
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Classi�cation and Image
Segmentation of Pollen Grains

Alexander Crompton

Matematiska institutionen

Masteruppsats 2023:17

Matematisk statistik

September 2023

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2023:17

http://www.math.su.se

Classification and Image Segmentation of

Pollen Grains

Alexander Crompton∗

September 2023

Abstract

This thesis presents an automated approach for the classification of

Swedish pollen grains. The research aims to enhance the accuracy of

pollen classification while automating the process of identifying pollen.

The proposed methodology involves pre-processing, segmentation us-

ing clustering, and a convolutional neural network, classifying eight

different pollen types. In the pre-processing phase methods are com-

pared to find the best method of reducing dirt and other noise found

in the microscopic images of the pollen preparations. The segmenta-

tion of individual pollen grains is done using the k-means clustering

algorithm, which performance extraction and identification of pollen

grains compared to the watershed method in terms of computational

efficiency. For pollen classification, six convolutional neural networks

were trained their performance were compared using loss and accu-

racy. The models were trained using RGB and grey versions of 3 sets

of images of the same segmented pollen grains. Results showed using

a mixture of images was the most accurate and achieved even higher

accuracy when using the maximum softmax probability over multiple

image depths to predict pollen type. To achieve full automation for

pollen classification wider sets of data with more variation is needed

for the convolutional neural networks along with further research into

segmentation of pollen.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: alexcrompton@hotmail.se. Supervisor: Martin Sköld.

Acknowledgements
I would like to express my deepest gratitude to my supervisor Martin Sköld
for the idea of this thesis and for all your help and guidance throughout the
entire work. It has been a true pleasure working with someone with your
knowledge and enthusiasm.
I would also like to give a special thanks to Björn Gedda for scanning all
pollen and also taking his time to manually classify pollen grains. Without
these contributions this work would not have been possible.
.

2

Contents

1 Introduction 5

2 Materials 7
2.1 Pollen data . 7

2.1.1 Pollen preparations . 7
2.1.2 Image details . 9
2.1.3 Image data . 10

2.2 Image examples . 10
2.2.1 Compiled images . 10
2.2.2 Sharpest slice images 11

3 Method’s background 12
3.1 Related work . 12

3.1.1 Segmentation . 13
3.1.2 Classification . 14

3.2 Image processing . 15
3.2.1 Principal component analysis 15
3.2.2 Linear discriminant analysis 16

3.3 Segmentation theory . 17
3.3.1 Watershed algorithm 17
3.3.2 K-Means . 18
3.3.3 Gap statistic . 19

3.4 Artificial neural networks . 20
3.4.1 Neurons in ANN:s . 21
3.4.2 Convolutional neural networks 24
3.4.3 Structure . 24
3.4.4 Choice of Activation functions 25
3.4.5 Convolution layers . 27
3.4.6 Max pooling . 28
3.4.7 Fully connected layers 29
3.4.8 Image augmentation 29
3.4.9 Model evaluation . 30

4 Methods 31
4.1 Image exploration . 31
4.2 Segmentation . 33

4.2.1 Image processing . 33
4.2.2 Pollen extraction . 34

4.3 Sharpest image . 35
4.4 Classification . 36

4.4.1 Image preparation . 36

3

4.4.2 Model structure . 37
4.4.3 Assessing Models on mixed preparations 38
4.4.4 Highest probability image class 38

5 Results 38
5.1 Image segmentation . 39

5.1.1 Image processing . 39
5.1.2 Segmentation results 41

5.2 Classification . 44
5.2.1 Convolutional neural networks 44
5.2.2 Mixed preparations result 47

6 Conclusion 49

7 Discussion 51

8 Appendix 56

4

1 Introduction
For many of us the most well-known effects of pollen, is its role in trigger-
ing allergic reactions in the spring time. It is a common allergen that can
cause hay fever and other respiratory allergies [1]. When inhaled, pollen
grains can irritate the nasal passages and trigger allergic symptoms such as
sneezing and itchy eyes. Understanding the types of pollen that are preva-
lent in different regions, their seasonal patterns, and their interactions with
the human immune system is crucial for managing and mitigating aller-
gic reactions, making pollen an important topic of research in allergy and
immunology.
Pollen also has practical implications in agriculture and food production.
Pollination, the process by which pollen is transferred from the male to
the female reproductive organs of flowers, is essential for the production of
fruits, vegetables, and seeds. Studying pollen and its interactions with pol-
linators, such as bees and butterflies can help improve crop yields, optimise
agricultural practices, and ensure food security.
Due to its biological impact, pollen are also of high interest in image recog-
nition tasks. Pollen grains exhibit diversity in shape, size, and surface orna-
mentation, which can make them visually distinct and recognisable under
a microscope. This unique visual characteristic of pollen grains opens up
possibilities for using image recognition techniques to identify and classify
different types of pollen. For instance, pollen recognition can be applied
in ecological studies to track changes in plant populations, identify plant
species in environmental samples, and monitor ecosystem health. In recent
years there have been many studies about classifying different pollen species
especially using modern advanced neural networks.
The Swedish Natural History Museum in Stockholm is responsible for all the
counting and forecasting of pollen in Sweden. This is done by using pollen
traps placed in different parts of Sweden and then manually counting the
amount of each species. This can be tedious and time-consuming. In this
thesis we will look into methods in machine learning to start to automate
this process.
The purpose of this thesis is to research a general method for automation of
classifying pollen. A comprehensive view of the entire process from segmen-
tation of specific pollen grains to classifying the grains will be reviewed. A
comparison to previous work and their potential solutions to common issues
for real world deployment of automatic classification will be discussed.
Since a large portion of previous research within automatic pollen grain
analysis has been specifically for classification on available data sets, a large
portion of this thesis will be comparing segmentation methods and pre-
processing of the microscopic images. One research article that discusses
the segmentation of pollen grains is ”Pollen segmentation and feature eval-
uation for automatic classification in bright-field microscopy” by Redondo

5

et al. [5]. While the article does discuss many practical solutions to seg-
mentation, the segmentation mask is done manually. In this thesis we aim
to find ways to automatically extract pollen. For this pre-processing and
segmentation of the pollen images, Supervised and Unsupervised learning
techniques will be compared. For the classification Deep Learning Neural
Networks will be applied. With high performing classification already be-
ing achieved in previous research, the focus of the classification task will
mainly lay on comparing how the performance of the Deep Learning Models
holds up in comparison using different image focus, grey images and Image
Augmentation.
In recent years, the field of pollen analysis has seen a growing interest in
developing methodologies for machine learning-based classification of pollen
grains. Previous research have contributed to this area, shedding light on
various aspects of the process. One such is the overview by Viertel and
König [2] focused on pattern recognition methodologies for pollen grain im-
age classification. Viertel and König explored different approaches for the
classification of pollen grains based on their visual patterns. Their work
provided valuable insights into the use of pattern recognition techniques,
highlighting the potential for accurate and efficient classification.
Specifically, we will delve into the workings of these approaches, analyse their
performance, and explore additional aspects such as image pre-processing
and augmentation techniques prior to Convolutional Neural Network (CNN)
based classification. Another article providing insights to the big potential
in CNNs, is the research article by Sevillano et al.[6]. The resulting CNN
model classifies 46 different types of pollen to 0.98 accuracy, demonstrating
higher accuracy than expert palynologists.
By examining and drawing upon the advancements made in the field of
pollen analysis and machine learning classification, the aim is to contribute
to the development of efficient and accurate methodologies for pollen clas-
sification.
In the upcoming chapters of this paper, we provide a structured overview
of our research. The ”Materials” section outlines the essential information
on data, types of images and types of pollen grains that were used in the
thesis. In the ”Materials’ Background” section, the reader is offered insight
into the statistical methods used along with related work. The subsequent
”Methods” section details the systematic process employed for analysis. The
following ”Results” section, unveils the outcomes of our research followed by
the ”Conclusion” which summarises our findings. Lastly the ”Discussion”
section discusses results and potential for future research in pollen automa-
tion.

6

2 Materials
In the Materials Section, a detailed description of the data that has been
used in this study along with the biological background is provided. The
text will inform what material the work has been done on and how these
pollen images have been prepared. Factual details about the pollen and the
images used in this study will be provided.

2.1 Pollen data
Pollen grains vary in size, shape, and texture, for instance, some of the
pollen grains are smooth, while others have a rough surface. Additionally,
the size of the pollen grains can also vary, with some being much larger
than others. To gain basic understanding in how to identify specific pollen
types the “Manual for Pollen Analysts” by Britt Berggren [3] was used. The
manual provides comprehensive guidance for pollen analysts, covers various
aspects of pollen analysis and microscopic identification of pollen grains.
There will be a focus on pollen often found in Sweden with the reason being
that we wanted to direct our attention to develop automation for pollen often
found in Sweden. In addition to that the study lays a focus on pollen that
are spherical or uniform in shape. Examples of pollen that are not included
in this are the Gymnosperms, Picea (spruce) and Pinus (pine) which have
“air bubbles” on either side of the main body meaning they are easier to
separate from other pollen types by eye, but also more difficult to automate.

2.1.1 Pollen preparations

Reference preparations were created by manually dipping a small clump of
coloured gelatine into a sample of known pollen types onto a microscopic
slide. This process ensured that the reference preparations contained a the
specific variety of pollen we were looking to classify.
A full microscopic slide of pollen is seen in Figure 1. To get a detailed
view of the pollen grains the slide is divided into smaller square segments,
systematically from top left to bottom right into and images are then taken.
The image segment can range from containing no pollen at all to more than
30 particles. The grains can lay on any place of an image and are often
cut in half between the different image segments and may therefore not
be possible to classify. For the training data we are provided with images
that contain a specific species of pollen. The first challenge is to segment
individual grains of each pollen type before training a neural network to
classify between them. A general inconvenience along with the cut pollen
grains, for segmenting individual pollen from the larger microscopic image is
that image slices often contain foreign particles along with pollen. In Figure
2 some examples how the image segments look like along with the properties

7

Figure 1: An example of a full microscopic slide containing pollen, with a
zoomed image of pollen grains to illustrate the contents.

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 2: A square grid of four example pollen images: (a) Salix, (b) Corylus,
(c) Quercus, (d) Betula.

8

and issues that needed to be addressed before segmentation.
Preparations may differ in staining colour and background and we want
to avoid our networks overfitting based on factors that may vary between
preparations. Images of mixture preparations of pollen are used in this study
to test the quality of the Network on a new set of images with a mixture of
pollen types. Since all the pollen on the mixed microscopic slide have the
same background and staining, these grains can be used to test the quality
of the network’s predictions on the different pollen species. The mixture
preparations consist of a combination of all pollen types the neural network
was trained on excluding Rumex.

