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Abstract

This work implements an approach which were introduced by Cae-
sar Balona & Ronald Richman in their article The Actuary and IBNR

Techniques: A Machine Learning Approach (2021), that combines the
strengths of both traditional and machine learning reserving meth-
ods. This approach is still based on the ordinary reserving methods
available today, such as chain ladder and the Bornhuetter–Ferguson
method, with the modification that we vary how the loss development
factors are estimated and included/excluded. This is done using AvE
and CDR as score tests. The estimated reserves using the machine
learning approach were then compared to corresponding reserves us-
ing the standard methods. The outcome showed that the ordinary
reserving methods, especially the chain ladder method, overall per-
formed better, even though we sometimes gained better results using
the new approach.
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1 Introduction
As a reserving actuary at an insurance company, the primary responsibility is
to calculate the Incurred But Not Reported (IBNR) reserve, which is a fund
set aside for claims that the insurance company expects but has not yet been
notified of. Today actuaries use standard reserving methods, such as the Chain-
Ladder method, in software programs such as ”ResQ”. However, determining
the reserve requires making a subjective decision about which loss development
factors (LDF) to include in the calculation. This decision can be challenging
because some LDFs may not accurately reflect reality and can be considered
outliers. This subjective decision-making process is not foolproof and can lead
to errors, as human judgment is a significant factor in the process today.

The methods for calculating reserves are constantly evolving. People are trying
new ways to estimate reserves using statistical techniques like Bayesian methods
and the double chain-ladder approach. However, machine learning is becoming
more popular in this field, with mathematicians like Wüthrich implementing
neural networks to improve the prediction of loss development factor (2018).
While the existing machine learning approaches within reserving can produce
better results, it often requires more complex models. Recently, Balona and
Richman (2021) introduced a new technique that uses actual versus expected
(AvE) and Claims Development Result (CDR) that combines the strengths of
both traditional and machine learning methods.

The goal of this paper is to implement the machine learning approach from [1].
We will do this by using data based from a reinsurance company called Sirius-
Point in form of case studies and compare this to ordinary reserving methods
that exists today.

2 Theory & Methods
This section will, just as the title suggests, include the necessary theory and
explanation of the machine learning approach that will be applied for trying to
investigate the objective. Some of the theoretical framework will certainly be
familiar, and we will therefore not go into too much detail, but is nevertheless
important to the analysis. More important, we will highlight the parts that are
essential to Balona & Richman method which is suggested in Section 2.3. We
will however start to introduce loss triangles with corresponding notations that
will be used throughout this thesis.

Loss triangles & notations
Following notations and theory from [1], when trying to determine the sought
IBNR-reserve, we use known losses from observed years. That is, if we let
i ∈ [1, . . . , I] denote a certain accident year and j ∈ [1, . . . , J ] development
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year, we can write the incremental payment for when a loss occurred and were
payed (or changed) a certain year as Xij . Note that the incremental payments
do not necessarily have to be based on years. The concretization is an ar-
bitrary choice, and we could nevertheless assume that the payments occurred
quarterly or monthly or according to any other time period. We will however
stick to yearly payments during this paper, which will be motivated later on.
Also, insurance companies usually separate the claims between underwriting-,
reporting- and accident years, but for the sake of simplicity and uniformity,
we will continue this paper using accident year. Furthermore, the reserving
methods we will use is actually based on the so called cumulative claims,

Ci,j =
j∑

l=1
Xi,l, (1)

which we mostly will focus on from now on. We can now set up triangles which
we use as a basis to determine the IBNR-reserve. These triangles are called loss
(development) triangles or reserve triangles and we will denote such a triangle
observed as ∆K , where K is how many calendar years of claim data that have
been observed. We will assume that the observation is done at the end of the
year, i.e. so that the periods for each calendar year is observed at the same
moment. From this, we let k ∈ [1, . . . , K] be the k:th calendar year and the
reserving triangle can therefore be defined as

∆K = {Ci,j : i + j ≤ K + 1}

where equality corresponds to the most recent calendar year. Figure 1 illustrates
how such a claim triangle could look. Note that the lower triangle, i.e. where
Ci,j : i + j > K + 1 are events that has not yet been observed. Indeed, the
goal is to estimate the final claim amount (ultimo), Ci,J , that further allows us
to calculate the desired IBNR reserve. The ultimo claims for different calendar
years k which we will try to estimate through the progress of the article will be
denoted Ĉk

i,J and the corresponding IBNR reserve is calculated as

Ri,j∗ = Ĉk
i,J − Ci,j∗ , (2)

where j∗ = k−i+1, i.e. the latest observed development year based on calendar
year k. Today there are several techniques that allow us to estimate ultimo such
as (generalized) cape cod, the loss ratio method, chain ladder method and the
Bornhuetter–Ferguson method, where we will focus on the latter two.

2.1 Chain Ladder Method
As mentioned earlier, there are several methods trying to determine the ultimate
claim, but one of the most famous are the Chain Ladder (CL) method. There
are varieties which merely depends on how we condition the expected value and
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Figure 1: How the cumulative payments are illustrated in a reserve triangle,
where Ci,j : i+j ≤ K+1 are observed cumulative claim amounts, where equality
corresponds to current year. These are represented in the upper triangle.

variance for Ci,j+1. In this paper, we will apply one of the most established CL
methods available, namely Mack’s [8] variant:

E[Ci,j+1|Ci,1, . . . , Ci,j ] = Ci,jfj

Var(Ci,j+1|Ci,1, . . . , Ci,j) = Ci,jσ2
j

Simply put, we believe that the expected claim for accident year i and devel-
opment j + 1 depends on the claim from previous development year multiplied
by a factor fj , i.e. the loss development factor. We also assume that the claims
for different accident years are independent. It can be shown [7] that the LDFs
can be estimated accordingly

f̂j =

I−j∑
i=1

Ci,j+1

I−j∑
i=1

Ci,j

=

I−j∑
i=1

Ci,j f̂i,j

I−j∑
i=1

Ci,j

(3)

where

f̂i,j = Ci,j+1

Ci,j
(4)

And thus, the searched ultimo using Mack’s Chain-Ladder method for accident
year i is determined by

ĈCL
i,J = Ci,j

J∏
k=j

f̂k (5)
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2.2 Bornhuetter–Ferguson Method
The other method to be implemented is the Bornhuetter-Ferguson (BF) method
[2], [10] & [1]. In contrast to Mack’s Chain Ladder above, the BF method is
based on our (the actuary’s) expected ultimo. Letting βj denote the proportion
of losses which were reported in development period j, the ultimate claim is
estimated according to

ĈBF
i,J = Ci,j + (1 − βj)E[Ck

i,J ] (6)

Worth mentioning is that the βj :s normally is taken as the inverse of the prod-
ucts from equations (5), i.e.

