or said to be arbitrage-
free) if, for each t ∈ {0, 1, . . . , T − 1}, there does not exist a self-financing
time t trading strategy θt ∈ Θt such that the following criteria all hold:

• θt(t+ 1) · Y (t) = 0,

• P (θt(T ) · Y (T ) ≥ 0) = 1,

• P (θt(T ) · Y (T ) > 0) > 0.

For the scope of this study, we will always assume the market to have no
arbitrage. This is a rather important assumption, as it is equivalent to
existence of an equivalent martingale measure (EMM), denoted Q. In many
applications, Q is called a risk-neutral measure. For more details on this
topic, see for example Björk (2009).

Consider again the short rate r(t), t ∈ [0, T ], as introduced earlier. Given the
existence of the Q-measure, we have the martingale property of {Y (t)}Tt=0

as formulated in Equation (2.5). Furthermore, this connection implies that
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there is a similar martingale property for the portfolio value of any time t
trading strategy θt ∈ Θt, as specified in Equation (2.6).

Y (t) = EQ

exp
−

t+1∫
t

r(u) du

Y (t+ 1)

∣∣∣∣∣∣Ft

 ,

t ∈ {0, 1, . . . , T − 1},

(2.5)

θt(s+ 1) · Y (s) = EQ

exp
−

T∫
s

r(u) du

θt(T ) · Y (T )

∣∣∣∣∣∣Fs

 ,

s ∈ {t, t+ 1, . . . , T − 1}.

(2.6)

We can also specify the discounting factors B(t, T ), which reflect the time t
value of receiving a risk free4 payment of 1 at the time horizon T . Recalling
that the financial asset with index 0 is defined to have this exact structure,
we have the relationship expressed in Equation (2.7).

Y (0)(t) = B(t, T ) = EQ

exp
−

T∫
t

r(u) du

∣∣∣∣∣∣Ft

 ,

t ∈ {0, 1, . . . , T}.

(2.7)

To simplify the notation going forward, for each t ∈ {0, 1, . . . , T − 1} we
introduce the special self financing time t trading strategy λt ∈ Θt specified
in Equation (2.8). This trading strategy is the buy-and-hold strategy of
holding one unit of the asset with index 0, such that a payment of 1 is
received at time T . In particular, this gives the portfolio value in Equation
(2.9)

λt(u) = (1, 0, . . . , 0) ∈ Rn+1, u ∈ {t+ 1, . . . , T}, (2.8)

λt(u) · Y (u) = B(u, T ), u ∈ {t+ 1, . . . , T}. (2.9)

To illustrate the concepts introduced above, Example 1 below provides a
simple example of a financial market and a trading strategy.

Example 1 Consider the special case of the financial market when n = 1,
i.e. where we have two tradable assets. The asset with index 0 is, as usual,
assumed to be a risk free zero coupon bond paying one unit of money at
maturity T , and its value at time t is expressed in Equation (2.7).

4By risk free we mean absence of default risk.
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The asset with index 1 is assumed to be a stock with price at time zero given by
Y (1)(0) = Y

(1)
0 . The dynamics of the stock price is modelled with a geometric

Brownian motion with drift parameter µ and volatility parameter σ. Letting
{W (t)}t∈[0,T ] denote a standard Brownian motion (under P), the stock price
process can be expressed as

Y (1)(t) = Y
(1)
0 exp

((
µ− σ2

2

)
t+ σW (t)

)
, t ∈ [0, T ].

Next, let us consider the self financing time 0 trading strategy θ0 ∈ Θ0 that
consists in buying one unit of the bond and one unit of the stock, and holding
these until the time horizon T . That is, we consider a simple buy-and-hold
strategy, where θ0(u) = (1, 1) for each u ∈ {1, 2, . . . , T}. The initial invest-
ment of this portfolio is given by

θ0(1) · Y (0) = B(0, T ) + Y
(1)
0 ,

and its value at the time horizon T is given by

θ0(T ) · Y (T ) = 1 + Y
(1)
0 exp

((
µ− σ2

2

)
T + σW (T )

)
.

Notably, this final value is random as seen from time zero, and its expected
value and variance are given by

E [θ0(T ) · Y (T )] = 1 + Y
(1)
0 eµT ,

Var [θ0(T ) · Y (T )] =
(
Y

(1)
0

)2
e2µT

(
eσ

2T − 1
)
.

2.3 t-claims

The financial-actuarial framework is assumed to contain both tradable claims
and non-tradable claims. Here, tradable claims include for example claims
on the assets traded in the financial market. Non-tradable claims include for
example certain insurance liabilities, for which there is no market where they
can be bought or sold. Notably, many types of claims are a combination of
tradable and non-tradable components. To formalize what we mathemati-
cally mean by claims, we introduce the concept of t-claims in Definition 4
below.

Definition 4 For a chosen t ∈ {0, 1, . . . , T}, a t-claim is an Ft-measurable
random variable, which is payable at time t. We denote the set of all t-claims
as Ct.
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Claims payable at the time horizon T are a special case of the above defini-
tion. These are of particular interest for us in this study, as we will consider
insurance liabilities as T -claims. Henceforth, we will denote such insurance
liabilities as S ∈ CT . Also, related to the notion of tradable and non-tradable
claims, we introduce some special cases of T -claims, namely t-hedgeable and
t-orthogonal T -claims. These are specified in Definitions 5 and 6.

Definition 5 For a chosen t ∈ {0, 1, . . . , T−1}, a T -claim Sh ∈ CT is said to
be t-hedgeable if there exists a self-financing time t trading strategy θt ∈ Θt,
which we call a replicating t-hedge of Sh, such that Sh = θt(T ) · Y (T ). We
denote the set of all t-hedgeable T -claims as Ht

T ⊆ CT .

Definition 6 For a chosen t ∈ {0, 1, . . . , T − 1}, a T -claim S⊥ ∈ CT is said
to be t-orthogonal if it is P-independent of {Y (u)}u∈{t+1,...,T}. We denote
the set of all t-orthogonal T -claims as Ot

T ⊆ CT .

From these definitions we find that if a T -claim is t-hedgeable, then it is
also (t+1)-hedgeable. Similarly, if a T -claim is t-orthogonal, it must also be
(t+1)-orthogonal. In mathematical terms, we have H0

T ⊆ H1
T ⊆ . . . ⊆ HT−1

T

and O0
T ⊆ O1

T ⊆ . . . ⊆ OT−1
T .

It is also worth noting that there exist no T -claims that are both t-hedgeable
and t-orthogonal. However, there do exist T -claims that are neither t-
hedgeable nor t-orthogonal. Some concrete examples of claims are given
in Example 2 below.

Example 2 Let us again return to the special case considered in Example 1,
i.e. where the financial market consists of two assets; the usual zero-coupon
bond paying 1 unit of money at time T , and a stock modelled with a geometric
Brownian motion.

Let us also consider a population of life insurance policyholders. At time zero
there are N0 policyholders alive. The number of survivors at each future time
point t is denoted Nt. Given the information available at time zero, this is a
random variable since some policyholders might die before time t.

(a) The T -claim S = Y (1)(T ), which we can interpret as a liability directly
linked to the value of the stock, is clearly t-hedgeable, i.e. S ∈ Ht

T ,
for each t ∈ {0, 1, . . . , T − 1}. This can be seen as the simple trading
strategy of holding one unit of stock will perfectly replicate the claim.

(b) Next, we consider now the T -claim S = NT . This can be thought of as
the liability paying one unit of money to every surviving life insurance
policyholder at time T . Under the assumption that policyholder death
events are independent of the financial market, we find that this T -
claim is t-orthogonal, i.e. S ∈ Ot

T , for each t ∈ {0, 1, . . . , T − 1}.

(c) Let us now consider the slightly more sophisticated T -claim defined

8



as S = NT max
(
K,Y (1)(T )

)
, where K is a non-negative constant.

Such a claim can be interpreted as an equity-linked insurance liability
paying the value of the stock, with guaranteed level K, to every surviving
policyholder at time T . It is clear that such a T -claim depends on both
the evolution of the stock value as well as the mortality of the insured.
In other words, it is affected by both equity risk and mortality risk. In
extension, we find that is is neither t-hedgeable nor t-orthogonal, i.e.
S ̸∈ Ht

T ∪ Ot
T , for each t ∈ {0, 1, . . . , T − 1}.

2.4 t-valuations & t-hedgers

Having specified the financial market, the concept of trading strategies and
t-claims, as well as some important properties of these, we are now ready to
introduce t-valuations and t-hedgers. Here, for a chosen t ∈ {0, 1, . . . , T −1},
a t-valuation assigns an Ft-measurable random variable to each T -claim S ∈
CT . In other words, given the information available at time t, we assign a time
t value to the T -claim. Similarly, a t-hedger assigns a self-financing time t
trading strategy that is designed to hedge the future liability S ∈ CT . As will
be shown, there is a natural link between t-valuations and t-hedgers.

We begin with the concept of t-valuations, as defined in Definition 7. Related
to this, Definition 8 introduces some properties of certain t-valuations.

Definition 7 For a chosen t ∈ {0, 1, . . . , T − 1}, a t-valuation is a function
φt : CT → Ct, which attaches to every T -claim S ∈ CT a t-claim φt[S] ∈ Ct,
such that φt is:

• normalized, i.e. φt[0] = 0, and

• translation invariant, i.e. for any S ∈ CT and a ∈ Ct it holds that
φt[S + a] = φt[S] +B(t, T )a.

