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Abstract

The present thesis studies the behaviour of the ruin probability of a
portfolio of insurable risks in the framework of the Cramér-Lundberg
model. As is well-known, this behaviour is different depending on
whether the severity distribution of the individual portfolio risks can
be considered light-tailed or heavy-tailed. In particular, the overall
behaviour of the ruin probability of the portfolio is to a large extent
influenced by the presence of heavy-tailed claims. This is confirmed
through a detailed numerical study, which estimates the ruin proba-
bility of a portfolio of insurable risks of a stylised insurance company.
Various measures available to the insurance company to mitigate the
impact of this influence by e.g. purchasing excess-of-loss reinsurance
or increasing premiums are then explored. The overall conclusion is
that careful capital and risk management of the portfolio is called for
in the presence of heavy-tailed risks in order to avoid ruin.
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1 Introduction

The foundations of risk theory was laid by the actuary Filip Lundberg in his PhD thesis from
1903, Lundberg [18], in which he introduced a simple, yet very useful, model capable of describing
the basic dynamics of a homogeneous insurance portfolio. As mentioned in Mikosch [20] p. 3, risk
theory is a synonym for non-life insurance mathematics and, in its most simple form, concerned
with the amount of premium to be charged by the insurance company in order to avoid ruin.
Lundberg realised that the Poisson process is an indispensable tool for modelling the arrival of
claims in the portfolio, but it was then Harald Cramér, the distinguished mathematician and
actuary, who developed and made Lundberg’s ideas mathematically precise, see e.g. Cramér [5]
and Cramér [6]. The resulting model of these efforts are known as the Cramér-Lundberg model,
also known as the collective risk model, or the compound Poisson model, for the modelling of
the total claim amount process, S(t), experienced by the insurance company:

N(#)

S(t) = X,

where N(t) is a homogeneous Poisson process and {X,,,n > 1} is a sequence of i.i.d. of random
variables independent of N(¢). The surplus of the insurance company over time, U(¢), is then
modelled according to

U(t) =u+p(t) — S(t), (1.1)

where, u is the amount of initial capital, p(t) is the premium charged and S(t) is as above. In
this setting, the aim of ruin theory is to study the behaviour of the probability of the surplus
becoming negative, that is,

Y(u) = PHU(t) <0, t>0})

for an initial value u.

Since the initial works reference above a vast literature on ruin theory has developed generalising
and extending the Cramér-Lundberg model in various directions. Important contributions are
e.g. Feller [10], Grandell [12] and Rolski et al [22]. An extension of (1.1) analysing the impact
on ¥ (u) in the presence of general investment strategies can e.g. be found in Hult and Lindskog
[14].

The purpose of this thesis is to investigate the behaviour of the ruin probability of a portfolio of
risks insured by an insurance company. It will be seen that the behaviour of the ruin probability
is significantly different depending on whether the probability distribution of the insured risks can
be classified as, colloquially, light-tailed or heavy-tailed. In the former instance, it is possible to
obtain an upper bound on the ruin probability, which decays exponentially fast to null, whereas
in the latter instance this is not possible, see for example Embrechts et al [8] or Rolski et al
[22]. Consequently, the behaviour of the ruin probability is to a large extent influenced by the
presence of risks whose probability distribution can be considered heavy-tailed. In addition, ruin
in the presence of heavy-tailed risks is due to the single large claim affecting the portfolio and
essentially wiping out the surplus in one single stroke, see e.g. Embrechts and Veraverbeke [7]
for more information on this interpretation.

There exists no single definition by which the probability distribution can be classified as light-
tailed or heavy-tailed, see e.g. Embrechts et al [8] or Mikosch [20]. Instead, various notions exist
which try to capture the properties it should possess if it is heavy-tailed, see e.g. Goldie and
Klippelberg [11] for further reference. These properties could, for example, be



e For a heavy-tailed distribution, its right tail decreases more slowly than any exponential
tail.

e The mean excess function of a heavy-tailed distribution is unbounded.
e Heavy tails can not be ”diversified” away in the sense of the Central Limit Theorem.

e For a heavy-tailed distribution, the tail of the distribution of S, = X; + --- + X, is
determined by the tail of the distribution of M,, = max(Xy,...,X,). This implies that S,
is large due to one of the X; being large.

e For a heavy-tailed distribution, the conditional probability of a very large loss given the
occurrence of an already large loss tends to 1 as the threshold increases. In the light-tailed
case, this probability is smaller than 1.

The above considerations are treated in Chapter 2. In the same chapter, two brief sections
on regular variation and subexponential distributions are included, both illustrating properties
desirable in a heavy-tailed distribution. The subexponential class of distribution forms a partic-
ularly useful class of distributions, from the moderately heavy-tailed lognormal distribution, to
more heavy-tailed ones, such as the Pareto or Burr distributions.

Chapter 3 constitutes a very brief introduction to ruin theory and presents two classical theorems:
the Lundberg bound and Cramér’s ruin bound, which are both concerned with the light-tailed
case. Here, light-tailed should be understood as the existence of the moment generating function
of the severity distribution. Theorem 3.5 states the asymptotic behaviour of the ruin probability
in the heavy-tailed case. As already alluded to, this behaviour is significantly different from the
light-tailed case.

Chapter 4 is an application of the ideas presented in the two previous chapters in the context of
modelling the ruin probability of a portfolio of three lines of business; each with its own severity
distribution. The three distributions are, respectively: Exponential, Exp(v), Gamma, T'(«, 8),
and Pareto, Pa(a,0). The reason for including the Exponential distribution is that, in some
sense, it constitutes a reference distribution when determining whether a severity distribution
is light-tailed or heavy-tailed. The Gamma and Pareto distributions are standard choices for
modelling claims severity in non-life insurance mathematics, with the former being considered
light-tailed and the latter heavy-tailed. If not evident earlier, this chapter hopefully demonstrates
clearly the dangers of heavy-tailed severity distributions and the implications on risk management
as well as capital management.

The following parameterisation of the severity distributions have been used throughout the text:

1. Exponential distribution. The probability density function is given by
fx(@;7) =~e” 7, v > 0.

2. Gamma distribution. The probability density function is given by

1
fX(I7a7B) = 71’0‘7167'817 aaﬂ > 0.

I'(B)
3. Pareto distribution. The probability density function is given by
aoc®
fX(LU;Oé,O') = W, o, 0 > 0.



Unless otherwise stated, v =1, « =5, 8 =2, @ = 4 and 0 = 4. The arrival rate of the Poisson
process has been assumed to be equal 1 throughout the text, i.e. A = 1. The usual and often
difficult problem of parameter estimation is not treated here. The parameter values in this thesis
have simply been chosen to illustrate the key concepts.

2 Light-tailed or Heavy-tailed

This chapter begins with a introduction to the topic of classifying a severity distribution as
light-tailed or heavy-tailed. Although there exists no general procedure for this, it is possible to
think of a number of properties a severity distribution should possess depending on whether it
is light-tailed or heavy-tailed. In the first section, it is suggested that one such property is to
study the right tail of the severity distribution and investigate if it decays faster to null than
the right tail of the exponential distribution. If it decays faster, then it is considered light-
tailed and vice-versa. Another such property might that the mean excess function, er(u), see
Definition 2.1, tends to infinity if the severity distribution is heavy-railed, i.e. ep(u) — oo; if
not, it could be considered light-tailed. Yet another way of determining whether the a severity
distribution is light-tailed or heavy-tailed could be to see if its mean excess function is bounded
or unbounded. In the first instance, it could be considered light-tailed; in the second, heavy-
tailed. The concept of regular variation and, more specifically, a distribution function whose
right tail is regularly varying is then studied. These classes of functions exhibit properties that
a heavy-tailed distribution intuitively have, especially when studying S, = X; + --- + X, for
which the approximation given by the Central Limit Theorem is inadequate in the right tail of
the distribution, i.e. for P(S, > x) when z is large. This is a consequence of the closure property
of both families of distributions, which states that if {X,,,n > 1} is an i.i.d. sample of regularly
varying or subexponential distributions, then S5, = X; + --- + X, is also regularly varying
or subexponential. Although distribution functions, whose right tail exhibits regular variation,
exhibit some properties desirable in a heavy-tailed distribution and could be one alternative for
classification, it would be too restrictive to define a severity distribution as heavy-tailed as it
excludes typical distribution functions thought of as heavy-tailed. The class of subexponential
distribution functions is then introduced and is sufficiently flexible to include common choices
for severity distribution considered as, or understood to be, heavy-tailed such as the log-normal,
Pareto, Burr and Weibull (7 < 1) distributions.

2.1 Exponential Distribution as Reference
Let the right tail of the distribution, F(z), be defined as:

F(z) = P(X > ).

One way to define a light-tailed distribution could be to stipulate a sufficiently fast decaying
right tail of the severity distribution. The obvious question then immediately arises - faster than
what? One idea is to use the exponential distribution as a reference. For example, if

F
lim sup (z) < oo, for some A >0, (2.1)

T €T

F could be called light-tailed, and if

lim inf (mj >0, forall\>0, (2.2)

z—00 e~ A



F could be called heavy-tailed.

In Example 2.1, it is shown that both the Exponential and Gamma distributions are considered
light-tailed, whereas the Pareto distribution is considered heavy-tailed.

Example 2.1.
1. Exponential distribution, F(x) = e~7. By choosing v = X in (2.1) above, it is seen

e "
=1< 0.

lim sup
T—r 00

2. Gamma distribution, F(z) = f;o %t@—le—ﬁt dt. An application of I’'Hospital’s rule yields
that _
F(z)

e~

lim sup < oo for A< p.

r—00

3. Pareto distribution, F(z) = (Z£2) ~“. For sufficiently large z, the influence of o on F(z) is
negligible, i.e. F(z) ~ x~ and it suffices to study =% /e~**. Now, since the exponential
function decays faster to 0 than any polynomial, for any choice of A and «, (2.2) yields

F
timinf 2 5 o,
r—00 e~ T

Another way of determining whether or not a distribution could be considered light-tailed or
heavy-tailed could be by studying its mean excess function.