∏J
k=j f̂k, which sometimes is called cumulative

development factor (CDF). Also, on the right hand side of equation (6), the
expected value of the ultimate claim for each accident year, i.e. E[Ck

i,J ] is the
actuary’s belief on what the ultimate claim amount will be. For instance, if
we let E[Ck

i,J ] = ĈCL
i,J , that is determining the ultimo using the chain ladder

method, we see that equation (6) reduces to the ordinary CL-method described
above. Moreover, it is not unusual that the ultimate claims using the BF-method
is determined using the earned premium and corresponding ultimate loss ratio.
This because of removing the dependence of already known claims. If we let πi

denote the earned premium and ÛLR
k,BF

i the corresponding expected ultimate
loss ratio for accident year i at time k, we can rewrite (6) as

ĈBF
i,J = Ci,j + (1 − βj)πiÛLR

k,BF

i (7)

Different insurance companies use different definition for the concept earned
premium. We will for simplicity refer πi as the single earned premium which
is assumed to be contracted and expired during year i. With other words,
premium earned on a policy that has been in force for only one year or less.
Moreover, the ultimate loss ratio may also not be self-evident. This is the ratio
between the actuary’s belief of ultimate loss and the ultimate earned premium
for accident year i. This ratio is obviously not known in practice, but instead
based on previous years data and is also therefore selected subjectively. This is
also the case in this paper, and as we will see further on be varied.

2.3 Machine Learning Approach
The field of machine learning is currently growing, including trying to imple-
ment its field to reserving. Hastie et al. [4] suggests different methods for so
called supervised learning, which is some of the more established approaches to-
day, such as neural network, gradient boosting and random forest. Even though
some of this methods have been implemented to reserving (e.g. [5] & [12]) we
will be attempting to use a different approach which were introduced by Balona
& Richman [1].

One of the main features within supervised learning is dividing the data into
two sets; training and test (validation) set. This is exactly what it sounds like,
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namely slicing the existing data into two components where first set trains the
model and the second one test the trained model, especially if great amount of
data is supplied. On the other hand, if we have a significantly smaller amount
of data, other methods can be used such as cross validation [4]. Both these
methods share a similarity in that they test how well the predictive model per-
forms on data that has not been used in the initial training. The model that
shows the best accuracy in predicting the outcome is typically chosen from a
range of model types, formulations, and parameters. Unlike traditional actuarial
modeling, which relies on expert knowledge and experience to select models sub-
jectively, the machine learning approach selects models, parameters, and their
values based on their ability to improve the accuracy of the predictions. How
this will be implemented onto our reserve triangles will be explained later on.
Moreover, another key component is how we test the trained models, and with
our approach, will use two different score tests called Actual versus Expected
(AvE) and Claims Development Result (CDR).

2.3.1 Score test: AvE & CDR

Actual versus expected (AvE) is a frequently used measurement in many insur-
ance companies, and is merely the difference between the actual claim and what
we expected it to be. The AvE-analysis also forms a large part of the insurance
company’s decision whether the IBNR should be changed or not. We define the
AvE result of the incremental payments for upcoming calendar year as

AvEk
i,j∗ = Xi,j∗ − X̂k−1

i,j∗ (8)
Moreover, the claim development result (CDR) is defined as the difference be-
tween best estimated ultimo now and the best estimated ultimo a future point
in time. Here we will use one time point (year) and the CDR for accident year
i in year k is defined as

CDRk
i = Ĉk

i,J − Ĉk−1
i,J

= Rk
i,j∗ + Ci,j∗ − (Rk−1

i,j∗−1 + Ci,j∗−1)

=
J∑

l=j∗+1
X̂k

i,l + Ci,j∗ −
( J∑

l=j∗

X̂k−1
i,l + Ci,j∗−1

)
= Rk

i,j∗ − Rk−1
i,j∗ + (Xi,j∗ − X̂k−1

i,j∗ )
= Rk

i,j∗ − Rk−1
i,j∗ + AvEk

i,j∗ , (9)

where we see how AvEk
i,j∗ pops out in the last two rows. Indeed, we see how

the CDR can be expressed in terms of the IBNR reserves, or more properly,
as the sum of the difference between the estimated reserves for development j∗

plus the actual versus expected analysis defined in (8). To break it down even
more, we can see equation (9) as two components:

1. The precision of the predictions using the AvE measure, i.e. (Xi,j∗ −X̂k−1
i,j∗ )

plus
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2. Rk
i,j∗ − Rk−1

i,j∗ which is merely the ”stability” of our IBNR-reserves esti-
mates.

The main thing here is that CDR gives an indication of how good the reserve
method is, especially with enough information. We will therefore use both CDR
and AvE in our analysis as measuring instruments for different methods, where
the choice will land on the method that minimizes the score tests as an objective
function.

The goal here is reducing the squared differences between both the metrics,
AvE/CDR, and zero. This could be seen as minimizing (AvE −0)2 and (CDR−
0)2. But also, since the claims for various calendar year differs, we will calculate
the score by weighting on corresponding incremental payment which allows us
to calculate the following equation:

CDRk
score =

√√√√√√√√
I∑

i=1
|Xi,j∗ |(CDRk

i )2

I∑
i=1

|Xi,j∗ |
(10)

In equation (10), we see how the score is weighted on the incremental payments
made. We can use the same approach for determining the corresponding score
function for AvE, namely

AvEk
score =

√√√√√√√√
I∑

i=1
|Xi,j∗ |(AvEk

i )2

I∑
i=1

|Xi,j∗ |
(11)

2.3.2 Algorithm

The algorithm to be used will now be introduced and explained, taken directly
from [1], and we will also illustrate how the algorithm is used using figures.
Here, we will also see how we will train the sliced data using triangles.