2.1.2 Image details

The images were captured using a Teledyne Luminera Infinite 3 camera.
The scanning of the reference preparations was predominantly performed
directly to JPEG format. Some of the earliest preparations were converted
from BMP to JPEG.
For scanning, a 40x objective lens was used in conjunction with a 6-megapixel
camera. Determining the exact magnification is challenging as it depends on
the pixel sizes and the extent of image enlargement. However, when using
a 40x objective lens, a 10x eyepiece provides a magnification of 400x, which
can be considered the equivalent magnification.
To enhance visibility, the pollen grains were stained with Safranin. This
staining method was chosen to ensure clear visualisation of the pollen grains
and is an important consideration since there are other dyes available for
this purpose. An important aspect of the Safranin is that it does not colour
other debris that are found on the microscopic slide. Note that the colour
of the stained pollen fades over time which could lead to high variation in
colour between different preparations.
The photographs are taken at different depths, in addition images the mi-
croscope software generates a compilation image focused for all depths. The
compiled image provides a comprehensive view of the specimen under inves-
tigation, revealing details that may not be apparent in a single focal plane.
However this is not to say a single focus plane could be equally or more
revealing to identify type of pollen. Note that the orientation of the grains
in the images can vary, as pollen grains can lay in different ways on the mi-
croscope slide. The raw data consists of separated samples of each type of
pollen in different fields of focus along with the compiled image. In the fol-
lowing sections we will present and illustrate examples of how these images
look like, explore the images and present the data for each species.

9

2.1.3 Image data

Each microscopic slide had a different number of photos taken at microscopic
depths, the microscopic slides were of different sizes meaning some pollen
have more images. In Table 1 the number of slices which indicates how many
depths the pollen have been photographed and number of images segments
are included. Also the total number of pollen that were segmented from each
slice is provided, this number is the same for all slices since segmentation
is done on the compiled image and then cut on the same place for each
image. An important note is that extracted pollen is not the real number of
pollen grains in the microscopic slide, since there might be pollen that are
not segmented and some pollen grains are cut in half between the images.

Table 1: Data Description, Slices: Number of depths, Image Segments:
Number of segments the microscopic slide was divided into, Extracted
pollen: Total number of different pollen grains that were extracted

Pollen Type Slices Image Segments Extracted Pollen
Ulmus 14 594 4966
Salix 14 373 5995
Rumex 15 210 1009
Quercus 15 450 2283
Fraxinus 15 374 4216
Corylus 13 225 2665
Betula 13 225 1954
Alnus 28 225 553

2.2 Image examples
In the following sections, visual examples of the eight pollen types after
segmentation are provided for the compiled images and of images with a
single slice.

2.2.1 Compiled images

The images in Figure 3 are examples of pollen data that we have collected
after segmentation. Each image represents a different type of pollen and are
compiled versions of the images of all depths of focus.

10

(a) Alnus (b) Betula (c) Corylus (d) Fraxinus

(e) Quercus (f) Rumex (g) Salix (h) Ulmus

Figure 3: Eight compiled images of different pollen types: (a) Alnus, (b)
Betula, (c) Corylus, (d) Fraxinus, (e) Quercus, (f) Rumex, (g) Salix, (h)
Ulmus.

2.2.2 Sharpest slice images

Figure 4 are some new examples of single pollen grains after segmentation
and determining the sharpest version for the specific image segment. How
the sharpest images were found can be seen in the method section. Com-
pared to the compiled images the sharpest image slices generally have a
clearer visual texture of the surface of the grain, while the compiled image
often highlight the important features of the pollen such as the edges.

(a) Alnus (b) Betula (c) Corylus (d) Fraxinus

(e) Quercus (f) Rumex (g) Salix (h) Ulmus

Figure 4: Eight sharp Single-Slice images of different pollen types: (a) Alnus,
(b) Betula, (c) Corylus, (d) Fraxinus, (e) Quercus, (f) Rumex, (g) Salix, (h)
Ulmus.

11

3 Method’s background
The method’s background provides the reader with an overview of the statis-
tical methods relevant to pollen, segmentation and classification while also
taking a look at previous research on the topic. Understanding the statisti-
cal techniques is crucial for comprehending the subsequent discussions and
analysis presented in the methods used and presented in the results in this
paper.

3.1 Related work
With pollen analysis being an important task in ecological research, several
papers discussing methodologies for pollen grain classification have been
published in recent years. One of such being the overview article by Viertel
and König. [2] conducted a study of pattern recognition methodologies for
pollen grain image classification. However as discussed in Olsson et al. [4]
there are few papers that offer insight to the entire process of pollen analysis
for real world classification. In the paper they proposed an efficient and
robust approach for pollen analysis using deep learning. They performed
pollen grain segmentation using gradient masks and dilation with linear
structuring elements. They then used a CNN for pollen grain classification
based on the segmented images. Suggested work includes looking at pre-
processing of images and Augmentation of the images before CNN.
In the research article by Redondo et al. [5] pollen segmentation and meth-
ods for automatic classification were discussed. While the segmentation in
the article was done by manually cropping pollen there were still details and
discussion useful in this work, especially when it came to post-processing to
improve the segmented regions.
In an article by Sevillano et al.[6] the authors demonstrated the incredi-
ble potential for precise automatic classification of different pollen types
using CNNs. It’s noteworthy to mention that their images are from dark
field microscope in contrast to ours, and their dataset obviously features a
significantly larger number of classes.
In their study titled ”Automatic Pollen Classification and Segmentation Us-
ing U-Nets and Synthetic Data,” Boldeanu et al. [6] present an innovative
approach for pollen classification and segmentation utilising U-Net archi-
tectures. Their work highlights the potential of deep learning techniques
and synthetic data generation in the context of pollen analysis. However
for the purpose of this thesis, manually creating masks separating different
pollen types and junk was not a possibility due to the expertise manually
classifying pollen demands.
These proposed methodologies provided valuable insights, in the following
sections we will take a further look at the methods in the segmentation and
classification of the pollen grains.

12

3.1.1 Segmentation

The approach to Olsson et al. [4] segmentation process is discussed in the
following section. In Figure 5 a visualisation of the segmentation described
by Olsson is shown. Note that In Olsson’s paper the Segmentation process
is done using MATLAB’s Image Processing Toolbox. First, the greyscale
image (a) was thresholded (b) to obtain a binary image. Then, a distance
transform was applied to the thresholded image (c) to compute the distance
from each pixel to the nearest object boundary. Finally, a watershed al-
gorithm was used to generate a watershed mask (d) based on the distance
transformed image (c). These individual segmented Pollen in the watershed
mask are then extracted through small bounding boxes.

((a)) greyscale Image ((b)) Thresholded Image

((c)) Distance Transformed Image ((d)) Watershed Mask

Figure 5: Segmentation Process of Betula in Figure 2d

Although the methodology in Figure 5 does a fine job in extracting pollen
grains, it is not flawless. The chosen example image, Betula (d) in Figure 2 is
clean and only contains pollen grains and the resulting watershed segments
6 out of the 7 grains. However as discussed, each image slice may contain

13

particles or objects that are not pollen, and this segmentation process does
not work to separate the pollen from these foreign particles. This means the
segmentation will work on all objects that are seen in the image, including
the foreign objects.
A proposition to this limitation is to perform pre-processing of the pollen
image before thresholding the grey image. The idea behind this is to high-
light the pollen grains in the grey image so that the threshold image will
only contain the pollen grains.To execute this we will look at a few different
proposed methods and compare the threshold images. In Redondo et al. [5]
hole filling on the segmented images is performed to ensure the integrity and
continuity of segmented regions by addressing any interior holes. They also
execute an opening operation which is conducted using a 15x15 kernel, com-
bining erosion and dilation steps. This procedure refines the segmentation
outcome, removing residuals and enhancing the quality of the segmented
regions.

3.1.2 Classification

A widely used method for image classification, also used and presented in
both Viertel and König. [2] and Olsson et al. [4] with high precision is CNNs.
In [4] it is specifically discussed that the Deep learning method is favoured
due to the quality of results, especially when dealing with a large amount
of data to train the model. For some researchers the accuracy for the Deep
learning model have been found to be close to nearly perfect with Precision
of 0.98 and sometimes even higher. However even if the pollen grains can be
classified with high accuracy there are still many many problems that need
to be researched. Difficulties to create a benchmark set to validate methods
is described to be a problem, due to different image qualities and colouring
of pollen. Since pollen is often scanned through different microscopes and
stained using different methods, images of the same grain can vary greatly.
A real world challenge is to be able to accurately classify grains in different
conditions.
In the research article ”Precise automatic classification of 46 different pollen
types with convolutional neural networks” by Sevillano et al.[6] data aug-
mentation is done on the images before feeding them into the neural network
to handle the different conditions. The augmentation is said to ”provide a
wider variety of spatial features” which is done by procedures such as ro-
tating, cropping and reflecting. The dark field microscope images clearly
provide different conditions for classification to our microscopic images, vi-
sually the features such as texture and edges are more visible. Instead
comparing a model with grey images could be interesting for our case.

14

3.2 Image processing
In the following section the theory for the image processing used is provided.
The theory in this part for PCA and LDA is provided by the book “The
Elements of Statistical Learning”. [7].

3.2.1 Principal component analysis

Principal Component Analysis (PCA) is an unsupervised learning technique
used for dimensionality reduction. It is a way of finding the directions in
which the data varies the most, and projecting the data onto those direc-
tions to obtain a lower-dimensional representation that captures most of the
variance in the original data. The purpose of using PCA would be to find a
principle component acting as a manifold to separate the important features
of the pollen images, when creating a greyscale image.
Let X be an n×3 matrix, where each row represents the RGB colour values
of a pixel in the image, and let xi be the RGB colour vector of the i:th pixel.
We seek to find a one-dimensional representation of the colour information
of the image, which can be used to create a greyscale version of the image.
PCA can be performed on the matrix X to find the principal components
of the colour data. The covariance matrix of X can be denoted by S, which
is given by:

S =
1

n
XTX

where XT is the transpose of X. The eigenvectors of S represent the direc-
tions of maximal variance in the colour data, and the corresponding eigen-
values represent the amount of variance explained by each direction.
Let u1 be the eigenvector of S corresponding to the largest eigenvalue, which
represents the direction of maximal variance in the colour data. Each colour
vector xi can be projected onto the one-dimensional manifold defined by u1

by computing the dot product:

zi = xT
i u1

The resulting vector z represents the one-dimensional representation of the
colour information of the image.
To create a greyscale version of the image, the values of z can be mapped
to the range [0, 1]. This can be done by normalising the values of z using
the formula:

yi =
zi −min(z)

max(z)−min(z)

where yi represents the greyscale value of the i:th pixel in the image. This
normalisation ensures that the greyscale values are in the range [0, 1].

15

The vector y can be reshaped into an n×1 matrix Y , and the columns of Y
can be stacked to create a greyscale image matrix G. The resulting matrix
G represents the greyscale version of the original image.