Definition 2.1 (Mean excess function, p. 86 in Mikosch [20]). Let X be a non-negative random
variable with finite mean and distribution function Fx(x). Let further z; = inf{x : Fx(x) > 0}
and x,, = sup{x : Fx(x) < 1}. Then, the mean excess function is defined as

er(u) =E(X —ulX >u), u€ (z,2)-

If limy, o0 ep(u) = 0o, then Fx(x) is heavy-tailed; if lim, . er(u) < 0o, then Fx(z) is light-
tailed.

For the purpose of the present text, the interval (x;,,) is understood to be [0,00). In an
insurance context, ep(u) can be interpreted as the expected claims cost in the unlimited layer
(u,00). A convenient way of expressing (2.1) is in the form

1 o
er) = g [ T, wefooo) (23
(2.3) is derived through the following steps:
EX —uX>u)=EX|X>u)—u
1 oo



The third equality is arrived at by using integration by parts and using lim, . 2F(x) = 0. The
mean excess function for the Exponential, Gamma and Pareto distributions, respectively, are
given below.

Example 2.2.

1. Exponential distribution, Exp(y).

1 o0 1
eF(u) = ei}\u / e_Axd.’L' = X,

i.e. ep(u) does not depend on w. In particular, it does not increase in w.

2. Gamma distribution. The calculations are omitted here since they require some space. In
Mikosch [20] p. 90, it is given as

=51+ 5 +o(3)
1

Please note that ep(u) = 5 as u — .

3. Pareto distribution, Pa(e, o) and « > 1.

ep(u>=(”j“)_
(22
-(7) (&

o+u

a—1

:EX+L
a—1

[o'e) —
/ (a—l—x) dx
“ o
o (o+t= —(a=l)ye0
a—1 o u
otu) @Y
1 o

[e3%
[e3%
«

Please note that ep(u) depends on u and is increasing in u.

Thus, the mean excess function for the Gamma distribution is decreasing in u, whereas it is
increasing in u for the Pareto distribution with the Exponential distribution constitutes an ex-
ception as its mean excess function converges to a positive constant. Apart from being consistent
with (2.1) and (2.2), it illustrates an important difference between light-tailed distributions and
heavy-tailed distributions: in the heavy-tailed case, the expected claims cost in the layer does not
decrease by increasing the deductible u - it actually increases. In the light-tailed case, increasing
the deductible, decreases the expected value of the claims cost in the layer.

2.2 Regular Variation

The family of distribution functions whose right tail is regularly varying is one candidate for
classifying a distribution as heavy-tailed. One simple reason for this is that members of the
family, such as the Pareto distribution, the Burr distribution and log-gamma distribution, all
usually considered to be heavy-tailed, have been seen to relatively well fit observed claims data.
As remarked upon in Mikosch [20], regular variation can on a more general level be described



as a small deviation from exact power law 2 behaviour and since these laws have been observed
to reasonably well describe various social or natural phenomena, it becomes of interest to study
regularly varying functions. For example, the exceedances of a high threshold by i.i.d. data can
be described by a power law behaviour. In terms of mathematical properties, regularly varying
distributions are closed under summation (cf. Theorem 2.1 and Corollary 2.1) and also possess
the property that the right tail of the distribution of S,, = X7 + --- + X, is determined by the
right tail of the distribution of max(Xy,...,X,) (cf. Equation 2.4). The closure property implies
that the heavy-tail of the individual X; : s cannot be diversified away in the sense of the Central
Limit Theorem.

For a comprehensive treatment of regular variation, its theoretical properties and various ap-
plications, please see Bingham et al. [3]. For a short note on the relationship between regular
variation and probability theory, please see Bingham [2].

Definition 2.2 (Slowly varying function, p. 99 in Mikosch [20]). Let a function L(x) on (0, 00)

be called slowly varying function (at infinity) if limg o0 % =1, for all ¢ > 0.

Definition 2.3 (Regularly varying functions and and regularly varying random variable, p. 99
in Mikosch [20]). Let L(z) be as in Definition 2.2. Then

1. For any 6 € R, the function
flz) =2’L(z), x20,

is said to be regularly varying with index 6.

2. A positive random variable X and its distribution are said to be regularly varying with tail
index o > 0 if
P(X>z)=L(x)z™*, x>0.

To illustrate Definition 2.3 an example is provided below.

Example 2.3. By studying the right tail of the Exponential and Gamma distributions, respec-
tively, it is seen that they do not admit the representation in Definition 2.3 above. The case is
different with the Pareto distribution, P(X > x) = (ZF2)~?, as

P(X >z) = (U “”)_a =z <W> -

g g

g

and, with L(z) = (H_U/x> ,

=1

The right tail of the Pareto distribution is thus seen to be regularly varying with tail index a.

2The power law (also called the scaling law) states that a relative change in one quantity results in a pro-
portional relative change in another. Mathematically, it defined as f(x) = ax® where a and k are constants. An
introduction to power laws and their applicability can be found in [24].



A useful concept for the sequel will be the integrated tail distribution.

Definition 2.4 (Integrated Tail Distribution, Mikosch [19], p. 43). The integrated tail distribu-
tion, Fx 1(u), of Fx(x), is defined as

_ 1 v
Fx r(u) = ﬁ/o Frx(z)dz,

foru>0.

Example 2.4 shows that the integrated tail distribution of the Pareto distribution is also regularly
varying.

Example 2.4. Let Fx(z) = (Z£2)~* with EX = -%-. Then, Fy x(z) is given by

a—1"

1 v

FX,I(U) = ﬁ/@ Fx(l‘)dx

_1 u —
o / (a—l—x) i

g 0 g
a—1 o oc+x —(a=byu

o a—1 o 0
—1- <J+u)(a1).

o

Hence, F; x(z) = (Z£2)~(@=1) and it is seen that F; y(z) is regularly varying with tail index
a—1.

Theorem 2.1 states that heavy tails, in the sense of regularly varying tails, cannot be diversified
away, in the sense of the Central Limit Theorem, by aggregating independent claim sizes. Here,
o(1) = 0 as © — oo.

Theorem 2.1 (Closure property of regularly varying random variables, p. 101 in Mikosch [20]).
Assume X1 and Xa are independent reqularly varying random variables with the same tail index
a>0, e

P(X; >z) = Li(x)z™%, x>0.

for possibly different slowly varying functions L;. Then X1 + Xs is reqularly varying with the
same tail indez, i.e.

P(X1+ Xo >2)=2"%Li(z) + La(z))(1 + 0(1)), x>0.
as x — 0.
An important corollary to Theorem 2.1 is Corollary 2.1.

Corollary 2.1 (p. 102 in Mikosch [20]). Assume X1, ..., X,, are ni.i.d. reqularly varying random
variables with tail index o > 0 and with distribution function F'. Then, S,, = Z?:l X, is reqularly
varying with tail index a > 0 and, for large x, the following approrimation is valid

P(S, > z) =nF(x)(1+o(1)).

10



Please note that Theorem 2.1 and Corollary 2.1 are asymptotic results. The implication of
Theorem 2.1 and Corollary 2.1 is that the tail of the distribution of S,, = X7 + - + X, does
not get ”averaged out” or "diversified away” when the distribution function, F, is regularly
varying. It thus shows that the Central Limit Theorem is dangerous to use in this case since
it underestimates the probability of very large losses. In contrast, when considering a severity
distribution that does not exhibit this property, e.g. the Exponential distribution or the Gamma
distribution, the Central Limit Theorem should still be able to give a fairly accurate description
of the right tail of S,,. The below example illustrates the above reasoning for two portfolios with
different number of risks, n.

Example 2.5. In this example the suitability of the Central Limit Theorem is investigated for
two portfolios of risks, n = 20 and n = 100, respectively. Figure 1 and Table 1 show to what
extent the Central Limit Theorem is able to approximate the distribution of S, for each choice
of severity distribution for the individual X;.

Exponential Distribution Gamma Distribution

= =
o o
> >
= =
£ £
o 0N o 0N
[=] o (=] o
< <
e e r T T I 1

Pareto Distribution

0.4

Density
0.2

0.0

Figure 1: Histograms illustrating the approximation given by Central Limit Theorem for a port-
folio of 20 risks, i.e. S, = Z?:l X; with n = 20. The top-left exhibit shows the approximation
for the Exponential distribution, the top-right exhibit the Gamma distribution (top right), and
the bottom one the approximation for the Pareto distribution. The red line in each histogram is
the density function of the standard Normal distribution.
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Distribution/Quantile 90th 95th 99th  99.5th  99.7th  99.9th
Standard Normal distribution 1.2816 1.6449 2.3263 2.5758 2.7478 3.0902

Sp=>",X;,X; ~Exp(1l) 1.3216 1.7693 2.6405 3.0065 3.1627 3.6394
Sp=>1" X, X; ~T(5,2) 1.2914 1.6813 2.4363 2.7694 2.9583 3.3976
Sp =31, X;, X; ~ Pareto(4,4) 1.2898 1.8263 3.0576 3.5483 3.8371 4.7701

Table 1: A comparison of the right tail of S, for n = 20 with the quantiles of the standard
Normal distribution to see the quality of approximation of the Central Limit Theorem.