Recall from Section 2 that we denoted the reserve triangles for calendar year k
as ∆k. For such an arbitrary triangle, the actuary tries to implement a certain
model in order to predict the future (ultimate) claims. Let us denote this model
as M, which is from a certain model space M, i.e. M ∈ M. The estimated
reserve based on a certain model can thus be denoted as

R̂k,M
i,j = M(X = ∆k)

To make a decision based on data, we need to choose a model M ∈ M that
will perform well in predicting future claims amounts. This requires scoring
each potential model. Rather than using a statistical distribution to determine
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likelihood, we will use a score that aligns with the goals of the analysis, which
is to minimize the difference between AvE claims or CDR on so called ”out of
sample” data. When calculating the scores on the out of sample data, we will
make comparison between what actually have been paid and our estimates. Note
that in normal cases the actuaries do not have fully developed claims triangle,
but as we will see later, we will. This is to be able to estimate how well the
model has performed. The following algorithm will be used:

• Select a reasonably sized triangle of claims development experience which
will provide data for fitting all of the models (shown as ”Initial Triangle”
in blue in Figure 2). Here, the new diagonals of experience will be added to
this triangle in the subsequent steps. Note that Figure 2 uses 15 accident
and development year, which necessary does not need to be the case for
the data used in this paper.

• Select several of the most recent calendar years of the triangle as the
training set with the first calendar year in the training set being ktrain

(shown as ”Training Data” in green in Figure 2).

• Select a reserving model for each M in a subset of M. For each M perform
the following steps:

1. For the first calendar period ktrain in the training set, find the re-
serves by calibrating all of the model parameters on ∆ktrain , which
is the blue area plus the first diagonal as shown in Figure 3.

2. For each subsequent calendar year k in the training set:
(a) Calculate the score for each accident year as CDRk

i or AvEk
i,j∗ ,

based on the next diagonal of experience. Note that, at this
stage, this next diagonal has not been used to fit the reserving
model, i.e. it is out of sample data.

(b) Calculate the weighted score across accident years, using the
incremental claims as weights. See Equation (10) for example.

(c) Re-estimate the reserves Rk
i,j = M(X = ∆k) by refitting the

model using the extra calendar year of data. This is shown for
the first iteration in Figure 4.

3. Calculate and store the average score across all of the calendar years
in the training set, SM

• Select Mopt = argminM∈M(SM ).

As suggested earlier, we will only use two different reserving methods (CL- and
BF-method) which reduces the subset of M to these, where later on will see
how we do a grid search using the algorithm above, which enables numerous
different ways to calculate the score and suggestively select the method that
minimizes the score. We will also use both of the metrics (CDR and AvE),
much since CDR is like a more regularized version of AvE, where we penalize
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Figure 2: A general reserve triangle which is describing the procedure from
above. The models start with the basic triangle shown in blue, and then addi-
tional information from a training set (green part) is added. The yellow part
illustrates unknown claims, i.e. claims that has not yet been observed. Note
that this figure is taken directly from [1].

Figure 3: Illustration of the first iteration of the scoring procedure. In the
first step, the model is fitted to the initial triangle, which is a starting point
for analyzing the insurance data. Then, the experience of the insurance data
is assessed against the first diagonal of the training data. This figure is taken
directly from [1].

the difference in reserve estimates between calendar years. This ensures that the
best algorithm not only makes accurate predictions but also keeps the reserve
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Figure 4: In the first iteration, the model is fitted to the initial triangle and
compared to the first diagonal of the training data. In the second iteration,
the first diagonal is added to the initial triangle and the model is fitted to this
augmented triangle, then compared to the second diagonal of the training data.
This figure is taken directly from [1].

estimates stable over time. This is according to Balona et al. important for
long-tailed businesses, i.e. classes which take long time to develop. However, for
short-tailed classes, it may not be practical to aim for stable reserve estimates.
In these cases, the AvE metric seem to be a better way to optimize reserve
estimates. Because of this, we will during our case studies use two different
types of data which correspond to just such qualities, which we will see later.

2.3.3 Numerical example

We will try to further clarify how the different metrics work with the help of
a simple numerical example that will hopefully also distinguish the difference
between them. To help us, we will as support for the reader once again use
Figure 3 during the example and the colours from Figure 2 represents the same
part of the data. That is, the blue area is our initial triangle and the green
part consists of our training set. The yellow part, which is the out of sample
data, is merely there for the sake of completeness but will not be used here.
We will use the same numerical example as Balona et al. for simplicity. They
also take it one step further and illustrates the next step of the iterations with
actual numbers and detailed calculation. We will however not do that since the
methodology is the same as below.

Initially, we start of with the first iteration of the scoring procedure which is
using the fully initial triangle (blue area) trying to determine the first diagonal
of the training data. Assume that we have the following actual incremental
payments and the corresponding expected incremental claims shown in Table 1.
These numbers are obviously arbitrary but nevertheless sufficient considering
the goal.

Moreover, to calculate the score for the first step here, we look back at equation

9



Development
year, j∗

1 2 3 4 5 6 7 8 9

A Actual 15 12 10 8 6 4 2 0 0
B Expected 18 10 9 10 4 2 1 0 0

Table 1: Numerical example of actual and expected incremental claim for the
first diagonal shown in Figure 3. This table is taken directly from [1].

(11) which shows us how this is done. Table 2 illustrates the details on each of
these steps.

Development
year, j∗

1 2 3 4 5 6 7 8 9

C = A − B AvE8
i,j∗ -3 2 1 -2 2 2 1 0 0

D = C2 · A 135 48 10 32 24 16 2 0 0∑
D/

∑
A AvEscore 2.16

Table 2: Continuing from Table 1 where the score is calculated for the metric
AvE. This table is taken directly from [1].

The procedure for calculating the AvEscore is not harder than described above.
We will continue using the same numerical example for calculating the score
of the CDR-metric. Remember from equation (9) that we use the difference in
the reserve estimates. In this case, this means (R̂8

i,j∗ − R̂7
i,j∗) is added for each

accident period in AvE8
i,j∗ which were calculated in Table 2. The details for

calculating the CDRscore this is shown in Table 3.

Development
year, j∗

1 2 3 4 5 6 7 8 9

F R7
i,j∗ 24 7 4 3 2 1 1 0 0

G R8
i,j∗ 26 8 4 3 2 1 1 0 0

H = G − F 2 1 0 0 0 0 0 0 0
I = H2 · A 44 4 0 0 0 0 0 0 0( ∑

D+I
)
/

∑
A CDRscore 2.35

Table 3: Calculation steps when determining the CDRscore using our numerical
example. This table is taken directly from [1].