3.2.2 Linear discriminant analysis

Linear Discriminant Analysis (LDA) is a supervised learning algorithm used
for classification problems. It is particularly useful when the classes in the
image are well-separated and the number of features is large relative to the
number of pixels. LDA is based on the idea of finding a linear combination
of the features that best separates the classes.
In the problem of separating pixels in an image into different classes based
on a given mask, we can define a binary response vector y ∈ 0, 1n that
contains the class labels for all pixels. Let yi ∈ 0, 1 denote the class label
for the i-th pixel, where yi = 1 if the pixel belongs to the desired class, and
yi = 0 otherwise. To do this we manually create training data by drawing
out a mask, marking each pollen on the image.
The goal of LDA is to find a separating plane that maximises the separation
between the pollen pixels and the background pixels. We can define this
plane using a linear function of the feature vector xi:

f(xi) = βTxi (1)

where β ∈ R3 is the vector of coefficients for the linear function.
To learn the coefficients β, we need to maximise the following criterion:

J(β) =
βTSBβ

βTSWβ
(2)

where SB is the between-class scatter matrix and SW is the within-class
scatter matrix. These matrices can be defined as:

SB =
1∑

i=0

Ni(x̄i − x̄)(x̄i − x̄)T (3)

SW =
1∑

i=0

∑
j:yj=i

(xj − x̄i)(xj − x̄i)
T (4)

Ni represents the count of pixels in each class i = 0, 1. For SB calculate
the overall centroid x̄ of all the feature vectors in the dataset. For each
class, calculate the difference between the class centroid x̄i and the overall
centroid x̄, and compute the outer product of this difference with itself.
For SW calculate the centroid x̄i for background and pollen, then calculate
the deviation of each pixel’s feature vector xj from its class centroid x̄i, and
compute the outer product of this deviation with itself.

16

Maximising J(β) with respect to β leads to the following solution:

β̂ = S−1
W (x̄1 − x̄0) (5)

Once we have learned the coefficients β̂, we can use them to compute the
distance of each pixel from the separating plane:

di = f(xi) = β̂Txi (6)

We can then use these distances to create a greyscale image that highlights
the regions of the original image that correspond to the desired class. Specif-
ically, we can assign each pixel a greyscale value based on its distance from
the separating plane. To get the grey image the following linear mapping is
used:

greyscale value =

0 if di < 0

255 if di > 1

255 · di otherwise
(7)

By finding a separating plane that maximises the separation between the two
classes, LDA highlights the regions of the original image that correspond to
the desired class. Since LDA is a supervised learning method, the purpose
will be to find a separating plane using training images, before using this
plane to create grey versions of all images.

3.3 Segmentation theory
In the following section the theory for the segmentation algorithms are pro-
vided. The purpose of the segmentation algorithm’s in pollen segmentation
is to separate the connected components of the foreground of the image. In
our case, we want to separate pollen grains that are connected or lay on top
or beneath other grains. We will compare the performance of the K-means
algorithm with the Watershed algorithm which is used in previous research.

3.3.1 Watershed algorithm

The Watershed algorithm is described by Gonzalez and Woods [8] in detail,
in this section the the basic interpretations are provided, a more detailed
description is provided in the book. Watershed is a mathematical image
segmentation technique, dividing an image into distinct regions based on
a priority map. The idea behind the watershed algorithm is to treat the
image as a topographical surface, where each pixel has a “height” value. The
Algorithm then identifies marked areas specified representing boundaries in
the image. The markers can be specified by labelling based on connected
components. The algorithm starts by identifying potential markers, which
are located at the local maxima of the intensity values in the greyscale

17

version of the image. These markers are used as starting points for the
watershed algorithm to segment the image. As a pre-processing step in the
watershed segmentation calculates the distance of each pixel in the image
to the nearest marker. It assigns a value to each pixel based on its distance
from the marker, where pixels closer to the marker have lower values, and
pixels farther away have higher values. This distance map is then used to
guide the watershed algorithm.
Foreground (FG) and background (BG) are two important concepts in wa-
tershed segmentation. The markers that are initially placed on the im-
age represent FG and BG regions. FG markers are used to indicate pixels
that are definite pollen grains, while BG markers represent regions that are
known to be the background or regions to be excluded from segmentation.
The values in the distance map are then used on the FG and BG of the
image to separate objects and mark regions to segment.

3.3.2 K-Means

The theory for K-means is provided by the book “The Elements of Statistical
Learning” [7]. K-means is a clustering algorithm used in machine learning
to identify clusters of similar data points in a given dataset.
With a set of n data points with 2-dimensional coordinates (image pixel loca-
tion) (x1, y1), (x2, y2), ..., (xn, yn) and a predefined number of clusters K, the
K-means algorithm partitions the data points into K clusters C1, C2, ..., CK ,
minimising the within-cluster sum of squares (WCSS) . WCSS is defined as
the sum of the squared Euclidean distances between each data point and its
assigned cluster centroid:

WCSS =
K∑
i=1

∑
(x,y)∈Ci

[(x− µx,i)
2 + (y − µy,i)

2] (8)

where µx,i and µy,i are the x and y coordinates of the centroid of cluster Ci,
respectively. The K-means algorithm looks to find the best fitting cluster
centroids µx,1, µy,1, µx,2, µy,2, ..., µx,K , µy,K that minimise WCSS.
A step-by-step description of the Algorithm:

1. Choose the number of clusters K that you want to identify in the
dataset.

2. Initialise K centroids randomly. These will be the initial cluster cen-
ters.

3. Assign each data point to the nearest centroid based on Euclidean
distance.

4. Update the cluster centroids, computing the mean of all the data
points assigned to each cluster.

18

5. Steps 3 and 4 are repeated until convergence, which is achieved when
the cluster assignments no longer changes.

Since the assignment of the centroids in randomly assigned in the second
step, the centers may not be the same, with different initialisations. Another
limitation is that k-means assumes data is spherical, however since this paper
limits pollen types to circular pollen this is ideal.

3.3.3 Gap statistic

When classifying on the validation dataset we can easily select the correct
number of clusters (pollen) seen on the image. However since the extraction
of pollen for the training data is done on an exceptionally large number of
images, a method to find the ideal number of clusters needs to be “auto-
mated”. One proposed method is discussed is to use the gap statistic. The
gap statistic is a method for estimating the optimal number of clusters in a
dataset and was introduced in Tibshirani et al. [9] . It works by comparing
the within-cluster dispersion of a clustering solution to that of a null ref-
erence distribution. The idea is that if the within-cluster dispersion of the
clustering solution is much smaller than that of the null distribution, then
the clustering solution is a good fit for the data, and the number of clusters
in the solution is optimal.
Letting X be a dataset with n observations in p dimensions, and let K be
the number of clusters to be considered. Let W (K) be the within-cluster
dispersion for a clustering solution with K clusters, and let W ∗(K) be the
corresponding dispersion for a null reference distribution.
The gap statistic is then defined as:

Gap(K) = log(W ∗(K))− log(W (K)) (9)
The null reference distribution is generated by simulating B sets of data
from a reference distribution with the same marginal distributions as X,
but with no correlation between the variables.
The within-cluster dispersion W (K) is calculated for the clustering solution
with K clusters. Which is done using a the k-means clustering. The within-
cluster dispersion is a measure of the total within-cluster variation of the
data, and can be calculated as the sum of the squared distances between
each observation and the center of its assigned cluster.
The dispersion W ∗(K) for the null reference distribution is calculated by
applying the same clustering algorithm to each of the B sets of simulated
data, and taking the average within-cluster dispersion over all B sets.
The optimal number of clusters K∗ is then chosen as the value of K that
maximises the gap statistic:

K∗ = arg,max
K

;Gap(K) (10)

19

The reasoning behind the gap statistic is that if the within-cluster dispersion
for a clustering solution with K clusters is much smaller than that of the
null reference distribution, then the clustering solution is likely overfitting
the data. On the other hand, if the within-cluster dispersion is similar to
that of the null reference distribution, then the clustering solution is not
capturing any meaningful structure in the data. The gap statistic provides
a way to balance these two considerations and select the optimal number of
clusters.

3.4 Artificial neural networks
This overview provides a concise introduction to the fundamental concepts
of artificial neural networks as described by Ian Goodfellow’s book ’Deep
Learning’ [10]. Topics covered include neurons, activation functions, weight
and bias updates using gradient descent, as well as techniques such as mo-
mentum and adaptive learning rates, before we dive into CNN:s which is
the method that will be used to solve the image classification task in the
paper. This is done since it is important to first understand the concept of
Artificial Neural Networks (ANN:s), of which CNN:s are a specific type.
ANN:s are a type of machine learning model inspired by biological neu-
ral networks, which are composed of interconnected neurons in the brain.
ANN:s consist of interconnected nodes, also known as neurons, that are or-
ganised into different layers. Each neuron receives input signals from other
neurons or from the input data, processes the input using a non-linear ac-
tivation function, and produces an output signal, which is passed to other
neurons in the network or to the output layer.
The input to an ANN is denoted by x, and the output by y. The goal
of an ANN is to learn a function f(x) that maps input data to an output
that minimises a cost function J(θ). During training, the ANN adjusts its
parameters, denoted by θ, to minimise the difference between the predicted
output ŷ and the true output y associated with the input data.
ANN:s are commonly used for supervised learning tasks, where the training
data consists of labelled examples, i.e., input data along with their corre-
sponding output values. This allows the ANN to learn to associate input
patterns with their corresponding outputs, and to generalise to new input
patterns.
Once an ANN has been trained on labeled data, it can be used to make
predictions on new, unlabelled data. This is done by applying the learned
function to the input data to produce an output.
The simplest form of an ANN is the single-layer perceptron, which con-
sists of a single layer of neurons that compute a linear combination of the
input features and produce a binary output. However, ANN:s with mul-
tiple layers, called deep neural networks, can learn complex functions and
can achieve state of the art performances on a wide range of tasks, such as

20

Figure 6: Simple Feed-Forward Neural Network Structure. Taken from [16]

image recognition discussed in this paper.
In Figure 6 we can see the structure of a simple Feed-Forward Neural Net-
work composed of an input layer, one hidden layers, and an output layer.
The input layer receives the input data, while the hidden layers perform
feature extraction and nonlinear transformations on the input data using
activation functions. The output layer produces the final output of the net-
work.
CNN:s are a type of ANN that have been particularly successful in image
recognition tasks. They consist of multiple layers of neurons that perform
convolutions and pooling operations on the input data to extract features,
followed by one or more fully connected layers that produce the final out-
put. By using convolutional layers, CNNs can learn local and translation-
invariant features in images, and by using pooling layers, they can reduce
the dimensionality of the input data and make the network more computa-
tionally efficient. Before looking further into the detail of the convolution
and pooling steps, we take a further look at the Architecture of the neurons
in the ANN.

3.4.1 Neurons in ANN:s

In the artificial neuron model depicted in Figure 7, there are several steps
that take place in order to produce an output value. First, the inputs
x1, x2, ..., xn are multiplied by their respective weights w1j , w2j , ..., wnj . The
resulting values are then summed together, along with a bias term b, to pro-
duce the weighted sum netj (depicted as “transfer function” in the figure).