By studying Figure 1, the Central Limit Theorem does seem to provide an acceptable approxima-
tion in the bulk of the distribution in case of the Exponential and Gamma distributions and also
in the right tail; for the Pareto distribution, the approximation, on the other hand, is poor even
in the bulk. When considering the right tail, as shown in Table 1, the approximation becomes
worse the more extreme the quantile under consideration, especially for the Pareto distribution.

Exponential Distribution Gamma Distribution

= =
[=] [=]
> >
@ @
§ o § o
[s] [=] (=] =]
o o
< r T T T 1 < r T T T 1
-4 2 0 2 4 -4 2 0 2 4

Pareto Distribution

| i )
H ‘ “ \i'l b

Figure 2: Histograms illustrating the approximation given by Central Limit Theorem for a port-
folio of 100 risks, i.e. S, =Y ., X; with n = 100. The top-left exhibit shows the approximation
for the Exponential distribution, the top-right exhibit the Gamma distribution (top right), and
the bottom one the approximation for the Pareto distribution. The red line in each histogram is
the density function of the standard Normal distribution..

0.4

Density
0.2

0.0

12



Distribution/Quantile 90th 95th 99th  99.5th  99.7th  99.9th
Standard Normal distribution 1.2816 1.6449 2.3263 2.5758 2.7478 3.0902
Sp=>",X;,X; ~Exp(1l) 1.2797 1.7026 2.5055 2.7482 3.0313 3.4771
Sp=>1" X, X; ~T(5,2) 1.2826 1.6757 2.4297 2.7684 2.9437 3.3219
Sn =31, X, X; ~ Pareto(4,4) 1.2885 1.7207 2.6519 3.1668 3.6176 4.2764

Table 2: A comparison of the right tail of S,, for n = 100 with the quantiles of the standard
Normal distribution to see the quality of approximation of the Central Limit Theorem.

In Figure 2 above, again the Central Limit Theorem does seem to provide an acceptable ap-
proximation in the bulk of the distribution for each severity distribution. When considering the
right tail of the distribution in Table 2, the approximation is better but still fails to account
for the heavy tail of the Pareto distribution. The approximation in the tail for the Exponential
and Gamma distributions is also better although it does not entirely manage to capture the tail
behaviour in each case.

Example 2.5 above illustrates the danger of relying on the Central Limit Theorem in an indis-
criminate manner: attention must be paid to the individual severity distribution and whether
or not it is light-tailed or heavy-tailed since the tail behaviour of the aggregate severity distri-
bution, S,, is fundamentally different in each case. Even increasing the portfolio size in case of
the Pareto distribution does not help since still the probability for very large lasses would be
underestimated using the Central Limit Theorem.

One further property can be shown if X; has a regularly varying right tail. Let M,, = max(Xq, ..., X,)
denote the partial maximum. Then, for n > 2 and as x — oo (see Mikosch [20], p. 102)

P(Mn>x):PX1>m)+P(X1<x Xo>a)+ -+ PX1<z,Xo<ux,...,X, >2x)

(
=PX;>2)+P(X1 <2)P(Xo>z)+- -+ P(X; <z)P(Xy<2x) - P(X, >x)
= F(z) + F(x)F(x) + "'+F"_1($)F($)
—F@) 1+ F(@) + -+ F"(2))
—F) S FH)
k=0

=nF(z)(1+o(1))

Using 2.2 , the statement of Theorem 2.1 can be reformulated as if X; is regularly varying with
tail index a > 0, then
. P(S, >z
lim ———% =
z—o0 P(M,, > x)

for n > 2. (2.4) implies that, under the assumption of regular variation, the distribution of the
tail of S, is essentially determined by the tail of the distribution of M,,. This is yet another way
of thinking of what properties a heavy-tailed distribution should exhibit. For reference, please
see Mikosch [20], p. 102.

(2.4)

2.3 Subexponential Distributions

The subexponential class of distributions is another candidate for classifying a severity distribu-
tion as heavy-tailed. The class derives it name from one of its properties, namely that the right
tail of a subexponential distribution decreases more slowly than any exponential tail; cf. p. 1 in

13



Goldie and Kliippelberg [11]. It contains the class of regularly varying distributions in Section
2.2 as a sub-class and is heavily relied upon when fitting distributions to actual claims data (cf.
Mikosch [20], Section 3.2.4.). Similar to the class of regularly varying function, it is closed under
summation and the behaviour of the right tail of the distribution of the sum, S, = X1, -+, Xy,
{X,, n > 1}, an ii.d. sequence with each X; being subexponential, is determined by the distri-
bution of the right tail of max (X7, ..., X,). In addition, it also possesses the interesting property
that S, is large precisely due the first & terms of the sum being large, see Embrechts et al. [§],
Chapter 1.

For an introduction to subexponential distributions and their properties, including ruin theory,
please see any of Goldie and Kliippelberg [11], Kliippelberg [15], Kliippelberg [16] or Teugels
[26]. For their application in an non-life insurance context, please see e.g. Embrechts et al. [8]
or Kliippelberg and Mikosch [17].

Definition 2.5 (Subexponential distribution, p. 103 in Mikosch [20]). The positive random
variable X with unbounded support and its distribution are said to be subexponential if for a
sequence of i.i.d. random variables (X1 n)neny with n > 2, the following relation holds

P(S, >z)=P(M, >z)(1+0(1)) (2.5)
for large x.

By using P(M,, > x) = nF(x)(1+ o(1)) from the last section, the defining property (2.5) above

can be expressed as
P(S, >z
lim 2R >2) (2.6)
for n > 2. For an example of a subexponential distribution, by comparing (2.4) with Definition
2.5, note that every distribution function, F', with a regularly varying right tail with tail index
a > 0 is also subexponential. In particular, the Pareto distribution is subexponential.

An illustration of (2.6) is given in Figure 3 in case of the Pareto distribution.

200
16

Value
12

Value
50 100

6

0

T T T T T T T T T T T T
200 300 400 500 600 300 350 400 450 500 550 600

X X
Figure 3: Tllustration of (2.6) when n = 100 in case of the Pareto distribution, Pa(4,4). Note
the jagged shape of the line in the right-hand graph due to P(S, > z) being approximated

numerically. Note further the large value of x required to obtain a relatively good approximation
of (2.6). Here,

The Exponential distribution, on the other hand, is not subexponential, as is shown in Example
2.6.
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Example 2.6. If X ~ Exp(y), then, S,, ~ T'(n,7). Also, it holds

P(M, >z)=1-P(M, < z)
=1—[F(z)]"
=1—(1—e™)"

since the M, < z if all X; <z, i =1,...,n. By using 'Hospital’s rule, (2.6) can be evaluated

and it is seen that
. P(S,>x)
lim ————~

1
z—o0 P(M,, > x) 7

for any n > 2.
In Theorem 2.2, three basic properties of subexponential distributions are listed.

Theorem 2.2 (Basic properties of subexponential distributions, pp. 103 - 104 in Mikosch [20]).

1. If F is subexponential, then for anyy > 0,

T Gt ) Y (2.7)
2. If (2.7) holds above, then for all € > 0,
e““F(x) = oo, T — oo. (2.8)

3. If F' is subexponential, then, given € > 0, there exists a finite constant K so that for all
n>2,
P(S, > )

@) <K(l1+4€¢" x2>0. (2.9)

As pointed out in Mikosch [20] pp. 104-105, (2.7), means that the tails P(X > z) and P(X >
x + y) are not significantly different if x is sufficiently large, for a fixed y > 0. Hence, if z — oo,
then

F(zx—y) _ P(X >z+y)
F(x) P(X >ux)
_ P(X>z+y X > (2.10)
P(X > x)

=PX>z+y|X>z) =1

Thus, once X has exceeded a large threshold, it is very likely it will exceed an even larger
threshold. This can be taken as yet another definition of a heavy-tailed distribution. To illustrate
(2.10), consider the below example.

Example 2.7.
1. Exponential distribution, Exp(y). By using (2.7),

e~V (@+y)
lm —— = Eivy <1
z—oo e 1%

15



2. Pareto distribution, Pareto(«, o). Again, by using (2.7)

14 ZHu\ —@
lim () 1
z—>00 1+%

The second property, (2.8), is what motivates the name subezponential since the right tail of
the distribution decays slower to 0 than any exponential function. The same property also says
that the moment generating function for A > 0 does not exist for subexponential distributions.
Indeed,

B = [T PN > gy = [ POC> togt) /My
0 0 (2.11)
zh/ "X P(X > x)dr = oo

as ¢ — 00, where the third equal sign is obtained by the substitution x = log(y)/y. The fact that
the moment generating function does not exist for subexponential distributions will be useful in
Chapter 3 on the Cramér-Lundberg model.

Another interesting property of subexponential distributions is the following, which says that S,
is large due to precisely the sum of the first k£ terms being large since, for 1 < k < n,

. . P(Sk>,8, > 1)
Jm P(Sk > @ | S > ) = lim =55

P(% >z)  F(x)

AT ) PS> )
P(S>w) (2.12)
— lim _E®
T—00 P(Sy>r)
F(x)
k
n

In particular, k = 1 says that .S, is large due to one term being large.

3 Ruin Theory

This chapter outlines the basics of ruin theory and starts with defining the well-known homoge-
neous Poisson process along with the remarkable order statistics property of the Poisson process,
the latter being very useful for simulation purposes, in Section 3.1. The chapter then proceeds
with defining the risk process, U(t) and the corresponding ruin probability, ¢)(u), in the setting of
the famous Cramér-Lundberg model, see Definition 3.4, and a regularity condition in form of the
Net Profit Condition, Definition 3.6, and then proceeds to distinguish between the light-tailed
case and the heavy-tailed case in terms of the behaviour of the ruin probability, 1(u), where
u is the amount of initial capital, in Section 3.2.1 and Section 3.2.2. In the light-tailed case,
Lundberg’s exponential bound, Theorem 3.2, shows that there exists an upper bound for the
ruin probability, and Cramér’s theorem, Theorem 3.3, gives the exact asymptotics for the ruin
probability. In the heavy-tailed case, Theorem 3.5 shows that these asymptotics is entirely differ-
ent with the decay being much slower. In both instances, the asymptotics should be understood
in the sense of how the ruin probability, ¥(u), behaves as the initial capital, u, tends to infinity.
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The literature on ruin theory is vast and there exist several works worthwhile consulting. For
further reference and reading, please see any of Bithlmann [4], Embrechts et al. [8], Grandell
[12], Rolski [21] or Rolski et al.[22].