We notice from Table 2 and 3 is that the AvEscore and CDRscore are 2.16
and 2.35 respectively. What can be seen from the detailed calculation of the
CDRscore, it seems as suggested earlier that the CDR penalize for the difference
in the reserve. For the latter development years, we see that the contribution
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I is 0 which probably will be the same in most cases since we estimate the
same reserve but for different calendar years. Moreover, the example above
is only using the first diagonal of training set, e.g. the first iteration of the
scoring process. To complete the procedure, the next step is to include another
calendar year and repeat the same calculations as above, but now including the
first diagonal from the training set. Finally, additional information from the
training set is added until it is no longer possible, i.e. until development year 15
in this case. The final score is retrieved when taking the mean from the different
scores.

2.3.4 Implementation of reserving methods

Lets recall the two methods from earlier, namely chain ladder method and
Bornhuetter–Ferguson method, and the corresponding equations for estimating
the ultimo, i.e. equation (5) and (7). The next step is to sort out how these will
be implemented to the algorithm described in Section 2.3.2. As described in
Section 1, the actuary makes a subjective choice on whether to include/exclude
certain development factors (see equation 4) to be a part of the analysis and
determination on the IBNR reserve. This mostly concerns the highest and/or
lowest factor, since they could be outliers. We will therefore introduce the
following equation for calculating the LDF:s

f̂j =

I−j∑
i=1

Ci,j f̂i,jwi,j

I−j∑
i=1

Ci,jwi,j

(12)

where wi,j denotes the weights which equals 1 if we want to include a certain
development factor, otherwise 0. As will be seen later, we will carry out the
analysis by see how the CDR- and AvE-scores change when excluding the high-
est and lowest development factor compared. Moreover, for the BF-method,
we will also vary the loss ratio parameter ÛLR

k,BF

i within an arbitrary, but
nevertheless reasonable range. Lastly, when calculating the loss development
factors, the ordinary Mack’s chain ladder method uses as many accident years
as possible. We will however let these number of years vary for both the sug-
gested methods.

Referring to Section 2.3.3 where a numerical example were illustrated, we will
therefore get different scores from the different alternations of parameters. That
is, depending on the choice of number of accident years, and whether we drop the
highest and/or lowest individual development factor (and ultimate loss ratio)
that gives the lowest score for the respective metric, is the method we will
compare against the ordinary reserving method. This will hopefully also be
clarified more during the actual case studies.
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3 Data
The data that will be used is based on claims from the international reinsur-
ance company SiriusPoint which has its head office in Pembroke, Bermuda. But
when working with a single dataset, the outcome of a method may be influ-
enced by factors such as luck or chance, making it difficult to interpret its true
effectiveness. However, by simulating multiple datasets, we can obtain a range
of outcomes and use statistical measures, which exactly what we will do. Note,
however, that the important thing will not be how well we have recreated the
real data, but only that we have captured the desired property - how long time
it takes for the claims to be developed. The data from SiriusPoint is not picked
at random, but here we have selected data that we know through experience
have the desired characteristics. For privacy reasons, we will not disclose the
type of data used. The claims are also manipulated by a certain factor.

Thus, we will use two data sets with one consisting of 10 accident and devel-
opment years respectively and the other data set with 15. This choice is not
random since we by experience know that these are fully developed after that
many years. For the data set of 10 years, it will hopefully reflect the short-tailed
business and vice versa for the other data set. We could have used even more
years, but that is redundant and unnecessary for the analysis. As we discussed
earlier, the time-concretization ”years” is an arbitrary choice and we could have
just as easily do the analysis on a quarterly (or monthly) basis. However, since
we merely are interested how well the ML-approach performs relative to the
ordinary reserving methods, this is redundant. Also, using more time steps in-
creases the computational power and is more time consuming.

The two data sets will be divided into two different case studies. For the first
one, which will use the situation of 10 years, we will only do one simulation
using a great number of claims for each accident year. Even though this gives
us enough information to carry out the analysis, it could perhaps, just as for
the case of the real insurance data, be influenced by factors such as luck or
chance. Because of this, the other case study (that contains 15 accident and
development years), will be simulated multiple times. 50 times to be exact. For
each of this simulation, we will not only try to mimic the long-tailed property,
but also use significantly fewer number of claims for each accident year. This
will hopefully create randomness in the reserving triangle which the machine-
learning approach will deal with.

3.1 Simulation
There are several ways to simulate claim data and triangles. One of the more
commonly used is suggested by Gaberielli & Wüthrich [3], which is based on
Swiss data and using a stochastic simulation machine, generates individual non-
life insurance claims. Another one is from Lindholm et al. [6], that simulate
according to a time series model which consistent is with CL. We will however
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take another approach that Verall et al. uses. Their method is convenient here
since it is based on the same triangular form as our described reserve triangles.
The mere difference is that instead of only using the claim amounts, we also use
the underlying number of claims ([9] & [11]).

3.1.1 Claims

In order to simulate claim numbers, initially the number of claims that occurred
for a certain accident year i will be simulated. We denote the number of incurred
claims for accident year i fully paid in year j as Nij . By using the following
method we can simulate desirable data. For each of our data set which consists
of dimension 10 and 15 respectively:

• Generate number of claims Ni,· =
∑J

j=1 Ni,j for each accident year using
a Poisson distribution.

• For each number of claims given each accident year, simulate the delay
using a multinomial distribution, that is

(Ni,1, . . . , Ni,j) ∼ Multi(Ni,·; p1, . . . , pj)

where pj denotes the delay probabilities. It can be shown [9] using max-
imum likelihood theory, how the delayed probabilities is calculated using
the empirical data. This should encapsulate the desired tail-property.

• For each of the individual payments, simulate claim amount using a Gamma
distribution where the SiriusPoint empirical data gives us the desirable pa-
rameters through ML-theory.

3.1.2 Premium

During the case studies, information about the premium is not provided from
SiriusPoint, but is nevertheless needed to be able to use the BF-method. Indeed,
the premium for accident year i denoted πi (see equation (7)) needs therefore
to be simulated in turn to be able to implement the desired reserving method.
Note, we will use the same method as Balona et al. simulating the premium but
also assume the same loss ratio as them, i.e. a 60% loss ratio. While it is true
that the LR obtained through this simulation may not accurately represent the
true loss ratio, it is not a concern as our primary objective is to compare the
effectiveness of the traditional BF approach with our machine learning approach.
Therefore, the exact loss ratio obtained is not crucial as long as it can serve the
purpose of facilitating a comparison between the two methods. The simulation
looks as follows:

1. The real ultimate claims, Ci,J , is taken from the most recent development
year. That is, for each accident year, we use the actual ultimate claim
amount, keeping in mind that we have access to the complete set of data
for the entire triangle.
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2. To introduce an element of variability in our analysis, we have fitted a
linear regression model to the ultimate claims. That is, for each accident
year i, let each cumulative claim Ci,j be our responsive variable and de-
velopment years j as covariate. Let the estimated ultimate claims using
this method be denoted as C̃i,J .