21

Figure 7: Schematic diagram of an artificial neuron model. Image taken
from [17]

This weighted sum is then passed through an activation function, which
produces the output value y.
From a scientific perspective, artificial neurons model the behaviour of bi-
ological neurons by computing a weighted sum of their inputs, applying an
activation function to the result, and then outputting a signal. Mathemati-
cally this can be expressed as y = f(

∑n
i=1wixi + b), where y is the output,

f is the activation function, wi are the weights, xi are the inputs, b is the
bias term, and

∑n
i=1wixi + b is the weighted sum. The choice of activation

function can have a significant impact on the performance of the artificial
neuron model, and different activation functions may be more suitable for
different types of tasks. The choice of activation function will be discussed
further under the section for Convolutional Neural Networks.
To find the weights and biases the iterative optimisation algorithm gradient
descent is used. The goal of training is to find the optimal weights and
biases for the neural network that minimise the loss function. The weights
and biases are initialised with random values and updated iteratively using
the gradient descent algorithm.
The gradient descent process involves computing the gradient of the loss
function with respect to the weights and biases, and then adjusting the
values of the weights and biases in the opposite direction of the gradient
to minimise the loss function. The update rule for the weight W at each
iteration t is given by:

Wt+1 = Wt − α∇WL(Wt) (11)

where α is the learning rate, which controls the step size of the weight
update, ∇WL(Wt) is the gradient of the loss function with respect to the
weight, and L(Wt) is the loss function evaluated at the current weight.
The gradient descent process can be slow and may converge to suboptimal
solutions. This is often addressed by momentum and adaptive learning rates.

22

Momentum involves adding a fraction γ of the previous weight update to
the current update, which helps to speed up the convergence process and
overcome local minima. The update rule for the weight using momentum at
iteration t is given by:

Vt = γVt−1 + (1− γ)∇WL(Wt) Wt+1 = Wt − αVt (12)
where Vt is the velocity of the weight update at iteration t.
In this paper we use the Adaptive learning rates, Adam (Adaptive Moment
Estimation) to achieve faster convergence and better generalisation. Adam
uses estimates of the first and second moments of the gradients to adaptively
adjust the learning rate for each weight. The update rule for the weight using
Adam at iteration t is given by:

mt = β1mt−1 + (1− β1)∇WL(Wt) (13)
vt = β2vt−1 + (1− β2)(∇WL(Wt))

2 (14)

m̂t =
mt

1− βt
1

(15)

v̂t =
vt

1− βt
2

(16)

Wt+1 = Wt − α
m̂t√
v̂t + ϵ

(17)

where mt and vt are the estimates of the first and second moments of the
gradients at iteration t, β1 and β2 are the decay rates for the first and second
moments, m̂t and v̂t are bias-corrected estimates of the moments, and ϵ is a
small constant to prevent division by zero.
Training the neural network involves running multiple epochs, where each
epoch involves passing the training data through the network, computing
the loss function, and updating the weights and biases using the gradient
descent algorithm. The weights and biases are updated using the average
gradient across a randomly sampled batch of the data.
The most commonly used cost functions for ANN:s include mean squared
error (MSE), binary cross-entropy, and categorical cross-entropy, which are
used for regression and classification tasks, respectively. The choice of cost
function depends on the specific application and type of output. Cross-
Entropy is preferred over other cost functions for classification tasks because
it penalises high confidence in the incorrect output class, and since this paper
focuses on a classification problem cross-entropy will be looked at closer.
The binary cross-entropy cost function is used for binary classification prob-
lems. It is given by:

J(θ) = − 1

m

m∑
i=1

y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)) (18)

23

where m is the number of training examples, y(i) is the true output for the
i-th example, and ŷ(i) is the predicted output for that example.
The categorical cross-entropy cost function is used for multiple-class classi-
fication problems. It is given by:

J(θ) = − 1

m

m∑
i=1

K∑
j=1

y
(i)
j log(ŷ

(i)
j) (19)

where K is the number of classes, y(i)j is the true output for the i-th example
and j-th class, and ŷ

(i)
j is the predicted output for that example and class.

3.4.2 Convolutional neural networks

Convolutional Neural Networks (CNN) has emerged as a powerful and widely
used deep learning approach for image classification tasks. They are specif-
ically designed to process images and extract meaningful features automat-
ically, making it highly effective for object recognition.
The key motivation behind using CNN for pollen image classification is the
ability to capture local patterns in an image. CNNs employ convolutional
layers that apply filters to input images, allowing them to learn and extract
relevant features hierarchically. These features are then combined through
pooling layers to reduce spatial dimensions and further abstract the infor-
mation. Finally, fully connected layers use these extracted features to make
class predictions as in ANN:s.
The theory behind CNNs is based on Goodfellow et al. in the book “Deep
Learning” [10], which provides a comprehensive understanding of the prin-
ciples of CNN. In the following sections, we will delve into the details of
CNN architecture, including convolutional layers, pooling layers, and fully
connected layers.

3.4.3 Structure

The image provided in Figure 8 shows a schematic diagram of a standard
CNN. This neural network is used in image recognition tasks due to its
ability to effectively handle spatial data. In the example the first layer is
a convolutional layer, which applies a set of filters to the input image to
extract features. These filters are learned during the training phase of the
network. The output from the convolutional layer is then passed through a
non-linear activation function, such as ReLU (rectified linear unit), which
introduces non-linearity into the model. This is followed by a pooling layer,
which reduces the dimensionality of the feature maps by performing down-
sampling. Common type of pooling operation include average pooling and
max pooling, with the latter being used and discussed further down in this
paper.

24

Figure 8: Schematic diagram Convolution neural network. Image taken
from [18]

The CNN takes in images, in the form of a 3-dimensional array with the
shape of CHW, where C represents the number of colour channels, H rep-
resents the height of the image, and W represents the width of the image.
The number of colour channels can vary depending on the type of image. For
example, greyscale images have only one colour channel, while RGB colour
images have three colour channels (red, green, and blue). Since the images
of the Pollen are in RGB we can use all three channels, however since when
typically identifying Pollen we would not look at the colour we will also try
transforming the images to greyscale and compare the results.
The height and width of the image also vary depending on the resolution of
the image. For example, an image with a resolution of 256x256 pixels would
have a height and width of 256. If the images that are fed into the network
are of different sizes the images need to be resized to a fixed size in order
for the CNN to process these images.This ensures that all images have the
same dimensions, allowing the network to be trained on a consistent set of
inputs.
Once the images are pre-processed and formatted as a CHW array, they can
be fed into the CNN for feature extraction and classification. The CNN then
applies a set of filters to the input image, learns features and patterns from
the image data, and outputs a prediction based on the learned features.
The final layers of the CNN consist of fully connected layers, which map the
extracted features to the output classes in the way discussed in the section
about ANN.

3.4.4 Choice of Activation functions

In this section we discuss and motivate the choice of activation function
for the hidden layers and the output layer of our neural network. For the

25

hidden layers of our network, we have chosen to use the Rectified Linear
Unit (ReLU) activation function. ReLU has several advantages over other
activation functions, including computational efficiency and the ability to
introduce sparsity into the model. This is particularly useful for image
classification , where the input data can be highly non-linear and complex.
Compared to other activation functions such as sigmoid and tanh, ReLU
is computationally more efficient since it involves a simple comparison op-
eration and does not require expensive exponentials or trigonometric func-
tions. ReLU also introduces sparsity to the model, reducing the number
of parameters and improve the model’s generalisation performance. This is
because ReLU sets all negative inputs to 0, effectively removing them from
the model’s computation. The ReLU function is defined as:

f(x) = max(0, x) (20)

where x is the input to the function, and max(0, x) returns the maximum
of 0 and x.
One key advantage of ReLU is that it is a piecewise linear function. When
x is positive, f(x) is simply equal to x. When x is negative, f(x) is equal
to 0. This allows the model to efficiently focus its attention on the most
relevant parts of the input data, while ignoring the less important features.
For the output layer of our network, the Softmax activation function is used.
Softmax is commonly used for multi-class classification tasks, where the goal
is to assign a label to an input data point from a set of possible labels.
Mathematically, the Softmax function is defined as:

fj(z) =
ezj∑K
k=1 e

zk
(21)

where z is the input to the function, and K is the number of possible labels.
The Softmax function produces a probability distribution over the possible
labels, with each element of the output vector representing the probability
of the input belonging to that label.
Softmax is a useful choice for the output layer because it ensures that the
output probabilities sum to 1, making it easier to interpret the output of the
network. Additionally, Softmax can handle multi-class classification tasks
with a large number of classes, which can be difficult to handle with other
activation functions. It does however have a couple of weaknesses one of
such is when classifying “new data”. For the trained model a fixed number
of pollen classes are used, however when later using the trained model to
identify and classify pollen we may encounter new pollen species or even
objects that are not pollen at all. In these cases, the Softmax output may
still assign high probabilities to some of the known classes, even if the sample
is not truly a member of any of those classes. This may lead to incorrect
predictions and poor performance of the classifier.

26

3.4.5 Convolution layers

Figure 9: Convolutional operation. Image taken from [19]

Figure [19] depicts the convolution operation with no padding and no strides.
It demonstrates the process of applying a 3x3 kernel filter to a 5x5 input
image, computing the dot product between the overlapping pixels of the
input image and the kernel filter, and generating a 3x3 output image.
The convolutional layer is a fundamental component of the CNN. It is used
to extract meaningful features from raw input data by convolving a set of
learnable filters over the input and passing these on further into the network.
The convolutional operation is defined as follows:
Let I be an input image represented as a n × n matrix, and let K be a
filter or kernel represented as a k × k matrix. The convolution of I and K
is denoted as I ∗K, and is defined as follows:

(I ∗K)i,j =
∑

a = 1k
k∑

b=1

Ii+a−1,j+b−1Ka,b (22)

In this definition, i and j represent the spatial location of a pixel in the
output feature map, and a and b represent the spatial location of a pixel in
the input image.
This operation slides the filter over the input image, performing an element-
wise multiplication at each location and summing the results to produce
a single output value for each spatial location. By repeating this process
for each location in the output feature map, the convolutional operation

27

produces a new image-like representation of the input data that captures
relevant spatial features.
Mathematically, the convolution operation can be defined as follows:
Given an input image or signal X with dimensions H × W × C (height
× width × number of channels) and a filter or kernel K with dimensions
K × K × C (kernel size × kernel size × number of input channels), the
output Y can be computed as follows:

Y (i, j, k) = b(k) +
K∑
p=1

K∑
q=1

C∑
c=1

X(p, q, c) ·K(i− p+ 1, j − q + 1, c, k) (23)

where i and j represent the spatial position in the output feature map, k
represents the channel, b(k) represents the bias term for the k-th channel,
and p and q are the spatial indices of the filter. The summation is taken
over all input channels and filter indices.
In this equation, the bias term b(k) is added to the output of each filter to
introduce a degree of freedom in the model. The parameters of the filter are
learned through the backpropagation algorithm during the training process.