3.1 Homogeneous Poisson Process

Definition 3.1 (Counting process, p. 297 in Ross [23]). A stochastic process, N(t),t > 0, is a
counting process if N(t) represents the number of events by time t.

As stated in Ross [23], the counting process {N(t),¢ > 0} satisfies the following criteria:
() N(@t) >

(ii) N(t) is integer valued.

(iii) If s < ¢, then N(s) < N(¥)

(iv) For s <t, N(t) — N(s) equals the number of events that occur in the interval (s, t]

In addition, N(¢) is said to have independent increments if the numbers of events in disjoint time
intervals are independent. This means that, for 0 < s < ¢, the number of events in the interval
(s,t], N(t) — N(s), is independent of the number of events, N(s), in the interval (0, s].

The Poisson process, see Definition 3.2, is an example of a counting process typically used in
non-life insurance to model the arrival of claims.

Definition 3.2 (Homogeneous Poisson process with intensity A, p. 304 in [23]). The counting
process {N(t),t > 0} is said to be a homogeneous Poisson process with intensity A, X > 0, if

(i) N(0)=0

(i) The process has independent increments, i.e. the number of events in disjoint intervals are
independent.

(11i) The number of events in any interval of length t is Poisson distributed with mean value At.

A Poisson process is thus a counting process with an additional structure imposed. Although not
always the most realistic model choice it possesses a number of analytical properties, which makes
it tractable to use as a benchmark for modelling the claims arrival process, see e.g. Mikosch [20],
pp- 32-38 for a discussion in the context of the Danish Fire Insurance Data 1980-1990.

In Chapter 3, the notion of inter-arrival times will be used. Definition 3.3 introduces this concept
in the context of a renewal counting process.

Definition 3.3 (Renewal Counting Process, p. 53 in Mikosch [20]). Let {W,,,n > 1 be an i.i.d.
sequence of positive random variables. Then,

To=0, T,=Wi+---+W,

is said to be a renewal sequence and the counting process, and

N({t)=#{i>1:T; <t}, t>0.

is the corresponding renewal (counting) process.
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The Poisson process is an example of a renewal counting process (Mikosch [20], p. 53). The
sequences {W,, = T, — T,—1,n > 1 and {T},,n > 1 are referred to as the inter-arrival and
arrival times, respectively, of the renewal process N (¢). The inter-arrival time is the time elapsed
between two successive events of the renewal sequence. In a non-life insurance context, the T,
represent the claim arrival times and W, the time elapsed between the n:th and (n—1):th claims.
For the Poisson process in Definition 3.2, the sequence of inter-arrival times are exponentially
distributed with parameter A (see [23] for further details).

Example 3.1. Let 0 < T7 < T, < ... denote the event arrival times of the Poisson process in
Definition 3.2 and let W,, :=T,, — T,,_1,n > 1 with T = 0, denote the inter-arrival times of the
process. Now, consider the event {7} > t}, which implies that N(¢) = 0, i.e. no events have
occurred in [0,¢]. By using the properties of the Poisson process, it holds

P(Wy >t)=P(N(t) =0) = e,

which means that W is Exp(\) distributed, i.e. considered from ¢ = 0 the time until the first
event is Exp(A) distributed.

Moreover, for W,, and W,,_; and 0 < s < t:

P(W, > t|W,—1 =s) = P(no events in (s,s + t||W,_1 = s)
= P(no events in (s, s + t])
—
which, again, means that, seen from time s, the time until the next event is Exp(\) distributed.

Before closing this section, the order statistics property of the Poisson process is stated in the
form of a theorem below. This is a remarkable property and at the same time one of the
characterising properties of the process which will be very useful when simulating. For reference,
please see Mikosch [20], Section 2.1.6, for the proof of the theorem and more background on
order statistics.

Theorem 3.1 (Order statistics property of the homogeneous Poisson process, p. 24 in Mikosch
[20]). Consider the homogeneous Poisson process of Definition 3.2, {N(t),t > 0}, with continuous
a.e. positive intensity function X\ and arrival times 0 < Ty < Ty--- < T, a.s. Then, the
conditional distribution of the vector (T1,...,T,) given {N(t) = n} is the distribution of the
ordered sample (X1, ..., X)) of an i.i.d. sample X1, ..., X, with common probability density
A

?0n0<x§t:

d
(T17-~~7Tn |N(t) - ’Il) - (X(l)aaX(n))

In other words, the left-hand vector has the conditional density

n!
(At)"

=nlt "

A’I’L

fTh---,Tn (331, sy dn |N(t) = Tl) =

forO<xy - <z, <t.

The joint conditional density of the arrival times of the homogeneous Poisson process is thus
equal to the joint density of a uniform ordered sample Uy <,...,< U,y of an ii.d. sample
Ur,...,Up, U ~ U(0,t). Thus, given there are n arrivals in the interval [0,¢], these arrivals
constitute the points of a uniform ordered sample in (0, ¢).
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3.2 Risk Process and the Cramér-Lundberg Model
The object of interest in this chapter is the so-called surplus or risk process defined according to
Ut)=u+p(t)—S(t), t=>0.
where,
e u > 0 is the initial capital of the insurer at t = 0.

e p(t) is the continuous premium income of the portfolio. In what follows, p(¢) is assumed to
be linear and deterministic, i.e. p(t) = ct, where ¢ > 0 is the premium rate of the portfolio.

e S(t) is the total claim amount process of the portfolio, see Definition 3.4.

U(t) can be thought of as the insurer’s surplus at time ¢t > 0.

The Cramér-Lundberg model is defined in Definition 3.4 below.

Definition 3.4 (Cramér-Lundberg model, p. 12 in Mikosch [20]). In the Cramér-Lundberg
model, the following assumptions hold for the total claim amount process S(t):

N(t)
St =Y X t>0:
i=1

e Claims happen at the arrival times 0 < Ty < Ts < --- of a homogeneous Poisson process
Nt)=#{i>1:T; <t, t >0 with intensity \.

o The i:th claim arriving at T; causes the claim size causes the claim size X;. The sequence
(X;) constitutes an i.i.d. sequence of non-negative random variables.

o The sequences (T;) and (X;) are independent. In particular, N(t) and (X;) are independent.

In ruin theory, one is concerned with the probability that the insurer’s surplus, U(¢), at some
future time point is negative. The event U(t) < 0 is called the ruin of the insurance company.

Definition 3.5 (Ruin, Ruin Time, Ruin Probability, pp. 152-153 in Mikosch [20] ). The event
that U(t) falls below null is called ruin:

Ruin = {U(t) < 0 for somet > 0}
The time T when U (t) falls below null for the first time is called ruin time:
T=inf{t>0: U(t) <0}
The probability of ruin is then given by
P(u) = P(Ruin | U(0) = u) = P(T < o), u > 0.
By construction of the risk process, U(t), ruin can only occur at times t = T, ¢ > 1, i.e. when a
claim arrives, since U (t) linearly increases in the intervals (T}, Tj,+1). The sequence (U(T,))n>1

is called the skeleton process of the risk process, U(t), or, alternatively, as in Wurtich [27] p. 133,
the switch to operational time. Regardless of its name, this transformation makes it possible to
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express ruin in terms of the inter-arrival times, W,, (see Definition 3.2 and Definition 3.3, the
claim sizes X,, and the premium rate c.

Ruin = {ggU(t) < 0} - {

_ { inf [u + p(T,) — S(T)] < 0}

n>1

inf U(T,) < 0}

Now, write
Ipn=Xn—W,, Sp=21+--+2Z, n>1Sy=0,

then the ruin probability, ¥)(u), can be formulated alternatively as

P(u) = P( inf (—S,) < —u) = P(sup Sp > u) (3.1)

n=>1 n>1

Much effort has been expended on studying lim,,,~ ¥ (u), the asymptotic behaviour of the ruin
probability as the amount of initial capital tends to infinity (see e.g. Embrechts et al [8], Mikosch
[20], Chapter 4, or any of the references listed in Chapter 1. It will be apparent from Section
3.2.1 and Section 3.2.2 that this behaviour is fundamentally different depending on whether or
not the severity distribution for X; is light-tailed or heavy-tailed. Before proceeding to this, a
regularity condition, Definition 3.6, is needed on the process Z,, in order to avoid studying the
case in which ruins occurs with probability 1 a.s., regardless of the amount of initial capital, u,
see e.g. Spitzer [25].

Definition 3.6 (Net Profit Condition, p. 156 in Mikosch [20]). The sequence Z, is said to
satisfy the Net Profit Condition (NPC) if

EZ, = EX; —cEW; <0,

. . - _ EX,
i.e. the premium rate c satisfies ¢ = zwr > 0.