Definition 8 Given a t-valuation φt, we say that:

• φt is market consistent (MC) if any t-hedgeable part of any T -claim is
marked-to-market, i.e. for any S ∈ CT and Sh ∈ Ht

T it holds that:

φt[S + Sh] = φt[S] + EQ

exp
−

T∫
t

r(u) du

Sh

∣∣∣∣∣∣Ft

 .

• φt is actuarial if any t-orthogonal T -claim is marked-to-model, i.e. for
any S⊥ ∈ Ot

T it holds that:

φt[S⊥] = B(t, T )πt[S⊥],

where πt : Ot
T → Ct is a t-valuation that is P-law invariant as well as

P-independent of {Y (u)}u∈{t,...,T}.
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• φt is fair if it is both market consistent and actuarial.

Here, it is worth commenting on the terms marked-to-market and marked-
to-model. The former is a widely used term in finance and accounting, which
refers to assigning values based on current market prices. This means that
a value is assigned based on the financial market players’ view of current
market conditions. In contrast, the latter term refers to assigning a value
based on some underlying model. Such models are often used when current
market prices are not available or when a market is deemed too illiquid. It
can be claimed that such a valuation is somewhat more subjective since there
may be numerous choices of underlying model, and the choice of model will
affect the resulting value. In our framework, the function πt is reflecting this
underlying model. We will refer to πt as the actuarial valuation function. In
this general setting, we do not specify this function explicitly, however some
concrete options are presented later in Section 3.4.

For a chosen T -claim S ∈ CT , we interpret φt[S] as the value of S at time t.
Notably, given the information available at time t, this value is deterministic.
To simplify notation going forward, we introduce φ̃t[S] as defined in Equation
(2.10). This is the value given at time T , if the amount φt[S] is invested in
the asset with index 0 at time t. We will think of φ̃t[S] as a T -claim, though it
is worth noting that it is not only FT -measurable, but in fact Ft-measurable
as well.

φ̃t[S] =
φt[S]

B(t, T )
, S ∈ CT . (2.10)

Next, we introduce the notion of t-hedgers in Definition 9, as well as related
properties in Definition 10.

Definition 9 For a chosen t ∈ {0, 1, . . . , T − 1}, a t-hedger is a function
ϑt : CT → Θt, which attaches to every T -claim S ∈ CT a self-financing time t
trading strategy ϑt[S] = θt,S ∈ Θt, where θt,S is called the t-hedge of S, such
that ϑt is:

(i) normalized, i.e. ϑt[0] = θt,0 = 0t where 0t = {0t(u)}u∈{t+1,...,T} and
for each u ∈ {t+ 1, . . . , T}, 0t(u) is the null vector in Rn+1, and

(ii) translation invariant, i.e. for any S ∈ CT and a ∈ Ct it holds that
ϑt[S + a] = θt,S+a = θt,S + aλt.

Definition 10 Given a t-hedger ϑt, we say that:

• ϑt is market consistent (MC) if any t-hedgeable part of any T -claim is
marked-to-market, i.e. for any S ∈ CT and Sh ∈ Ht

T it holds that:

ϑt[S + Sh] = θt,S+Sh
= θt,S + θt,Sh

,

where θt,Sh
is a replicating t-hedge of Sh, i.e. Sh = θt,Sh

(T ) · Y (T ).

10



• ϑt is actuarial, with the underlying actuarial t-valuation φt, if any t-
orthogonal T -claim is marked-to-model, i.e. for any S⊥ ∈ Ot

T it holds
that:

ϑt[S⊥] = θt,S⊥ = φ̃t[S⊥]λt.

• ϑt is fair if it is both market consistent and actuarial.

It is worth emphasizing that we here distinguish between t-hedger and t-
hedge. While the former is a function mapping a T -claim to a self-financing
time t trading strategy, the latter is the actual time t trading strategy that
the t-hedger takes given a certain T -claim.

Comparing Definitions 11 and 13 as well as Definitions 12 and 14, there
are noticeable similarities between t-valuations and t-hedgers. In fact, we
have a natural relationship between the two concepts. This relationship is
formulated in Theorem 1. As a first step however, Lemma 1 lists some
properties of a certain class of t-hedgers, which are essential to the proof of
the theorem.

Lemma 1 Let φt be a t-valuation, ϑt be a t-hedger, and let Ψt : CT → Θt be
defined by

Ψt[S] = ψt,S = θt,S + ρ̃t[S − θt,S(T ) · Y (T )]λt, S ∈ CT .

Then, Ψt is a t-hedger, with t-hedges Ψt[S] = ψt,S for S ∈ CT , such that:

1. If ϑt is market consistent, then Ψt is a market consistent and Ψt[Sh] =
ψt,Sh

= θt,Sh
= ϑt[Sh] for any Sh ∈ Ht

T .

2. If ϑt is actuarial and φt is actuarial, then Ψt is actuarial, with under-
lying actuarial t-valuation φt.

3. If ϑt is fair and φt is actuarial, then Ψt is fair, with underlying actu-
arial t-valuation φt.

Proof: See Appendix A.1 for a proof of Lemma 1.

Theorem 1 Let φt be a t-valuation. Then,

1. φt is market consistent if and only if there exists a market consistent
t-hedger ϑm

t , with t-hedges ϑm
t [S] = θmt,S for S ∈ CT , such that φt[S] =

θmt,S(t+ 1) · Y (t) for any S ∈ CT .

2. φt is actuarial if and only if there exists an actuarial t-hedger ϑa
t , with

t-hedges ϑa
t [S] = θat,S for S ∈ CT , such that φt[S] = θat,S(t + 1) · Y (t)

for any S ∈ CT .
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3. φt is fair if and only if there exists a fair t-hedger ϑf
t , with t-hedges

ϑf
t [S] = θft,S for S ∈ CT , such that φt[S] = θft,S(t + 1) · Y (t) for any

S ∈ CT .

Proof: See Appendix A.2 for a proof of Theorem 1.

As a final part of this section, Example 3 below presents some examples of
t-valuations and t-hedgers.

Example 3 Let us consider a chosen time t ∈ {0, 1, . . . , T −1}, at which we
have a t-hedger ϑt, with t-hedges ϑt[S] = θt,S for S ∈ CT , and an associated
t-valuation φt defined as

φt[S] = θt,S(t+ 1) · Y (t), S ∈ CT .

Now, we consider a few example setups and discuss their respective proper-
ties.

(a) Let the t-hedger be defined by

θt,S = E [S | Ft]λt, S ∈ CT ,

and the associated t-valuations thus being given by

φt[S] = B(t, T )E [S | Ft] , S ∈ CT .

If we let the actuarial valuation function πt be defined by the condi-
tional expectation above, it is clear that this choice of t-hedger then is
actuarial. Likewise, the t-valuation φt is actuarial as well.

(b) Let us now instead consider a market consistent t-hedger, given as

θt,S = arg min
θt∈Θt

E
[
(S − θt(T ) · Y (T ))2

∣∣∣Ft

]
, S ∈ CT ,

which we refer to as the quadratic minimization hedge. Notably, the
associated t-valuation is also market consistent.

(c) As a third case, we now construct a fair t-hedger (and associated fair
t-valuation) by defining our t-hedger as a mix of the two cases above,
namely as

θt,S =

E [S | Ft]λt, if S ∈ Ot
T ,

arg min
θt∈Θt

E
[
(S − θt(T ) · Y (T ))2

∣∣∣Ft

]
, otherwise.

It is clear that this choice of t-hedger satisfies the actuarial property,
given our reasoning in (a). In a similar manner, it satisfies the market
consistent property.
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2.5 Dynamic valuations & dynamic hedgers

In the previous section, we investigated t-valuations and t-hedgers for a cho-
sen time point t ∈ {0, 1, . . . , T −1}. However, we did not require any connec-
tion between t-valuations or t-hedgers for different times. This connection
will be introduced in this section, where we present the concepts of dynamic
valuations and dynamic hedgers.

Here, the dynamic valuation is defined in Definition 11, with associated
properties given in Definition 12. In a similar manner, the dynamic hedger
is defined in Definition 13 and its related properties in Definition 14.

Definition 11 A dynamic valuation is an ordered sequence of t-valuations
{φt}T−1

t=0 .

Definition 12 Given a dynamic valuation {φt}T−1
t=0 , we say that:

• {φt}T−1
t=0 is market consistent if every t-valuation φt is market consis-

tent.

• {φt}T−1
t=0 is actuarial if every t-valuation φt is actuarial.

• {φt}T−1
t=0 is time consistent if for any S ∈ CT and t ∈ {0, 1, . . . , T − 2}

it holds that φt[S] = φt[φ̃t+1[S]].

• {φt}T−1
t=0 is fair if it is market consistent, actuarial and time consistent.

Definition 13 A dynamic hedger is an ordered sequence of t-hedgers {ϑt}T−1
t=0 .

Definition 14 Given a dynamic hedger {ϑt}T−1
t=0 , we say that:

• {ϑt}T−1
t=0 is market consistent if every t-hedger ϑt is market consistent.

• {ϑt}T−1
t=0 is actuarial if every t-hedger ϑt is actuarial.

• {ϑt}T−1
t=0 is time consistent if for any S ∈ CT and t ∈ {0, 1, . . . , T−2} it

holds that ϑt[S] = θt,S = θt,φ̃t+1[S], where φt+1[S] = B(t+1, T )φ̃t+1[S]
is the initial investment of ϑt+1[S] = θt+1,S, i.e.

φt+1[S] = θt+1,S(t+ 2) · Y (t+ 1).

