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Abstract

In medical research it is common to study the time to the occur-
rence of a single event that may only happen once per individual. One
such typical event is the occurrence of a death and the studying of the
survival time. Even though the analysis of this type of one-time-only
event is very common, classical theory in event history analysis fail to
give a logical measurement of the risk of occurrence of these events.

In the article by Bottai (2017) the theoretical ground for two new
measurements, for these type of events, were presented; the incidence
rate and the event-probability function. s The aim of this thesis is
to make the usability of these two measurements visible and easily
accessible by giving a thorough theoretical explanation, presenting
new software, and providing a real data example.
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1 Background

1.1 Introduction

In medical research, some of the most frequently used methods, in the search

of answering the big questions of human health, lie within the field of event

history analysis. Event history analysis, also know as survival analysis, is a

family of statistical methods used for studying and analysing the time to, and

the occurrence of, one or several events.

Many researchers study the occurrence of a one-time-only event of an indi-

vidual, such as death or first cancer diagnosis. Even though the analysis of this

type of one-time-only events is very common, classical theory in event history

analysis fails to give appropriate measures of the risk of occurrence of these

events.

In the article A Regression Method for Modelling Geometric Rates [Bottai,

2017], the theory of two new measurements in event history analysis, for the

one-time-only case, were presented. These measurements were later defined as

the incidence risk and the event-probability function [Bottai et al., 2021, Bottai,

2022].

The incidence risk is the geometric mean of the probability of occurrence of

an event per unit time in a time interval, given that it has not happened yet.

As shown by Bottai [2022], it is naturally connected to the cumulative hazard

and can be estimated by the use of the Nelson-Aalen estimate of cumulative

hazards, see Subsection 2.6.

Compared to the classical estimate of the incidence rate, which is an arith-

metic mean of the same probability, the incidence risk is a measurement of risk,

while the incidence rate is not.

The event-probability function is the limit of the incidence risk, and it is the

instantaneous risk of the occurrence of an event, given that it has not occurred

yet. Compared to the hazard rate, this is a probability measure, which gives it

an advantage when it comes to interpretability.

1.2 Motivating example

The following is a motivating example of a comparison of two measurements,

the incidence rate and the incidence risk. As already mentioned, the incidence

rate is a classical measure in event history analysis and is often reported in

medical research, while the incidence risk is the new measurment presented by

Bottai [2022].
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These estimates are computed and compared in Stata by using one of Stata’s

built-in datasets, kidney. This data contains right censored survival times

of patients with a diagnosis of metastatic renal carcinoma [Medical Research

Council Renal Cancer Collaborators, 1999]. The theory and the logic of this

example are found in the article by Bottai [2022], in which the incidence risk is

presented and defined together with the new command stprisk for estimating

it. Both the theory and a discussion about the use case of the incidence risk are

revisited in later sections.

The incidence rate is estimated for the group variable trt containing two

treatment groups, subcutaneous interferon-α (IFN) and oral medroxyproges-

terone acetate (MPA). The incidence rate is an arithmetic mean of the occur-

rence of an event per individual and unit time. It is computed by counting all

occurrences of the event and dividing it by the sum of all event times. The

command strate on trt gives estimated mortality rates for the two treatment

groups:

The question arises of how one interprets a mortality rate of 1.023 per unit time

and person. Some might read the incidence rate as a measurement of risk but

it should be clear that this is not a probability measurement.

The incidence risks is then estimated for the two treatment groups by run-

ning the command stprisk on trt:

The incidence risk is a geometric mean of the occurrence of event per unit time

and person and, as shown later, this is a measurement of risk. We can interpret

0.44 as a 44% mortality risk per year, for an individual in treatment group MPA,

and compare it to a 37% mortality risk per year, for an individual in treatment

group IFN.
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1.3 Goals

The goal of this thesis is to make the usability of the two measurements, the

incidence rate, and the event-probability function, visible and easily accessible,

both theoretically and practically. This is done in three steps:

(i) By giving a thorough theoretical explanation of the incidence risk, and the

event-probability function,

(ii) by presenting two new software implementations of the incidence risk and

the event-probability function, and

(iii) by giving a visual explanation of theory, through a real data example.

The first step (i) is done by first building a solid foundation of theory of event

history analysis, and then new theory is introduced from it, all in Section 2.

Hence, the method section can be read with or without the Event history anal-

ysis subsection.

The second step (ii) is done in Section 3, Software implementation, and the

third step in Section 4, A real data example.

2 Methods

2.1 Introduction

Event history analysis, also referred to as survival analysis, is a family of sta-

tistical methods developed mainly within the field of medical research. As the

second name suggests, the classical target of event history analysis has been to

study survival time; the time to the occurrence of death, or any other event of

interest.

Theory within event history analysis is used beyond the field of medical

research and one can refer to survival time as time-to-event. The time of interest

could for example be the time to giving birth to a first child, the lifetime of a

light-bulb or the time to getting divorced after getting married. Events could

be of a one-time-only nature, like the examples given above, but they could also

be events with the possibility of reappearing; like the event of having a stroke

or getting married.

Theory of this methods section is divided into four subsections. In Subsection

2.3 basic concepts of event history analysis is covered together with theory of

the counting process and the martingale.
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In Subsection 2.4 the Nelson-Aalen estimate of cumulative hazards is ex-

plained and proven, using theory of the counting process.

In Subsection 2.5 some regression models in event history analysis are ex-

plained and in Subsection 2.6, which is the last of the methods section, show

theory of the incidence risk and the event-probability function, with some ap-

plications.

2.2 Notation and setup

These are the notations used throughout this thesis. Most of them are widely

used notations and are easily recognized from books and papers.

t - Observed time-to-event

t- - The time just before some time t

T - The random variable time-to-event

n - Number of observations

f(t) - Probability density function

F (t) - Cumulative probability function

S(t) - Survival function

h(t) - Hazard

H(t) - Cumulative hazard

F(t) - Filtration

M(t) - Martingale

⟨M⟩(t) - Predictable variation process

[M ](t) - Optional variation process

J(t) - Stochastic integral

N(t) - Counting process

λ(t) - Intensity function of a counting process

Λ(t) - Cumulative intensity function of a counting process

G(t) - Predictable process

8



B(t) - Brownian motion process

I(t) - Indicator function

Y (t) - Number at risk at time t−

rn(t) - Residual of the Nelson-Aalen estimator of cumulativ hazards

x = (x1, .., xq)
′ - Vector of q covariates

β = (β1, .., βq)
′ - Vector of q regression coefficients

ψ(x′β) - Hazard rate ratio function

L(θ) - Likelihood function

ln(θ) - Log-likelihood function

s(x) - Spline function

G(t, t+ dt) - Incidence risk

g(t) - Event-probability function

Σ(θ) - Variance covariance matrix

I(θ) - Fisher information matrix

H(θ) - Hessian matrix

2.3 Event history analysis

In this subsection basic concepts of event history analysis are covered and ex-

plained using theory of the counting process and the martingale. If not otherwize

cited, the logical trail follow that of chapter 1 and 2 in the book by Aalen et al.

[2008]. This is a theoretical foundation on which classical applications and new

concepts are added in later subsection.

2.3.1 Survival function and hazard

As established earlier, the main theory within event history analysis focuses on

analysing some time-to-event variable. At the base of the theory lie the survival

function, the hazard function and the cumulative hazard function.
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If one view the time-to-event as a random variable T defined on the positive

real line, then the survival function S(t) is the probability of surviving, or being

event free, up to time t. Hence, the survival function can be written as

S(t) = P (T > t)

= 1− F (t),

where F (t) = P (T ≤ t) is the cumulative probability of seeing an event before

time t. The cumulative distribution function F (t) is also naturally called the

failure function.

The hazard function or the hazard rate is the instantaneous rate of occur-

rence of an event per unit time at time t, given that it has not occurred yet.

It is obtained by taking the limit of the conditional probability of T being in a

small interval [t, t+ dt) divided by the length of the interval dt

h(t) = lim
dt→0

P (t ≤ T < t+ dt|T ≥ t)

dt
. (1)

In order to connect the hazard function and the survival function, one can use

that P (t ≤ T < t+ dt|T ≥ t) = P (t ≤ T < t+ dt)/P (T ≥ t). Then the hazard

rate can be rewritten as the limit of the failure and the survival function

h(t) = lim
dt→0

{F (t+ dt)− F (t)

dt

} 1

S(t)

=
f(t)

S(t)
, (2)

where f(t) is the derivative of the failure function F (t) [Collett, 2003][page 12-

13]. Taking a closer look at Equation 2, one could notice that this is in fact the

derivative of − log{S(t)}. Also, the cumulative hazard function

H(t) =

∫ t

0

h(x)dx,

is the integral of the hazard function up to time t. These two facts together

give us the relation between the cumulative hazard function and the survival

function

H(t) =

∫ t

0

f(x)

S(x)
dx

= − log{S(t)},

and this is equivalent to

S(t) = e−H(t). (3)

The survival function, the hazard function and the cumulative hazard function

all uniquely defines the time-to-event variable T .
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2.3.2 The typical time-to-event data

When studying an event that may only occur once, a few times, or may not

happen at all to an individual over a lifetime, one may not observe all events

occurring in the sample population. It could be that the actual time to the

occurrence of the event for an individual is longer than the time of the research

period. This means that when the research period is ended some individuals

are still at risk of having the event occurring later on in their life, we typically

call these observations censored.

If for example one study the survival time of cancer patients, as in the

example of the kidney data in Section 1.2, it is a fact that all individuals die,

whether it is by cancer or a natural death, but not everyone will die during the

time of the research period. If this is the case one have the limited information

of the survival time being longer than the length of the study, but the survival

time is censored beyond that.

There are different type of censoring where the type described above is called

right censored ; one can not see ’to the right’ on the time line, if and when an

event occurs. Then there is left censored event times; for example when checkups

are only done on discrete time points, and if an individual is found to have an

occurrence of the event of interest on one of those checkups, we do not know at

what time between the last checkup and the current one it happened.

Also, there is the case where individuals entering the research have an un-

known starting point of the time-to-event. As an example, if one want to study

the time from a cancer diagnosis to the time of death, some of those that enter

the study may have had cancer some time before they got their diagnosis, this

is called left truncation.

The methods presented in this chapter are applicable to right censored event

times and these are some times referred to as just censored event times.

The typical survival data with n observations contains observed event times

t1, t2, .., tn defined on the positive real line. If censored event times are included,

these are indicated by some event indicator variable d1, d2, .., dn that typically

takes on the value 0 for censored and 1 for uncensored.

2.3.3 The past

When the subject of an analysis is a sequences of random variables presented

over time, the past is often considered when looking at the presence. For a

time t, we denote the time up to some time just before t as t−. For a sequence

of random variables {Xn}n≥0 generated by a process X(t), where t represents
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the present time, the past can be presented by a filtration Ft−. This filtration

is then a collection of σ-algebras generated by all earlier sequences of random

variables up to the time t−, it contains all possible outcomes of the past.

2.3.4 The martingale

The martingale is a sequence of random variables {Mn}n≥0, typically generated

over time, where the expected value of the process at the present time equals

the most recent value of the process in the past, given that the past is known.