The NPC can also be expressed in terms of a safety loading, p > 0, which implies a premium

rate, ¢ according to:
EX,

EW,’

¢=(1+p) (3.2)

3.2.1 Light-tailed Case

In this section, the famous Lundberg upper bound on the ruin probability is formulated as well as
Cramér’s equally famous theorem on the exact asymptotics for the ruin probability. Both results
are valid in the light-tailed case in the sense that the moment generating function exists in some
neighbourhood around the origin of X;. The existence of the moment generating function for the
claims, X7, assumes that the right tail of the severity distribution decays exponentially fast. The
assumption of an exponentially decaying right tail excludes in particular subexponential severity
distributions as shown by (2.11). Therefore, for heavy-tailed distributions such as e.g. the Burr,
Pareto and Weibull (7 < 1) distributions, neither the Lundberg bound nor Cramér’s theorem
are applicable. In what follows, the assumptions of the Cramér-Lundberg model and NPC are
always valid.
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Definition 3.7 (Adjustment or Lundberg coefficient, p. 158 in Mikosch [20]). Assume that the
moment generating function of Zy exists in some neighbourhood (—hg, ho), hg > 0 of the origin.
If a unique solution r exists to the equation

Mz, (h) = Be"X1=eW) = 1 (3.3)
exits it is called the adjustment or Lundberg coefficient.

(3.3) will be referred to as the Lundberg equation. Two examples illustrating the usage of the
Definition 3.7 are given below in case of the Exponential distribution and the Gamma distribu-
tion, respectively.

Example 3.2 (Exponential distribution). Assume the Cramér-Lundberg model with claims sizes
iid. Exp(y) and N(t) ~ Po(At). The latter assumption means that inter-arrival times, W;, are
Exp(A) random variables. Now, since

Mx, (h) = P h <~
and ) )
Mew, (=h) = Xt o
(3.3) takes the form
MZl(h):y—Lh)\:\chzl’ —%<h<%

which can be solved analytically and gives the solution, r, as
A
r=vy——>0.
c

By using (3.2) the premium rate, ¢, can be written as

_ EX;
T EW,

c (1+p)

and thus the adjustment coefficient, r, can be expressed as

=T,
In Figure 4 below, Mz, (h) is illustrated for v = 0.5, A = 1 and p = 0.05, which yields r ~ 0.024.
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Lundberg Equation
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Figure 4: Tllustration of the solution to the (3.3) in case of the Exponential distribution, Exp(7).
For the mathematical expression of Mgz, (h) in this case, see Example 3.2. The red, solid line
shows Mz, (h) and the blue dashed line the analytical solution, r = 'yﬁ. With vy =05, A=1
and p = 0.05, the numerical value of r is approximately 0.024.

Example 3.3 below determines the adjustment coeflicient in case of the Gamma distribution.

Example 3.3 (Gamma distribution). Again, assume the Cramér-Lundberg model but this time
with claims i.i.d. T'(a,8) and N(t) ~ Po(At) as before. Thus, M.y, (—h) is unchanged and
Mx, (h) is given by

MXl(h): (&) ) h<5

Equation (3.3) is thus given by

(BN A
MZl(h)_</3—h> /\+ch_1’ C<h<5»

which is here solved numerically. In Figure (5) below, Mz, (h) is illustrated for & = 5, 8 = 2 and
p = 0.05, which yields r ~ 0.0160.
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Lundberg Equation
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Figure 5: Tllustration of the solution to the (3.3) in case of the Gamma distribution, I'(«, 3)).
For the mathematical expression of Mgz, (h) in this case, see Example 3.3. The red, solid line
shows Mz, (h) and the blue dashed line the numerical solution. With o =5, § = 2 and p = 0.05,
T is estimated to 0.0160.

After these two examples, the Lundberg Inequality is stated below.

Theorem 3.2 (The Lundberg inequality, p. 159 in Mikosch [20]). Assume the renewal model
with NPC' satisfied and assume further the existence of the adjustment coefficient, r. Then the
following inequality holds for all u > 0:

Ylu) <e ™. (3.4)

The ruin probability, ¥ (u), is thus exponentially bounded, the size of which depends on the
amount on initial capital, u, and the value of the adjustment coefficient, . This means that
the ruin probability can thus be made arbitrarily small for a sufficiently large value of the initial
capital, as shown in Example 3.4 below.

Example 3.4 (Lundberg inequality for Exp(y) claim sizes). From Theorem 3.2 and Example
3.2, the Lundberg inequality, (3.4), is

blu) < 0D

P
=e TTHY,

It is clear that ¢(u) can be made arbitrarily small if the initial capital is sufficiently large. The
same observation holds for the safety loading p since ﬁpp is close to 1 if p is large enough. From
this follows also that the upper bound does not change significantly for large p. Lastly, by noting
that v = + = (EX;)7! it is seen that the smaller the expected claim size, the smaller the ruin

probabilit§.

Cramér’s theorem on the exact asymptotics of the ruin probability is given in Theorem 3.3 below.
The theorem is quite astonishing insofar as it gives exact asymptotics for a complex object such

as Y (u).

Theorem 3.3 (Cramér’s ruin bound, p. 162 in Mikosch [20]). Consider the Cramér-Lundberg
model with NPC satisfied. In addition, assume that the claim size distribution function Fx, has
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a density, that the moment generating function of X; exits in some neighbourhood (—hg, ho) of
the origin and that the adjustment coefficient, v, exits and lies in (0,hg). Then there exists a
constant C' > 0 such that

lim e™(u) = C.

uU—r 00
By using Theorem 3.3 in conjunction with Theorem 3.4, it is possible to obtain equality in
Theorem 3.2 in case of the Exponential distribution. Theorem 3.4 states that the non-ruin
probability, ¢(u) =1 — 1(u), can be represented as a compound geometric probability.

Theorem 3.4 (Representation of the non-ruin probability as a compound geometric probability,
p. 173 in Mikosch [20]). Assume the Cramér-Lundberg model with EX; < oo and NPC. In
addition, assume the claims X; have a probability density function and let (X1 ,,,) be a sequence of
independent and identically distributed random variables with distribution function Fx, . Then,
the non-ruin probability is given by

plu) = ——

1 14 p) "P(X) 14+ X0 <u)l. 3.5
T+, +Y (L4p) "P(Xpa+--+ X0 <u) (3.5)

n=1

In most cases (3.5) cannot be evaluated explicitly. However, one exception to this is when (X))
~ Exp(7v) in which case (X7 ,) also is Exp(v) distributed. To see this, note that

ie. (X;,) is indeed Exp(7).

Now, using the fact that X;1+---+ Xy, ~ I'(n,v) (by for example using the moment generating
function), it holds
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Now, using that ¥(u) =1 — p(u), it holds

as the explicit expression for the ruin probability in case of (X, )nen being i.i.d. Exp(y). When
comparing the above expression with the upper bound given by Example 3.4, it seen that

i.e. the bound was exact bar the constant S

In the next section, the heavy-tailed case is presented and it will be evident that the asymptotics
are quite different than as presented in Theorem 3.3.

3.2.2 Heavy-tailed Case

In this section, an important result for the asymptotics of the ruin probability 1 (u) is presented
in case of heavy-tailed distributions, whereby heavy-tailed is here understood as the severity
distribution being subexponential. Theorem 3.5 below is the equivalent of Cramér’s ruin bound
in the light-tailed case. It is worth noticing that Theorem 3.5 assumes that the integrated
tail distribution of the severity distribution, FX7 I, is subexponential rather than the severity
distribution itself.

Theorem 3.5 (Ruin Probability when the integrated claim size distribution is subexponential,
pp. 174-175 in Mikosch [20]). Assume the Cramér-Lundberg model with EX; < oo and NPC. In
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addition, assume that the claim sizes X; have a density and that the integrated tail distribution,
Fx,.1(x), is subexponential. Then the ruin probability 1 (u) satisfies the asymptotic relationship
Y (u) -1

lim = =p
u=oo Fx, 1(u)

Proof. The key is using the representation in Theorem 3.5, which for the ruin probability ¥ (u) =
1 — ¢(u) is given by

W(u) :l.mLi(1+p),nP(X1+~'+Xn>u)

lim = i —
uU— 00 FX,I(U) u—oo | +p FX,I(U)

n=1

Now, if the limit can be moved inside of the summation, then it will be possible to use the
subexponential property of Fx j(u), i.e

PXi+- 4+ X, >u)

lim = =n,
U— 00 FX,I (u)
and it would follow
> P(X X
lim 71/)(“) lim ——— Z (1+p)~ ! Jr s > u)

U— 00 FX,I(U) U—00 —|—

The justification for the interchange of the limit and the sum is given by Lebesque’s dominated
convergence theorem since

P(X)+ -+ X, > u)

< K(l+4¢€" foranye>0

FX’](’U,)
according to (2.9) and thus
= P(X1+ -+ Xy >u) >
(1+p) "K(1+€e)" < oo.
g F X,I(u) g
Choose € < p and the result follows. O

More details and discussion on the interpretation of Theorem 3.5 can be found in Embrechts and
Veraverbeke [7].

An example of a distribution that satisfies the conditions in Theorem 3.5 is the Pareto distribu-
tion. Indeed, Example 2.4 showed that Fj x (z) is regularly varying and by (2.4) and Definition
2.5 it follows it is also subexponential. As mentioned in Mikosch [20], p. 176, it is not straight-
forward to verify that the integrated tail distribution is subexponential. However, for the usual
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choices of heavy-tailed severity distributions, such as the log-normal and Weibull (7 < 1) distri-
butions, the integrated tail distribution is in both instances indeed subexponential. There exists,
however, one case where subexponentiality can be verified directly: if the distribution function is
regularly varying with tail index e > 1, then the integrated tail distribution is regularly varying
with tail index o — 1 and thus subexponential (cf. Mikosch [20], p. 176). This is a consequence
of Karamata’s theorem (see Appendix). By comparing Theorem 3.5 with Cramér’s ruin bound,
Theorem 3.3, is seen that the ruin probability in the heavy-tailed case is essentially of the same
order as Fx r(u), which is non-negligible for large values of initial capital, u (cf. Corollary 2.1
and the basic properties of subxponential distributions in Section 2.3. In contrast, the ruin prob-
ability can be made arbitrarily small in the light-tailed case. The implication is that portfolios
with heavy-tailed claims are dangerous due to the largest claim having a significant impact on the
overall behaviour over the long-term horizon (cf. (2.12) and that ruin occurs spontaneously. For
a theoretical explanation of this phenomena, please see Embrechts et al. [8]. In the light-tailed
case, for ruin to occur, it is not due any one claim being large but rather the mass of claims
affecting the portfolio. This fact will be evident in the next section with numerical results.