• {ϑt}T−1
t=0 is fair if it is market consistent, actuarial and time consistent.

In this dynamic framework, the term fair has a slightly more extended mean-
ing than in the context of t-valuations and t-hedgers, since we here also re-
quire time consistency. The time consistent property here creates a natural
connection between different time points. In particular, it ensures that the
same value is assigned independent of whether a valuation is done through
one or multiple steps. For a similar concept of time consistency, see for
example Acciaio & Penner (2011).
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Just like the definitions of t-valuations and t-hedgers could be compared,
we can compare the definitions of dynamic valuations and dynamic hedgers.
Furthermore, we again have a natural connection between the two concepts.
This connection is specified by Theorem 2 below. This theorem is impor-
tant for how we in practice can construct a fair dynamic valuation through
determining a fair dynamic hedger.

Theorem 2 A dynamic valuation {φt}T−1
t=0 is fair if and only if there exists

a fair dynamic hedger {Ψt}T−1
t=0 , where each t-hedger Ψt has t-hedges Ψt[S] =

ψt,S for S ∈ CT , such that for every t ∈ {0, 1, . . . , T −1} and S ∈ CT it holds
that

φt[S] = ψt,S(t+ 1) · Y (t).

Proof: See Appendix A.3 for a proof of Theorem 2.
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Chapter 3

Setup & Methods

In this chapter, we present the choice of setup and methods utilized in the
study. This part takes its starting point in the mathematical framework
outlined in Chapter 2. However, in contrast to the mathematical frame-
work, which is rather theoretical in nature, we here adopt a more practical
approach. That is, we select a representative choice of setting and present
the methods and approximations needed to construct a fair dynamical valua-
tion. In extension, this chapter lays the foundation for the numerical analysis
results presented in Chapter 4.

3.1 Choice of financial-actuarial setting & T-claim

Henceforth, we limit ourselves to a specific financial-actuarial setting as well
as a particular choice of T -claim. In other words, we take the general math-
ematical framework presented in Chapter 2 and apply it to a representative
example. Here, we select the setting as related to equity-linked life insurance,
where the underlying risk drivers are equity risk and mortality risk. As a first
step, we specify how these underlying risk drivers fit in our mathematical
framework. Thereafter, we formulate our specific choice of T -claim.

Firstly, the equity risk driver is captured through our formalization of the
financial market of tradable assets. Similar to Examples 1 and 2, we here
limit the financial market to contain two assets. That is, the asset with
index 0 is a zero-coupon bond paying one unit of money at maturity time
T , and the asset with index 1 is a stock whose value process is modelled
with a geometric Brownian motion. Additionally, we consider the short rate
r as constant and deterministic. To clarify, the asset value processes of this
financial market are specified in Equation (3.1). Here, Y

(1)
0 is the initial

price of the stock, µ is a drift parameter, σ is a volatility parameter, and
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{W (t)}t∈[0,T ] is a standard Brownian motion under P.{
Y (0)(t) = e−r(T−t),

Y (1)(t) = Y
(1)
0 exp

((
µ− σ2

2

)
t+ σW (t)

)
,

t ∈ [0, T ]. (3.1)

Secondly, we specify the model for the mortality risk driver. We consider a
life insurance portfolio and let N0 denote the initial number of policyhold-
ers, all of which are alive and x years old at time zero. Moreover, we let
their associated mortality intensity be denoted µx(t), t ∈ [0, T ]. Here, the
mortality intensity is assumed to be deterministic5 and given by the Make-
ham formula as formulated in Equation (3.2). Here, a, b and c are constant
model parameters. We denote the one-year survival probability at time t,
i.e. the probability of surviving to time t + 1 given survival to time t, as
px(t). With our chosen form for the mortality intensity, this probability is
given by Equation (3.3).

µx(t) = a+ bec(x+t), t ∈ [0, T ]. (3.2)

px(t) = exp

−
t+1∫
t

µx(u) du

 = exp

(
−a− bec(x+t)(ec − 1)

c

)
, t ∈ [0, T ].

(3.3)

Letting Nt denote the number of surviving policyholders at time t, the num-
ber of survivors after each time step can be expressed as a sequence of condi-
tional Binomial distributions, as specified in Equation (3.4). These random
variables are assumed to be independent from the stock value process as
defined in Equation (3.1)

Nt+1 |Nt ∼ Bin(Nt, px(t)), t ∈ {0, 1 . . . , T − 1}. (3.4)

Finally, having defined the financial-actuarial setting, we are now ready to
present our choice of T -claim. This T -claim is denoted S and is specified
in Equation (3.5). Here, NT is the number of surviving life insurance pol-
icyholders at time T , Y (1)(T ) is the value of the stock at time T , and K
is a positive constant. This type of claim can be interpreted as an equity-
linked insurance liability that pays the value of a stock, with guaranteed
level K, to every surviving policyholder at time T . As outlined in Exam-
ple 2, this type of T -claim is neither t-hedgeable nor t-orthogonal for any
t ∈ {0, 1, . . . , T − 1}.

S = NT max
(
K,Y (1)(T )

)
. (3.5)

5Notably, there are more complex models, which instead model the mortality intensity
as stochastic so as to capture the uncertainty in future mortality, see for example Cairns
et al. (2008). However, for the scope of this study we opt to use a deterministic model.
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3.2 The backwards iteration procedure

We now consider the challenge of constructing a fair dynamic valuation and
applying it to the choice of T -claim S as specified in Equation (3.5). That
is, given S we want to determine a dynamic valuation that is both market
consistent, actuarial and time consistent. In mathematical terms, what we
seek to determine is the sequence {φt[S]}T−1

t=0 . To make for easier notation6

going forward, we will henceforth denote φT [S] = S. We note that φT [S] is,
strictly speaking, not part of the valuation sequence.

We construct the sequence {φt[S]}T−1
t=0 using the backwards iteration pro-

cedure formulated by Barigou et al. (2019). This procedure consists in it-
erating over the time points, starting at time T − 1, thereafter considering
time T − 2 and so on, to eventually arrive at time 0. At each time point
t ∈ {0, 1, . . . , T−1}, we first determine the t-hedge7 θt,S , taken as the optimal
quadratic hedge of φt+1[S], i.e. as specified in Equation (3.6). Having calcu-
lated this t-hedge, we then valuate the residual, denoted ∆t+1,S and specified
in Equation (3.7), with an actuarial value function πt. The t-valuation of
S, i.e. φt[S], is then defined as the sum of the hedge contribution and the
actuarial contribution, as given in Equation (3.8).

θt,S(t+ 1) = arg min
θt∈Θt

E
[
(φt+1[S]− θt(t+ 1) · Y (t+ 1))2

∣∣∣Ft

]
=

arg min
θt∈Θt

E
[(

φt+1[S]− θ
(0)
t (t+ 1)e−r(T−t−1) − θ

(1)
t (t+ 1)Y (1)(t+ 1)

)2 ∣∣∣∣Ft

]
.

(3.6)

∆t+1,S = φt+1[S]− θt,S(t+ 1) · Y (t+ 1), (3.7)

φt[S] = θt,S(t+ 1) · Y (t)︸ ︷︷ ︸
Hedge contribution

+ e−rπt [∆t+1,S ]︸ ︷︷ ︸
Actuarial contribution

. (3.8)

It is worth noting that by this construction, φt is ensured to be both mar-
ket consistent and actuarial. Furthermore, because of the backwards itera-
tion scheme, the time consistency property is also satisfied. Consequently,
{φt[S]}T−1

t=0 is a fair dynamic valuation of S. These properties can also be
seen in the light of Theorem 2.

We now take a step back and examine the expression in Equation (3.6) more
closely. Notably, this is a quadratic minimization problem, to which we can

6This notation will be used throughout Chapters 3 and 4.
7It is worth noting that we are in fact only interested in estimating θ

(1)
t,S(t + 1) and

θ
(0)
t,S(t+ 1). The remaining components of θt,S are not specified.
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find an analytical solution. This fact is formulated in Proposition 1, which
presents the analytical solution of the minimization problem in a slightly
more general setting.

Proposition 1 Consider a chosen t ∈ {0, 1, . . . , T − 1} and a deterministic
constant short rate r. Let At+1 and Lt+1 be random variables taking values
in Rn and R respectively. Let us denote

Cov [At+1 | Ft] = E
[
At+1A

⊺
t+1

∣∣Ft

]
− E [At+1 | Ft]E [At+1 | Ft]

⊺ ,

Cov [At+1, Lt+1 | Ft] = E [At+1Lt+1 | Ft]− E [At+1 | Ft]E [Lt+1 | Ft] ,

and assume that the inverse of Cov [At+1 | Ft] exists. Then, the optimization
problem

min
at∈R, bt∈Rn

E
[(

Lt+1 − ate
−r(T−t−1) − b⊺tAt+1

)2 ∣∣∣∣Ft

]
,

has the optimal solution

ât = er(T−t−1)
(
E [Lt+1 | Ft]− b̂⊺tE [At+1 | Ft]

)
,

b̂t = (Cov [At+1 | Ft])
−1Cov [At+1, Lt+1 | Ft] .

Proof: See Appendix A.4 for a proof of Proposition 1.

We can now use Proposition 1 for our specific problem. From this we obtain
the optimal hedge components θ

(1)
t,S(t + 1) and θ

(0)
t,S(t + 1) as expressed in

Equations (3.9) and (3.10). In addition, we recall that the asset with index
1 is representing a stock, whose value process is modelled with a geometric
Brownian motion according to Equation (3.1). Thus, its conditional expecta-
tion and conditional variance, which are both used in the expressions for the
optimal hedge, can be formulated as in Equations (3.11) and (3.12).