This definition of the martingale is expressed by the martingale property, and

for discrete time points labeled n = 1, 2, .. this can be formally expressed as

E[Mn|Fn−1] =Mn−1,

where Fn−1 is the past up to the discrete time point n − 1. The rest of the

theory of the discrete time martingale is left-out and the martingale generated

in continuous time is considered. The continuous time case is an augmentation

of theory of the discrete case and both are, for the interested reader, covered in

the book by Aalen et al. [2008].

Let the random variables {Mn}n≥0 be generated by a process M(t) over

continuous time t, defined on [0, τ ]. This process is a continuous time martingale

if it fulfills the martingale property given by

E[M(t)|Ft−] =M(t−), (4)

whereM(t−) is the value of the process at some time just before t. By properties

of expectations, Equation 4 can also be expressed as

E[M(t)|Fs] =M(s), (5)

for all s < t. Also, if the starting point of the martingale at time 0 is M(0) = 0,

one can use the tower property of expectations together with Equation 5, to

show that

E[M(t)] = E[E[M(t)|F0]]

= E[M(0)]

= 0

for all t ≥ 0. This is the zero mean martingale for which a change over a small
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time interval [t, t+ dt), by linearity of expectations and Equation 5, is given by

E[dM(t)|Ft−] = E[M(t+ dt)−M(t)|Ft−]

= E[M(t+ dt)|Ft−]− E[M(t)|Ft−]

= 0. (6)

The zero mean martingale is a powerful tool to show properties of residuals

in stochastic process theory, and all martingales mentioned below are assumed

to be of zero mean. Equation 4, 5 and 6 are three important expressions of

the martingale property and these are utilized when showing applications of

martingale theory in event history analysis.

2.3.5 The variation processes of the martingale

For a martingale M(t) in continuous time, the predictable variation process

⟨M⟩(t) and the optional variation process are defined as

⟨M⟩(t) = lim
n→∞

n∑
k=1

V ar(∆Mk|F(k−1)t/n), (7)

and

[M ](t) = lim
n→∞

n∑
k=1

(∆Mk)
2, (8)

where Mk is a discrete time martingale and ∆Mk =M(kt/n)−M((k− 1)t/n).

The predictable variation process is related to the conditional variance of

the increment dM(t) by

d⟨M⟩(t) = V ar(dM(t)|Ft−),

where the increment is over a small time interval [t, t+ dt). One can show that

M2(t)− ⟨M⟩(t) and M2(t)− [M ](t) are both zero mean martingales, and that

V ar(M(t)) = E[M(t)2]

= E[⟨M⟩(t)]

= E[[M ](t)]

is the variance of the martingale M(t) at time t. Also the predictable variation

process of the sum of two mean zero martingales can be written as

⟨M1 +M2⟩ = ⟨M1⟩+ ⟨M2⟩+ 2⟨M1,M2⟩ (9)

where ⟨M1,M2⟩ is the predictable covariance process of the two martingalesM1

and M2.
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2.3.6 The stochastic integral

The martingale property can be preserved under many transformations, making

it useful in many applications. One of these transformations is the stochastic

integral, which has an important role in the derivation of the Nelson-Aalen

estimate of the cumulative hazard in Subsection 2.4.3.

The stochastic integral J(t) is a stochastic process generated on a filtration

Ft, including a predictable part G(t), known at time t−, and a stochastic part

dM(t), fulfilling the martingale property in Equation 6. Then this stochastic

integral is defined as

J(t) =

∫ t

0

G(s)dM(s), (10)

and it is a zero mean martingale with respect to the filtration Ft−.

This can be shown by looking at a process {Zn}n≥0, defined in discrete time

but otherwise in the same way, with one predictable part {Gn}n≥0 and one

stochastic martingale {Mn}n≥0. Then Zn equals the sum

Zn =

n∑
i=0

Gi∆Mi,

where ∆M0 = M0 and ∆Mi = Mi −Mi−1. Taking the expected value of the

difference Zn − Zn−1 and using linearity of expectations, as follows

E[Zn − Zn−1|Fn−1] = E[Gn(Mn −Mn−1)|Fn−1]

= GnE[Mn −Mn−1|Fn−1]

= 0,

take us to the conclusion that {Zn}n≥0 is a martingale in discrete time, fulfilling

the martingale property in Equation 6. Then J(t) can be expressed as a limit

of Zn by dividing the interval [0, t] in to n intervals of length t/n and letting n

go to infinity. Hence, this limit is given by

J(t) = lim
n→∞

n∑
k=0

Gk∆Mk,

where Gk = G((k− 1)t/n) and ∆Mk =M(kt/n)−M((k− 1)t/n), and it is the

zero mean martingale in Equation 10. This shows that the martingale property

is preserved under stochastic integration.

The predictable variation process and the optional variation process, Equa-
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tion 7 and 8, of the stochastic integral are given by〈∫
GdM

〉
=

∫
G2d⟨M⟩, (11)[ ∫

GdM
]
=

∫
G2d[M ]. (12)

2.3.7 The Doob-Meyer decomposition

The Doob-Mayer (D-M) decomposition gives another transformation of a stochas-

tic process for which useful characteristics can be obtained. First the definition

of a special type of stochastic process called a sub martingale is given, then it

is to this process the D-M decomposition is applied.

A sub martingale X(t), for t ∈ [0, τ ], is a non decreasing process that for all

s < t fulfills the sub martingale property given by

E[X(t)|Ft−] ≥ X(s). (13)

To this sub martingale X(t) one can apply the D-M decomposition, which is

unique and given by

X(t) = X∗(t) +M(t), (14)

where X∗(t) is a predictable process and M(t) is a martingale. Another way of

expressing this is by saying that the increment of X∗ is given by

dX∗(t) = E[dX(t)|Ft−],

and the increment of M(t), the residual, is given by

dM(t) = dX(t)− E[dX(t)|Ft−].

2.3.8 Counting process

A counting process N(t) is a stochastic process, describing the number of oc-

currences of an event up to some time t, where N(t) is right continuous from

zero and integer valued. The process increases one point whenever there is an

event time, and for s < t the difference N(t) − N(s) is the number of events

occurring in the time interval (s, t].

The counting process is a non decreasing process fulfilling the sub martingale

property of Equation 13, and hence, it is a sub martingale.

The intensity function λ(t) > 0 of a counting process N(t) is the conditional

probability of a new event occurring in a small time interval, given the past,

divided by the length of the interval. Let Ft− be the past, then the change in
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intensity of the counting process, in a very small time interval [t, t+ dt), can be

expressed as

λ(t)dt = P (dN(t) = 1|Ft−). (15)

In this very small time frame dt one can expect the process to increase with one

event or none, and in this context the increment dN(t) can be view as a binary

variable. Hence, the probability of dN(t) = 1 equals the expected value, and

λ(t)dt = E[dN(t)|Ft−]. (16)

Now, using Equation 16 together with the D-M decomposition (14) one can

define a process M(t) such that

M(t) = N(t)−
∫ t

0

λ(s)ds, (17)

is a martingale. It is the uniquely defined decomposition of the sub martingale

N(t) into a predictable part
∫ t

0
λ(s)ds and a zero mean martingale M(t). This

implies that

dM(t) = dN(t)− λ(t)dt, (18)

and taking expectations on both sides of the equation give

E[dM(t)|Ft−] = E[dN(t)− λ(t)dt|Ft−]

= 0.

The process M(t) fulfills the martingale property of Equation 4, and one can

conclude thatM(t) is a martingale. The integral of the intensity function, called

the cumulative intensity process,

Λ(t) =

∫ t

0

λ(s)ds,

can be seen as the signal of the process. When subtracting the signal from

the process N(t), one get a zero mean martingale M(t), the randomness of the

process. To this martingale M(t) the cascade of martingale theory that follows

with it can be applied, which gives a logical way of presenting methods used for

computing measurements of the counting process.

The derivation continues with the predictable and the optional variation

process, starting with the latter, which is somewhat natural. Looking at the

definition of the optional variation process in Equation 8 one can notice that,
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as n → ∞, time intervals gets smaller and smaller, the increment (∆Mk)
2 will

either equal one or none and

[M ](t) = N(t). (19)

In the case of the predictable variation process (7), one can consider the incre-

ment d⟨M⟩(t), which, by Equation 18 and the fact that λ(t) is predictable, can

be written as

d⟨M⟩(t) = V ar(dN(t)− λ(t)dt|Ft−)

= V ar(dN(t)|Ft−).

This variance can, due to the binomial behavior of dN(t) in a small time frame,

be computed by taking the expected value of dN(t). It follows from Equation

16 that

d⟨M⟩(t) ≈ λ(t)dt. (20)

Now the predictable variation process of the counting process martingaleM(t) =

N(t)− Λ(t) can be expressed as

⟨M⟩(t) =
∫ t

0

λ(s)ds,

giving the name a logical explanation, because it is the integral of the predictable

part of the process.

One should also consider a case where two counting processes N1 and N2

have jump times in continuous time, and hence, they have no jump times at the

same time. This implies that the two corresponding martingale processes M1

and M2 are independent and

⟨M1,M2⟩ = 0,

for all t.

Last but not least, theory of the counting process martingale (17) can be con-

nected with the stochastic integral (10) by re-expressing the stochastic integral

as

J(t) =

∫ t

0

G(s)dN(s)−
∫ t

0

G(s)λ(s)ds.

Then the predictable variation process of J(t), in Equation 11, together with

Equation 20, can be rewritten as

⟨J⟩(t) =
∫ t

0

G2(s)λ(s)ds. (21)
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2.3.9 The martingale central limit theorem

The martingale central limit theorem is given here without an extensive expla-

nation. For a more thorough proof, see Rebolledo [1980].

One can begin by defining a Brownian motion process B(t) as a continu-

ous time process with continuous sample path where B(t) − B(s) is normally

distributed with expected value

E[B(t)−B(s)] = 0,

and variance

V ar[B(t)−B(s)] = t− s

for s < t. Also, the process U = B(V (t)) where V (t) is a strictly increasing pro-

cess and V (0) = 0, is called the Gaussian martingale and just as the Brownian

motion its increment, B(V (t)) − B(V (s)) on (s, t], is a zero mean martingale

with predictable variation process ⟨U⟩ = V (t). The Gaussian martingale is

uniquely determined by its variation process.

An increasing sequence of continuous time martingales M (n) = {Mn(t)}n≥0

produced by a sequence of counting processes {Nn(t)}n≥0, as in Equation 17,

and normalized by some proper factor, converges toward this Gaussian martin-

gale if

(i) the predictable variation process ⟨M (n)(t)⟩ converges to a deterministic

function, and

(ii) jumps between values in the sequence converges toward zero.

For an increasing sequence of mean zero martingales M (n)(t) defined on some

interval [0, τ ], one can define M
(n)
ε (t) as all jumps greater than some ε > 0.

Expressed more formally, the martingale central limit theorem then says that

for some strictly increasing function V (t), where V (0) = 0, if

(i) ⟨M (n)⟩(t) p→ V (t), and

(ii) M
(n)
ε (t) → 0,

for all t ∈ [0, τ ], as n→ ∞, then M (n)(t) converges to a Gaussian martingale.