3.3 Numerical Examples

In this section, numerical results are presented illustrating the concepts in this and the previous
chapter. The section contains results for the risk process, U(t), defined in Section 3.2, and the
corresponding ruin probability ¢ (u), Equation 3.1, both in terms of how #(u) depends on the
amount if initial capital u and the time horizon t¢.

3.3.1 Simulation Methodology

To simulate the risk process, U(t), over the interval [0,¢], the order statistics property of the
homogeneous Poisson process in Theorem 3.1 is utilised along with the fact that the number of
arrivals, N(t), over the interval [0,¢] is Po(At) distributed. This means that if N(t) = n, the
distribution of the arrival times 2 0 < T} < Ty < ---,T, < t constitutes an uniform ordered
sample Uy <,...,< Ugy, of an iid. sample Uy, ...,Up, U; ~ U(0,t). With the arrival times
known, it is an easy task to construct the corresponding Poisson process, the total claim amount
process, S(t), the premium income of the portfolio, p(t) = ct, and, finally, the risk process, U ().
In order to derive a numerical estimate of the ruin probability, 1[)(u) in Section 3.3.2 and then in
Chapter 4, the algorithm in Figure 6 is repeated many times and 1)(u) calculated as the number
of paths where U(t) < 0, t > 0 divided by the total simulated paths.

Figure 6 is an illustration of one sample path of the risk process with the following assumptions:

e Claims arrive according to a homogeneous Poisson process with A = 1.

The claim size distribution is Exp(y) with v = 0.5.

The safety loading, p, is 0.05.

The Net Profit Condition of Definition 3.6 is satisfied with ¢ = (14p) gff{}l =(1 —&—0.05)% =
2.1.

e The process is simulated over [0, 10].

e Initial capital, u, is equal to 15.

3Please note that the arrival times here represent the switch to operational time referred to in Section 3.2.
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Figure 6: Illustration of the methodology for simulating one sample path of the risk process,
U(t), with the total claim amount process, S(t), specified as the Cramér-Lundberg model, over
[0,10]. Top row: the left-hand exhibit illustrates the claim arrival times of the Poisson process
and the right-hand exhibit illustrates the corresponding Poisson process. Here, thirteen claims
were registered over [0,10]. Middle row: the left-hand exhibit shows the amount of premium
collected at time points corresponding to the claim arrival times and the right-hand exhibit
illustrates the claim sizes at each arrival time. Bottom row: The left-hand exhibit illustrates
the total claim amount process corresponding to the claims and claim arrival times, and the
right-hand exhibit illustrates the resulting risk process.

3.3.2 Illustrations

Figures 7 below illustrate the risk process, U(t), 0 <t < T, for T = 100. In subsequent figures
and tables, results are presented for T = 100 and T = 1000 with the reason being solely to
illustrate the temporal aspect of U(t).
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Figure 7: Hlustration of some sample paths of the risk process, U(t), for three different choices of

severity distribution with NPC satisfied in each case. Note that NPC implies a different premium

rate, ¢, as specified in Definition 3.6 and the subsequent expression (3.2), ¢ = (14 p) gfvll Here,

EW, = % was assumed identical for all three instances with A = 1. The top-left figure shows U (t)
in case of the Exponential distribution, Exp(1); the top-right figure U(¢) in case of the Gamma
distribution, I'(5, 2); and the bottom figure U (¢) in case of the Pareto distribution, Pa(4,4). In all
three instances, p = 0.05 and 7" = 100. Ruin does only occur in case of the Pareto distribution.

By studying Figure 7, it is seen that ruin does not occur for neither the Exponential case nor the
Gamma case, whereas ruin does occur in the Pareto case for one sample path. Noteworthy in the
Pareto case are also the large downward jumps in the trajectories, which means the prevalence of
a large claim and that ruin might just be around the corner. In contrast, these large downward
jumps are not present in either the Exponential case of the Gamma case. The implications on
a portfolio of risks in the presence of a heavy-tailed severity distributions such as the Pareto
distribution will be investigated in Chapter 4.

Figure 8 below depicts how the ruin probability depends on the initial capital, u, over the interval
0<t<TforT =100 and T = 1000, respectively.
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Figure 8: Ilustration of the ruin probability, 1 (u), for u = 10,20, ...,100 with 7" = 100 (upper
center) and 7" = 1000 (bottom center) for the Exponential distribution, Exp(1), (blue line),
Gamma distribution, I'(5,2), (red line), and Pareto distribution, Pa(4,4), (green line). Note
that NPC implies a different premium rate, ¢, as specified in Definition 3.6 and the subsequent
expression (3.2), ¢ = (14 p) 1];21)/([/11 for each choice of severity distribution. Here, EW; = § was
assumed identical for all three instances with A = 1. In all three instances, p = 0.05.

From Figure 8 and Tables 3 and 4, it is clear that increasing the initial capital decreases the ruin
probability, for fixed T, and increasing T increases the ruin probability. In both instances, the
ruin probability is lowest in the case of the Exponential distribution (blue line) and highest for
the Pareto distribution (green line) as u increases.

Distribution/Initial capital 0 10 50 70 100

X, ~ Exp(1) 0.9138 0.3353 0.000  0.000  0.000
X; ~T(5,2) 0.9309 0.5538 0.0198 0.0015 0.000
X; ~ Pareto(4,4) 0.9040 0.4850 0.0215 0.0041 0.0004

Table 3: Illustration of how the ruin probability depends on the level of initial capital with
T = 100 supplementing Figure 8.
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Distribution/Initial capital 0 10 50 70 100

X; ~ Exp(1) 0.9453 0.5625 0.0556 0.0131 0.0013
X; ~T(5,2) 0.9507 0.6886 0.1814 0.0871 0.0279
X,; ~ Pareto(4,4) 0.9459 0.7002 0.2233 0.1178 0.0419

Table 4: Illustration of how the ruin probability depends on the level of initial capital with
T = 1000 supplementing Figure 8.

A final observation based on the results in Tables 3 and 4 is the non-negligible ruin probability
of 0.028 in the Gamma case and 0.042 in the Pareto case, respectively, when T' = 1000.

Figure 9 illustrates how the 1(u) behaves as ¢ increases for u = 0,10, 50 when T = 100.
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Figure 9: Tllustration of the ruin probability, ¥ (u), for u = 0 (top-left), v = 10 (top-right)
and u = 50 (bottom), on 0 < ¢ < 100. In each exhibit, the blue line represents the Exponen-
tial distribution, Exp(1), the red line the Gamma distribution, I'(5,2), and the green line the
Pareto distribution, Pa(4,4). Note that NPC implies a different premium rate, ¢, as specified in

Definition 3.6 and the subsequent expression (3.2), ¢ = (1 + p)ﬁ—if}N for each choice of severity

distribution. Here, p = 0.05 and EW; = % was assumed identical for all three instances with

A=1.

Figure 10 illustrates how the 1 (u) behaves as ¢ increases for three different values of u = 0, 10, 50
when 7" = 1000.
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Figure 10: Ilustration of the ruin probability, ¥ (u), for v = 0 (top-left), w = 10 (top-right)
and u = 50 (bottom), on 0 < ¢ < 1000. In each exhibit, the blue line represents the Exponen-
tial distribution, Exp(1), the red line the Gamma distribution, I'(5,2), and the green line the
Pareto distribution, Pa(4,4). Note that NPC implies a different premium rate, ¢, as specified in
Definition 3.6 and the subsequent expression (3.2), ¢ = (1 + p) gffﬁ, for each choice of severity
distribution. Here, p = 0.05 and EW; = % was assumed identical for all three instances with
A=1.

By studying Figures 9 and 10, it is easy to observe that, for a given level of initial capital wu,
¥(u) increases as t increases. An equally easy and intuitive observation is 1 (t;us) < ¥(t;uq)
if up < ug, i.e. increasing the initial capital decreases the ruin probability and this holds as ¢
increases. The results presented thus far above seem to a large extent intuitive: increasing the
initial capital decreases the ruin probability and increasing the time horizon increases the ruin
probability. The behaviour of U(t) also seems to be different depending on whether the severity
distribution is light-tailed or heavy-tailed in the sense of ruin being more likely in the latter case
and, should it occur in the heavy-tailed case, it is due to a single large claim rather than a mass
of claims.