3.4.6 Max pooling

Figure 10: Max Pooling operation. Image taken from [20]

Max pooling is used to reduce the spatial dimensions of the feature maps.
The operation works by partitioning the feature map into a set of non-
overlapping rectangular regions or pooling windows, and then replacing the
values in each window with the maximum value.
In Figure 10, we can see an example of max pooling with a pooling window
of size 2x2 and a stride of 2. The pooling window is applied to each non-
overlapping 2x2 block of the input feature map, and the maximum value in

28

each block is selected to produce the output feature map. In this example,
the input feature map has a size of 4x4, and the max pooling operation
reduces its size to 2x2.
Max pooling is preferred over average pooling in this paper since it preserve
the most important features in the input data. This is because the maximum
value in each pooling window represents the strongest activation in that
region, which often is a good indicator of the presence of relevant features
in images. In contrast, average pooling computes the average value in each
window, which can dilute the importance of strong activations and reduce
the ability of the network to distinguish between important and unimportant
features.
Another advantage of max pooling is that it can help to reduce overfitting
by introducing a form of spatial invariance. This is because the max pooling
operation selects the most salient features in each region, regardless of their
precise location within the pooling window. This can help to reduce the
sensitivity of the network to small translations or distortions in the input
data, which can be a common source of overfitting.

3.4.7 Fully connected layers

Fully connected layers, often called dense layers, are the traditional artificial
neural network (ANN) layers that are used in a CNN. The fully connected
layers are placed at the end of the network, after the convolutional and
pooling layers, to process the features extracted from the input image.
After the last pooling layer a flattening layer is applied, which reshapes the
3D feature maps into a 1D vector. This flattened vector is then passed
through the fully connected layers, which are responsible for learning the
non-linear relationships between the extracted features and the targeted
pollen classes.
The connections in a fully connected layer are dense, meaning each neuron
in the previous layer is connected to every neuron in the current layer.
Finally, the last fully connected layer in the CNN is a dense output layer with
a softmax activation function, which produces the probability distribution
over the different classes.

3.4.8 Image augmentation

A technique for enhancing the performance of deep learning models in im-
age recognition tasks is image augmentation. It involves applying various
transformations to the original images to generate new training samples,
thereby exposing the model to a broader range of variations and improving
its ability to generalise to unseen data.
In our implementation, we have utilised several image augmentation tech-
niques, Specifically:

29

• Rescaling: By rescaling the pixel values of the images dividing them
by a constant value. This normalisation helps to bring the pixel values
into a range between 0 and 1, facilitating the model’s learning process
without being affected by differences in the original pixel value scales
across images.

• Horizontal flipping: By mirroring the images horizontally, intro-
ducing variations in the orientation of objects in the image. This aids
the model in learning to recognise pollen particles from different view-
points.

• Vertical flipping: By flipping the images vertically, introducing vari-
ations in the position of pollen particles in the image.

• Rotation: Rotating the images, introducing variations in the orienta-
tion of pollen particles. This helps the model learn to recognise pollen
particles with different rotations.

• Validation data: Validation split, for model evaluation during train-
ing. This validation data is used to assess the model’s performance
and make decisions on model selection.

The specific choice of these augmentations is motivated by their potential
to improve the classification performance of the deep learning model for
the microscope images of the pollen. Rescaling normalises the pixel values,
horizontal and vertical flipping introduces variations in object orientation
and position, and rotation helps the model learn to recognise pollen particles
with different orientations. The use of validation data allows for model
evaluation and selection during training, knowing features can be translated
to new images.

3.4.9 Model evaluation

In this section about model evaluation we discuss how our CNN models are
evaluated using the accuracy and loss metrics, also discussing how to avoid
overfitting our model.
Accuracy is a metric for evaluating the performance of a CNN. It is cal-
culated as the percentage of correctly classified instances out of the total
instances in the test set. The mathematical formula for accuracy is given
by:

Accuracy =
Number of correctly classified instances

Total number of instances (24)

Loss quantifies the error in the model’s predictions during training. It is
computed based on the predicted outputs and the actual outputs using the

30

cross-entropy loss which is suited for multi-class classification,The formula
for cross-entropy loss is given by:

Cross-Entropy Loss = −
∑

y log(ŷ) (25)

where y is a dummy vector representing the true class label, and ŷ is the
predicted probability distribution over all classes.
Overfitting occurs when a CNN becomes overly complex and memorises
the training data, leading to poor generalisation to new, unseen data. One
common way to detect overfitting is through the analysis of accuracy and
loss curves during training.
During training, the accuracy and loss are computed for both the training
set and the validation set at each epoch. The accuracy and loss curves
are plotted over the epochs to visualise the performance of the model. If
the accuracy of the training set keeps increasing while the accuracy of the
validation set starts to degrade or remains stagnant, it may be an indicator
of overfitting. Similarly, if the loss of the training set keeps decreasing while
the loss of the validation set starts to increase or remains stagnant, it may
also indicate overfitting.

4 Methods
This section, will provide a detailed description of the implementation of
the tools and techniques mentioned in the Method’s Background section.
The section provides the methods used of the two main parts of the thesis:
segmentation and classification. The focus will lie on explaining the specific
steps undertaken in our methodology, the work flow. Additionally infor-
mation about programming language, the code, packages and selection of
different hyper parameters will be included in this Section. Presentation and
conclusions made during the work will be left and presented in the following
sections.

4.1 Image exploration
The first steps taken was an explorative view of the images before performing
segmentation. The numerical RGB values (Red, Green, Blue pixel values)
were extracted from the images to analyse our images statistically, giving
a deeper understanding of the visual content and properties of the images.
By taking the RGB values through a slice on the y-plane of an image we
can obtain the colour information for that particular row in the image. This
can be useful to analyse how the colour values change for our pollen grains
in contrast to other objects that may appear and the general background
of the image, this is done in Figure 11. The results show that when the
pollen appear on the image the value of the red is significantly higher than

31

for the green and blue pixel values, while other object that are darker and
the background have similar pixel values for all three colour channels.

Figure 11: RGB Pixel values from a Slice through y-axis Corylus image in
Figure 2. First going through the black circle on the bottom left and then
two Corylus pollen on the bottom right of the picture

From Figure 11 it can be seen how the colour values changes when the image
pixels are on a pollen grain compared to some foreign dark object. Since
the red value is increased and larger than the blue and green colour pixels
compared to the black object where the colour values are at a similar level to
each other, a potential solution could be to create a grey image by finding
the difference between the red pixel values to one of the other 2 colours
(which we call “Red difference”).

Figure 12: 3D plot of the color values of the Corylus image in 2. The plot
shows the RGB values of each pixel in the image, where the X, Y, and Z
axes represent the red, green, and blue colour channels, respectively.

The Red difference method is one way to create a grey image using dis-

32

crimination, another suggestion is drawing a separating plane motivated by
Figure 12. The figure indicates that there is a possibility of finding ideal
planes, that separate pollen from other background features.

4.2 Segmentation
The segmentation process and all programming was conducted in R [11]
along with graphs, functions and tools from tidyverse [12]. Firstly we com-
pare the red difference method, the unsupervised learning method PCA
to extract the important features with a separating plane for each image
and Supervised learning LDA by drawing masks for pollen. The following
steps include thresholding, post-processing and then comparing the water-
shed algorithm and K-means algorithm before using the favoured method
to extract. The imager package in R [13], was used for used for the image
processing, thresholding, and Watershed segmentation. Once extracted the
smaller images containing only a single pollen particle, are added to a library
for each pollen type.

4.2.1 Image processing

The image processing step included pre-processing, thresholding and post-
processing. In the pre-processing step want to find a function y = f(r, g, b)
that maximises the contrast between pollen and non-pollen.
As mentioned in the method’s background the images contain pollen parti-
cles on a microscopic slide along with other potential foreign particles. This
creates a challenge in the segmentation process. To reduce the noise of other
particles, and enhance the quality of our images, we perform pre-processing
of the images. In previous work, a common practise when extracting individ-
ual pollen from the larger images containing multiple pollen was to convert
the colour image to greyscale using method similar to the “greyscale” func-
tion in the imager package [13] in R. The function works by taking an RGB
image and converting it into a single-channel greyscale image, by calculating
the luminance of each pixel in the RGB image using the following formula:

luminance = 0.2126× red + 0.7152× green + 0.0722× blue (26)

These are standard coefficients used for converting an RGB image to greyscale,
as they take into account the relative luminance of each colour channel. An
obstacle with the extraction is that the segmentation images may contain
’dirt’ or other objects that are not pollen. The issue with this simple method
of converting to greyscale is that it is designed to capture as much of the
image as possible, which is not what we are looking for. To highlight the
pollen particles in the images, a noise free grey image is desired, with a
white background with darker regions appearing where the pollen grains are
located.

33

To find the best pre-processing algorithm an extensive trial with a number of
images from each pollen type were compared for the LDA algorithm which
was implemented manually in R, PCA using the ’prcomp’ function in R
and the red difference were tested and compared against one another. After
testing, the red difference was selected to create the grey images. To reduce
noise and improve image clarity, we applied the ’isoblur’ function with a
radius of 10. This function implemented an isotropic blur, smoothing the
image by averaging the pixel values in the local neighbourhood. By doing
so, we achieved a reduction in unwanted noise from differences in colour on
the inside of each pollen grain, resulting in cleaner images.
After converting each image to greyscale versions, thresholding was applied
to the images to create a binary version. This was done using the ’threshold’
function in the imager package. This means we find the threshold value K
such that we classify pollen if f(r, g, b) < K, and non-pollen if f(r, g, b) > K.
To address any gaps or holes within the segmented objects, we utilised the
’fill’ function with a structuring element size of 15. This function performed
a morphological operation called closing, which consisted of dilation followed
by erosion. By applying this operation, small gaps or holes were filled in the
suspected pollen regions, ensuring a more complete representation of their
boundaries.
Furthermore, we employed the ’clean’ function with a structuring element
size of 3 to eliminate small isolated objects in the image. This function per-
formed a morphological operation known as opening, which involved erosion
followed by dilation. By applying this process, we effectively removed small
undesired elements, resulting in a more accurate representation of the target
pollen grains with less outside noise.

4.2.2 Pollen extraction

With the binary image, the next step is to identify each individual grain
and create a bounding box. Thereafter using the location of the bounding
box to extract all image slices of the pollen grain and then saving these
as JPEG images in the corresponding folder for the extracted pollen type.
Since the pollen particles are not necessarily nicely spread out and none
overlapping a simple connected components separation of the binary images
alone is not sufficient for accurate segmentation since this would lead to
a large number of pollen grains in the same bounding box. To address
this challenge, exploration of alternative approaches using watershed and
k-means were manually tested to extract individual grains.
The ’watershed’ function in imager was used to create the watershed mask.
To create the watershed an image containing the “sure foreground” was cre-
ated. This was done by a ’distance_transform’ function in R that calculates
the distance to the closest dark area (pixel value 0) from each white pixel,
pollen particle. This is done to determine areas that definitely are individ-

34

ual pollen particles. After this step each region from the sure foreground is
coloured using the ’label’ function performing connected component analysis
to find individual grains. The watershed algorithm is then applied to de-
termine the unknown regions between the sure foreground and background
to determine which grain the unknown region belongs to, before creating
bounding boxes for each individual grain.
After the trial of the watershed algorithm the results were visually com-
pared to the k-means extraction. The k-means algorithm was done using
the ’kmeans’ function. To determine the appropriate number of clusters for
the k-means algorithm in an automated manner, we utilised the clusGap()
function available in the ‘cluster‘ package [14]. The clusGap() function cal-
culates the maximum gap statistic, which quantifies the optimal number of
clusters based on the within-cluster dispersion. This value was then used
in the k argument of the ’kmeans’ function. To avoid convergence to local
minima and increase the likelihood of finding the optimal solution we set
the ’nstart’ to a high value of 200 to spread out the starting points of the
Algorithm.
Along with a visual comparison a larger study was conducted to determine
which of the two methods had the best rate of successfully segmented pollen
images. A number of diverse images from different types of pollen grains
were selected and the total number of grains were manually counted. Using
the two different segmentation techniques, the segmented bounding boxes of
the images were then manually inspected and deemed either to be “correctly”
or “incorrectly” segmented. The incorrectly segmented images, failed due to
not actually containing a grain, containing multiple grains or only containing
a partial part of a grain, while the correctly segmented images were images
containing one full grain.
After the testing the k-means extraction method was chosen and executed
on all the images, the extracted images were visually inspected to ensure
higher quality of pollen pictures for the network training and to remove the
occasional faulty extracted images. Since the pollen grains often were placed
on the edge of the images, many pollen halves were segmented. This lead to
a high number of images needing to be manually deleted. After the manual
handling of the images a total of 23600 different pollen grains remained.