Without immediate explanation but for further use, these two conditions

can be rewritten as expressions of the sum of a stochastic integral

k∑
i=1

J
(n)
i (t) =

k∑
i=1

∫ t

0

G
(n)
i (s)dM

(n)
i (s),
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where G
(n)
i (t) is the predictable part of a counting process for each n, and

dM
(n)
i (t) the residual. Assuming independence between these integrals for all

i = 1, .., k, which implies that ⟨J (n)
i , J

(n)
j ⟩ = 0 for i ̸= j, the two conditions (i)

and (ii) can be written with this sum of stochastic integrals. By Equation 9 the

two conditions are given by

k∑
i=1

∫ t

0

(G
(n)
i (s))2λ

(n)
i (s)ds

p→ V (t), and (22)

k∑
i=1

∫ t

0

(G
(n)
i (s))2I{|G(n)

i (s)| > ε}λ(n)i (s)ds
p→ 0, (23)

which in both cases should hold for all t in [0, τ ].

2.3.10 Counting events

The theory of the counting process is well suited for applications on time-to-event

data and is a good way to show concepts in event history analysis. Assuming

that event times {Ti}ni=1 are independent random variables and that no event

time is exactly the same, one can order them in a way that T1 < T2 < ... < Tn.

Then the number of events that have occurred at time t can be described by a

counting process N(t), where the process at time Ti equals its label number i.

For one uncensored event time Ti, with hazard rate h(t), one can define a

variable Ni(t) = I{Ti ≤ t}, indicating whether the event has happened at time

t or not. The intensity function λi(t) can by the definition of the hazard rate

(1) be derived as follows

P (dNi(t) = 1|Ft−) = P (t ≤ T < t+ dt|Ft−) =

h(t)dt for T ≥ t

0 for T < t
(24)

for i = 1, 2, .., n. In plain words; given that the past up to some time before t is

known, one know if Ti ≥ t, and so, the intensity process λi(t) = h(t)I{Ti ≥ t}.
Extending this to a sample of n uncensored event times {Ti}ni=1, one can

sum the individual counting processes {Ni(t)}ni=1 to an aggregate

N(t) =

n∑
i=1

Ni(t).

This aggregated process is the number of events that has happened at time

t and it is in itself a counting process with intensity process λ(t). Assuming

event times have the same underlying hazard rate, h(t), this intensity process is
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found using Equation 16 and linearity of expectations. The aggregated intensity

process is then given by

λ(t) =
E[dN(t)|Ft−]

dt

=

n∑
i=1

E[dNi(t)|Ft−]

dt

=

n∑
i=1

λi(t)

= h(t)Y (t),

where Y (t) =
∑n

i=1 I{Ti ≥ t} is the number of individuals at risk just before

time t. This is called the multiplicative form of the intensity process, and

it is intuitively understood by seeing that the hazard rate is the individual

probability of experiencing the event per unit time. Multiplying the hazard

rate by the number at risk just before time t give the probability of one more

occurrence of the event per unit time.

Assuming λ(t) is right continuous Equation 17 holds, and one can rewrite

Equation 18 as

dN(t) = λ(t) + dM(t),

showing that a change in number of occurrences of the event has a predictable

part λ(t), in the form of the intensity process, and a residual dM(t), in the

shape of a martingale.

The optional variation process of the martingale M(t) equals that of Equa-

tion 19.

2.3.11 Independent censoring

When working with survival data one can expect the presence of right censored

event times, which were briefly explained in Subsection 2.3.2. Some assumptions

have to be made about the censored data in order for this theory to be applicable.

The weakest assumption needed for the theory discussed in this thesis is that

of independent censoring.

To explain the concept of independent censoring one can start by imagining

a set of n uncensored and independent event times T1, T2, .., Tn. If all these true

event times cannot be observed, but rather some of them are censored, one can

denote these n censored and uncensored event times T̃1, T̃2, .., T̃n. If an event

time is censored; T̃i < Ti, and if the event time is uncensored; T̃i = Ti.
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The event indicator variable, Di, is set to 0 for all censored event times

and 1 for uncensored, for all i = 1, 2, .., n. Then the definition of independent

censoring is expressed as

P (t ≤ T̃i < t+ dt,Di = 1|T̃i ≥ t,Ft) = P (t ≤ Ti < t+ dt|Ti ≥ t).

In plain words, independent censoring assumes that the probability of an event

occurring within a time interval [t, t+dt), given that the event has not occurred

before time t, does not depend on the presence of censored event times.

The theory of the counting process can be extend, assuming independent

censoring. For the n censored and uncensored event times, {T̃i}ni=1, the indi-

vidual counting processes for i = 1, 2, .., n is the indicator variable

Ni(t) = I{T̃i ≤ t,Di = 1},

and the aggregated counting is the sum of the individual processes

N(t) =

n∑
i=1

I{T̃i ≤ t,Di = 1}.

Now, one can use the same logic as for the sample of uncensored event times and

calculate the intensity process of the aggregated counting process. Equation 24

is rewritten as λi(t)dt = P (t ≤ T̃i ≤ t + dt,Di = 1|Ft−), and the aggregated

intensity process

λ(t) =

n∑
i=1

λi

= h(t)Y (t), (25)

where Y (t) =
∑n

i=1 I{T̃i ≥ t} is the number of individuals at risk at some time

just before time t. One can conclude that the form of the intensity process is

preserved under independent censoring.

2.4 Estimation

In this subsection, the Nelson-Aalen estimatior of cumulative hazards is ex-

plained, and to some extent proven, using theory of the counting process. Again,

the logical trail of the theory follows the book by Aalen et al. [2008], Chapter 3.

This estimator is used for calculating the incidence risk, explained in Subsection

2.6.
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2.4.1 Nelson-Aalen

To estimate the cumulative hazard rate, Nelson (1969, 1972) and Aalen (1970)

developed this non-parametric method; the empirical cumulative hazard estima-

tor, also called the Nelson-Aalen (N-A) estimator.

For a sample of n event times T1, T2, ..., Tn, both censored and observed, the

counted number of observed events N(t) is described by a counting process with

intensity function given by the multiplicative form in Equation 25. The N-A

estimatimator of the cumulative hazard function H(t) =
∫ t

0
h(s)ds is then given

by

Ĥ(t) =
∑
Ti≤t

1

Y (Ti)
, (26)

where Y (Ti) is the number at risk just before the event time Ti.

The intuitive way of understanding this estimate is to think of the time

interval [0, t] as a sum of many really small intervals. Then the change in

cumulative hazard rate in one small time interval, [s, s+ ds), equals h(s)ds, the

conditional probability of observing the event given that it has not occurred yet.

In this small time frame, either one event is observed or none. Hence, the

conditional probability h(s)ds is estimated by one divided by the number at

risk just before the time s, in case one event is observed during that time, or

zero otherwise. A good estimator of the cumulative hazard is then given by the

sum of these estimations of the increments, h(s)ds, which is exactly the N-A

estimate in Equation 26.

Also, the N-A estimator Ĥ(t) is approximately normally distributed with

estimated variance

σ̂2(t) =
∑
Ti≤t

1

Y (Ti)2
.

The 100(1− α)% confidence interval is given by

Ĥ(t)± z1−α/2σ̂(t),

and these intervals can be improved by a log transformation

Ĥ(t)exp

{
± z1−α/2σ̂(t)/Â(t)

}
. (27)

The derivation of the N-A estimator is given in later subsections.

2.4.2 Tied event-times

One can take two different approaches about how to view event-times; as ab-

solute continuous and no event-time can be exactly the same, or event-times

being discrete, making it possible for several event-times of the same size.
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In the first approach ties arises from the need of rounding of event-times

and these are handled by using a special formula for the increment of the N-

A estimate ∆Ĥ(Ti). If ki is the number of observed event times at a specific

discrete time point Ti, then

∆Ĥ(Ti) =

ki−1∑
l=0

1

Y (Ti)− l
, (28)

gives the increment of the N-A estimator and

∆σ̂2(Ti) =

ki−1∑
l=1

1

(Y (Ti)− l)2

the increment of the estimated variance for this N-A estimator.

For the second approach the increment for the N-A estimator is computed

as

∆Ĥ(Ti) =
ki

Y (Ti)
, (29)

and the increment of its the estimated variance as

∆σ̂2(Ti) =
(Y (Ti)− ki)ki

Y (Ti)3
. (30)

2.4.3 The Nelson-Aalen estimate with martingale theory

If one let the number of occurrences of an event at time t > 0 be described by the

counting processN(t), with intensity process λ(t), one can use the multiplicative

form in Equation 25 and rewrite Equation 18 as

dN(t) = h(t)Y (t)dt+ dM(t). (31)

Then, in a very small time frame [t, t + dt), the increment dN(t) will at most

equals 1 and more often equals 0. One can dividing both sides in Equation 31

by Y (t), the number at risk just before time t, but because Y (t) can equal 0,

we also need to include an indicator function I(t) = I({Y (t) > 0}). This gives

the expression
I(t)

Y (t)
dN(t) = I(t)h(t) +

I(t)

Y (t)
dM(t), (32)

which equals 0, whenever Y (t) = 0. To show that the N-A estimator (26) is

a true estimator of
∫ t

0
h(t), one can define H∗(t) =

∫ t

0
I(s)h(s)ds, which, by

integration of Equation 32, is equivalent to

H∗(t) =

∫ t

0

I(s)

Y (s)
dN(s)−

∫ t

0

I(s)

Y (s)
dM(s).
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The integral
∫ t

0
I(t)
Y (t)dN(t) is then the N-A estimator in Equation 26, and this is

seen by the fact that integration of a counting process is indeed given by a step

function. The integral takes one step for every event-time, and so

Ĥ(t) =

∫ t

0

I(s)

Y (s)
dN(s)

=
∑
Ti≤t

1

Y (Ti)
,

which is exactly what was requested, the N-A estimator (26). Now, subtracting

H∗(t) from the N-A estimator gives an expression

Ĥ(t)−H∗(t) =

∫ t

0

I(s)

Y (s)
dM(s),

the residual. This integral contains two parts; a predictable part 1/Y (t) and a

martingale dM(t). This meets the definition of a stochastic integral (10) and it

is in it self a zero mean martingale. One can conclude that the residual mean

E[H∗(t)−Ĥ(t)] = 0, and hence, that the N-A estimator (26) is a true estimator

of H(t), for all Y (t) > 0.

Using the optional variance process of a stochastic integral (12), the optional

variance process of the N-A estimator is given by

[Ĥ(t)−H∗(t)] =

∫ t

0

I(s)

Y (s)2
dN(s). (33)

The expected value of this process equals the variance of the N-A estimator,

and one can conclude, with the same argument as for the estimate Ĥ(t), that

σ̂2(t) =

∫ t

0

I(s)

Y (s)2
dN(s)

=
∑
Ti≤t

1

Y (Ti)2
, (34)

is an unbiased estimator of the N-A estimator variance.

2.4.4 Asymptotic behavior of the N-A estimator

The large sample properties of the N-A estimator is derived, using the fact that

the residual (33) is a zero mean martingale. The residual is transformed to

show that it fulfills the two conditions of the martingale central limit theorem

(MCLT), from Subsection 2.3.9, and then the theorem is applied.

The N-A estimator is an aggregate of n independent counting processes

N1, N2, ..., Nn for the event times T1, T2, .., Tn, and its residual [Ĥ(t)−H∗(t)] is
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an aggregate of the n underlying counting process martingales M1,M2, ..,Mn.