4 Case Study: Heavy-tailed Portfolio Dynamics

The aim of this chapter is to illustrate the portfolio behaviour, defined in terms of ruin probability,
in the presence of heavy-tails and available mitigating measures. Here, mitigating measures
should be understood as those available to reduce the impact on the portfolio ruin probability.
Results will this be presented in the presence and without mitigating measures. The results
have been obtained by using the simulation methodology outlined in Section 3.3.1, where the
methodology for one sample path was illustrated.
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4.1 Assumptions

Consider a stylised insurance company with a limited portfolio of risks, namely three lines of
business with the following assumptions:

e Line of business 1: The Cramér-Lundberg model with claims arriving according to a Poisson
process, Ni(t), with homogeneous intensity A, and with severity distribution Exp(~y). For
sake of simplicity, assume A\ = v = 1.

e Line of business 2: The Cramér-Lundberg model with claims arriving according to a Poisson
process, Na(t), with homogeneous intensity 0.8, and with severity distribution I'(2,5).

e Line of business 3: The Cramér-Lundberg model with claims arriving according to a Poisson
process, N3(t), with homogeneous intensity 0.2, and with severity distribution Pareto(2, 10)
4

Assume further a safety loading, p = 0.05, for all three lines of business, a time horizon of T' = 100.
With these assumptions, the ruin probability for each individual line of business as well as for the
portfolio is presented below for u = 100, 110, ...,200. For sake of simplicity, the initial capital is
evenly distributed to each line of business. In view of the Pareto distribution being heavy-tailed
and thus having a significant influence over the portfolio ruin probability, the assumption of
an evenly distributed initial capital per line of business may not be a reasonable one. Lastly,
independence is assumed between all three risks in the portfolio and that an acceptable threshold
for the portfolio ruin probability is 0.5%.

If the surplus of the individual lines of business at time ¢ > 0 is denoted Uj;(¢), then the ruin of
the portfolio is defined when the portfolio surplus, U(t) = Uy (t) 4+ Uz(t) 4+ Us(t) is below null for
any t > 0.

For further reference on the behaviour of the ruin probability of a portfolio of an insurance
company with lines of businesses considered heavy-tailed, please see e.g. Hult and Lindskog [13].
This article also analyses the impact of rules for transfer of capital between the different lines of
business on the ruin probability and draw conclusions about possible benefits from diversification
in the portfolio. In Hult and Lindskog [14], the analysis is extended to study the asymptotic
decay of finite time ruin probabilities for an insurance company that faces heavy-tailed claims
and uses predictable investment strategies defined as investments in risky assets. Both of these
papers contain further references on the topic.

4.2 Without Mitigating Measures

Table 5 and Figure 11 below exhibits each the ruin probability for the portfolio and for the
individual lines of business. It is evident that the heavy tail of the Pareto distribution has a
large influence on the ruin probability of the portfolio, and the lighter tails of the Exponential
and Gamma distributions have insignificant influence on the ruin probability as the initial capital
increases. There is also a certain amount of diversification in the portfolio as the ruin probability
of the portfolio is not quite as severe as for the Line of business 3.

4Please note the choice a = 2 implies EX?2 does not exist and hence an infinite variance. However, in the
present text, this small(!) problem is overlooked for the purpose of illustration.
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Distribution/Initial capital 100 120 140 160 180 200

X; ~ Exp(1) 0.00737 0.00162 0.00034 0.00007 0.00002 0.00000
X; ~T(5,2) 0.10867 0.06002 0.03178 0.01590 0.00692 0.00319
X, ~ Pareto(2,10) 0.42588 0.38980 0.35155 0.31982 0.29408 0.26724
Portfolio 0.16345 0.13055 0.10244 0.08267 0.06756 0.05576

Table 5: Illustration of how the ruin probability depends on the level of initial capital with
T = 100. The initial capital in each column has been allocated evenly to all three lines of

business.

Ruin probability

0.6
|

Probability
02 04

[

+ Porfolio

* Exponential

+ Gamma
Pareto

Figure 11: Illustration of the portfolio ruin probability together with the ruin probability for the

individual line of business.

Figure 12 below exhibits the distribution of the portfolio surplus, U(t), at t = 25,50, 75,100, in
the interval (—500,450) with initial capital equal to 200. The heavy left tail of the distribution,
which becomes more pronounced as ¢ increases, shows the influence of the Pareto distribution

on the portfolio surplus.

Initial capital
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Figure 12: Tllustration of the portfolio surplus, U(t), at ¢t = 25,50,75,100 and 100 for values
(—200,400) with initial capital equal to 200.

Table 6 exhibits a subset of quantiles for the left tail of the distribution along with the mean,
standard deviation coefficient of variation (CoV), and minimum and maximum of the distribu-
tion,

Time 25 50 75 100
0.1th -474.56  -742.65  -993.89 -1192.69
0.5th -94.00 -221.09  -317.35 -401.91
1th -8.62 -96.18 -156.90  -223.05
2.5th 74.62 19.94 -20.03 -56.52
10th 153.61 132.09 116.08 107.67
Mean 207.00 213.39 219.44 234.83
Standard deviation 73.36 105.72 127.84 149.03
CoV 0.35 0.50 0.58 0.63
Min -5750.16 -8176.96 -8168.95 -8559.23
Max 345.56 407.10 453.25 485.68

Table 6: The quantiles of the portfolio surplus, U(t), at t = 25,50, 75 and 100 for values along
with the mean, standard deviation, coefficient of variation, minimum and maximum. Initial
capital equal to 200.

Table 6 yet again illustrates the influence of the heavy tail of the Pareto distribution on the
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distribution of the portfolio surplus. It is also apparent how the distribution widens as ¢ increases.
Results for each individual lines of business are found in the Appendix.

4.3 With Mitigating Measures

The question at hand is to determine available measures to the insurance company to decrease
the ruin probability on a portfolio level to an acceptable level, say 0.5 %, over the specified time
horizon. On a first glance, these could include:

1. Increase the level of capital, u, by for example raising capital from capital markets or
decreasing or withholding payment of dividends to shareholders.

2. Increase the safety loading, p, for each line of business. In effect, this means increasing
premiums charged to its customers in return for offering insurance to the customers.

3. Purchasing reinsurance coverage. This could be done in numerous ways but here a standard
excess-of-loss coverage will only be investigated The aim is to limit the impact of large
claims on the company’s surplus.

4. Increase the size of the portfolio by adding risks assumed independent of already existing
risks in the portfolio in order to benefit from increased diversification.

As already noted and evident from Theorem 3.3 and Theorem 3.5, increasing the level of initial
capital will decrease the ruin probability below any specified level. However, circumstances
might not allow more capital to be raised or it may be prohibitively expensive to do so to.
Withholding or decreasing dividend payments is more feasible although it may not be looked
upon favourbly by e.g. shareholders or capital markets. The second alternative, increasing
premiums charged to customers, might be difficult due to market competition or it might be
necessary to raise premiums to such a large extent to achieve the desired reduction in the ruin
probability that customers will leave. Purchasing reinsurance coverage is possible to the extent
permitted by reinsurance markets, whose available capacity varies over time. The last alternative,
increasing the portfolio size with light-tailed risks, is certainly an option but it is doubtful if
enough premium income is generated to offset severe claims from the Pareto distribution. If the
severity distribution has a right tail, which is regularly varying, by Theorem 2.1 and Corollary
2.1, it follows that the tail can not be diversified away.

4.3.1 Increasing the Safety Loading

This could either be done for all lines of business in the portfolio or solely for Line of business 3.
However, given the heavy tail of the Pareto distribution and its effect on the tail behaviour of
portfolio (as shown in Table 5), it is doubtful enough premiums will be collected to pay for the
large the claim should it occur. To illustrate, assume premiums are increased by 20 % each for
Lines of business 1 and 2, and doubled for Line of business 3. The results are presented in Table
7 and Figure 13 below for the portfolio.

Portfolio/Initial capital 100 120 140 160 180 200
Base 0.16345 0.13055 0.10244 0.08267 0.06756 0.05576
Alternative 2 0.05458 0.04455 0.03590 0.03095 0.02585 0.02264

Table 7: Illustration of how the ruin probability depends on the level of initial capital for the
base portfolio and alternative portfolio with premiums increased (Alternative 2).
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Figure 13: Illustration of how the ruin probability depends on the level of initial capital at
T = 100 for the base portfolio (black line) and the alternative portfolio with premiums increased
(red line).

As can be expected, the ruin probability decreases if premiums are increased and the decrease
is, in relative terms, higher for smaller values of the initial capital, albeit not by much. In spite
of this, the ruin probability is still considered unacceptably high at ca. 2.2 % even for an initial
capital of 200, implying insufficient capital to absorb the very large claims from the Pareto
distribution. The relative flatness in the red line in Figure 13 indicates decreasing marginal
effects on the ruin probability as the claims causing ruin for large values of initial capital are
indeed very severe.

4.3.2 Reinsurance Coverage

For sake of simplicity, assume, for now, unlimited type of coverage is offered by the reinsurance
company in the sense that it does not cap losses exceeding the deductible d. Assume further that
coverage is only purchased for the Pareto line of business as this is the most capital expensive
one. Now, from the insurance company’s perspective, the surplus process assumes the form

~ N3 (t)
Ut)=u+ét+ » min(X,,d)

n=1
for this line of business, where ¢ is determined according to NPC:

E[min(X1,d))

c=(1+p) B,

with
d —_
E[min(Xl,d)]:/O zfx(z)dz + d Fx(d)

o o+d\ @ o+d\“
= 1—
S50 ()

and EW; = A~!. Now, in return for offering coverage the reinsurance company will charge
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a premium, p(t). The claims process for the reinsurance company can be modelled using the
Cramér-Lundberg model and the surplus process, U(t), for the reinsurance company is thus given
by

>
@
—~

£
Ut) =0+ ét + max(X,, — d,0)
1

, where NPC again needs to be satisfied, i.e.
E[max(X; —d,0)]

¢=(1+p) I
1

for some safety loading p. Here, Ng(t) is the Poisson process for the claims exceeding the
deductible d. The task at hand is to determine E[max(X; —d),0)] and EW;. Firstly, E[max(X;—
d),0)] is nothing else than the expected claims cost in the layer (d, 00), which is the same as the
mean excess function encountered, er(d), in Section 2.1. Since X; ~ Pareto(a, o), it follows

er(d) = EXy + ——

a—1"

To determine EW;, let M(t) be the number of claims exceeding the deductible at ¢, and notice
that, conditioned on the event N3(t) = n, M(t) is Bin(n,p), i.e. binomially distributed with
probability of success p = F'x(d). Hence,

PMH) =k =3 <Z>p’“(1 —p)"*’“e**t(/\nﬁ
n=0 :
k _ \n—k
= e_At% 2 (l(nf)k)!(At)(n—k)()\t)k
e Op)E SN (ML —p))nh
—e A o 2:;) T
=e M (Atp)* At(1—D)
k!
— e—)\tp (Atp)
k!