3. We calculate the residuals for each accident year as ϵi = Ci,J − C̃i,J using
single iteration of bootstrapping. This generates a vector of the same size
as the number of accident years.

4. Using the residuals from the step 3, we calculate so called pseudo-ultimate
claims that we denote C∗

i,J = Ci,J + ϵ∗
i for each accident year. This step

could be questioned since this could mean taking residuals from a certain
accident year and use it on a completely different one. However, since we
want some variability in the loss ratio, this is an eligible property as long as
the difference between the accident years is somewhat similar. For the two
data sets, this is not an issue. Firstly, we will only use the BF-method for
one of the case studies and thus only need to simulate the premium once.
For that study, the claims are fairly similar between all the accident years
and we therefore also retrieve stable simulated epsilons (and conclusively
ultimate claims).

5. We finally calculate the pseudo premium based on a 60% loss ratio: C∗
i,J

0.6

3.1.3 Properties

We have now simulated both claim data and earned premium and can move
forward with looking at the data. First of all, we are interested in whether
we succeeded in capturing the desirable development characteristics of the re-
spective data. As stated before, we will for the first case study only simulate
once, and Figure 5 illustrates the loss development factors which were calcu-
lated using ordinary (Mack’s) chain ladder over the different development year.
Correspondingly, we determine the loss development factors for the long-tailed
business which we see in Figure 6.

What we first notice is that we were able to encapsulate the properties from
both classes which was what we wanted. It seems like the short-tailed class
reaches its full development after around four years while it takes the second
business varies between ten to fifteen years.
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Figure 5: Loss development factors for the first case study using 10 development
years, based on real data from the insurance company SiriusPoint. The line
corresponds to the short-tailed business which in total has 10 years of accident
and development years.

Figure 6: Loss development factors for the second case study using 15 develop-
ment years, based on real data from the insurance company SiriusPoint. The
lines corresponds to the long-tailed business which in total has 15 years of ac-
cident and development years. The number of simulated claims is significantly
fewer and consequently creates randomness.
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4 Case study 1: Short tailed business
For the first case study, we will try to implement what was discussed earlier.
Recall from Section 3.1.3 that the short-tailed class seemed fully developed after
approximately 4 years. The minor movements after that is marginal, but the
approach should nevertheless encapsulate that. We will also during this (and
the upcoming) case study use actual years. For this rapidly developing class,
we have the accident years 1986 - 1995. Moreover, Figure 7 illustrates the loss
development factors for the reserve triangle using Mack’s CL-method, where the
highlighted values corresponds to the highest and lowest individual development
factor (IDF) respectively per development year. Note that all the accident years
were used here during the calculations. The data used for this case corresponds
to the years 1986 to 1995 (10 years).

We also have to make a choice on the number of years to train the model
on. This choice should be based on us using as much training data as possible
without starting with too small a triangle. We will therefore use the years 1986
- 1990 as initial triangle which results the years 1991 - 1995 as training set. We
will now try to implement the two different reserving methods.

Figure 7: Individual development factors for the short-tailed business where the
red values corresponds to the highest IDF for each development year and the
blue the lowest. The accident years corresponds to 1986-1995 and the develop-
ment years 1 - 10.

4.1 The Chain Ladder Method
For the Chain Ladder approach, we will as discussed in Section 2.3.3, consider
three variations for implementing the algorithm. Firstly, we will vary the num-
ber of years which the loss development factors is based on. Looking back at
equation (3), we base the estimation for f̂j on all accident years. The choice

16



of parameter space here is semi-arbitrarily chosen in the sense that we want to
include the highest amount of accident years possible since it equals ordinary
chain-ladder estimation of the LDFs. Note that the IDFs illustrated in Figure
7 will look different for each choice of the number of accident years. The other
thing we will vary is whether or not drop the highest and lowest loss develop-
ment factor respectively. That is, for equation (12), we let wi,j = 0 for the
highest and lowest value f̂i,j in all development years and see what happens to
the score. Table 4 is a summary over how the search space looks and there are
thus 2 · 2 · 7 = 28 different combinations of parameters.

Parameter Possibilities Description

Drop max(f̂i,j)? [True, False] Vary the possibility to ignore the
highest (individual) development
factor in all development years.

Drop min(f̂i,j)? [True, False] Vary the possibility to ignore the
lowest (individual) development
factor in all development years.

Number of periods I ∈ [4, 10] How many accident years that
should be used when calculating
the loss development factor for
each development year.

Table 4: Parameter space for CL-method. We vary the number of periods and
whether to drop the highest and/or lowest individual development factor for all
development periods.

It is obvious that the customary chain ladder method is retrieved by using all
periods and not dropping either of the highest or lowest individual development
factors. We will now implement the approach from Section 2.3, i.e. minimize
AvEscore and CDRscore using grid search and the optimal parameters is found
in Table 5. We notice that when minimizing the claims development result, we
should use the lowest number of periods possible. Also, both performance met-
rics suggests that the we should ignore the lowest individual development factor
in all development years. Indeed, looking at Figure 8 we notice that dropping
f̂i,j for all periods seems to reduce the score for both metrics. The scores does
not also seem to be dependent on the number of periods, except perhaps when
we drop both the highest and lowest individual development factor. In that
case, we seem to see a somewhat linear trend for when the number of periods
increases. This could also just be a random effect.
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Parameter Ordinary CL min
(

AvEk
score

)
min

(
CDRk

score

)

Drop max(f̂i,j)? False False False

Drop min(f̂i,j)? False True True

Number of periods 10 6 4

Table 5: The choice of parameters which minimizes the respective metric for
Chain-Ladder.