The idea is to show that the residual times the square root of the sample size

√
n(Ĥ(t)−H∗(t)) =

∫ t

0

√
n
I(s)

Y (s)
dM(s),

fulfills the two conditions of the MCLT, and hence, is approximately normally

distributed with mean 0 and variance σ2(t).

This residual, rn(t) =
√
n(Ĥ(t) − H∗(t)), is a stochastic integral with a

predictable part, G(t) =
√
n I(s)

Y (s) , and a martingale, dM(s).

The predictable variation process of a stochastic integral (21) is used, and

hence, the predictable variation process of the residual, given the sample size n,

can be expressed as

⟨rn(t)⟩ =
〈∫ t

0

G(s)dM(s)ds

〉
=

∫ t

0

G2(s)λ(s)ds.

Also, one can use the multiplicative form of λ(t) = Y (t)h(t) to rewrite this as

⟨rn(t)⟩ =
∫ t

0

(√
n
I(s)

Y (s)

)2

Y (s)h(s)ds

=

∫ t

0

I(s)h(s)

Y (s)/n
ds.

To ensure that the two conditions in Equation 22 and 23 are fulfilled it suffices

to show that:

(i) G2(t)λ(t) converges in probability toward some function v(t), and

(ii) I{|G(t)| > ε} converges to 0, as n→ ∞.

The first requirement is fulfilled by looking at the denominator Y (t)/n, which

can be assumed to stabilize for greater values of n. If it converges in probability

to some function y(t), Y (t)/n
p→ y(t), one can conclude that G2(t)λ(t)

p→ v(t),

where the function v(t) = h(t)
y(t) .

Also, the predictable process converges in probability to zero, G(t) = 1√
n

I(t)
Y (t)/n

p→
0, which is to say that the probability of |G(t)| > ε converges to zero, and so

the second condition is fulfilled.

One can conclude that the residual, rn(t) =
√
n(Ĥ(t) − H∗(t)), converges

in distribution to a Gaussian martingale with mean zero and variance function

given by

σ2(t) =

∫ t

0

h(t)

y(t)
.
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2.5 Regression in event history analysis

In this section, the theory of two regression models are covered; The Cox pro-

portional hazards model and the proportional odds model. The first of these two

models is one of the most popular regression models within event history anal-

ysis, and its theory has inspired much subsequent research. The second model

is also important for this thesis and an adjusted version of it is presented for

event-probability regression, in Subsection 2.6.4.

2.5.1 Cox proportional hazards model

The proportional hazards model, proposed by Cox [1972], is a semi-parametric

regression model, using partial likelihood estimation for the coefficients.

For a q dimensional vector of covariates x, the hazard rate h(t|x) is assumed

to be proportional to the base line hazard rate, h0(t), by some scale parameter,

θ. This relation is formally shown by the equation

h(t|x)
h0(t)

= θ (35)

where β ∈ Rq is a q dimensional vector of regression coefficients. The base

line hazard rate h0(t) is a theoretical case, for all covariates x0 = 0, and it is

proportional to the hazard rate by some predefined hazard rate ratio function

θ = ψ(x′β)

The hazard ratio only takes on positive values, and a natural choice of ratio

function is the exponential function

ψ(x′β) = exp {x′β},

for which ψ(x′
0β) = 1 [Collett, 2003, p. 57-58].

The idea of the model is that the underlying distribution of the hazard

function h0(t) is not of interest, but rater, the impact the covariates x has on

the hazard, e.g. then regression coefficients β. Coefficients are estimated by

maximizing the partial likelihood function

L(θ) =

n∏
j=1

h0(t) exp {x′
jβ}∑

l∈R(t(j))
h0(t) exp {x′

lβ}

=

n∏
j=1

exp {x′
jβ}∑

l∈R(t(j))
exp {x′

lβ}
,

where R(t(j)) is the set of individuals at risk at time t(j), for the n ordered

event-times t(1) < t(2) < .. < t(n) [Collett, 2003, p.66].
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Described in words, the likelihood is the product of individual hazard rates,

divided by the sum of the hazard rates for those that are at risk at time t(j),

for all individuals j = 1, 2, .., n.

One problem with the Cox model is that the assumption of proportional

hazards is not always a suitable approximation of real data, when hazard rates

of different groups may converge, or diverge more than proportionally, over

time. One way of relaxing the assumption of proportionality is to include a

time varying covariate or using proportional odds models [Kirmani and Gupta,

2001].

For more information on Cox proportional hazards model see Liu [2012, ch.5]

and Collett [2003, ch.3].

2.5.2 Proportional odds model

Benet [1982] proposed the proportional odds model as an alternative to the Cox

proportional hazards model, for some cases where the assumption of propor-

tionality of hazards ratios does not hold. The non-proportionality is a common

case in medical studies where the effect of a disease on hazard rates often wear

off, and hazard rates converges with time. To instead assume proportionality of

survival odds is a relaxation of the assumption of proportional hazards [Kirmani

and Gupta, 2001].

In the proportional odds model, the odds ratio of event-free time, or survival,

are assumed to be proportional in a scale parameter θ as follows

S(t)

1− S(t)
=

S0(t)

1− S0(t)
θ,

where θ = ψ(x′β) is a function of the q dimensional vector of covariates x.

Compared to the proportional hazards model, the coefficients in the propor-

tional odds model can not be estimated by partial likelihood, where one factor

out the baseline function. The baseline odds function S0(t)
1−S0(t)

is estimated to-

gether with the coefficients by maximization of the likelihood function

L(θ) =

n∏
i=1

f(ti|θ)diS(ti|θ)1−di , (36)

where d1, d2, .., dn is the indicator variable for event times [Benet, 1982]. Un-

censored event times are indicated by di = 1 and contribute to the likelihood

through their probability function f(ti|θ), while censored event times di = 0

contributes to the likelihood through the survival time S(ti|θ).

27



2.5.3 Restricted cubic splines

When fitting a regression model to variables dependent on time, one often find

it difficult to fit just one model to the whole time-line.

One way of handling structural variations over time is to divide the time line

into several segments and fit different models within these segments. A spline is

a function that does just that, splits the data into segments on predetermined

points called knots.

A cubic spline is a spline function with existing and continuous first and

second derivatives, where polynomials are fitted between knots, and the function

gives smooth transition over the knots. Polynomials are advanced enough to

approximate most of the structural variations of reality without over fitting,

but two problems arise from using cubic splines:

(i) The model can give unreliable and volatile results beyond the end knots,

due to data points being scars, and

(ii) the splines are costly in degree of freedom.

One solution to ease these problems is the use of restricted cubic splines

[Harrell Jr., 2001, p.19]. The restriction is to fit linear functions beyond end

knots, releasing 2 degree of freedom and reducing problems with volatility.

The restricted cubic spline function, for a covariate x with K knots εi, for

i = 1, 2, ..,K, contains K − 1 basis functions Bi(x), for i = 1, 2, ..,K − 1. The

spline function

s(x) = α0 +

K−1∑
i=1

αiBi(x) (37)

generates different covariates, in the form of the basis functions Bi, for different

levels of x, with regression coefficients αi. The basis functions have different

structures between knots εi and are computed as

Bi(x) = (x− εi)
3
+ − ρi(x− ε1)

3
+ − (1− ρi)(x− εK)3+,

where (·)3+ = (·)3 for positive values of (·)3 and 0 otherwise, and

ρi =
εK − εi
εK − ε1

.

In event history regressions, the covariate x is usually time, x = t, or log time,

x = log(t). For more reading on restricted cubic splines in survival analysis see

Rutherford et al. [2015].
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2.6 Risk

The foundation of basic theory of event history analysis, with some applications,

is given in previous subsections. Now, this thesis has arrived at the introduction

of two new measurements in event history analysis; the incidence risk, and the

event-probability function, that was presented theoreticaly for the first time by

Bottai [2017].

This subsection begins with showing two ways of computing averages, the

arithmetic mean and the geometric mean. This is done by looking at the theory

of the incidence rate and the incidence risk, and by highlighting the differences

between them, in Subsections 2.6.1, 2.6.2, and 2.6.3.

The aim is to show concept of the incidence risk ; a geometric average of the

conditional probability of the occurrence of an event per unit time. The outline

of theory of the incidence risk follows the logical trail of the article by Bottai

[2022].

The following subsections extends this theory of the incidence risk to the

event-probability function. The event-probability function is the instantaneous

and conditional probability of the occurrence of an event at time t given that

the event has not occurred yet.

Theory of the event-probability function, with some applications, follows the

article by Bottai et al. [2021], and are presented in Subsections 2.6.4, and 2.6.5.

2.6.1 Incidence rate

In event history analysis the incidence rate or the failure rate is an often reported

measure, and it is the rate of occurrences of an event per unit time and person.

It is a mean rate per unit time and it is calculated by

N(t)∑
Ti≤t Ti

, (38)

the number of incidences at time t divided by the sum of all event-times up to

some time, t, see StataCorp [2021, p.386].

2.6.2 Geometric mean

The incidence rate in 38 is calculated as an arithmetic mean of occurrences of an

event per unit time and individual, but there is another method for calculating

averages; the geometric mean. The use of this geometric mean is a logical

method for calculating averages of probability, which is here demonstrated by

some theoretical and algebraic workout.
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The probability of incidence of an event in any time interval (t, t+ x], given

that it has not yet happened at time t, can be calculated using the ratio of the

survival functions

P (T ≤ t+ x | T > t) =
P (t < T ≤ t+ x)

P (T > t)

= 1− P (T > t+ x)

P (T > t)

= 1− S(t+ x)

S(t)
.

Expressing this probability as a mean value per unit time can then be done by

the use of the geometric mean.

To demonstrate this one can assume a special case, where x is integer valued,

and divide this time interval, (t, t+ x], in to several unit time intervals. In this

special case, the survival function ratio can be expressed as

S(t+ x)

S(t)
=

S(t+ x)

S(t+ (x− 1))

S(t+ (x− 1))

S(t+ (x− 2))
· · · S(t+ 2)

S(t+ 1)

S(t+ 1)

S(t)
,

which is the product of the survival ratios per disjoint unit time interval. The

geometric mean of this probability ratio S(t+x)
S(t) , per unit time, is then given by

[
S(t+ x)

S(t)

]1/x
. (39)

Hence, the average probability of incidence per unit time, given that the event

has not occurred yet, is

1−
[
S(t+ x)

S(t)

]1/x
.

2.6.3 Incidence risk

When the event of interest can only happen once, for example when the event

is a death, the incidence rate can be difficult to interpret. This measurement

can take on any positive number and is not a probability measure of incidence

but the average rate of incidence.

The geometric mean, of Equation 39, on the other hand, is a way to calculate

an average probability of occurrence of an event; it is a measurement of risk.

Bottai [2022] defines the incidence risk in a time interval (t, t + dt] as the

geometric rate

G(t, t+ dt) = 1− [S(t+ dt)/S(t)]1/dt,
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which is the average probability of the occurrence of an event per unit time, in

the interval, given that it has not yet occurred. Using the relationship between

the survival function and the cumulative hazard, in Equation 3, one can rewrite

this geometric rate as

G(t, t+ dt) = 1− exp

{
H(t+ dt)−H(t)

dt

}
. (40)

Also, in the case of a time interval starting from zero, (0, t), it can be simplified

to

G(0, t) = 1− exp

{
− H(t)

dt

}
, (41)

for H(0) = 0.