4.3 Sharpest image
There is a large choice of image depths to feed into the Network, however
since some of the depths of the image may be blurry they might not be
appropriate or capture the necessary features of the grain. One choice is
to feed the compiled images, another option could be to find the sharpest
focus depth and use these for training. While the compiled image would
capture the overall features in all depths of the image, some of the depths
might be out of focus and could distract from the important characteristics

35

of the grains. Which of the depths that is sharpest depends on aspects such
as where the pollen lays, in direction and this differs largely. So we need
to compare the set of different depths of the microscopic images and find
the sharpest versions. To do this we implement an algorithm that uses the
concept of image sharpness with image gradients as described by Gonzalez
and Woods [8]. The gradient of an image is a measure of the rate of change
of the image intensity at each pixel, and the general thought is that the
image with the largest differences between pixel values is the sharpest. The
sharpness is therefore estimated by the average gradient magnitude. The
resulting set of images consists of one image chosen from all depths, for each
grain.

4.4 Classification
In this part the process of the build of the neural networks are presented,
along with the selected hyper-parameters of our CNN models. The prepara-
tion of the models presenting input shapes and batch sizes is included, along
with different used augmentation and which images were passed through and
trained on.The models were trained and evaluated using the Keras package
[15] in R.

4.4.1 Image preparation

The classification task consisted of 6 different models, with 3 different sets
of images for training for both a grey and colour version of the images. The
reason behind training both grey and colour versions of the model is mainly
to compare how much the colour of the pollen grains effect the quality of the
network, but also to compare how the grey and colour models perform on the
mixed preparations to see if the colour plays a factor can when classifying
on images from another microscopic slide. All models were trained with the
same set conditions and parameters, the only difference is that the grey and
colour models have a different input shape.
The first set of the 3 different set of images were the compiled images, where
all slices from the different depths of the image were compiled to one, the
second set was with all images with the slice that was deemed the sharpest
and the third set was a mixture of the compiled and the 2 sharpest images.
This means that the 2 first models contain the same amount of images for
training while the third mixture model contains 3 times as many as the
other two. To clarify, the mixture model trains on images of the same grain
multiple times, and does not treat each image as a 3-dimensional vector
for each grain. To avoid the same pollen grain being classified multiple
times in the validation split, the validation images from the mixture images
were replaced with the validation split for the sharpest images. To avoid
the same pollen grain being included in both the training and validation

36

data, the validation split was made at the bottom of the dataset and not at
random.
To enhance the diversity of the training data and improve the model’s abil-
ity to generalise, data augmentation techniques were applied. The ’im-
age_data_generator’ function from the Keras library was utilised for this
purpose. The images were rescaled by dividing the pixel values by 255 to
normalise them. Additionally, horizontal and vertical flipping, as well as
rotation of up to 45 degrees, were applied to the images. A validation split
of 0.2 was used to create a separate validation dataset.

4.4.2 Model structure

The first layer in the model was a convolutional layer with 16 filters, a kernel
size of 3x3, and a ReLU activation function. The input shape was set to
match the target image size of 128x128 pixels with RGB colour channels for
the colour image models and a 1 dimensional colour channel for the grey
image models. Subsequently, a max pooling layer with a pool size of 2x2
was added to downsample the feature maps. The output was then flattened
to be fed into a dense layer with 16 units and ReLU activation. Finally, the
output layer consisted of a dense layer with a softmax activation function,
which produced the predicted probabilities for the different classes. The
model was compiled using the categorical cross-entropy loss function, and
the SGD optimiser.
The hyper-parameters were set to the same values for all models to get
a fair comparison for the performance of the different input images. The
learning rate for the SGD optimiser was set to 0.001, and a decay rate of
1e-6 was applied to reduce the learning rate over time. The momentum
parameter was set to 0.9, which accelerated the optimisation process. The
chosen hyper-parameters are relatively standard and were used to optimise
the model’s training process.
The constructed model was trained using the prepared training dataset and
validated using the validation dataset. The training process involved multi-
ple epochs, with each epoch consisting of a number of steps defined by the
ratio of the training samples to the batch size which was set to 32 images.
For consistency 50 epochs were performed for all models to iteratively up-
date the model’s parameters and improve its performance. After the training
process was completed, the models’ performances were assessed by plotting
the training and validation accuracy and loss curves and the final validation
loss and accuracy. These curves provided insights into the model’s learning
progress and potential overfitting or underfitting issues.

37

4.4.3 Assessing Models on mixed preparations

To assess the model performance, a further trial is done by classifying pollen
that are found in the same mixture preparation. The preparation contains
all types found for the trained models with Rumex the exception. The pur-
pose is to test how well the model performs when the grains are in the
same setting, using the same colouring with the same background. Good
performance would indicate the model does not rely too much on the prepa-
ration’s of each pollen type. Segmentation was done using the same process
as for the preparations with a single type of pollen. After segmentation,
the images were classified manually before using the model to perform clas-
sification. The results were then presented in a Confusion matrix. Since
manual classification of pollen types is difficult and tedious work, counting
was limited to the compiled images. In total there were 227 pollen grain
samples.

4.4.4 Highest probability image class

After training the mixed model, another method of classifying each grain of
pollen was tested. The thought was to utilise all the different image depths
of the pollen grains when classifying instead of just using the sharpest image.
However since the different pollen grains have different amounts of image
depths the 7 sharpest images and the compiled image of all depths are used.
Firstly the softmax probabilities for each of the 8 set of images are deter-
mined. Secondly the image depth with the maximum probability are selected
for each of the pollen grains giving a probability for each class of each pollen
grain. The result are then presented in a table presenting the accuracy, in
a plot demonstrating the amount of times each set of images provided the
largest probability and the amount for each pollen type.
This method is also done for mixed preparations. Since the mixed prepara-
tions contains all depths, the softmax probabilities were instead determined
for all depths before finding the maximum probability.

5 Results
The results of this study are presented in two main sections: image seg-
mentation and classification using CNN models. In the image segmentation
section, we present the outcomes of the different image processing methods
and of the different segmentation algorithms. These results are presented in
visual comparisons.
In the classification section, we present the results of our CNN-based clas-
sification model. Reporting and comparing the accuracy and loss to assess
the performance of the CNN models in classifying the segmented images
into the different pollen types.

38

5.1 Image segmentation
In this section, we present the results of different image processing methods.
Beginning by providing visual representations of the PCA, LDA and the
“Red difference” grey and binary mask images. This is then followed by the
presented masks generated by the K-means Segmentation and Watershed
Segmentation.
The results of the image segmentation analysis provide insights into the ef-
fectiveness of different image processing methods in segmenting the pollen
images and generating masks for further analysis. These findings are dis-
cussed in the subsequent sections to draw conclusions and then decide which
methods to use to “cut out” individual pollen to use as data for our Classi-
fication part of the project.

5.1.1 Image processing

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 13: A grid of four Binary images after thresholding grey images from
principal component analysis (PCA): (a) Salix, (b) Corylus, (c) Quercus,
(d) Betula.

As mentioned the purpose of pre-processing the images is to highlight the
pollen grains before thresholding to get the grey image. To determine which
of the 3 methods is most successful in this task a large number of images were
compared using the different methods. In this section the images provided

39

earlier in Figure 2 are compared for PCA in Figure 13, for LDA in Figure
14 and lastly for the Red difference in Figure 15.
Since PCA is an unsupervised learning method, each image gets its own
hyperplane to determine the important features of the image. This results
in Figure 13 grey images that highlight almost all features in the image,
including foreign objects.

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 14: A grid of four Binary images after thresholding grey images from
linear discriminant analysis (LDA): (a) Salix, (b) Corylus, (c) Quercus, (d)
Betula.

For the LDA in Figure 14 it was determined after drawing masks to discrim-
inate pollen grains from other objects and on a large number of images that
the best separating hyperplane which is used for the LDA is determined by:

di = f(xi) = −0.16xi1 − 0.79xi2 − 0.58xi3 (27)

However as seen in the figure, the foreign objects are not removed. In
conclusion neither the PCA or LDA method successfully segregate pollen
grains from other objects in the example images. However the overall result
from all the sample images used to trial the pre-processing, the LDA did
perform better overall.
The clear best performing method for pre-processing was seen in Figure 15.
It was largely successful in removing objects that were not pollen grains, as
seen in the figures. It successfully removes all objects in the example images
and almost all of the objects in the overall trial.

40

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 15: A grid of four Binary images after thresholding grey images from
the Red difference: (a) Salix, (b) Corylus, (c) Quercus, (d) Betula.

5.1.2 Segmentation results

Since the Red Difference was largely successfully in segmenting the pollen
grains, it was the selected method chosen for the pre-processing. Moving on
the next task was to create bounding boxes for each individual pollen grain,
to cut each one out for the classification of pollen type. In some cases it
could have been enough to conduct a connected component analysis, which
separates and colours all pixels with binary value 1 which are connected.
However in many cases and as seen for the examples of Salix, Corylus there
are grains that lay next or over each other. Therefore the next comparison
will be between to methods that aim to find each individual grain.

41

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 16: A grid of four masks for watershed images: (a) Salix, (b) Corylus,
(c) Quercus, (d) Betula.

The mask for the watershed algorithm is provided Figure 16. The resulting
masks were found to be inconsistent, occasionally working flawlessly and
at other instances resulted in colouring all over in places with no pollen.
However the method did work well finding individual grains dividing grains
next to each other successfully.
The resulting masks in K-means seen in Figure 17 provide good results while
occasionally splitting grains. Overall this method was chosen due to largely
successfully dividing grains and correctly classifying the number of grains
with gap statistic.

42

(a) Salix (b) Corylus

(c) Quercus (d) Betula

Figure 17: A grid of four masks for k-means clustering: (a) Salix, (b) Cory-
lus, (c) Quercus, (d) Betula.