θ
(1)
t,S(t+ 1) =

Cov
[
φt+1[S], Y

(1)(t+ 1)
∣∣Ft

]
Var

[
Y (1)(t+ 1)

∣∣Ft

] =

E
[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
− E [φt+1[S] | Ft]E

[
Y (1)(t+ 1)

∣∣Ft

]
Var

[
Y (1)(t+ 1)

∣∣Ft

] ,

(3.9)

θ
(0)
t,S(t+ 1) = er(T−t−1)

(
E [φt+1[S] | Ft]− θ

(1)
t,S(t+ 1)E

[
Y (1)(t+ 1)

∣∣∣Ft

])
,

(3.10)

E
[
Y (1)(t+ 1)

∣∣∣Ft

]
= Y (1)(t)eµ, (3.11)
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Var
[
Y (1)(t+ 1)

∣∣∣Ft

]
=
(
Y (1)(t)

)2
e2µ
(
eσ

2 − 1
)
. (3.12)

In the expressions for the optimal hedge we also find the conditional expec-
tations E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
. These pose a bigger

challenge and we are generally not able to find analytical expressions for these
terms. Consequently, approximation techniques will in practice be needed
to calculate these conditional expectations. This is outlined more in detail
in Section 3.3.

As a final point, we also take a closer look at the residual ∆t+1,S . Using the
expressions for the optimal hedge, we find that its conditional expectation is
in fact zero, as given in Equation (3.13). As a result, its conditional variance
can be expressed as in Equation (3.14).

E [∆t+1,S | Ft] = E [φt+1[S] | Ft]− θt,S(t+ 1) · E [Y (t+ 1) | Ft] = 0, (3.13)

Var [∆t+1,S | Ft] = E
[
∆2

t+1,S

∣∣Ft

]
. (3.14)

3.3 Approximating conditional expectations

We now turn to discuss the calculation of the conditional expectations, i.e.
the terms E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
. As previously men-

tioned, we generally have no explicit formula for these terms. Consequently,
we need to apply some approximation method.

One approach is to use a multinomial tree model to estimate these through
simulation, see for example Černý (2004). This method is however com-
putationally complex and quickly becomes unfeasible in practice. Another
method, which is the one we opt for in this study, is to use a Least Square
Monte Carlo (LSMC) technique. The LSMC method was initially introduced
in Carriere (1996) and has become an important tool for the valuation of
American-style options. For some examples on how this method has been
applied, see Longstaff & Schwartz (2001) and Clément et al. (2002).

The idea in LSMC is to first simulate Monte Carlo (MC) scenarios for our
risk drivers, i.e. the stock value and the policyholder mortality, across all
time points. Thereafter, for each time point t, we regress φt+1[S] and
φt+1[S]Y

(1)(t + 1) on the risk driver information available at time t. From
such a regression, we then get estimates for the conditional expectations.
Notably, this approach ties in rather neatly with the backwards iteration
procedure already introduced.

Here, we need to make a choice on what type of regression model we would
like to use. That is, we need to decide whether to use e.g. a linear model, a
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quadratic model, or something more sophisticated. Notably, this a trade-off
between bias and complexity. We also need to take into account the payoff
structure of the T -claim. For instance, with our choice of T -claim S, as
defined in Equation (3.5), a linear model is not well adapted to the non-
linear structure imposed by the guarantee level. In Barigou et al. (2019),
quadratic regression models are used to approximate the conditional expec-
tations. That is, models as in Equations (3.15) and (3.16) are proposed.
Here, αt,0, αt,1, αt,2, βt,0, βt,1 and βt,2 are model parameters that we seek to
estimate. Moreover, ϵt,α and ϵt,β are independent error terms with zero mean
and constant variance.

φt+1[S] = αt,0 + αt,1NtY
(1)(t) + αt,2

(
NtY

(1)(t)
)2

+ ϵt,α, (3.15)

φt+1[S]Y
(1)(t+ 1) = βt,0 + βt,1Nt(Y

(1)(t))2 + βt,2

(
Nt(Y

(1)(t))2
)2

+ ϵt,β.

(3.16)

Given these regression models, the sum of squared residuals is minimized
in order to find parameter estimates α̂t,0, α̂t,1, α̂t,2, β̂t,0, β̂t,1 and β̂t,2. Using
these, the estimates for the conditional expectation are given by Equations
(3.17) and (3.18).

E [φt+1[S] | Ft] ≈ α̂t,0 + α̂t,1NtY
(1)(t) + α̂t,2

(
NtY

(1)(t)
)2

, (3.17)

E
[
φt+1[S]Y

(1)(t+ 1)
∣∣∣Ft

]
≈ β̂t,0 + β̂t,1Nt(Y

(1)(t))2 + β̂t,2

(
Nt(Y

(1)(t))2
)2

.

(3.18)

In the hope of constructing better regression models, we also consider alter-
native setups using smoothing spline models as well as LOESS8 regression
models. Here, the former alternative fits a smooth predictor function us-
ing penalized least squares minimization, while the latter alternative fits
local regression models, i.e. for each fitting point, the fit is constructed us-
ing data observations in a chosen neighborhood of the point. For additional
background and details on these models, see for example Wood (2017) and
Chambers et al. (1992).

As a final remark, we note that the time point t = 0 here is special in the
sense that N0 and Y (1)(0) are deterministic. This means that, at this time
point, we are not able to uniquely determine the parameters in the proposed
regression models. Instead, we simply fit a constant model, i.e. calculate the
averages, to estimate the conditional expectations E [φ1[S] | F0] = E [φ1[S]]
and E

[
φ1[S]Y

(1)(1)
∣∣F0

]
= E

[
φ1[S]Y

(1)(1)
]
.

8LOESS is short for locally estimated scatterplot smoothing.
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3.4 Choice of actuarial valuation function

So far, we have not considered any explicit forms for the actuarial valuation
function πt. In this section however, we will present some specific choices that
can be used in practice. A rather simple approach, which is used by Barigou
et al. (2019), is the standard deviation form πSD

t as specified in Equation
(3.19). Here, µt and σt denote the conditional mean and conditional standard
deviation of ∆t+1,S , which by Equations (3.13) and (3.14) are found to be
given as in Equation (3.20). Moreover, α is a constant parameter.

πSD
t (∆t+1,S) = µt + ασt, (3.19)

µt = 0, σt =

√
E
[
∆2

t+1,S

∣∣∣Ft

]
. (3.20)

Here, E
[
∆2

t+1,S

∣∣∣Ft

]
can be estimated using the LSMC technique in a similar

way as done for the other conditional expectations discussed in Section 3.3.
For example, if we choose a quadratic regression, we get a model as formu-
lated in Equation (3.21). Here, similar as with previous setups, γt,0, γt,1 and
γt,2 are parameters estimated in the regression, and ϵt,γ is an independent
error term with zero mean and constant variance.

∆2
t+1,S = γt,0 + γt,1NtY

(1)(t) + γt,2

(
NtY

(1)(t)
)2

+ ϵt,γ . (3.21)

We emphasize that a problem here is that estimates for the conditional ex-
pectation are not a priori guaranteed to be non-negative. This in turn im-
plies that the square root in Equation (3.20) might be undefined. In our
implementation, we avert such errors by applying a floor of zero in the es-
timation. As will be presented in Chapter 4, this problem with negative
values is however largely resolved by using the alternative regression setups,
i.e. smoothing splines or LOESS regression models, instead of the quadratic
models.

Some criticism against πSD
t can be formulated. For one, the choice of nu-

merical value for α is rather arbitrary. In addition, while πSD
t is normalized

and translation invariant, it does not satisfy the property of monotonicity.
As a result, we consider also the alternative actuarial valuation function
πCoC
t as specified in Equation (3.22). Here, VaRt,p denotes the conditional

value-at-risk measure given by Equation (3.23). Moreover, η is a constant
cost-of-capital rate9 and p is a chosen confidence level. For a background

9A slightly more generalized approach is to consider the cost-of-capital rates as a se-
quence of numbers {ηt}T−1

t=0 , which is the case in for example Engsner et al. (2017). How-
ever, for simplicity we consider it as a single number here.
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and motivation of the expression used for πCoC
t , see for example Palmborg

et al. (2021).

πCoC
t (∆t+1,S) =

VaRt,p(−∆t+1,S)−
1

1 + η
E
[
(VaRt,p(−∆t+1,S)−∆t+1,S)

+
∣∣Ft

]
,

(3.22)

VaRt,p(−∆t+1,S) = ess inf {y ∈ R : P (∆t+1,S ≤ y | Ft) ≥ 1− p} . (3.23)

As shown by Engsner et al. (2017), πCoC
t has the property of being normal-

ized, translation invariant as well as monotonic. Furthermore, the parameter
η is more interpretable and can, since it is a cost-of-capital rate, be estimated
from market data. Similarly, the confidence level p can be chosen in accor-
dance with regulation requirements, e.g. p = 0.5% as in Solvency II.

The expression for πCoC
t is notably more complex than that for πSD

t . In
particular, we cannot use the LSMC technique as easily to approximate the
terms in Equation (3.22). Instead, one option is to simulate inner Monte
Carlo scenarios. That is, given the information available at time t, we per-
form an inner sampling of Nt+1 and Y (1)(t + 1), which yield simulated val-
ues for the residual ∆t+1,S conditioned on Ft. However, a problem with
this approach is the notable increase in computational complexity. Also,
recalling that ∆t+1,S = φt+1[S] − θt,S(t + 1) · Y (t + 1), an additional is-
sue is that we have no explicit expression for φt+1[S] in terms of Nt+1 and
Y (1)(t+1). To overcome this, an extra regression model can be constructed,
e.g. using a smoothing spline model, to estimate φt+1[S] as a function of
Nt+1Y

(1)(t+ 1).