The incidence risk is a measurement which, in the case of a one-time-only

event analysis, gives a clear interpretation: It could for example be, the risk of

a first heart failure per year in a population, or, the mortality risk per month

after getting a cancer diagnosis.

2.6.4 Event probability

Where the theory of the incidence risk ends, the theory of the event-probability

function takes off. As the name suggests, this is a probability measure and it is

defined as the limit of the incidence risk G(t, t+dt), in Equation 40, for dt→ 0.

In this and the next subsection, the outline of theory follows that of the

article by Bottai et al. [2021].

The event-probability function g(t) = limdt→0G(t, t+dt) is the instantaneous

risk of the occurrence of an event at time t, given that it has not occurred yet.

The definition is given by

g(t) = lim
dt→0

[
1−

(
S(t+ dt)

S(t)

) 1
dt
]
, (42)

the limit of the geometric mean of the risk of incidence.

In order to express the event-probability function as a function of the hazard

rate h(t), one can rewrite Equation 42, using the relationship log(S(t)) = −H(t).

By the definition of a derivative of a function, which is the limit of an increment

of the function divided by the small change in the function variable, the event-

probability function can be written as

g(t) = lim
dt→0

[
1− exp

{
log(S(t+ dt)− logS(t)

dt

}]
= 1− exp{−h(t)},
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a function of the hazard rate.

Both the event-probability function and the hazard function, are defined as

limits of a mean, where

g(t) = 1− lim
dt→0

P (T > t+ dt|T > t)1/dt,

and

h(t) = lim
dt→0

P (T ≤ t+ dt|T > t)/dt.

In words, the event-probability g(t) is defined as the limit of a geometric mean,

while the hazard rate h(t) is the limit of an arithmetic mean. The event-

probability is strictly smaller than the hazard rate g(t) < h(t), for all positive

values of t. They are related to each other in the same way as the cumulative

distribution function and the cumulative hazard function are related, where

g(t) = 1− exp{−h(t)}, and

F (t) = 1− exp{−H(t)}.

These relationships, put side by side, are illustrative of the role of the event-

probability function, and show that the existence of the event-probability is

some what natural in event history analysis.

Also, defining ḡ(t) = 1 − g(t) as the no-event probability function, one can

extend theory to include the following relations;

h(t) = − log[ḡ(t)], (43)

and

S(t) = exp

{∫ t

o

log[ḡ(u)]du

}
. (44)

Compared to the probability function f(t), the event-probability function is a

conditional probability for the case when the event has not occurred yet, whereas

f(t) = F ′(t) is the unconditional probability of the occurrence of an event at an

instance in time, t. The relationship between the probability function f(t) and

the event-probability function g(t) is therefore shown by taking the derivative

of F (t) = 1− S(t), where

f(t) =
d

dt
(1− S(t))

=
d

dt
exp

{∫ t

o

log[ḡ(u)]du

}
= − log[ḡ(t)] exp

{∫ t

o

log[ḡ(u)]du

}
.

More properties of the event-probability function is found in the article by Bottai

et al. [2021].
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2.6.5 Regression methods for event-probability

The event-probability function, which is a true measure of probability, can, in

the same way as the survival function, be modeled using a proportional odds

regression model (45). The event-probability proportional odds model is defines

as
g(t|β,x)

1− g(t|β,x)
=

g0(t)

1− g0(t)
θ, (45)

with rate ratio function θ = ψ(x′β) for a q dimensional vector of covariates x,

and regression coefficients β ∈ Rq.

As in the case of the proportional odds model in Subsection 2.5.2, the baseline

odds ratio g0(t)
1−g0(t)

represents the event probability in a theoretical case, where

all covariates x equals zero. Also, the rate ratio function is defined for positive

values of θ and a logical choice of function is to use the exponential function,

ψ(x′β) = exp {x′β}.
Expressing the logarithm of odds as logit(p) = log{ p

1−p}, and taking the

logarithm of Equation 45, with exponential ration function θ = exp {x′β}, the
proportional odds model is given by

logit[g(t|β,x)] = logit[g0(t)] + x′β,

where the odds g(t|β,xi)
1−g(t|β,xi)

is defined on the positive real line and logit[g(t|β,xi)]

on the entire real line. The baseline odds function logit[g0(t)] is estimated

together with the regression coefficients β by maximization of the likelihood

function in Equation 36.

For more information on event-probability regression see Bottai et al. [2021].

3 Software implementation

The methods for computing incidence risks, and preforming event-probability

regressions, are still at an early stage of introduction to the world of research.

For most users of statistical methods, the availability of existing software are

crucial for the usability of such new methods.

In this section, existing computer software for estimating incidence risks and

preforming event-probability regressions is covered, and two new implementa-

tions is introduced, available for users anywhere.

To make it possible to understand this section, even for those not familiar

with JavaScript or programming at large, most of the code is excluded from

this section. For those that are more curious of the implementations in the
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JavaScript language, some of the functions, from the back end programs intro-

duced in this section, are displayed in Appendix A.

3.1 Available software

The method for computing incidence risks, described in detail in Subsection

2.6.3, and the event-probability regression, described in Subsection 2.6.4, are

at the time of writing only available for users of Stata. The Stata commands

stprisk and stpreg can be downloaded to Stata, using the command:

. net from http://www.imm.ki.se/biostatistics/stata

These commands will be demonstrated here through some short examples.

Again, the data set kidney from Subsection 1.2 is used. This data set contains

of right censored survival times for patients with diagnosis of metastatic renal

carcinoma, see Medical Research Council Renal Cancer Collaborators [1999].

Two treatment groups are compared: subcutaneous interferon-α (IFN) and oral

medroxyprogesterone acetate (MPA).

After importing the data set, with the command use, one need to specify

the time-to-event variable survtime, by running the command:

. stset survtime, failure(cens=1) scale(365.5)

The sub-command failure() sets the event-indicator variable, in this case

cens, and what value indicates a failure, opposed to being a censored event.

The sub-command scale() is used to scale the event-times, in this case from

days to years.

The first command, stprisk, is used on time-to-event data to estimate the

incidence risk. The mortality risks is estimated for the two treatment groups in

trt, by running:

. stprisk trt

This generates the following output, recognized from the earlier example:
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The estimated mortality risk in the MPA group is 44% and 37% in the IFN

group.

The second command, stpreg, is used on time-to-event data to preform an

event-probability regression. The command have multiple options, for choice of

regression model, but the default performs a regression using the proportional

odds explained in Subsection 2.6.5.

The other, non-default, regression models are risk ratios model rr, risk dif-

ference model rd, and power probability model power. More information about

the different, optional, regression models are found in Bottai et al. [2021]. Co-

efficients are estimated by maximization of the likelihood and more options can

be found, running the help command:

. help stpreg

The command stpreg is demonstrated by using the same kidney data. The

following two regression models are estimated

logit[g(t|θ)] = β0 + β1 log(t) + β2trt, (46)

and

logit[g(t|θ)] = β0 + β1 log(t) + β2s(log(t)) + β3trt, (47)

where trt is the treatment-group-variable, and s(.) a RCS function defined

in Equation 37, with 3 knots. The RCS function is specified using the sub-

command df(.), which specifies how many degree of freedom to spend.

The first regression, in Equation 46, is estimated by running the following

command:

. stpreg trt, coef df(1)

The second regression, in Equation 47, is estimated by:

. stpreg trt, coef df(2) noorthog

The sub-command coef give an output showing estimated coefficients, and the

sub-command df(2) is used for adding a RCS with three knots, while df(1)

only give the log(t) regressor. The sub-command noorthog is for specifying no

orthogonalization of the splines. The results from the first model (46) is then

given by:
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The variable _eq1_cp2_rcs1 show the coefficient of log(t) and _cons the inter-

cept. All three coefficients are statistically significant on the 1%-level.

The results from the second model (47) is given by:

Another regressor is added, _eq1_cp2_rcs2, which gives the coefficient of the

second spline function s(·). All four coefficients are statistically significant at

the 1%-level.

3.2 Current limitations

The users in Stata are just a part of all those active in the world of research.

Many bio-statisticians and researchers within the field of time-to-event analysis

are users of the programming languages R and Python, or other statistical

analysis software like SAS and SPSS.

For anyone with the right skills in programming and knowledge in statistical

methodology, implementing new methods is possible. Python and R libraries

give users good tools, for optimization and analysis, making the implementation

easier and less time consuming.

But not everyone is comfortable with developing their own software. Re-

searchers may not always have sufficient knowledge in statistical methods and

even though statisticians may be able to understand the methods, building soft-

ware implementations may demand to much programming skills fore some.
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An important task for those with knowledge in statistical methodology, data

science and software development is to make both new methods and implemen-

tations of them understandable and easy to use. In other words, making it

available to those who may lack time or the demanded skills to do it them-

selves.

As one of those who wants to make it more available, the thought of imple-

menting an online application was appealing. The question is what options do

one have when working with HTML and back-end programming languages for

data science.

One option is to use Python, which is a high-level programming language

with many existing libraries for data analysis. There are some development

frameworks available for putting applications built in Python on the world-wide

web.

Two of these frameworks are Flask and Django which enable HTML proto-

cols interacting with Python applications [Breuss, MDN, 2023]. One disadvan-

tage, if you are a statistician and not a software engineer, is that one need to

learn and set up these frameworks to make the application work on the web and

on a server that supports running Python code. Using Python together with

Flask or Django is not as easy as just letting a JavaScript script interact with

your HTML protocol, that is if one only look at the technical setup needed for

running a web application.

One solution for making Python more accessible for development of web

applications appeared when Anaconda launched the new PyScript, in 2022.

PyScript is the new programming language for web scripting with Python. It

was still very new and experimental in autumn 2022 [Yegulalp, 2022]. With

only a released beta version, and only for browsers supporting WebAssembly, it

could become complicated to use PyScript to produce more advanced statistical

web applications, and reach out to users. Something to still look forward to in

a near future.

Another option is to use plain JavaScript. Building software in JavaScript

requires the minimal setup in order to make it work in any browser, but it raises

questions about how well suited JavaScript is for programming in data science.

The idea awoken a curiosity of exploring this possibility. How difficult would it

be to build something fairly complex using the most available tools for building

applications: HTML, CSS, JavaScript.
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3.3 JavaScript as programming language for data science

Classic programming languages for data science, like R and Python, have li-

braries for numerical methods and statistical modeling. JavaScript is not among

these languages, even though more and more tools are available for applications

within the data science field. And so, there are data scientists and software

engineers discussing the pros and cons of JavaScript for data analysis.

Lin and Gebaly [2016] consider the performance and speed in analyzing

big data. This was the year 2016, and the authors of the article discussed

the development of the JavaScript language. There were many new available

supporting software programs, making JavaScript run faster and smoother even

when handling a lot of information. One type of such supporting software they

pointed at was more effective compilers available for JavaScript programmers in

2016. They concluded that there was not much standing in the way of advanced

data analysis in JavaScript in 2016.

The article by Bostock [2021] is another who is addressing the subject of

using JavaScript in data science, declaring the advantage of availability; one can

implement data science tools and make them available for anyone, anywhere.