The results shown in Table 2 compare the performance of the k-means and
watershed algorithms for segmenting pollen grains. In total there were 128
pollen grains which could possibly be segmented. Based on the segmen-
tation results, it is evident that the k-means algorithm outperforms the
watershed algorithm in terms of correctly segmenting the pollen grains and
also detecting the grains. While the k-means algorithm does in fact clas-
sify pollen grains incorrectly more often than the watershed algorithm, the
overall number of correctly classified pollen easily makes up for this.

43

Table 2: Segmented Pollen Grains Comparison, giving the total number
of pollen available to segment, how many of them that were segmented
correctly and incorrectly.

Algorithm Total Pollen Correct Segmentation Incorrect Segmentation
k-means 128 113 13

Watershed 128 95 12

5.2 Classification
In this section, we present the application of our CNN models to the seg-
mented pollen images. The results of our classification performance are
presented with a Confusion matrix and the accuracy and loss curves, pro-
viding insights into the model’s performance during training and validation.
The evaluation metrics provide measures of the accuracy and loss of our
classification model. Finally the compiled image models are used to classify
the pollen grains in the mixed preparations using accuracy.

5.2.1 Convolutional neural networks

Firstly the final loss and accuracy values of the 6 different neural networks
are provided in Table 3. It can be concluded the models with mixed images
have the highest accuracy and lower loss values than both the sharp and
compiled images alone. It can also be concluded that the accuracy for the
colour image networks is significantly higher than the grey images for all
three image types.

Table 3: Results of CNN models trained on compiled, sharp and mixed
images with data augmentation, displayed with validation accuracy and loss.

Training Image Type Val. Acc. Val. Loss
Compiled Grey 0.913 0.334

Colour 0.958 0.174
Sharp Grey 0.904 0.311

Colour 0.947 0.139
Mixed Grey 0.925 0.233

Colour 0.987 0.042

The loss and accuracy curves for the mixed neural network are seen in Figure
18, while the same plots for the sharp and focused (compiled) trained models
can be found in the appendix in Figure 20 and Figure 21. The validation
loss and accuracy for these follow the training values and don’t show any
indications of over or underfitting.

44

(a) Mixed Network Grey) (b) Mixed Network (Col)

Figure 18: Accuracy & Loss Training Plots for the Mixed Images with sharp
validation images CNN

Table 4: Confusion Matrix for the Mixed Colour Model with Sharp valida-
tion images

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 86 6 1 0 0 0 1 0
Betula 1 382 0 0 0 0 1 0
Corylus 18 0 529 0 0 0 16 0
Fraxinus 0 0 0 843 0 0 2 5
Quercus 1 2 0 0 456 1 0 0
Rumex 0 0 0 0 0 200 0 0
Salix 4 0 3 0 0 0 1171 0
Ulmus 0 0 0 0 0 0 0 988

The Confusion matrices providing the correct class in the column, against
the predicted classes in the rows are provided in Table 4 for the colour mixed
model and Table 5 for the grey mixed model. The Confusion matrices for
the other 6 models are provided in the appendix.

45

Table 5: Confusion Matrix for the Mixed Grey Model with Sharp validation
images

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 54 19 0 1 0 0 6 0
Betula 14 352 30 0 1 0 3 0
Corylus 4 7 427 0 0 0 17 0
Fraxinus 0 0 5 837 9 0 2 26
Quercus 0 1 0 2 439 0 0 67
Rumex 0 0 0 1 0 201 3 0
Salix 38 11 71 1 0 0 1160 0
Ulmus 0 0 0 1 7 0 0 900

Table 6: Confusion Matrix for the Mixed Model when using 7 sharpest
images and compiled images

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 96 1 0 0 0 0 0 0
Betula 0 386 0 0 0 0 0 0
Corylus 13 0 527 0 0 0 0 0
Fraxinus 0 0 0 843 0 0 0 0
Quercus 0 3 0 0 456 0 0 0
Rumex 0 0 0 0 0 201 0 0
Salix 1 0 6 0 0 0 1191 0
Ulmus 0 0 0 0 0 0 0 993

Using the 7 sharpest images and the compiled images gave 0.995 accuracy
and the Confusion Matrix can be seen in Table 6. After each set of images
set, determine the softmax probabilities for each pollen grain the maximum
probability across the sets are chosen for each image. In Figure 19 the
number of grains determined by each image set is presented for each type of
pollen. In total most Pollen grains were determined by the Focused images,
however some pollen types were often classified by the sharpest image or
less sharp images.

46

Figure 19: Number of instances where the Highest Probability was found
for each set of Images. Colours show the count for each for each pollen type
by sets of images.

5.2.2 Mixed preparations result

Table 7: Confusion Matrix for Mixture Preparation for Colour Compiled
Model.

Alnus Betula Corylus Fraxinus Quercus Salix Ulmus
Alnus 30 0 1 1 2 0 2
Betula 0 15 1 0 0 0 0
Corylus 1 0 32 0 2 0 1
Fraxinus 1 0 0 48 1 18 1
Quercus 2 0 0 2 20 1 3

Salix 0 1 0 3 0 25 1
Ulmus 2 1 0 0 2 2 5

47

Table 8: Accuracy of compiled model for mixture preparation

Model Accuracy
Compiled Grey 0.65

Compiled Colour 0.77
Mixed Colour 0.81

Table 8 shows the accuracy for the models on the mixture preparations.
The colour focused shows an accuracy of 0.77 for the colour model with the
compiled images and 0.65 for the grey. The Confusion matrix for the colour
compiled image model is found in Table 7 and for the grey and colour model
in Table 9

Table 9: Confusion Matrix for Mixture Preparation for Grey Compiled
Model.

Alnus Betula Corylus Fraxinus Quercus Salix Ulmus
Alnus 21 4 2 2 2 6 2
Betula 2 7 1 1 0 2 1
Corylus 0 0 31 0 0 1 1
Fraxinus 4 1 0 38 6 6 2
Quercus 7 2 0 5 15 1 2

Salix 0 1 0 7 0 30 0
Ulmus 2 2 0 1 4 0 5

The Mixed model gave accuracy 0.81 and the Confusion matrix is shown
in Table 15 in the appendix. When using all image depths the accuracy is
increased to 0.85, the Confusion matrix is shown in Table 10.

Table 10: Confusion Matrix for the Mixture Preparation using all image
Depths for the Mixed Model.

Alnus Betula Corylus Fraxinus Quercus Salix Ulmus
Alnus 31 0 0 0 0 1 3
Betula 0 11 0 0 0 0 1
Corylus 0 4 33 0 0 0 0
Fraxinus 0 0 0 52 0 11 1
Quercus 2 1 1 0 26 1 2

Salix 3 1 0 2 0 33 1
Ulmus 0 0 0 0 0 0 5

48

6 Conclusion
The first step of the image segmentation process, was pre-processing which
aimed to extract individual pollen grains from the scanned images using
image processing techniques. The effectiveness of different methods was
evaluated based on their ability to highlight the pollen grains and remove
unwanted objects from the images.
Three different pre-processing algorithms were compared: Principal Compo-
nent Analysis, Linear Discriminant Analysis and the Red Difference method.
The resulting grey images from each method were then thresholded to create
binary masks.
The visual comparison of the pre-processed images revealed that PCA and
LDA methods were unable to effectively separate the pollen grains from
other objects in the images. These methods highlighted almost all features in
the images, including foreign objects, which limited their utility in accurate
segmentation.
In contrast, the Red Difference method showed promising results. It suc-
cessfully enhanced the visibility of pollen grains while effectively removing
unwanted objects from the images. The binary masks generated from the
Red Difference method demonstrated clear boundaries around the pollen
grains, indicating successful segmentation. After viewing the image masks
it was clear no further comparison on a larger scale was needed, since the
Red Difference was highly successful and clearly outperformed the others.
After the creation of a binary mask, segmentation using the watershed and
k-means approaches was tested. The watershed algorithm was successful in
separating individual pollen grains by identifying the sure foreground and
applying connected component analysis. The resulting watershed masks
were well segmented, capturing individual pollen grains effectively. It did
however fail occasionally and testing on a larger scale of images lead to a
few individual pollen grains included in the same image.
The k-means algorithm also captured and segmented individual pollen grains
well. Additionally since the k-means algorithm only assigns pixels that have
been highlighted in the binary mask as pollen particles, the borders of each
assigned pollen grain were well captured in general, with a few grains be-
ing split. Overall the K-means algorithm had a higher success-rate in the
segmentation process.
Based on these findings, the Red Difference pre-processing method, com-
bined with either the k-means segmentation algorithms, proved to be the
most effective approach for accurately extracting individual pollen grains
from the scanned images. The resulting segmented images served as high-
quality data for the subsequent classification task.
From the results obtained from the CNN models trained on compiled, sharp,
and mixed images, several conclusions can be drawn. The inclusion of colour
in the image inputs significantly improves the accuracy of the classification

49

models compared to using greyscale images. This suggests that the artifi-
cial colouring clearly plays a role in accurately identifying and classifying
different types of pollen grains. Since the colouring of pollen grains may be
different between preparations, this is not a desired feature for classification
as classification on new preparations or on pollen traps could have bias to-
ward the colouring. The results found for the mixture preparations show
significantly lower accuracy, indicating that different preparations play a
role in the classification of different pollen types.
Among the different image types, the models trained on mixed images, which
consist of a combination of compiled and sharp images, achieved the highest
accuracy and the lowest loss values. This indicates that combining different
image preparations leads to a more robust and effective classification model.
However it does need to be noted that the larger amount of data included in
the training of this data most likely is a factor that improves the performance
of this model.
Furthermore, the models trained on compiled and sharpest images alone
achieved slightly lower accuracy and higher loss values compared to the
mixed image types, but still demonstrating high accuracy and relatively low
loss values. This suggests that selecting the sharpest image slice from each
depth or simply compiling the images provides sufficient information for very
accurate pollen grain classification. When studying the Confusion matrices
it can be seen that the classification rate for most classes is very high with
one exception, the Alnus pollen class. The reasoning behind this is likely
not only due to a smaller sample of images than the other classes, but also
due to the images being slightly more blurry with less visible features than
for the other pollen types.
When classifying over multiple image groups the classification ability of the
mixed model increased significantly. When using more image depths more
information about the pollen grain can be captured. A concrete example is
that the compiled images and the sharpest images may focus on the stronger
features like the edges of pollen grains while features such as the texture of
pollen not being in focus, when this in some cases can be even more impor-
tant when classifying pollen types. The result of using more image groups
when classifying was encouraging and indicates that even when images are
not in best focus they can useful for classification. Most pollen types were
heavily classified by the compiled images especially when it came to the
Ulmus species, however for the Salix pollen many grains had the maximum
probability for some of the less sharp images. An hypothesis of the reason
behind this is that one of the strongest features to the Salix pollen is the
texture of the grain which is often more visible when the image is less sharp,
while the Ulmus pollen has a clear edge which is often highlighted in the
sharper or compiled images.
Studying the results for the mixture preparations the grey model did not
perform as well as expected, decreasing significantly performance wise com-

50

pared to the validation images, similarly to the colour model. Since the
colours of preparations can vary largely, finding the features on a single
colour channel was thought to be able to maintain the classification abil-
ity better than a colour model which could potentially overfit based on the
colour of the grains. However this was not the case with the colour model
still outperforming the grey model. The Ulmus pollen had very low classi-
fication in the mixture preparations, indicating the features captured from
training were not enough to properly identify Ulmus in a different prepara-
tion.