Another alternative is to make an assumption about the distribution of the
residual ∆t+1,S . For instance, if we assume that ∆t+1,S is conditionally
normally distributed, the expression for πCoC

t (∆t+1,S) decomposes to a form
reminiscent of πSD

t as expressed in Equation (3.19). This fact is formulated
in Proposition 2.

Proposition 2 Consider a chosen t ∈ {0, 1, . . . , T − 1} and assume that
∆t+1,S | Ft ∼ N(µt, σ

2
t ). Then, πCoC

t (∆t+1,S) as specified in Equation (3.22)
can be expressed as

πCoC
t (∆t+1,S) = µt + κ(η, p)σt.

Here, the function κ is given for any η and p as

κ(η, p) =

Φ−1(1− p)− 1

1 + η

(
(1− p)Φ−1(1− p) +

1√
2π

exp

(
−1

2

(
Φ−1(1− p)

)2))
,

where Φ is the distribution function of the standard normal distribution.
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Proof: See Appendix A.5 for a proof of Proposition 2.

Thus, given such a normal distribution assumption, we can again utilize
Equation (3.20) and estimate σt with the LSMC technique, similar to what
was done previously, in order to calculate πCoC

t (∆t+1,S). This decreases
the computational complexity compared to the approach of simulation inner
scenarios. As a final point, we present numerical values of κ(η, p) for repre-
sentative choices of η and p in Table 3.1. Notably, we find that κ(η, p) is not
always positive.

Table 3.1: Numerical values for κ(η, p).

p
η 10% 5% 1% 0.5% 0.1%
0 -0.05 -0.02 0.00 0.00 0.00

0.03 -0.01 0.03 0.06 0.07 0.09
0.06 0.03 0.07 0.13 0.14 0.17
0.1 0.07 0.13 0.21 0.23 0.28
0.2 0.17 0.26 0.38 0.43 0.51

3.5 Wrap up, specification of cases & numerical val-
ues

To wrap up, we recall our choice of T -claim S as specified in Equation (3.5) as
well as our goal to construct a fair dynamical valuation of S, i.e. to construct
the sequence {φt[S]}T−1

t=0 . To put this into practice, we conduct a numeri-
cal analysis that utilizes the setup and methods presented throughout this
chapter. In this numerical analysis, we use the backwards iteration scheme
outlined in Section 3.2. We analyze different setups for the regressions used
in the LSMC approximations, as described in Section 3.3, as well as different
choices of actuarial valuation, as introduced in Section 3.4. This is done
through a selection of cases. Here, each case uses a particular combination
of regression setups and actuarial valuation choice. In this report, we focus
on the following 4 cases:

Case 1: Quadratic regression to approximate conditional expectations
E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
+ Standard devi-

ation based actuarial valuation πSD
t using a quadratic regression

to approximate E
[
∆2

t+1,S

∣∣∣Ft

]
.

Case 2: Quadratic regression to approximate conditional expectations
E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
+ Standard devi-

ation based actuarial valuation πSD
t using a LOESS regression10

10With smoothing parameter 0.1 and polynomial degree 2.
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to approximate E
[
∆2

t+1,S

∣∣∣Ft

]
.

Case 3: Smoothing spline regression11 to approximate conditional expec-
tations E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
+ Stan-

dard deviation based actuarial valuation πSD
t using a LOESS

regression10 to approximate E
[
∆2

t+1,S

∣∣∣Ft

]
.

Case 4: Smoothing spline regression11 to approximate conditional expec-
tations E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
+ Cost-of-

capital based actuarial valuation πCoC
t using the inner simulation

approach12 to estimate πCoC
t (∆t+1,S).

This set of cases forms the foundation for the results presented in Chapter 4.
Furthermore, these cases constitute a natural order for attempts of modeling
enhancements. In other words, each case tries to improve on the previous
one. Notably, Case 1 uses a very similar setup to that suggested by Barigou
et al. (2019), thus making it a suitable starting point for our analysis.

Here, we note that the Case 3 setup is in fact analogoues to using an actuarial
valuation πCoC

t under the assumption that the residual risk is conditionally
normally distributed, as given by Proposition 2. In particular, the setups
are identical if α = κ(η, p). As a result, we use this relation in the specifica-
tion of the numerical parameter values, so as to make for more comparable
results.

The parameter values used in the numerical analysis are listed in Table 3.2.
Given this set of parameter values, it is worth noting that the simulation of
underlying risk drivers, i.e. the stock value and the survival of the insured, is
the same across all cases. This sampling is based on the dynamics specified
in Equations (3.1) and (3.4). Simulated trajectories for these are visualized
in Figure 3.1.

The numerical analysis is conducted through a code implementation in R.
All computations are done using R’s default libraries base and stats. Ad-
ditionally, we use the libraries ggplot2, ggExtra and scales for plotting.
Here, all considered cases have fairly similar implementations. As an ex-
ample, Appendix B presents the code used to construct the fair dynamical
valuation in Case 3. We run the calculations on a computer with 8 Intel(R)
Core(TM) i7-8550U 1.80GHz processors.

11With 10 degrees of freedom
12Including a smoothing spline regression with 50 degrees of freedom to estimate φt+1[S]

as a function of Nt+1Y
(1)(t+ 1).
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Table 3.2: Numerical values

Parameter Description Value
N Number of MC scenarios 50000
T Time horizon [years] 10
r Risk free short rate 0.01

Y
(1)
0 Stock initial price 1
µ Stock drift parameter 0.02
σ Stock volatility parameter 0.1
K Guarantee level 1
N0 Initial number of insured 1000
x Initial age of insured [years] 60
a Mortality intensity parameter13 1e-3
b Mortality intensity parameter13 1.2e-5
c Mortality intensity parameter13 0.101314
α Standard deviation factor κ(0.06, 0.005)
η Cost-of-capital rate14 0.06
p Confidence level15 0.005

Figure 3.1: Simulated trajectories for: (left) stock value, and (right) number of
surviving policyholders.

13These values are obtained from the Swedish mortality table M90 for males.
14This is the cost-of-capital rate used in Solvency II.
15This is the confidence level used in Solvency II.
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Chapter 4

Results

This chapter presents the results of the numerical analysis, based on the cases
and numerical parameter values specified in Section 3.5. Here, Sections 4.1-
4.4 are all structured in a similar way. That is, we visualize the regression
fits, structure of the hedge components and residuals as well as the resulting
valuations. Plots are shown for time points t = 9, t = 5 and t = 1, which are
deemed representative. Moreover, Section 4.5 compares the results between
the different cases.

4.1 Case 1

Figures 4.1 and 4.2 present the regression fits for the estimation of the condi-
tional expectations E [φt+1[S] | Ft] and E

[
φt+1[S]Y

(1)(t+ 1)
∣∣Ft

]
. These are

then used to determine the hedge components θ(1)t (t+1) and θ
(0)
t (t+1), which

are illustrated in Figures 4.3 and 4.4. Next, the residuals and regression fits
for the squared residuals are presented in Figures 4.5 and 4.6 respectively.
Combining these results, we get the valuations as shown in Figure 4.9, with
hedge contributions and actuarial contributions presented in Figures 4.7 and
4.8.

Here, a number of observations can be made. First, the quality of the regres-
sion fit for φt+1[S] at time t = 9 in Figure 4.1 is somewhat questionable, and
can potentially cause problems in the estimation of the conditional expec-
tations. Also, we find slightly odd shapes of the hedge components. That
is, we observe very large positions (both long and short) in certain inter-
vals. Moving on, we note that the quadratic regressions used for the squared
residual risk ∆2

t+1,S shown in Figure 4.6 do not appear to give a good fit. In

particular, we find that that some estimates for E
[
∆2

t+1,S

∣∣∣Ft

]
are negative,

which causes the actuarial valuation to be undefined (and thus set to zero)
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in such cases, which can be seen in Figure 4.8.

Figure 4.1: Case 1 - Regression fit of φt+1[S] as a function of NtY
(1)(t) at: (left)

t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.2: Case 1 - Regression fit of φt+1[S]Y
(1)(t+1) as a function of Nt

(
Y (1)(t)

)2
at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.3: Case 1 - Hedge component θ
(1)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.4: Case 1 - Hedge component θ
(0)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.5: Case 1 - Residual ∆t+1,S as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.

Figure 4.6: Case 1 - Regression fit of ∆2
t+1,S as a function of NtY

(1)(t) at: (left)
t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.7: Case 1 - Hedge contribution of valuation φt[S] as a function of NtY
(1)(t)

at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.8: Case 1 - Actuarial contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.9: Case 1 - Valuation φt[S] as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.

4.2 Case 2

Following the same outline as the previous Section, Figures 4.10 and 4.11
present the regression fits used to estimate the conditional expectations,
which in turn are used to calculate the hedge components illustrated in
Figures 4.12 and 4.13. The residual plots and squared residual fits are shown
in Figures 4.14 and 4.15. Finally, the valuations, as well as corresponding
hedge contributions and actuarial contributions, are presented in Figures
4.16-4.18.