Also, because JavaScript is the most used programming language for the web;

its development is fast, trying to meet requirements of so many different types

of applications. Last but not least, the article points out that web applications

in JavaScript serves users on many different levels. JavaScript programs on the

web are available for everyone, not only when it comes to using the application,

but also when it comes to the availability of the underlying source code of the

application. In that sense it also serves as a learning tool for other developers

to use.

The article by Schmidt [2021] establishes the speed benefits of JavaScript,

which in many cases outruns Python and R. One of the reasons for JavaScript

high performance in case of speed has the web to thank for. Speed is essential

for developing advanced software on the web and web developers are generally

demanding when it comes to computing speed. With more packages appear-

ing, as for example Tidyverse, with a range of statistical libraries for machine

learning, data science with JavaScript becomes easier.

And last, a personal note. As a statistician, with focus on finding good tools

for implementing statistical methods, working in JavaScript one can notice that

even though there is a variety of useful libraries for data science, these are many

times developed for software engineers and computer scientists interested in ma-

chine learning. The result is a difficulty to find written information about these

libraries, addressing those interested in extensive use of methods for statisti-
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cal inference programming. There is little information on how functionalities

of these libraries work, and how to use functions outside the machine learning

environment.

In the next two Subsections, 3.4, and 3.5, two web applications will be pre-

sented. These applications run JavaScript implementations of the new methods

presented in Subsection 2.6. As reference literature for the programming in

JavaScript, Html and CSS, I have used the book by [Collins, 2017]. Also I

worked with the development tools Visual Studio Code and Github.

3.4 A JavaScript implementation of incidence risk estima-

tion

The first web application to be presented is a JavaScript implementation of the

incidence risk (2.6.3). This application is designed for easy use on .txt or .csv

files containing right censored event history data. The idea is to present a soft-

ware for users without extensive knowledge in statistical methods or statistical

software programming. The application is in the format of a web form. User

fill in the requested information about the uploaded data, and the back-end

JavaScript program estimates incidence risks, using the Nelson-Aalen estima-

tion of cumulative hazards.

3.4.1 The web form

The design of the form is basic, with simple instructions on how to upload a

data file and what information to fill in about the uploaded data, see Figure 1.

Allowed file formats are .txt or .csv files and the user can decide to specify

an optional group variable. This group variable can be used for estimation

of incidence risks within different groups, making comparison between them

possible. The user submit the information given in the form by clicking the

calculate button at the end of the form, and delete results displayed in the

result window by clicking the clear the result window button.

3.4.2 Estimating cumulative hazards and the incidence risk

From the definition in Equation 41, the incidence risk is a function of the cu-

mulative hazard. Hence, an appropriate estimate of this measurement is to use

the Nelson-Aalen (N-A) estimator of the cumulative hazard in Equation 26, see

[Bottai, 2022].
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Figure 1: Web form for the incidence risk program.

For a sample of n censored event-times, {ti}ni=1, and event-indicator vari-

ables, {di}ni=1, this estimator of the incidence risk Ĝ(t) is given by

Ĝ(t) = exp

{
− Ĥ(t)

T obs(t)

}
,

where Ĥ(t) is the N-A estimator of the cumulative hazard, and T obs(t) = {Ti :
max Ti < t,Di = 1} is the last observed event-time, both at time t. Now,

assuming the presence of tied event-times, this estimator can be rewritten as

Ĝ(t) = exp

{
−
∑

ti<t ∆Ĥ(ti)

T obs
n (t)

}
,

where ∆Ĥ(ti) is the increment given by Equation 28, and ki is the number of

duplicates of the event-time ti. Also, according to conventions, event-times are

counted before censored times [Aalen et al., 2008, page 84].

Continuing using theory of the N-A estimator, the 95% confidence intervals

of the estimated incidence risk I(Ĝ(t)) are derived using Equation 27. These

intervals are then given by

I(Ĝ(t)) = Ĥ(t) exp

{
± 1.96

σ̂H

Ĥ(t)

}
,

where σ̂H is the estimated N-A variance of the estimated cumulative hazard, in

Equation 34.
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3.4.3 Result window and output

The back-end JavaScript program calculates estimations of the incidence risk

for the uploaded time-to-event data, given a group variable or not, and the

corresponding confidence intervals. Results are presented in the result window

together with the number of rows in the data set and number of observations

used for the estimates.

To demonstrate the output given by the program, the kidney data from

Subsection 1.2 is revisited. The .csv file is uploaded, information is filled into

the form, and the variable trt is specified as a group variable. Our program

estimates the incidence risks for the two treatment groups, IFN and MPA, and

display the results in the results-window, which expands with output:

Comparing these results with those given by Stata, when running the strisk

command on the same data, Section 3.1, one can conclude that these are the

same.

With results still displayed in the results-window users can upload new data,

change some information in the form, and submit again by clicking the calculate

button. New results from another submit will then be displayed bellow the first

output. Clicking the clear the result window button deletes all output and

empties the result window.

3.5 A JavaScript implementation of event-probability re-

gression

The second web application runs a JavaScript implementation of the event prob-

ability regression from Subsection 2.6.5. Just as the one for estimation of in-

cidence risks, it is designed to be an easily understandable application, in the

format of a web form. Users upload a .txt or .csv file containing censored

event history data and fill information about the variables in the web form.

The back-end JavaScript program read the time-to-event data and preform a
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proportional odds regression, using the specified covariates from the uploaded

data. Regression coefficients are estimated by maximizing the log-likelihood

through a simple optimization algorithm. The coefficients are presented in the

result window together with standard errors, p-values, and 95% confidence in-

tervals.

3.5.1 The web form

Figure 2 shows the web form for the event-probability regression application.

The form is divided into sections with explaining headers that guide the user

through the process of uploading data and specifying the regression variables.

Users upload a .csv or .txt file and fill in the information in the form. Co-

variates are specified with two comma-separated lists, where numerical and

categorical covariates are specified in the two lists.

After filling out the form users submit the information by clicking on the

calculate button and then delete output with the clear the result window but-

ton. After submitting, the back-end JavaScript program estimates the regres-

Figure 2: The web form for the event-probability regression.

sion coefficients, calculates standard errors, and writes the results in the results

window.
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3.5.2 Model set up and log-likelihood

This Subsection begins with the derivation of the log-likelihood of the propor-

tional odds model, for which regression coefficients are estimated through max-

imization. The definitions of the proportional odds model and the likelihood

function are given in the article by Bottai et al. [2021].

For a set of event history data, containing n observations of right censored

event-times, {ti}ni=1, event-indicators, {di}ni=1, and a q-dimensional covariate

vectors {xi}ni=1, the log-likelihood is specified and optimized with respect to

the regression coefficient vector β, defined on Rq+1. The covariate vectors can

contain both numerical and categorical variables where the later are included

by means of r − 1 indicator variables, for a variable with r categories.

With some algebra the likelihood function in Equation 36 can be written as

L(θ) =

n∏
i=1

f(ti|θ)diS(ti|θ)1−di

=

n∏
i=1

[
f(ti|θ)
S(ti|θ)

]di

S(ti|θ)

=

n∏
i=1

h(ti|θ)diS(ti|θ),

for a scale parameter θ.

This likelihood can then be expressed as a function of the no-event-probability

function ḡ(t|θ), using the formulations of the hazard and the survival function

in Equation 43, and 44, where

L(θ) =

n∏
i=1

− log[ḡ(ti|θ)]di exp

{∫ ti

o

log[ḡ(u|θ)]du
}
. (48)

The rate ratio function θ = exp{x′β}, is a function of the covariate vector

x′ = (1, x1, .., xq)
′, for the q covariates, and a (q + 1) dimensional coefficient

vector β = (β0, β1, .., βq). Then, given the proportional odds model,

1− ḡ(t|θ)
ḡ(t|θ)

= exp
{
x′β

}
,

one can formulate the no-event-probability as an expression of the rate ratio

function

ḡ(t|θ) = 1

exp
{
x′β

}
+ 1

. (49)

Note that the baseline log-odds function logit[g0(t)] is integrated into the coef-

ficient vector β.
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Using Equation 48 together with the new expression of the no-event-probability

(49), one can then derive the log-likelihood function ln(θ) for the regression

model as

ln(θ) = log

[
n∏

i=0

− log[ḡ(ti|θ)]di exp

{∫ ti

o

log[ḡ(u|θ)]du
}]

=

n∑
i=1

(
di log

[
log
[
exp

{
x′
iβ
}
+ 1
]]

+

∫ ti

0

− log
[
exp

{
x′
iβ
}
+ 1
]]
du

)
. (50)

Hence, the maximum likelihood estimator of the coefficient vector β is found by

maximizing ln(θ) for the coefficients over the parameter space Rq+1

β̂ML = argmax
β∈Rq+1

ln(θ).

The maximization is done using the optimization algorithm explained in the

next subsection.

The integral of the log-likelihood (50) does not have a closed-form solution

and must be estimated by numerical approximation. The integral is approxi-

mated by the Simpson’s rule, where∫ b

a

f(u)du ≈ b− a

2

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
,

for some continuous function f(x) [Süli and Mayers, 2003, p. 203].

3.5.3 Compass optimization

This algorithm is a simpler version of the gradient search suggested by Bottai

et al. [2015]. The algorithm is slow but ensures convergence.

The algorithm

For a vector of coefficients β, defined on Rq+1, this optimization algorithm takes

a small step δ in any direction k. It computes the log-likelihood for the new

coefficient vector, lets call it βkδ, and then it makes one of the following choices:

• If ln(β) < ln(βkδ) the length of the step is increased by some positive fac-

tor γ > 1, and the algorithm restart from the top, with the new coefficient

vector βkδ, and the longer step γδ.

• If ln(β) ≥ ln(βkδ) the algorithm does not carry through with the step,

but change to the next direction.

44



– If all directions been searched, with the given step-length, δ, and no

one was found with a higher log-likelihood, the length of the step

is decreased by some positive factor, ρ < 1. The algorithm restarts

with the old coefficient vector β and the new step length ρδ.

– otherwise it restarts with the new direction and the old coefficient

vector β.

The algorithm finish when ln(β) < ln(βkδ) and the difference ln(βkδ) − ln(β)

is smaller than some tolerance factor. It returns βkδ which is the estimated

coefficient vector β̂ML.

3.5.4 Estimating the maximum likelihood variances

The maximum likelihood variances of the estimated coefficients β̂ML are found

by computing the inverse of the Fisher information matrix, I(β), at the maximal

point, β̂ML. The estimated variances-covariance matrix is then given by

Σ̂ML(β) = I(β̂ML)
−1

= −H(β̂ML)
−1,

whereH(β̂ML) is the hessian matrix of the log-likelihood at the maxima ln(β̂ML)

[Held and Bové, 2014, p.28].

The hessian matrix H(x) of a function f(x), and variable vector x, defined

on Rn, is the matrix containing the n2 second-order partial derivatives

H(β) =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


. (51)

The second-order partial derivatives of the log-likelihood (50), for regression

coefficients βi and βj , for all i, j = 0, 1, .., q, are approximated using numerical

methods. For small values of h, k > 0, these approximations are computed by

∂2f

∂x∂y
≈ f(x+ h, y + k)− f(x+ h, y − k)− f(x− h, y + k) + f(x− h, y − k)

4hk
,

see Ames [1977, page 17].
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To find the inverse of the hessian matrix H(β̂ML), the LUP-decomposition

algorithm for solving linear equations is used. An explanation of the LUP-

decomposition methods is given here, and it follows the same outline as in the

book by Strang [2019, p.21-23].