What is more interesting is that the ML-approach seem to overestimate the
ultimate claim. This is perhaps not concerning in normal cases since it is a
part of the reality, but it is nevertheless alarming since the actual claim amount
versus the expected ultimo claim for each accident year is more off comparing
to the ordinary chain ladder method which, according to Figure 9, seems to
perform better. Before we conclude that the new method does not work, we
need to investigate a few things. The first question is how big of a difference
we actually are talking about in total. The IBNR reserve can be useful to us in
this situation. Recall from Section 2, for each accident year, IBNR is calculated
as the difference between the ultimate claims and the latest known claims. The
total IBNR reserve is the sum of the reserves calculated for each accident year.
In our case, this obviously corresponds to the estimated ultimate claim for each
method. We start by looking at the total suggested reserve which is illustrated in
Table 6, we see that even though the estimation when minimizing the metrics
CDR and AvE is higher than both the ordinary CL and the actual IBNR,
the difference in percent is not that high. That is, even though the normal
chain ladder method seem to perform better in this case, the machine learning
approach is not to be rejected. This is even clearer when looking at Figure 10
where we see that the difference in IBNR for accident years is relatively low
when comparing the methods. Moreover, we could also question the choice of
training set. Would it differ if we varied the choice on how many accident years
we devote as initial triangle?
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Figure 8: The score for both the metrics - AvE and CDR - when calculating
the LDF based on different number of periods. The left plot illustrates the
score for AvE and the right for CDR. Moreover, the dashed line corresponds to
dropping the highest individual development factor, i.e. f̂i,j for all development
periods whilst the filled line is when we are not. Finally, the red line illustrates
when dropping the lowest development factor and the blue when we are not.
For example, the solid blue line on the left plot illustrates the AvEscore when
dropping the lowest individual development factor in all development years. The
score is also dependent on the number of periods (x-axis) where we for the same
line see that the lowest score is when the number of periods equals six, which
agrees to the results in Table 5.

4.2 The Bornhuetter–Ferguson Method
From previous sections we drew attention to the characteristic features of the
BF-method. One of these was that an ultimate loss ratio was necessary (see
equation (7)). The goal here is to use the machine learning approach with
corresponding metrics and vary the ultimate loss ratio with a suitable choice.
Apart from the ultimate loss ratio, we will vary the number of accident years
to use which the loss development factors f̂j will be calculated on together with
the attempt to drop the highest and lowest individual development factor in all
development periods respectively.

Recall from Section 3.1.2 where we simulated the corresponding premium to be
used when calculating the ultimate claims using the basis of a 60% ultimate loss
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Figure 9: AvE for different metrics per accident year.

Method Total IBNR Difference (%)

Actual 101 071 -

Ordinary CL 104 177 3.07%

min(AvE) 107 512 6.12%

min(CDR) 107 252 6.69%

Table 6: Comparison between the estimated IBNR for our methods against
actual total IBNR.

ratio. Because of this, we will vary the ultimate loss ratio, just as [1], between
a 50% and 70% interval using step length 1%. The same number of periods
will be used as for the chain ladder method above, and thus Table 7 illustrates
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Figure 10: The IBNR-reserve when calculating the ultimo using the different
models (min(CDR), min(AvE) and CL) as well as the actual reserve per accident
year.

the possible combinations of parameters to search from. Note that the interval
for choice of (apriori/expected) ultimate loss ratio and steps of course could be
larger as well as smaller. This will however impact how many unique sets of
search that will be done. Indeed, merely using the specified search grid as in
Table 7 gives us 2 · 2 · 7 · 21 = 588 different combinations.

For the 588 different combinations, the parameters which minimize the two
different performance metrics is shown in Table 8. Firstly, the ordinary BF-
method is evidently formed using all the periods and 0.6 as apriori since that
is our initial guess. The method also seems to use 5 respectively 4 most recent
accident year for minimizing the performance metrics, where we also note that
4 years is the lowest possible amount. Also, the apriori parameter for the per-
formance metrics is suggested to be the same, namely 0.58. Whether to drop
the development factors is however different. The actual versus expected score
seem to be lowest when dropping both the highest and lowest individual devel-
opment factor in all development years. For the claims development result, the
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Parameter Possibilities Description

Drop max(f̂i,j)? [True, False] Vary the possibility to ignore the
highest (individual) development
factor in all development years.

Drop min(f̂i,j)? [True, False] Vary the possibility to ignore the
lowest (individual) development
factor in all development years.

Number of periods I ∈ [4, 10] How many accident years that
should be used when calculating
the loss development factor for
each development year.

Apriori α ∈ {0.5, · · · , 0.7} Testing different ultimate loss ra-
tio for the BF-method.

Table 7: Parameter space for BF-method. We vary the number of periods and
whether to drop the highest and/or lowest individual development factor for all
development periods. Here, we will also vary the ultimate loss ratio parameter
- also known as ”apriori”.

suggestion is to only drop the lowest one. This could be alarming since we from
previous method saw that we overestimated the reserves and will perhaps see
that once more. Further, Figure A.1 and A.2 (Appendix A) illustrates different
scores and accident years for both performance metrics. Even though the lines
looks somewhat ”lumpish”, you can still distinguish that the apriori parameter
affects the scores significantly and that the number of periods does not seem to
influence the score that much.

Just as were done in Section 4.1, using the Chain-Ladder method, we will com-
pare the actual versus expected claims for different accident years to get an idea
of how well the models perform. This is illustrated in Figure 11 and just as
for the previous section, we seem to overestimate the ultimate claim. What is
interesting here though is that both the minimized performance metric seem to
perform much better than the ordinary BF-method and not only marginally.
Using the parameters for when minimizing AvEscore is estimating the ultimate
claim fairly well, especially for accident year 1993 which almost is on spot on
correct claim amount. Comparing the nominal values in Figure 9 and 11 ex-
hibits that the chain ladder method still seem to be closer to the actual value.
The machine learning approach seems however to perform better in the case
where we use the BF-method, especially for this short tailed business which is
also supported when looking at Table 9 which illustrates the total IBNR for
both the different methods but also the actual.
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Parameter Ordinary CL min
(

AvEk
score

)
min

(
CDRk

score

)

Drop max(f̂i,j)? False False False

Drop min(f̂i,j)? False False True

Number of periods 10 5 4

Apriori 0.6 0.58 0.58

Table 8: The choice of parameters which minimizes the respective performance
metric for Bornhuetter-Ferguson method.

Method Total IBNR Difference (%)

Actual 101 071 -

Ordinary BF 109 500 8.34%

min(AvE) 106 136 5.01%

min(CDR) 108 453 7.30%

Table 9: Comparison between the estimated IBNR for our methods against
actual total IBNR and the ordinary BF-method.

5 Case study 2: Long tailed business
The second case study will as previously suggested use the data set which, if we
recall from Section 3, reflect the long-tailed business that consists of 15 accident
and development years respectively. We also saw that the claims were fully
developed significantly later than in the first case study, approximately after
10 to 15 years. Just as before, we will now introduce the actual years and will
look at the accident years 1986 - 2000. We can however not look at the individ-
ual development factors here like in Figure 7 since we have 50 different reserve
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Figure 11: The actual ultimate claim minus the expected ultimo for the different
variations of the BF-method.

triangles. One could examine some kind of average/median for the different
IDFs, but that is redundant. We will during this case study only implement the
machine learning approach with the chain ladder method.