We can again make a number of observations from these plots. In Figure
4.1 we identify an issue with the regression fit for φt+1[S] at time t = 9,
similar to what we observed for Case 1. We also notice similar shapes for
the hedge components. Next, for the regression fit of ∆2

t+1,S we observe
a slightly better fit using the LOESS regression model, compared to the
previous quadratic model. In particular, the LOESS regression setup does
not produce any negative estimates for E

[
∆2

t+1,S

∣∣∣Ft

]
. From comparing

Figures 4.14 and 4.17, we observe that the actuarial contribution is higher
in the intervals where the residual variance appears higher.

Figure 4.10: Case 2 - Regression fit of φt+1[S] as a function of NtY
(1)(t) at: (left)

t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.11: Case 2 - Regression fit of φt+1[S]Y
(1)(t + 1) as a function of

Nt

(
Y (1)(t)

)2
at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.12: Case 2 - Hedge component θ
(1)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.13: Case 2 - Hedge component θ
(0)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.14: Case 2 - Residual ∆t+1,S as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.
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Figure 4.15: Case 2 - Regression fit of ∆2
t+1,S as a function of NtY

(1)(t) at: (left)
t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.16: Case 2 - Hedge contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.17: Case 2 - Actuarial contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.18: Case 2 - Valuation φt[S] as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.
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4.3 Case 3

For Case 3, the regression fits are shown in Figures 4.19 and 4.20. Moreover,
the hedge components are presented in Figures 4.21 and 4.22, from which
we get the residual related plots in Figures 4.23 and 4.24. The valuations
and associated contributions are shown in Figures 4.25-4.27.

For this case, we find that using the smoothing splines setup for the re-
gressions of φt+1[S], as shown in Figure 4.19, appears to provide better fits
compared to the previous quadratic models. We also find that the shapes of
the hedge components, as seen in Figures 4.21 and 4.22, are rather different
compared to Cases 1 and 2. In extension, we also find different shapes for
the residuals. Here, we do however notice a number of outliers that later
cause issues in the regression of the squared residuals. Similar to Case 2,
we observe that the actuarial contributions are higher in intervals where the
residual is seen to have higher variance.

Figure 4.19: Case 3 - Regression fit of φt+1[S] as a function of NtY
(1)(t) at: (left)

t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.20: Case 3 - Regression fit of φt+1[S]Y
(1)(t + 1) as a function of

Nt

(
Y (1)(t)

)2
at: (left) t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.21: Case 3 - Hedge component θ
(1)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.22: Case 3 - Hedge component θ
(0)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.23: Case 3 - Residual ∆t+1,S as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.

Figure 4.24: Case 3 - Regression fit of ∆2
t+1,S as a function of NtY

(1)(t) at: (left)
t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.25: Case 3 - Hedge contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.26: Case 3 - Actuarial contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.27: Case 3 - Valuation φt[S] as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.

4.4 Case 4

Following a similar structure as for previous cases, we present the regression
fits in Figures 4.28 and 4.29. The hedge components are shown in Figures
4.30 and 4.31, which yield the residuals in Figure 4.32. Notably, due the us-
age of the inner simulation technique, no regression models for the squared
residuals are constructed. The hedge contributions and actuarial contribu-
tions are shown in Figures 4.33 and 4.34, with the total valuations shown in
Figure 4.35.

Overall, we find the results here to be similar to those obtained in Case 3.
That is, the regressions appear to give a similar fit and the hedge components
are found to have a similar structure. We do notice a slight difference in the
shape of the actuarial contributions to the valuation. However, given its
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small size relative to the hedge contributions, the total valuations appear
quite similar.

Figure 4.28: Case 4 - Regression fit of φt+1[S] as a function of NtY
(1)(t) at: (left)

t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.29: Case 4 - Regression fit of φt+1[S]Y
(1)(t + 1) as a function of

Nt

(
Y (1)(t)

)2
at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.30: Case 4 - Hedge component θ
(1)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.31: Case 4 - Hedge component θ
(0)
t,S(t + 1) as a function of NtY

(1)(t) at:
(left) t = 9, (middle) t = 5, and (right) t = 1.
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Figure 4.32: Case 4 - Residual ∆t+1,S as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.

Figure 4.33: Case 4 - Hedge contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.34: Case 4 - Actuarial contribution of valuation φt[S] as a function of
NtY

(1)(t) at: (left) t = 9, (middle) t = 5, and (right) t = 1.

Figure 4.35: Case 4 - Valuation φt[S] as a function of NtY
(1)(t) at: (left) t = 9,

(middle) t = 5, and (right) t = 1.
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4.5 Comparison of cases

Given the results from each case, we now turn to examine some more ag-
gregate numbers in order to compare the cases. Here, a fundamental com-
ponent is the structure of the dynamic valuations over time, i.e. to analyze
φt[S] as a function of time t. Notably, given the information available at
time zero, φ0[S] is deterministic while the future valuations φ1[S], . . . , φT [S]
are stochastic. As a result, we first examine the means of valuations, i.e.
E [φt[S]], as presented in Figure 4.36. Here, Case 1 is seen to have the over-
all highest values. Case 2 has slightly lower mean valuations, though still
higher than those obtained for Cases 3 and 4, which are seen to be almost
identical. It is worth noting that all mean valuations intersect at the time
horizon T = 10 years. This is due to the fact that φT [S] = S is the same for
all cases.
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Figure 4.36: Comparison of cases - Means of valuations φt[S] across time.

To analyze further, the means of the underlying hedge contributions and
actuarial contributions are shown in Figure 4.37. Here, it is worth noting
that we have no contribution decompositions at time T . We find the hedge
contributions to be higher than the actuarial contributions in all cases. Ad-
ditionally, we observe mostly higher actuarial contributions for Cases 1 and
2 compared to Cases 3 and 4. From the backwards iteration procedure used
to construct the dynamic fair valuation, these higher actuarial contributions
propagate backwards, resulting in higher hedge contributions and higher
overall valuations for earlier times.
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Figure 4.37: Comparison of cases - Means of contributions to valuations φt[S] across
time: (left) hedge contributions, and (right) actuarial contributions.

In order to investigate the valuations beyond the means, we take a closer
look at the results for Case 3. Its fair dynamic valuation is illustrated in
Figure 4.38, where the solid line represents the mean valuations (i.e. the
same as shown in Figure 4.36) and the shaded area shows an 80% confidence
interval, i.e. with lower and upper bounds given by the 10% and 90% per-
centiles respectively. In addition, the dashed lines illustrate three simulated
trajectories for the fair dynamic valuation. As expected, we here observe
φ0[S] to be deterministic, while the future valuations are stochastic as seen
from time zero. Moreover, the confidence interval is seen to widen for later
time points. This reflects the increase in uncertainty the further we look into
the future from time zero.

As a last point, Table 4.1 presents the computation times16 needed to cal-
culate the fair dynamic valuation in each case. Here, we find that Case 4
require significantly more time than the first three cases. This difference
is due to the inner Monte Carlo simulation technique employed in Case 4.

Table 4.1: Computation time in each case.

Case Computation Time
1 4 seconds
2 33 seconds
3 35 seconds
4 1.4 hours

16Faster computations can potentially be achieved by employing parallel programming
techniques. For the scope of this study, we have not investigated this.
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Figure 4.38: Case 3 fair dynamic valuation: The solid line shows the mean, the
shaded area the 80% two-sided confidence interval, and the dashed lines three sim-
ulated trajectories.
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Chapter 5

Discussion

In this chapter, we present a discussion of the study. More specifically, we
discuss the obtained results and what inferences can be made from these.
We also reflect back on the scope and objectives of the project as a whole.
In addition, we give a number of suggestions for future work.

From the results presented in Section 4.5 it is seen that the constructed fair
dynamic valuations vary between the cases. Examining the mean valuation
plots in Figures 4.36 and 4.37, we find that the actuarial valuations in Cases
1 and 2 are higher than those in Cases 3 and 4. In extension, this results in
higher overall valuations for Cases 1 and 2. We find that this is largely due
to the choice of regression models used in the LSMC approximation. That
is, we recall that the first two cases utilize quadratic models, while the last
two cases instead use smoothing splines models. Here, the smoothing splines
option provides more flexibility in the regressions and thus better fits, e.g. as
seen by comparing Figures 4.10 and 4.19. These improved regression mod-
els make for better hedges and lower residual variance, which in turn yield
lower actuarial contributions and lower valuations overall. In this sense, the
higher valuations obtained in Cases 1 and 2 are a consequence of sub-optimal
hedges obtained from the use of the quadratic regression models. Notably,
the quadratic regression setup is also problematic for the squared residual
regressions, for which it is found to produce some negative estimates. In this
sense, we claim to have identified a weakness in the quadratic regression ap-
proaches suggested by Barigou et al. (2019). We here identify the regression
setups with smoothing splines and LOESS regression models as promising
alternatives, which provide additional flexibility while still remaining com-
putationally time-efficient.

Next, we can observe that the regressions for the squared residuals, as visu-
alized in Figures 4.6, 4.15 and 4.24, are found to be rather problematic in all
cases. Despite the better fits using the LOESS models, there are still some
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outliers that cause problems in the regressions. This in turn causes a few
high estimates in the actuarial contribution to the valuation, as seen from
Figures 4.17 and 4.26. We note this weakness in the model and recognize it
as a component where further research is warranted.