To find the inverse A−1 = B of an n-dimensional matrix, A, is to solve n

linear equations in AB = I, where I is the identity matrix.

The LUP-decomposition algorithm decomposes an n × n matrix A, into a

lower triangular matrix L, an upper triangular matrix U , and a permutation

matrix P . The permutation matrix P rank the rows of A with the highest

values, starting from column 1 top-to-bottom, then PA is decomposed into L

and U .

The LU decomposition is given by

PA =



a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... · · ·
...

an,1 an,2 · · · an,n


=



1 0 · · · 0

ℓ2,1 1 · · · 0

...
... · · ·

...

ℓn,1 ℓn,2 · · · 1





u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n
...

... · · ·
...

0 0 · · · un,n


.

The first row of U is the first row of PA, and the first column of L is given by

ℓ1,1 = 1 and ℓi,1 =
ai,1

a1,1
for i = 1, .., n.

Then, The second row of U is the first row of A∗
2 which contains an (n− 1)-

dimensional matrix A2 as given by the equation

PA = ℓ1u
∗
1 +A∗

2 =



1

ℓ2,1
...

ℓn,1


[
u1,1 u2,1 · · · u1,n

]
+



0 0 · · · 0

0

... A2

0


,

where u∗1 is the first row vector of U . One can find this A∗
2 matrix by subtracting

ℓ1u
∗
1 from PA.

The decomposition continues in the same way until it is finished. Row vector

u∗2 is the second row of the upper triangular matrix U , and of A∗
2, then ℓ2 =

(0, 1, ℓ3,2, .., ℓn,2)
T is obtained by ℓi,2 =

u2,i

u2,2
for 2 < i ≤ n. Subtracting ℓ2u

∗
2

from A∗
2 gives the matrix A∗

3, which third row vector is the third row vector u∗3,

and so on.

After the decomposition is found the inverse B = A−1 is computed by,

using forward and back substitution, solving the linear equations Abi = ei, for
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i = 1, .., q, where bi is the i:th column vector of B, and ei the i:th column vector

of the identity matrix.

Equation LUb1 = e1 can be solved by defining a vector c1 as Ub1 = c1 and

then start by solving the equation Lc1 = e1. Expressing these linear equations

in matrix form 

1 0 · · · 0

ℓ2,1 1 · · · 0

...
... · · ·

...

ℓn,1 ℓn,2 · · · 1





c1,1

c2,1
...

cn,1


=



1

0

...

0


,

show that c1,1 = 1, c2,1 = ℓ2,1 and so on. By forward substituting the ci,1’s,

from i = 1 to n, these equations are solved.

Then, using the back substituting give the solution to the equations in

u1,1 u1,2 · · · u1,n

0 u2,2 · · · u2,n
...

... · · ·
...

0 0 · · · un,n





b1,1

b2,1
...

bn,1


=



c1,1

c2,1
...

cn,1


.

When all b1, .., bn are solved, the inverse of the matrix A can be computed by

A−1 = (P−1PA)−1 = PB = P [b1, ..., bn]. The estimated maximum likelihood

variances of the estimated coefficients is then the negated diagonal values of the

inverted hessian matrix.

3.5.5 Result window and output

The application is demonstrated, again using the kidney data from Section

1.2. A proportional odds regression is estimated, with two regressors trt and

log(t). The back-end program maximizes the log-likelihood for the regression

line

logit[g(t)] = β0 + β1trt+ β2 log(t),

using the compass optimization algorithm. The variances of the coefficients are

estimated using the LUP-decomposition algorithm to compute the inverse of the

hessian matrix, and z, and p-values are calculated, using JavaScript standard

library jStat.
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Estimated coefficients are displayed, together with standard errors, z-values,

p-values and the 95% confidence intervals, in the result window:

The output can be compared with the result in Subsection 3.1 and one can

conclude that they are equal up to some negligible numerical approximation.

4 A real data example

In this section applications and functionalities of the incidence risk and the

event-probability function are demonstrated with a data example, using 1000

data points from the Whitehall data.

The British Whitehall study is a cross-sectional cohort study on more than

17.5 thousand civil servants in London. The data contain information on health

factors from men in the ages 20 to 64 collected over ten years between 1967 and

1977. The main idea of the study was to investigate the impact of social and

economical status on health and mortality [Marmot et al., 1978, 1987]. Over

the years, the data from the Whitehall study has been used in medical and

statistical research.

Table 1 shows a list of the variables included in the sample, those of interest

for this example are marked with bold text.

The variable pyall10 contains the follow-up times of the study, and the time

is set to 9.99 years for those still alive at the end of the follow-up, and the time

of death for those that died during the research period. The mortality indica-

tor all10 denotes observed survival times and censored observations. Data is

heavily right censored, naturally, and contain 99 deaths observations.

For a demonstration of the theory of the incidence risk and the event-

probability function, two group variables smoke and jobgrade are used to test

for differences in mortality risk between smokers and non smokers and between

groups with different social and economical status.

The analysis is done using the two Stata commands stprisk and stpreg,

presented in Subsection 3.1.
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variable name variable label

serno Serial Number
all10 All cause mortality
pyall10 Years of follow-up (all10)
chd CHD mortality
pyar Years of follow-up (chd)
jobgrade Job grade
age Age (years)
sysbp Systolic blood pressure (mm Hg)
map Mean arterial pressure (mm Hg)
ht Height (cm)
chol Cholesterol (mmol/l)
agecat Age categories (years)
bmi Body mass index (kg/m2)
cigs Daily cigarette consumption
diasbp Diastolic blood pressure (mm Hg)
wt Weight (kg)
smoke Smoking status
sample Indicator for the sample

Table 1: Variables from the Whitehall study with short descriptions.

This example begins by estimating the mortality risk for the two groups defined

by the variable smoke, smokers and non smoker. The command

stprisk smoke

gives the following results.

Smokers have an estimated mortality risk of 1.6% per year, compared to the

non-smokers whose mortality risk is 0.6% per year.

Then, the mortality risks are estimated for the variable jobgrade, containing

four levels of professional grade. These different professional groups constitutes

different social and economical classes in the British society. In descending

order, these four grades are: Admin for administrator, Prof for professional

and executive, Clerical is self explanatory, and Other for messengers and
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doorkeepers etc [Marmot et al., 1987]. The incidence risks for the four levels of

professional grade are estimated by running the command:

stprisk jobgrade

This gives the following results:

Estimated mortality is lower for the higher professional grades and ascending

with lower grades. Administrative personnel have an estimated mortality risk

of 0.3%, professional and executive personnel 0.8%, clerical personnel 1.4% and

those with the lowest grade 2.7% per year. One can statistically establish a dif-

ference in mortality risk between the highest level of professional grades Admin

and the lowest grade Other and also between Prof and Other, on a 95% level

of confidence.

This data example continues with the event-probability regression from Subsec-

tion 2.6.5. Again, the difference in mortality between smokers and non smokers

are explored and then the differences in mortality between different social and

economical classes.

Three proportional odds regressions models are estimated with an increasing

level of complexity.

logit[g(t)] = β0 + β1smoke, (52)

logit[g(t)] = β0 + β1smoke+ β2log(t), (53)

logit[g(t)] = β0 + β1smoke+ β2log(t) + β3s2(log(t)). (54)

The second model in Equation 53 includes the covariate s1 = log(t), and the

third model in Equation 54 includes a spline function s2(log(t)). This spline

function is the restricted cubic spline (RCS) given by Equation 37.

Table 2 show estimated coefficients for the three regression models, together

with standard errors, in parenthesis, and p-values. The low p-value of the
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variable smoke statistically assert the impact of smoking on the mortality, also,

the coefficients for log(t) are significant but not for the spline function s2(log(t)).

Model 1 Model 2 Model 3

coef. p-val coef. p-val coef. p-val

cons. -5.044(0.167) 0.000 -4.499(0.191) 0.000 -4.439(0.221) 0.000

smoke 0.892(0.210) 0.000 0.905(0.210) 0.000 0.906(0.210) 0.000

s1 0.198(0.045) 0.000 0.212(0.051) 0.000

s2 -0.019(0.037) 0.597

loglik. -372.079 -357.942 -357.808

Table 2: Estimates of the three regression models in Equation 52, 53, and 54,

with standard errors in brackets and p-values. The coefficient for cons gives the

constant β0, s1 the coefficient for log(t) and s2 the coefficient for the RCS. The

last row, loglik, show the log-likelihoods.

Figure 3: Estimated mortality risks for smokers and non smokers over a period

of ten years.

Figure 3 shows the estimated event-probabilities of smokers and non smok-

ers from the model in Equation 53. Over the ten year period, the estimated
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probability of dying for a smoker is both higher and steeper than that of a non

smoker, ranging from around 2% in the first year and over 4% after ten years.

The probability of dying for a non smoker is estimated to range between 1% an

1.7% during this period.

Three more proportional odds regression models are estimated, exploring

the mortality of the different groups of social and economical classes including

three indicator variables, representing the four levels of the variable jobgrade.

The lowest job grade level other is left as baseline and cler, prof, and admin

are added as regressors. Again, Three proportional odds regressions models are

estimated with an increasing level of complexity.

logit[g(t)] = β0 + β1cler + β2prof + β3admin, (55)

logit[g(t)] = β0 + β1cler + β2prof + β3admin+ β4log(t), (56)

logit[g(t)] = β0 + β1cler + β2prof + β3admin+ β4log(t) + β5s2(log(t)). (57)

Table 3 shows the estimated coefficients of the three models. Statistical evidence

is found for that mortality vary with log-time, while the impact of the spline

function s2 gives insignificant results.

Model 4 Model 5 Model 6

coef. p-val coef. p-val coef. p-val

cons. -3.599(0.207) 0.000 -3.013(0.230) 0.000 -2.949(0.257) 0.000

cler. -0.612(0.306) 0.045 -0.632(0.307) 0.039 -0.634(0.307) 0.039

prof -1.243(0.249) 0.000 -1.276(0.249) 0.000 -1.278(0.249) 0.000

admin -2.180(0.738) 0.003 -2.223(0.738) 0.003 -2.226(0.738) 0.003

s1(t) 0.201(0.045) 0.000 0.215(0.051) 0.000

s2(t) -0.020(0.037) 0.576

loglik. −367.762 −353.320 −353.171

Table 3: Estimated coefficients for the three regression models in Equation

55, 56, and 57, together with standard errors in brackets and p-values. The

coefficient for cons. give the constant β0, s1 the coefficient for log(t) and s2 the

coefficient for the spline function. The last row, loglik, give the log-likelihoods

of the models.
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Figure 4: Estimated mortality risks for different professional grades over a pe-

riod of ten years.

The event-probabilities for the different levels of jobgrade of the fifth model,

in Equation 56, are shown in Figure 4. The difference in mortality is evident

between individuals of the lowest professional grade other, which in the first

year has a mortality over 4.5%, compared to an individual of the highest profes-

sional grade administrator, which has a mortality just reaching 0.5%, during

the same time. Also, an individual with professional grade other, which has

the highest probability of dying.