The next thing that needs to be decided is the initial triangle and consequently
the training set. By the same reasoning as before, the choice is based on using
as much training data as possible without starting with a too small triangle.
Referring back to Figure 2, we will choose 1986 - 1990 as initial triangle. This
evidently implies that 1991 - 2000 will be used as our training set. The illus-
trations of the different results will be represented differently than the last case
study since we have multiple reserving triangles.
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5.1 The Chain Ladder Method
The three different variations of parameters will once again be varied together
with the machine learning approach. To repeat, we will partly vary the number
of accident year which the loss development factors f̂j is calculated on. But
also, we will also examine what happens when we drop the highest and lowest
individual loss development factors in all development years. The number of
periods is semi-arbitrarily chosen, but just as before, we will at least include all
the accident years to see which score the ordinary Mack’s CL-method perform
in the metric scores. To begin with, Table 10 illustrates the search grid which
in total consists of 2 · 2 · 10 = 40 different combinations.

Parameter Possibilities Description

Drop max(f̂i,j)? [True, False] Vary the possibility to ignore the
highest (individual) development
factor in all development years.

Drop min(f̂i,j)? [True, False] Vary the possibility to ignore the
lowest (individual) development
factor in all development years.

Number of periods I ∈ [6, 15] How many accident years that
should be used when calculating
the loss development factor for
each development year.

Table 10: Parameter space for CL-method in the second case study. We vary
the number of periods and whether to drop the highest and/or lowest individual
development factor for all development periods.

Unlike the first case study, it is not convenient to illustrate the parameters that
minimize the metrics. Instead, we show that different combinations of the search
grid from Table 10 arise only to get an overview. The different combinations
that minimize the AvEscore and CDRscore respectively are illustrated in Figure
12 and 13, where we see that the algorithm suggest different models to estimate
the IBNR reserve for the different simulated data sets. Even though it is indis-
tinguishable to pair together respectively three parameters to each iteration, we
still can see that the outcome varies.

We continue with the more interesting bits, namely the results, and it is not
straight forward how this should be illustrated. We will nevertheless, like in
the first case study, illustrate the difference between the actual ultimate claim
minus the expected using the three different methods. Note, however, that we
instead compare the difference of the summed ultimo. We will illustrate this
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Figure 12: The different outcome of the search grid in Table 10 minimizing the
AvE score. The left plot demonstrates the suggested optimal number of periods,
the middle bar plot whether to drop the lowest individual development factor in
all development years. The right illustration shows whether to drop the highest
IDFs.

Figure 13: The different outcome of the search grid in Table 10 minimizing
the CDR score. The left plot demonstrates the suggested optimal number of
periods, the middle bar plot whether to drop the lowest individual development
factor in all development years. The right illustration shows whether to drop
the highest IDFs.
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using two different figures which otherwise will look scribbled. Starting of with
when minimizing the AvE metric, the result is shown in Figure 14. The differ-
ence between ultimate claims for the two methods do not differs that much. A
larger deviation is around iteration 22, where both methods overestimate the
reserve. Minimizing the AvEscore sometimes performs better than the ordinary
chain ladder method and vice versa. Let us continue examine how well minimiz-
ing CDRscore estimates the ultimo. This is seen in Figure 15 where we see that
the machine learning approach performs significantly worse than the ordinary
CL.

Figure 14: Actual ultimate payment minus the expected ultimo for both ordi-
nary CL-method and when minimizing the AvEscore.

We will further look at the fraction between the total actual IBNR and the es-
timated one. This corresponds to the comparison we did in the first case study,
see e.g. Table 6. The comparison of the total IBNR for the different iterations is
illustrated in Figure 16. The interpretation is, the closer to 0 and more narrow
the density plots are, the more accurate are the estimations of the total reserve.
From this, we can first and foremost see that minimizing the CDR-metric con-
firms worse estimation of the IBNR compared to the chain ladder method. The
calculations seems to underestimate the reserve, sometimes up to 70% less than
the true. This is however not in alignment with what Balona et al. suggests.
Indeed, as stated before, since the CDR keeps the reserve stable over time,
the hypothesis were that determining the IBNR-reserve when minimizing the
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Figure 15: Actual ultimate payment minus the expected ultimo for both ordi-
nary CL-method and when minimizing the CDRscore.

CDRscore should perform better.

Furthermore, looking at the second performance metric which is illustrated in
the left density plot in Figure 16, we see that it more or less calculates the
IBNR reserve just as good as the CL-approach. This was already implied from
previous figures when illustrating the difference in ultimate claims calculations.
A valid question from here is; when are the ML-approach performing better?
In other words, can we see any pattern which indicates a better estimate in
the ultimo for the AvE-metrics rather than the ordinary Mack’s chain ladder
method? If we revisit Figure 14 and focus on the reserve triangles where the
ML-approach performs better in the sense that the absolute value of actual ul-
timate claim minus estimated ultimo when minimizing the AvEscore is less than
the corresponding calculation for the customary CL modelling, we can directly
compare how the data looked. We can therefore handpick those iterations, and
illustrate how the loss development factors looks using all accident years. This is
shown in Figure 17 together with the average LDF for all iterations shown in the
blue line. We have also included the corresponding 95% confident interval which
is shaded grey. From here we see that the iterations where the ML-approach
performs better also seem to be when the data is somewhat ”chaotic”. Also,
the LDFs in Figure 17 seem to be those that contribute to both the higher and
lower ”bounds” in Figure 6. Thus, the bottom line is that when the data seems
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changing, the ML-approach seems to handle the modelling better.

Figure 16: The fraction of the total actual IBNR and the estimated using ordi-
nary CL and the ML-approach for both the metrics.