It is also worth discussing the results of Cases 3 and 4 more closely. We recall
that the setup in Case 3 is equivalent to using the cost-of-capital choice of
actuarial valuation function, under the assumption that the residuals are
conditionally normally distributed. Notably, Case 4 uses the cost-of-capital
approach as well, however does not make any assumption for the distribution
of the residuals. Because of this, the comparison of these two cases partly
assesses if the normal distribution assumption is reasonable. We also get
an indication on whether the increased computational complexity of Case
4 is justifiable, i.e. whether we can achieve more appropriate results with
this method. From the valuation means presented in Figure 4.36 we find
that there is little difference between the two cases. However, if we examine
the actuarial contributions more in detail, we can notice some differences, as
seen in the right plot of Figure 4.37 as well as by comparing Figures 4.26 and
4.34. Nevertheless, the actuarial contributions are notably smaller than the
hedge contributions, which causes the valuations to still be very similar. As
a result, given the overall similarity in results and the notable difference in
computational complexity, we find Case 3 to be the preferable choice.

Next, we return to reflect on the overall scope and objectives. For this study,
we set out to investigate the topic of fair dynamic valuations and to extend
the previous work on the topic. We have done this through a number of
steps. First, we outlined the mathematical theory of fair dynamic valua-
tions. Notably, this constitutes a valuable component on its own and can,
because of its general formulation, be employed in many different applica-
tions. Thereafter, we presented the choice of setup and methods. Here, we
took a more practical approach and presented techniques that can be used
in practice. In particular, we provided suggestions for alternative setups,
such as the use of smoothing splines and LOESS regression models as well as
the cost-of-capital valuation approach. These aimed to extend the previous
research. Furthermore, we conducted a numerical analysis, which forms the
basis for our presented results. This allowed us to apply the mathematical
concepts as well evaluate and compare our proposed methods.

As a last point, based on the outcome of this study we provide some sugges-
tions for future work on the topic. These include the following:

• Investigating the impact of regression hyperparameters
In our analysis, we have investigated the use of smoothing splines and
LOESS regression models as part of the LSMC approximation. No-

41



tably though, we have only used one set of hyperparameters17 and in
extension, not analyzed the impact of changing these parameters. This
is something that ought to be researched more in detail.

• Dynamics of underlying risk drivers
The underlying risk drivers, i.e. the stock value and survival of the
insured, are modelled with fairly simple dynamics. For example, the
stock value process is modelled with a geometric Brownian motion,
which makes for easy calculations. However, such a model can be ar-
gued to not fully capture the dynamics observed in real equity markets.
For instance, we could instead use a jump-diffusion model, resulting
in a more advanced setup. Using such alternatives for the underly-
ing dynamics, we could then analyze how the resulting fair dynamic
valuations are affected.

• Considering alternative claim types
All our numerical results are related to a particular choice of insurance
liability claim, i.e. a particular choice of T -claim. However, similar
methods and implementation can be used for other types of claims.
This means that an extended analysis can be conducted, where results
for different claim types can be compared. In particular, one could
analyze whether the usage of smoothing splines and LOESS regression
models also provide a good tool in such alternative cases.

17In the case of smoothing splines, 10 degrees of freedom, and in the case of LOESS
regression, smoothing parameter 0.1 and degree 2.
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Chapter 6

Conclusion

To summarize, in this study we have investigated the topic of fair dynamic
valuation of insurance liabilities. We have outlined the underlying mathe-
matical framework and described how this class of valuations combines con-
cepts of market consistency, actuarial judgment and time consistency. Fur-
thermore, we have presented a backwards iteration procedure that can be
used in practice for the construction of a fair dynamic valuation. Considering
a representative choice of insurance claim and financial-actuarial setting, we
have implemented this procedure by utilizing risk minimization techniques
and Least Square Monte Carlo (LSMC) approximation methods.

Based on our implementation, we have conducted a numerical analysis. As
part of this, we have investigated various setups for the underlying regression
models used in the LSMC approximations as well as different choices of
actuarial valuation function. In particular, we have assessed the effect that
the choice of setup has on the resulting fair dynamic valuations. Our results
indicate that the choice of regression models has a notable impact on the
resulting valuations. More specifically, we have identified a potential in using
models such as smoothing splines and LOESS regressions. These options are
found to provide the additional flexibility desired in the regression models,
while still remaining computationally time-efficient.
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Appendix A

Mathematical Proofs

A.1 Proof of Lemma 1

Firstly, we show that Ψt is a t-hedger. It is clear from the definition that it
is a mapping from CT to Θt. Also, we find that

Ψt[0] = ψt,0 = θt,0 + φ̃t[0− θt,0(T ) · Y (T )]λt = 0t + 0λt = 0t,

and for each S ∈ CT and a ∈ Ct we obtain

Ψt[S + a] = ψt,S+a = θt,S+a + φ̃t[S + a− θt,S+a(T ) · Y (T )]λt =

θt,S + aλt + φ̃t[S − θt,S(T ) · Y (T ) + a− aλt(T ) · Y (T )]λt =

θt,S + φ̃t[S − θt,S(T ) · Y (T )]λt + aλt = ψt,S + aλt = Ψt[S] + aλt,

so we can conclude that Ψt indeed is a t-hedger.

Secondly, we show that if ϑt if market consistent, then Ψt is market consistent
and Ψt[Sh] = ϑt[Sh] for any Sh ∈ Ht

T . To do so, consider arbitrary S ∈ CT
and Sh ∈ Ht

T , then we have

Ψt[S + Sh] = ψt,S+Sh
= θt,S+Sh

+ φ̃t[S + Sh − θt,S+Sh
(T ) · Y (T )]λt =

θt,S + θt,Sh
+ φ̃t[S − θt,S(T ) · Y (T ) + Sh − θt,Sh

(T ) · Y (T )]λt =

θt,S + φ̃t[S − θt,S(T ) · Y (T )]λt + θt,Sh
=

ψt,S +ψt,Sh
= Ψt[S] + Ψt[Sh],

where we have used that

Ψt[Sh] = ψt,Sh
= θt,Sh

+ φ̃t[Sh − θt,Sh
(T ) · Y (T )]λt =

θt,Sh
+ φ̃t[0]λt = θt,Sh

= ϑt[Sh],

so we conclude that Ψt is indeed market consistent.
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Thirdly, we consider the case when ϑt is actuarial and φt is actuarial. Then,
for any S⊥ ∈ Ot

T we have

Ψ[S⊥] = ψt,S⊥ = θt,S⊥ + φ̃t[S⊥ − θt,S⊥(T ) · Y (T )]λt =

φ̃t[S⊥]λt + φ̃t[S⊥ − φ̃t[S⊥]λt(T ) · Y (T )]λt =

φ̃t[S⊥]λt + φ̃t[S⊥ − φ̃t[S⊥]]λt = φ̃t[S⊥]λt,

so we find that Ψt is actuarial with underlying actuarial t-valuation φt.

Lastly, in the case when ϑt is fair, i.e. both market consistent and actuarial,
and φt is actuarial, the above conclusions imply that Ψt is both market con-
sistent and actuarial. Thus, Ψt is fair with underlying actuarial t-valuation
φt. □

A.2 Proof of Theorem 1

Firstly, we prove the property related to market consistency. Assume φt

to be a market consistent t-valuation, and ϑt, with t-hedges ϑt[S] = θt,S
for S ∈ CT , to be a market consistent t-hedger. Then, for any S ∈ CT we
have

φt[S] = φt[S − θt,S(T ) · Y (T ) + θt,S(T ) · Y (T )] =

φt[S − θt,S(T ) · Y (T )] + EQ

exp
−

T∫
t

r(u) du

θt,S(T ) · Y (T )

∣∣∣∣∣∣Ft

 =

φt[S − θt,S(T ) · Y (T )] + θt,S(t+ 1) · Y (t) =

(φ̃t[S − θt,S(T ) · Y (T )]λt(t+ 1) + θt,S(t+ 1)) · Y (t) =

θmt,S · Y (t),

i.e. where we have defined t-hedger ϑm
t by

ϑm
t [S] = θmt,S = θt,S + φ̃t[S − θt,S(T ) · Y (T )]λt, S ∈ CT ,

which by Lemma 1 is market consistent.

Conversely, assume ϑm
t to be a market consistent t-hedger and define the

t-valuation φt as φt[S] = θ
m
t,S(t+1) ·Y (t) for S ∈ CT . Then, for any S ∈ CT

and Sh ∈ Ht
T it holds that

φt[S + Sh] = θ
m
t,S+Sh

(t+ 1) · Y (t) =

θmt,S(t+ 1) · Y (t) + θmt,Sh
(t+ 1) · Y (t) =

φt[S] + φt[Sh],

which shows that φt is a market consistent t-valuation.
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Secondly, we consider the actuarial property. If φt is an actuarial t-valuation,
then for any S ∈ CT it holds that

φt[S] = φ̃t[S]B(t, T ) = φ̃t[S]λt(t+ 1) · Y (t) = θat,S(t+ 1) · Y (t),

where we have defined t-hedger ϑa
t , with t-hedges θat,S = φ̃t[S]λt for S ∈ CT .

This is clearly an actuarial t-hedger.

Next, let ϑa
t be an actuarial t-hedger, with t-hedges ϑa

t [S] = θ
a
t,S for S ∈ CT ,

and underlying actuarial t-valuation B(t, T )πt. Let the t-valuation φt be
defined as φt[S] = θ

a
t,S(t+1) ·Y (t), S ∈ CT . Then, for any S⊥ ∈ Ot

T it holds
that

φt[S⊥] = θ
a
t,S⊥

(t+ 1) · Y (t) = πt[S⊥]λt(t+ 1) · Y (t) = B(t, T )πt[S⊥],

so we find that φt is an actuarial t-valuation.