7 Discussion
In this section, we discuss the results obtained in the thesis, compare to pre-
vious research and highlight potential areas for improvement. Additionally,
we analyse the effectiveness of different methods used.
In terms of segmentation, we trialed a similar approach to Olsson et al. [4]
using the watershed algorithm on a binary image. However, a limitation in
the segmentation process was identified, as it does not effectively separate
pollen grains from other foreign particles in the images. To address this,
pre-processing techniques to highlight the pollen grains in the images be-
fore thresholding. We compared different pre-processing methods, including
the “Red difference” approach, unsupervised learning using PCA, and su-
pervised learning using LDA. The “Red difference” method, which involved
calculating the difference between the red pixel values and the other two
colors, showed promising results in highlighting the pollen grains.
Regarding the segmentation algorithm itself, we compared the performance
of the watershed algorithm with the K-means clustering algorithm. While
the watershed algorithm effectively separated connected pollen grains, the
K-means algorithm showed a high potential in segmenting individual grains.
And since the watershed function in imager did struggle to find the correct
edges, the k-means algorithm was preferred.
For the classification task, CNNs were used, which have been widely used in
image classification tasks due to their high precision and accuracy. However,
acknowledging the challenges associated with creating a suitable dataset for
validation, as images of the same grain can vary greatly due to different
imaging and staining methods. We compared the use of image augmenta-
tion techniques, including horizontal and vertical flipping and rotation, to
enhance the diversity of the training data. Additionally, examining the per-
formance of CNNs using both grey images and colour images to assess the
impact of colour on classification accuracy. Furthermore, we compared the
performance of CNN models trained on different sets of images, including
compiled images, images with the sharpest focus depth, and a mixture of
both. These comparisons aimed to evaluate the robustness and generalis-

51

ability of the CNN models in real-world scenarios with pollen classification
from the traps.
There are several potential areas for improvement in the field of pollen anal-
ysis. Pre-processing and segmentation techniques can be further explored
to enhance the accuracy and efficiency of pollen grain detection. One po-
tential idea is to mark individual pixels with the colour specific to pollen
grains, rather than considering the entire grain as a region of interest. This
approach may help in distinguishing pollen grains from other objects, espe-
cially when darker pixels within the pollen introduce difficulties in separating
them from surrounding debris.
Exploring alternative clustering methods, such as Gaussian Mixture Models
(GMM) or density-based clustering, could offer new insights into pollen grain
grouping and identification. Additionally, the adoption of the Hough circle
transform could be beneficial for checking the circularity of segmented pollen
grains, ensuring they are not cut in half or distorted.
Another potential avenue for research is the usage of a U-Net architecture [6],
which would combine the segmentation and classification tasks. By train-
ing the neural network with masks, the U-Net structure could accurately
locate and segment pollen grains. However, it is crucial to acknowledge
the challenge of manually annotating and classifying a significant amount
of training data for this approach, also needing the supervision of a pollen
classification expert to correctly classify the mixed preparations needed for
this solution. Nevertheless, leveraging the power of neural networks could
lead to improved pollen grain segmentation and analysis.
With an accuracy of 0.85 the mixed model using all image depths could be
used to classify a mixture of pollen grains. However based on the classifi-
cation results being much more accurate for the validation images and the
using the colour images outperforming the greyscale images, future research
and work with an automation process of pollen classification would benefit
from including images from multiple preparations. This would ensure that
even with differences in colour of grains the model would still be able to clas-
sify the grain type, avoiding colour being a factor in decision making. There
could also be potentially benefit from using different methods of staining.
Furthermore, considering priors based on seasonal variations in pollen char-
acteristics could enhance the accuracy and reliability of the analysis. By
incorporating prior knowledge about pollen distributions during different
seasons, the classification and segmentation algorithms can be tailored to
specific timeframes, leading to more robust results.

52

References

Related Work & Pollen Articles

[1] Britannica Contributors. Pollen. Encyclopedia Britannica. https:
//www.britannica.com/science/pollen.

[2] Philipp Viertel and Markus König. Pattern recognition methodologies
for pollen grain image classification: a survey. Machine Vision and
Applications, 33(18), 2022.

[3] Britt Berggren. Handledning För Pollenanalytiker. Palmgrens Tryckeri
AB, Uppsala, Sweden, 2003. English translation: ”Manual for Pollen
Analysts”.

[4] Ola Olsson, Melanie Karlsson, Anna S. Persson, Henrik G. Smith,
Vidula Varadarajan, Johanna Yourstone, and Martin Stjernman. Effi-
cient, automated and robust pollen analysis using deep learning. Meth-
ods in Ecology and Evolution, 12, 2021.

[5] Rafael Redondo, Gloria Bueno, François Chung, Rodrigo Nava, J. Víc-
tor Marcos, Gabriel Cristóbal, Tomás Rodríguez, Amelia Gonzalez-
Porto, Cristina Pardo, Oscar Déniz, and B. Escalante-Ramírez. Pollen
segmentation and feature evaluation for automatic classification in bright-
field microscopy. Computers and Electronics in Agriculture, 110:56–69,
2015.

[6] Victor Sevillano, Katherine Holt, and Jose L. Aznarte. Precise au-
tomatic classification of 46 different pollen types with convolutional
neural networks. PLoS ONE, 15(6):e0229751, 2020.

[7] Mihai Boldeanu, Mónica González-Alonso, Horia Cucu, Corneliu Burileanu,
Jose Maria Maya-Manzano, and Jeroen Titus Maria Buters. Automatic
pollen classification and segmentation using u-nets and synthetic data.
IEEE Access, 10:73675–73684, 2022.

Books

[8] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer Science & Business Media, 2009.

53

https://www.britannica.com/science/pollen
https://www.britannica.com/science/pollen

[9] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Prentice Hall, Upper Saddle River, NJ, 2008.

[10] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating
the number of clusters in a data set via the gap statistic. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 63(2):411–
423, 2001.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. [Online; accessed 27-March-2023].

R Packages

[12] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2020.

[13] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino
McGowan, Romain François, Garrett Grolemund, Alex Hayes, Lionel
Henry, Jim Hester, Max Kuhn, Thomas Lin Pedersen, Evan Miller,
Stephan Milton Bache, Kirill Müller, Jeroen Ooms, David Robinson,
Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan,
Claus Wilke, Kara Woo, and Hiroaki Yutani. Welcome to the tidyverse.
Journal of Open Source Software, 4(43):1686, 2019.

[14] Simon Barthelme and David Tschumperlé. imager: Image Processing
Library Based on ’CImg’, 2021. R package version 1.4.4.

[15] Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. cluster: ”Finding Groups in Data”: Cluster Analysis Extended
Rousseeuw et al., 2019. R package version 2.1.2.

[16] J.J. Allaire, F. Chollet, S. Van Der Walt, T. Atkins, K. Ushey, Y. Tang,
M. Kuhn, C.E. McCulloch, D. Vaughan, M. Schwager, et al. keras: R
Interface to ’Keras’. RStudio, 2021. R package version 2.6.0.

Images

[17] Maurice44. Colored neural network. https://upload.wikimedia.
org/wikipedia/commons/4/46/Colored_neural_network.svg, 2019.
[Online; accessed 27-March-2023].

54

https://upload.wikimedia.org/wikipedia/commons/4/46/Colored_neural_network.svg
https://upload.wikimedia.org/wikipedia/commons/4/46/Colored_neural_network.svg

[18] Looxid Labs. Artificial neuron model. https://upload.wikimedia.
org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png,
2021. [Online; accessed 27-March-2023].

[19] Adrian Rosales. Convolutional network, 2014. Accessed: April 12,
2023.

[20] Vincent Dumoulin. Convolution arithmetic - no padding no strides,
2016. Accessed: April 12, 2023.

[21] Adrian Rosales. Max pooling, 2014. Accessed: April 12, 2023.

55

https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png
https://upload.wikimedia.org/wikipedia/commons/6/60/ArtificialNeuronModel_english.png

8 Appendix

(a) Sharp Network (Grey) (b) Sharp Network (Col)

Figure 20: Accuracy & Loss Training Plots for the Sharp Images CNN

(a) Focused Network (Grey) (b) Focused Network (Col)

Figure 21: Accuracy & Loss Training Plots for the Focused Images CNN

56

Table 11: Confusion Matrix for the Sharp Colour Model

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 83 1 8 0 0 0 0 0
Betula 5 388 3 0 0 0 0 0
Corylus 22 1 518 0 0 0 4 0
Fraxinus 0 0 0 840 0 0 1 2
Quercus 0 0 0 0 456 0 0 0
Rumex 0 0 0 0 0 158 6 1
Salix 0 0 4 0 0 0 1051 0
Ulmus 0 0 0 0 1 0 0 977

Table 12: Confusion Matrix for the Sharp Grey Model

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 26 14 0 1 0 0 49 0
Betula 34 354 29 0 1 0 11 0
Corylus 1 9 428 2 0 0 68 1
Fraxinus 0 1 5 792 0 0 2 11
Quercus 0 1 0 28 425 0 0 29
Rumex 0 0 2 6 0 200 0 0
Salix 26 4 31 0 0 3 1132 1
Ulmus 0 0 1 11 13 0 0 934

57

Table 13: Confusion Matrix for the Compiled Colour Model

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 48 4 2 0 0 0 54 0
Betula 1 383 0 0 0 0 0 1
Corylus 7 1 492 0 0 0 34 5
Fraxinus 0 0 0 837 0 0 0 6
Quercus 0 1 0 0 454 0 0 2
Rumex 0 0 0 0 0 180 6 0
Salix 54 0 34 0 0 0 1184 0
Ulmus 0 1 5 6 2 0 0 942

Table 14: Confusion Matrix for the Compiled Grey Model

Alnus Betula Corylus Fraxinus Quercus Rumex Salix Ulmus
Alnus 51 16 0 1 0 0 46 0
Betula 8 358 41 1 1 0 7 0
Corylus 5 8 451 4 0 0 39 1
Fraxinus 0 0 1 778 0 2 0 6
Quercus 0 1 0 50 428 0 0 28
Rumex 0 0 0 3 0 186 10 3
Salix 46 7 39 0 0 0 1143 0
Ulmus 0 0 1 6 75 0 0 916

Table 15: Confusion Matrix for the Mixture Preparation using the Mixed
Model.

Alnus Betula Corylus Fraxinus Quercus Salix Ulmus
Alnus 27 0 0 0 0 0 4
Betula 1 15 3 0 0 0 1
Corylus 0 0 29 0 0 0 0
Fraxinus 0 0 0 50 0 14 0
Quercus 8 1 2 0 25 1 2

Salix 0 1 0 4 1 30 0
Ulmus 0 0 0 0 0 1 6

58