5 Future possibilities

This thesis describes and elucidates the features of the theory of the incidence

risk, the event-probability function and event history analysis in general. The

idea is to present it with mathematical rigor and at the same time make it

understandable and usable. The theory of the incidence risk and the event-

probability offers interpretable measurements of risk in the case of the one-

time-only event, where classical theory does not.

After two applications for computing incidence risks and preforming event-

probability regression where presented and demonstrated with some data ex-

amples, the question was where to go next.

I can begin with some thoughts on the two new web applications, which where
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presented in Section 3, and some changes spring to mind.

First, people might have other types of file formats they want to use, other

than text- and csv-files. Today, virtually all statistical software programs can

upload excel-files, and researchers are used to these file formats.

Secondly, the compass optimizer is an easy implemented algorithm that will

always find its optima, but it is slow. For two regressors the application will only

take a few seconds to finish but when running a proportional odds regression

with RCS, seconds turn in to minutes while the Stata command stpreg finish

in fractions of seconds. There is nothing standing in the way of implementing

an algorithm that uses the gradient in the search of an optima, except lack of

time on my part.

A third improvement would be to add more options. The option of using RCS

or time varying covariates is one example. The option of running a proportional

ratio model in stead of a proportional odds model is another possibility. The

article by Bottai et al. [2021] present a lot of other options for implementations

of event-probability regression models, and there are more to be found.

And last but not least, the fourth improvement is to consider a more accu-

rate approximation of the log-likelihood integral. Integration of log(t) can be

tricky because small values of t < 1 will produce highly negative values and

more precision is needed for those values, than for values of t > 1. Some adap-

tive approximation algorithm could be preferable.

I do not think that one should ignore the benefits of less-is-more, when reaching

out to users. Sometimes, all one needs is something that is easy to use. But, a

natural step would be to consider a more advanced implementations of theory

presented, in one of the most used programming languages in data science; R.

R is a programming language that can reach out to many users that may be

interested in more advanced statistical methodology. Implementing R-libraries

for the methods presented here would make it available to them, and they are

prone to continue where this theory ends and develop it further.

What is possible for a user of the simple web applications is just a fraction of

what a statistician would be able to do when using an R-library. With multiple

options of model set-up and output, theory becomes a building-block.

Finally, I may speculate on where this theory could lead in the future.

The options of how one could utilize the event-probability are many. The

case where one can go from one state to several others states represents a possible

avenue for future research. An example is the case where on can move from a
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cancer diagnosis to death, cancer free, or a new diagnosis.
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Appendix A Functions in JavaScript

Here follows some JavaScript implementations of the algorithms explained in

Subsection 3.5.

A.1 Integral approximation

The integral approximation function, used for computing the log-likelihood func-

tion in Equation 50, takes three variables

1. index - the index of the time-to-event observation which is the end point

of the integral,

2. theta - the coefficient vector of the likelihood function, for which the

integral will be computed,

3. data - the multi-dimensional list containing all the data points used for

the regression.

1 integralApprox = function(index , theta , data) {

2

3 // The end point of the time -to -event variable (y):

4 const yi = data.y[index];

5

6 // # of intervals for used for the approximation:

7 var n=200;

8

9 // The increment:

10 var dy = yi/n;

11

12 var integral = 0;

13 const k = theta.length - data.x.length;

14

15 const fx_i = data.x.reduce ((tot ,value ,i)=>{

16 return tot + theta[i+k]*value[index];

17 },0)

18

19 const fy_i = ((y) => {

20 return theta [1]* Math.log(y);

21 });

22

23 var e_prev = Math.exp(theta [0]+ fy_i (0.00000001) + fx_i);

24

25 for (let i=1; i <= n; i++) {

26 if(i==n){

27 const dy_last = yi - (n-1)*dy;
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28 const e_curr = Math.exp(theta [0]+ fy_i(yi) + fx_i);

29 integral -= ((Math.log(e_prev + 1) +

30 Math.log(e_curr + 1))/2)*dy_last;

31 }

32 else if (i==1){

33 const e_curr = Math.exp(theta [0]+ fy_i(i*dy) + fx_i);

34 integral -= Math.log(e_curr + 1)*dy;

35 e_prev = e_curr;

36 }

37 else{

38 const e_curr = Math.exp(theta [0]+ fy_i(i*dy) + fx_i);

39 integral -= ((Math.log(e_prev + 1)+Math.log(e_curr + 1)

)/2)*dy;

40 e_prev = e_curr;

41 }

42 }

43 return integral;

44 }

A.2 Optimization algorithm

The optimization algorithm function takes five variables

1. lh - a log-likelihood function for the data which takes one variable, a coef-

ficient vector theta, and return the value of the log-likelihood computed

for the data and the given coefficients,

2. theta0 - a list, the initial coefficient vector and the starting point of the

algorithm,

3. tol - tolerance level,

4. maxIter - an integer, a stopping time for the algorithm in case it converges

to slow,

5. INITIALIZE - a boolean, set to True if the algorithm is used with a lower

amount of data points to initialize the starting point theta0.

1 compassOptimizer = function(lh, theta0 , tol , maxIter , INITIALIZE) {

2 const nCoef = theta0.length;

3 var step = tol *100*2;

4 var optimal = false;

5 var direction = 0;

6 var count = 0;

7 var curr = lh(theta0); // current log -likelihood value

8 var noStep = true;
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9

10 while(! optimal) {

11 if (direction < nCoef){

12 if (this.takeAStepp(curr , lh, theta0 , direction , step))

{

13 curr = lh(theta0);

14 step *= 1.75;

15 noStep = false;

16 }

17 else {

18 direction ++;

19 }

20 }

21 else {

22 if (this.takeAStepp(curr , lh, theta0 , (direction -nCoef)

, -step)){

23 curr = lh(theta0);

24 step *= 1.75;

25 noStep = false;

26 }

27 else {

28 direction ++;

29 }

30 }

31 if(step < tol) {

32 optimal = true;

33 }

34 if(direction == 2*nCoef){

35 direction = 0;

36 step *= 0.65;

37 }

38 count ++;

39

40 if (count >= maxIter) {

41 if(! INITIALIZE)

42 this.writeError("Likelihihood function was not able

to converge.")

43 return theta0;

44 }

45 else if(count % 1000 == 0){

46 console.log("========== > " + count);

47 }

48 }

49 return theta0;

50 }
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A.3 Computing covariance matrix

The covariance matrix is computed in three parts

(i) approximation of hessian matrix,

(ii) finding the LUP-decomposition of the hessian,

(iii) invert the hessian using the LUP decomposition.

The hessian matrix is approximated using Equation 3.5.4 in Section 3.5 and the

algorithm is given by the function hessianMatrixApprox() which takes two

variables

1. lh - a log-likelihood function for the data which takes one variable, a coef-

ficient vector theta, and return the value of the log-likelihood computed

for the data and the given coefficients,

2. thetaHat - a list of maximum likelihood estimated coefficients.

The function returns a matrix of approximated second partial derivatives.

1 hessianMatrixApprox = function(lh ,thetaHat) {

2 const underOver = thetaHat.map((x) => {

3 const dTheta = x/100;

4 const under = x-dTheta;

5 const over = x+dTheta;

6 return [under ,over ,dTheta ];

7 });

8 const derivatives = underOver.map((val_i ,i) => {

9 const row = underOver.map((val_j ,j)=>{

10 if(i==j){

11 var thetaUnder = [... thetaHat ];

12 thetaUnder.splice(i,1,val_i [0]);

13

14 var thetaOver = [... thetaHat ];

15 thetaOver.splice(i,1,val_i [1]);

16 return

17 (

18 (

19 lh(thetaUnder) + lh(thetaOver) - 2*lh(

thetaHat)

20 )/Math.pow(val_i [2] ,2)

21 );

22 }

23 else {

24 var thetaPP = [... thetaHat ];

25 thetaPP.splice(j,1,val_j [1]);

61



26 thetaPP.splice(i,1,val_i [1]);

27 var thetaPN = [... thetaHat ];

28 thetaPN.splice(j,1,val_j [0]);

29 thetaPN.splice(i,1,val_i [1]);

30 var thetaNP = [... thetaHat ];

31 thetaNP.splice(j,1,val_j [1]);

32 thetaNP.splice(i,1,val_i [0]);

33 var thetaNN = [... thetaHat ];

34 thetaNN.splice(j,1,val_j [0]);

35 thetaNN.splice(i,1,val_i [0]);

36

37 return ((lh(thetaPP)-lh(thetaPN)-lh(thetaNP)+lh(

thetaNN))/(4* val_j [2]* val_i [2]));

38 }

39 });

40 return row;

41 });

42 return derivatives;

43 }

The LUP-decomposition and the inversion algorithms used are found at C and

ASM. The function LUPDecompose() takes three variables

1. A - a matrix,

2. N - an integer, the dimension of A, and

3. tol - a number, the tolerance level.

The function returns a decomposed matrix containing both the upper triangular

matrix and the lower triangular matrix, and a permutation matrix.

1 LUPDecompose = function(A, N, tol) {

2 var imax = 0;

3 var maxA;

4 var ptr = 0.0;

5 var absA = 0.0;

6 var P = Array(N+1).fill (0);

7 for (var i = 0; i <= N; i++) {

8 P[i] = i; //Unit permutation matrix , P[N] initialized with

N

9 }

10 for (var i = 0; i < N; i++) {

11 maxA = 0.0;

12 imax = i;

13 for (var k = i; k < N; k++) {

14 if ((absA = Math.abs(A[k][i])) > maxA) {

15 maxA = absA;

16 imax = k;
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17 }

18 }

19 if (maxA < tol) {return 0;} //failure , matrix is degenerate

20 if (imax != i) {

21 // pivoting P

22 j = P[i];

23 P[i] = P[imax];

24 P[imax] = j;

25

26 // pivoting rows of A

27 ptr = A[i];

28 A[i] = A[imax];

29 A[imax] = ptr;

30

31 // counting pivots starting from N (for determinant)

32 P[N]++;

33 }

34 for (var j = i + 1; j < N; j++) {

35 A[j][i] /= A[i][i];

36 for (var k = i + 1; k < N; k++)

37 A[j][k] -= A[j][i] * A[i][k];

38 }

39 }

40 return [A,P];

41 }

The inversion algorithm is a function LUPInvert() that takes

• A - a matrix containing the LUP-decomposition given by the function

LUPDecompose(),

• P - a permutation matrix, and

• N - an integer, the dimension of A.

1 LUPInvert = function(A, P, N) {

2 var IA = new Array(N).fill (0).map(()=>{

3 return new Array(N).fill (0);

4 })

5 for (var j = 0; j < N; j++) {

6 for (var i = 0; i < N; i++) {

7 if(P[i] == j) {

8 IA[i][j] = 1.0;

9 }

10 else {

11 IA[i][j] = 0.0;

12 }

13 for (var k = 0; k < i; k++)
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14 IA[i][j] -= A[i][k] * IA[k][j];

15 }

16 for (var i = N - 1; i >= 0; i--) {

17 for (var k = i + 1; k < N; k++)

18 IA[i][j] -= A[i][k] * IA[k][j];

19 IA[i][j] /= A[i][i];

20 }

21 }

22 return IA;

23 }
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