Lastly, we prove the fair property. Consider a fair t-valuation φt and some
fair t-hedger ϑt, with t-hedges ϑt[S] = θt,S for S ∈ CT and underlying
actuarial t-valuation B(t, T )πt. Since φt is fair it is also market consistent.
Thus we know that there exists a market consistent t-hedger (as defined
earlier in the proof) ϑm

t , with t-hedges ϑm
t [S] = θmt,S , such that for any

S ∈ CT it holds that φt[S] = θmt,S(t + 1) · Y (t). For any S⊥ ∈ Ot
T it holds

that

ϑm
t [S⊥] = θ

m
t,S⊥

= θt,S⊥ + φ̃t[S⊥ − θt,S⊥(T ) · Y (T )]λt =

πt[S⊥]λt + φ̃t[S⊥ − πt[S⊥]]λt =

φ̃t[S⊥]λt,

which shows that ϑm
t (so we can define ϑf

t = ϑm
t ) is actuarial. Since ϑf

t is
both market consistent and actuarial it is fair.

Conversely, assume ϑf
t to be a fair t-hedger, with t-hedges ϑf

t [S] = θft,S for
S ∈ CT . Let the t-valuation φt be defined as φt[S] = θft,S(t + 1) · Y (t). By
the steps above we know that since ϑf

t is market consistent, φt is market
consistent. Similarly, since ϑf

t is actuarial, φt must be actuarial. This means
that φt is fair. This concludes the proof. □

A.3 Proof of Theorem 2

First, assume that {φt}T−1
t=0 is a fair dynamic valuation. By definition, for

each t ∈ {0, 1, . . . , T − 1} it holds that φt is fair a t-valuation. For a chosen
t ∈ {0, 1, . . . , T − 1}, we know from Theorem 1 that since φt is fair there
exists a fair t-hedger ϑt, with t-hedges ϑt[S] = θt,S for S ∈ CT , such that
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φt[S] = θt,S(t+ 1) · Y (t) for arbitrary S ∈ CT . In other words, ϑt is market
consistent and actuarial. This means that the dynamic hedger {ϑt}T−1

t=0 is
market consistent and actuarial. However, {ϑt}T−1

t=0 does not necessarily
satisfy the time consistent property and so is not fair.

We consider instead the dynamic hedger {Ψt}T−1
t=0 such that for each t ∈

{0, 1, . . . , T − 1}, the t-hedger Ψt is defined in the following way:

Ψt[S] = ψt,S =

{
θT−1,S , if t = T − 1,

θt,φ̃t+1[S], otherwise.
S ∈ CT .

As we will show, this dynamic hedger is in fact both market consistent,
actuarial and time consistent, i.e. fair. We do the proof by showing that
each t-hedger Ψt is fair. Thereafter, we show the dynamic hedger satisfies
the time consistency requirement.

Consider first the special case when t = T −1, for which we have the (T −1)-
hedger ΨT−1, with (T − 1)-hedges ΨT−1[S] = ψT−1,S = θT−1,S . From the
reasoning earlier we know this to be a fair (T − 1)-hedger.

Next, for each t ∈ {0, 1, . . . , T − 2}, we need to show that Ψt is fair. For
the market consistent check, consider arbitrary S ∈ CT and Sh ∈ Ht

T . Then,
using the fact that φt+1 is market consistent, ϑt is market consistent and
any t-hedgeable claim is also (t+ 1)-hedgeable, it holds that

Ψt[S + Sh] = ψt,S+Sh
= θt,φ̃t+1[S+Sh] =

θt,φ̃t+1[S]+φ̃t+1[Sh] = θt,φ̃t+1[S] + θt,φ̃t+1[Sh] =

Ψt[S] + Ψt[Sh],

which shows Ψt to be market consistent. For the actuarial check, consider
S⊥ ∈ Ot

T , for which we have

Ψt[S⊥] = ψt,S⊥ = θt,φ̃t+1[S⊥] = θt,πt+1[S⊥] =

πt [πt+1[S⊥]]λt = πt[S⊥]λt,

where we used the time consistent property of {φt}T−1
t=0 as well as the fact

that πt+1[S⊥] is P-independent of {Y (u)}u∈{t+1,...,T}, and therefore is t-
orthogonal. We find that Ψt is actuarial and thus also fair.

Let us now investigate the time consistency of {Ψt}T−1
t=0 . Using the property

of translation invariance, we get for any t ∈ {0, 1, . . . , T − 2} and S ∈ CT
that

Ψt[φ̃t+1[S]] = ψt,φ̃t+1[S] = θt,φ̃t+1[φ̃t+1[S]] = θt,φ̃t+1[S] = ψt,S = Ψt[S],
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so {Ψt}T−1
t=0 is time consistent, and thus also fair. Additionally, we find that

for any S ∈ CT it holds that

φt[S] = φt[φ̃t+1[S]] = θt,φ̃t+1[S](t+ 1) · Y (t) = ψt,S(t+ 1) · Y (t).

Let us now consider the other direction of the proof. That is, let {Ψt}T−1
t=0

be a fair dynamic hedger. This means that each t-hedger Ψt, with t-hedges
Ψt[S] = ψt,S for S ∈ CT , is fair. For each t ∈ {0, 1, . . . , T − 1}, by Theorem
1 there exists a fair t-valuation φt such that φt[S] = ψt,S(t + 1) · Y (t) for
any S ∈ CT . Also we find that

φt[S] = ψt,S(t+ 1) · Y (t) = ψt,φ̃t+1[S](t+ 1) · Y (t) = φt[φ̃t+1[S]].

This means that the dynamic valuation {φt}T−1
t=0 is time consistent, in addi-

tion to being market consistent and actuarial. Thus it is also fair. □

A.4 Proof of Proposition 1

To prove the optimal solution we first define the function ft such that for
any at ∈ R and bt ∈ Rn we have

ft(at, bt) =

E
[(

Lt+1 − ate
−r(T−t−1) − b⊺tAt+1

)2 ∣∣∣∣Ft

]
=

E
[
L2
t+1

∣∣Ft

]
+ a2t e

−2r(T−t−1) + b⊺tE
[
At+1A

⊺
t+1

∣∣Ft

]
bt−

2ate
−r(T−t−1)E [Lt+1 | Ft]−
2b⊺tE [At+1Lt+1 | Ft] +

2ate
−r(T−t−1)b⊺tE [At+1 | Ft]

From this we then obtain

∂ft
∂at

(at, bt) = 2e−r(T−t−1)
(
ate

−r(T−t−1) − E [Lt+1 | Ft] + b
⊺
tE [At+1 | Ft]

)
and

∇btft(at, bt) =

2
(
E
[
At+1A

⊺
t+1

∣∣Ft

]
bt − E [At+1Lt+1 | Ft] + ate

−r(T−t−1)E [At+1 | Ft]
)
.

Setting these expression to zero yields the optimal solution
(
ât, b̂t

)
. The

first expression can then be simplified to

ât = er(T−t−1)
(
E [Lt+1 | Ft]− b̂⊺tE [At+1 | Ft]

)
,
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which inserted in the second expression gives(
E
[
At+1A

⊺
t+1

∣∣Ft

]
− E [At+1 | Ft]E

[
A⊺

t+1

∣∣Ft

])
b̂t =

E [At+1Lt+1 | Ft]− E [At+1 | Ft]E [Lt+1 | Ft] .

Using the covariance expressions, this equation can be reformulated as

Cov [At+1 | Ft] b̂t = Cov [At+1, Lt+1 | Ft] .

Given the assumption that the inverse of Cov [At+1 | Ft] exists, we obtain
the optimal solution

b̂t = (Cov [At+1 | Ft])
−1Cov [At+1, Lt+1 | Ft] ,

which completes the proof. □

A.5 Proof of Proposition 2

As a first step, we note that since ∆t+1,S | Ft ∼ N(µt, σ
2
t ), we have

VaRt,p(−∆t+1,S) = µt + σtΦ
−1(1− p),

where Φ is the distribution function of the standard normal distribution.

From this, we then get the following

E
[
(VaRt,p(−∆t+1,S)−∆t+1,S)

+
∣∣Ft

]
=

E
[(
µt + σtΦ

−1(1− p)−∆t+1,S

)+ ∣∣∣Ft

]
=

∞∫
−∞

(
µt + σtΦ

−1(1− p)− z
)+ 1√

2πσt
e
− (z−µt)

2

2σ2
t dz =

µt+σtΦ−1(1−p)∫
−∞

(
µt + σtΦ

−1(1− p)− z
) 1√

2πσt
e
− (z−µt)

2

2σ2
t dz =

σt

Φ−1(1−p)∫
−∞

(
Φ−1(1− p)− z′

) 1√
2π

e−
z′2
2 dz′ =

σt

(
Φ−1(1− p)Φ

(
Φ−1(1− p)

)
+

[
1√
2π

e

(
− z′2

2

)]z′=Φ−1(1−p)

z′=−∞

)
=

σt

(
(1− p) Φ−1(1− p) +

1√
2π

exp

(
−1

2

(
Φ−1(1− p)

)2))
.

Using the introduced function κ, as well as the two expressions above, we
get the final result:

πt(∆t+1,S) = µt + κ(η, p)σt

□
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Appendix B

Code Implementation
Example

This appendix presents the R code implementation where a fair dynamic
valuation is constructed using the backwards iteration procedure. The code
uses the model setup of Case 3 as well as numerical parameter values defined
in Section 3.5, i.e. it produces the results presented in Section 4.3. Notably,
this code can be easily modified, e.g. to consider alternative regression setups
or modified model parameters.
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