6 Summary
The goal with this thesis was to implement the machine learning approach that
Caesar Balona and Ronald Richman introduced in their paper [1] for determin-
ing the IBNR-reserve. To our help, data were retrieved from the reinsurance
company SiriusPoint. We established that when working with a single dataset,
the outcome of a method may be influenced by factors such as luck or chance,
making it difficult to interpret its true effectiveness. Because of this, we instead
simulated new data, but where the insurance company information helped us
determining parameters, especially the tail properties - which were essential for
this paper. When implementing the machine learning approach, we used two
of the most common reserving methods available as reference, namely Born-
huetter–Ferguson method and Mack’s chain ladder method. In addition to the
usual features found in machine learning, such as diving data into training and
validation set, we used two performance metrics as score functions in order
to evaluate the models. These metrics is called actual versus expected (AvE)
and claims development result (CDR). The difference is that CDR is like a less
variable version of AvE, where we penalize the difference in reserve estimates
between calendar years. Finally, the algorithm that calculate the scoring pro-
cedure for each of the metrics is discussed in Section 2.3.2, where we also saw
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Figure 17: LDFs using ordinary Mack’s chain ladder when the machine learning
approach estimates the IBNR reserve better than the customary techniques.
The blue line corresponds to all LDFs shown in Figure 6 with corresponding
95% confidence interval.

that the scores are weighted on the incremental claims. We then however chose
the model which minimize each performance metric.

In order to draw conclusions, we used two case studies to our help. The first
case study was based on a (one) simulated reserving triangle which had so called
short-tailed property, i.e. a class/business which takes a short number until the
full amount is payed for all accident years. This data is based on a run-off
triangle using the accident years 1986 - 1995 (10 years) and we saw that it were
fully developed after around four years. Moreover, to be able to compare the
customary reserving method, we introduced some variations when determining
the ultimate claims. These variations were:

• The number of accident years that should be used when calculating the
loss development factor for each development year.

• The possibility to ignore the highest individual development factor in all
development years.

• The possibility to ignore the lowest individual development factor in all
development years.

• The ultimate loss ratio.

30



The first three parameters were varied when implementing our machine learn-
ing algorithm with the chain ladder method, and the latter variation was added
when we used the BF-method. Using the CL-method, this resulted in a search
grid of 28 different combinations for each of the metrics, and the parameters
which minimized the AvEscore and CDRscore is reflected in Table 5. For the
BF-method, we received a search space of 588 different combinations which
resulted in the suggested parameters illustrated in Table 8. We thereafter cal-
culated the ultimate claims for each model, and consequently the IBNR-reserve,
which were compared to the corresponding ultimo and reserve using the ordi-
nary reserving methods. This was achieved by partly subtracting the actual
ultimo with the ultimate claim estimated for each model, but also by examining
the difference for the total IBNR. For the Chain-Ladder method, we saw that
the ML-approach did not perform better although the difference was marginal.
However, for the BF-method, the new method seemed to estimate the reserves
more accurately.

We approached the second case study a bit differently. Instead of merely sim-
ulating one reserving triangle, we repeated the simulation 50 times. This elim-
inates the risk of luck or chance when modelling the data and we can draw
more conclusions. Not only that, in this case we also reduced the number of
incurred claims per accident year to make sure that the analysed data is some-
what random. Moreover, in contrast to the first case study, we used insurance
experience properties which were long-tailed that also had 15 accident and devel-
opment years (accident years 1986 - 2000). We also ignored modeling according
to the BF-method but focused on the CL-method.

Similar to the first case study we set up a search grid that entailed in 40 dif-
ferent combinations and conclusively spitted out 50 suggestions that minimized
the respective performance metrics, one for each reserving triangle. We could
conclude a couple of things here. Firstly, using the same comparison meth-
ods for the IBNR-reserve as before, minimizing the CDRscore performed worse
than the customary chain-ladder method. We could however see that minimiz-
ing AvEscore sometimes estimated the IBNR-reserve better. This entailed in
us examining when this was the case. A quick examination showed that when
the reserving triangle was somewhat ”unstable”, the machine learning approach
seemed to encapsulate those situations well.

7 Discussion
There are a couple of things that needs to be highlighted. Firstly, in the first
case study when we only had one reserving triangle with each accident year
containing a great number of claims, we noticed that the chain ladder method
performed better than minimizing the scores of both the metrics, even though it
was marginal. The question that arises thus becomes: why does the chain lad-
der method perform better? This is actually not surprising since the customary
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Mack’s chain ladder method captures all information from the reserving trian-
gle. And since we established that the triangle is ”stable”, the CL-method will
probably always outperform. Using the same logic for the second case study,
we would perhaps hoped for better results, especially since we tried to simulate
multiple ”unstable” reserving triangles. We saw that minimizing the AvEscore

sometimes estimated the IBNR reserve better than the ordinary CL-approach
which could be traced back to the iterations where the data was most unstable.
An improvement for future references is therefore to create even more scarce
reserving triangle and do the same type of modelling. More number of trian-
gles would also be in order. However, it is alarming that when minimizing the
CDRscore, the estimated IBNR was significantly worse than the actual reserve.
During the reserving process, actuaries do not have fully developed claims like
in this paper, but instead have to use their best knowledge to ensure that the
reserve will be as close to reality as possible.

Although this thesis may not confirm that Balona & Richman’s approach should
be implemented in insurance companies today, their methodology and algorithm
should not be neglected. There is nothing that says we are limited to using the
algorithm in the way we have done so, as it is ultimately a machine learning
model that uses a scoring function, which can clearly be used for other purposes.
One example is to combine the CL method and BF method together with min-
imizing the CDR and AvE metrics in the same way as in this article. This way,
we can not only see which method estimates the reserve best, but also, and
perhaps more importantly, weigh the different reserve estimation methods. We
have also limited ourselves to only two reserve estimation methods, with a focus
on CL, but there is nothing stopping us from introducing more methods such
as Generalized Cape Cod (GCC). However, one thing is certain, machine learn-
ing methods for reserving will undoubtedly become the future in the insurance
industry, and it is only a matter of time before it becomes the new ”ordinary”
method.
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A Appendix

Figure A.1: Scores for actual versus expected performance metric using the
search space for the BF-method which was illustrates in Table 7. The four
different plots illustrates the four combinations of whether to ignore (drop) the
highest and lowest IDF in all development years or not. For example, the upper
right plot illustrates the score when including the highest IDF but dropping the
lowest. Similarly, the colors correspond to variations of the apriori parameter,
where a redder shade reflects a lower ultimate loss ratio and blue color a higher.
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Figure A.2: Scores for claim development result performance metric using the
search space for the BF-method which was illustrates in Table 7. The four
different plots illustrates the four combinations of whether to ignore (drop) the
highest and lowest IDF in all development years or not. For example, the upper
right plot illustrates the score when including the highest IDF but dropping the
lowest. Similarly, the colors correspond to variations of the apriori parameter,
where a redder shade reflects a lower ultimate loss ratio and blue color a higher.
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