Hence, the number of claims exceeding the deductible, d, is given by a Poisson process with
intensity Atp. The NPC for the reinsurance company is thus

. . d
¢=(1+p)Ap (EX1 + )
a—1
and the final expression for the surplus process for the insurance company is given by
Ns(t)

Ut)=u+(@E—ot+ Y min(X,,d).

n=1
Similarly, the surplus process for the reinsurance company is given by

R Ns(t)
Ut)=u+ét+ » max(X, —d,0).

n=1
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The NPC for the reinsurance company could also be derived by noting

P(X >z +d)
P(X > d)

(=) /()

_ <x+(o+d)>‘°“

PX>z+d| X >d) =

o+d

i.e. the distribution of the claims exceeding the deductible d is Pa(«, o + d) and with expected
value g—f”ll. It also follows the conclusions of Theorem 3.5 are valid and the reinsurance company
can thus expect its ruin probability to deccay slowly. In practice, the reinsurance company can
of course have its own view on both the model choice as well as the actual parameterisation of
the model.

With the assumption d is chosen such that p = 0.1, the effect on the ruin probability is shown
in Table 8 below. Note that choosing p = 0.1 implies a self-retention of 21.62, i.e. the solution
dy to the equation F'x(d) = 0.1.

Portfolio/Initial capital 100 120 140 160 180 200
Base 0.16345 0.13055 0.10244 0.08267 0.06756 0.05576
Alternative 3a (p =0.1) 0.04774 0.02096 0.00775 0.00300 0.00101 0.00025

Table 8: Illustration of how the ruin probability depends on the level of initial capital at T = 100
for the base portfolio (cf. Table 5) and portfolio with excess-of-loss type reinsurance purchased
(Alternative 3a).

As can be seen, purchasing reinsurance reduces the ruin probability below the specified threshold;
an initial capital of 160 suffices as the ruin probability is below 0.5% as the reinsurance coverage
caps the very large losses, which otherwise would have had a large impact on the ruin probability.
This is particularly evident for larger values of initial capital for which the reduction is much
larger since the very large losses causing ruin are capped at a comparatively low level.

Thus far, the behaviour of the reinsurance company has not been considered since it has been tac-
itly assumed that coverage would be provided without restrictions. Nevertheless, the reinsurance
company would surely have its own acceptable thresholds for the ruin probability. For argument’s
sake, assume the reinsurance company has the same threshold as the insurance company’s value,
below which the ruin probability is considered acceptable, 0.5%, and its possibilities to raise
additional capital are limited. What options are then available to the reinsurance company to
reduce the ruin probability to an acceptable level? It could e.g.

1. Increase premiums.

2. Reduce offered capacity by increasing the deductible d but still indemnify all losses in the
interval (d, 00).

3. Reduce offered capacity by limiting its commitment to losses in the interval (dy,ds), d1 < da
4. Retrocede the risk, i.e. buy coverage from other reinsurers.

Of these, Alternative 1, would most likely have a negligible effect similar to the insurance com-
pany’s attempts to raise premiums, and Alternative 3. gives rise to the same type of discussion
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but between reinsurance companies instead. Regarding Alternative 2, whilst the expression for
er(d) readily shows an increased expected claims cost from increasing the deductible, the thin-
ning out of the Poisson process will hopefully mitigate the increase in e (d) to result in, at least,
an expected decreased total claims cost.

Table 9 below shows the effect on the ruin probability for the reinsurance company from decreas-
ing the exceedance probability from p; = 0.1 to po = 0.05, which corresponds to increasing the
attachment point of the layer from dy = 21.62 to dy = 34.72. If the reinsurance company wants
to decrease the ruin probability below 0.5 %, increasing the attachment point to dy = 34.72 is
not enough even when the initial capital is 200, which, again, shows how severe the losses are
causing ruin.

Coverage/Initial capital 100 120 140 160 180 200
Excess-of-loss 1 (p =10.1)  0.03567 0.02962 0.02407 0.02122 0.01712 0.01528
Excess-of-loss 2 (p =0.05) 0.01791 0.01464 0.01211 0.01093 0.00924 0.00818

Table 9: Illustration of how the ruin probability depends on the level of initial capital at T = 100
for the reinsurance company for two types of excess-of-loss coverage offered.

Table 10 shows the corresponding effect on the insurance company’s ruin probability as a con-
sequence of reduced reinsurance capacity. As expected, the ruin probability increases quite
drastically when the self-retention is increased.

Portfolio/Initial capital 100 120 140 160 180 200

Base 0.16345 0.13055 0.10244 0.08267 0.06756 0.05576
Alternative 3a (p = 0.1) 0.04774 0.02096 0.00775 0.00300 0.00101 0.00025
Alternative 3b (p = 0.05) 0.06943 0.03678 0.01809 0.00880 0.00356 0.00164

Table 10: Illustration of how the ruin probability for the insurance company depends on the
level of initial capital at 7' = 100 for the base portfolio and two alternative portfolios with
excess-of-loss type reinsurance purchased at level p = 0.1 and p = 0.05.

In Figure 14 below, the ruin probability for both the insurance company and reinsurance company
is shown in the presence of excess-of-loss contracts. The relative flatness of the red line in the
right exhibit bears testimony to the severeness of the claims from the Pareto distribution piercing
the reinsurance layer.
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Figure 14: Illustration of the portfolio ruin probability for the insurance company (left exhibit)
and the reinsurance company (right exhibit) for two types of excess-of-loss contracts with at-
tachment point d; = 21.62 (black line) and attachment point de = 34.72 (red line).

The above results assume unlimited coverage provided by the reinsurance company, which, al-
though beneficial for the insurance company, is dangerous for the former as the losses from the
Pareto distribution can indeed be very severe and therefore require high levels of capital to main-
tain the ruin probability at an acceptable level. It is consequently doubtful if any reinsurer would
enter into such an agreement. A more effective arrangement would instead be to have multiple
reinsurers participating and thus assuming a portion of losses, in so-called layers, exceeding the
insurance company’s deductible. This type of construction limits the liability of the reinsurers
to a specified amount thereby reducing the amount of capital necessary to provide coverage.
The table below summarises the scheme outlined above with each reinsurer participating in one
layer together with its maximum loss. Notwithstanding the above, Reinsurer 5 is, for simplicity,
assumed to cover losses in the unbounded layer (ds, 00).

Reinsurer Layer  Attachment points Maximum loss
Reinsurer 1  Layer 1 (dy, ds] do — dy
Reinsurer 2 Layer 2 (d2, ds] ds — do
Reinsurer 3  Layer 3 (ds, d4] dy — ds
Reinsurer 4 Layer 4 (dy, ds] ds — dy
Reinsurer 5 Layer 5 (ds, 0) Not defined

Table 11: Illustration of an excess-of-loss programme structure with five layers with the fifth
being unbounded. Please note d; < ds < -+ < ds.

Naturally, this assumes enough reinsurers are around to provide coverage. Now, from the point
of view of the insurance company, nothing has changed as it still only covers losses in [0, dq,
but the major difference is that each reinsurer only covers losses in its respective layer. Using
the in Chapter 3 already described model for modelling the surplus process of an insurance
company, it is seen that NPC is unchanged for the insurance company and Reinsurer 5 and a
slight modification is needed for Reinsurers 1 to 4 according to

1 _

= (1 +ﬁ)W(E[dl <X < dj | X > dz} + (dj — dz)F(dj))
i

fori=1,...,4 and d; < d;. Lastly, to have actual numerical values to work with, assume each

d; is determined according to specified quantile levels of the Pareto distribution, F~!(p;) = d;

with p; = 0.9, po = 0.95, p3 = 0.975, py, = 0.99 and ps = 0.995.
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With all assumptions made, nothing remains other than presenting the results of the exercise as
in Table 12 below. Note that chosen levels of initial capital are here 0, 10, 20, 100, 160 and 200.

Initial capital 0 10 20 100 160 200

Insurer 0.90311 0.68959 0.53217 0.02962 0.00148 0.00011
Reinsurer 1 0.26412 0.08894 0.01896 0.00000 0.00000 0.00000
Reinsurer 2 0.09344 0.06812 0.00792 0.00000 0.00000 0.00000
Reinsurer 3 0.02721 0.02331 0.01943 0.00001 0.00000  0.00000
Reinsurer 4 0.00494 0.00430 0.00422 0.00000 0.00000 0.00000
Reinsurer 5 0.00126  0.00113 0.00112 0.00078 0.00058 0.00052

Table 12: Illustration of how the ruin probability depends on the level of initial capital at 7" = 100
for the insurance company (Insurer) and each member of the reinsurance panel (Reinsurer 1 to
5).

As evident, as well as expected, from Table 12, substantially reduces the amount of capital
required to keep the ruin probability at an acceptable level for each participating reinsurer; with
an initial capital of 100, the ruin probability is below 0.5% for all reinsurers. In comparison, and
shown in Table 9, this is not even the case with an initial capital of 200 when one reinsurer is
covering losses in the unbounded layer. Noteworthy is also the fact that the ruin probability is
very low, indeed below 0.5%, regardless of the level of initial capital for Reinsurer 5.

4.3.3 Conclusion

In conclusion, from the insurance company’s perspective, purchasing excess-of-loss reinsurance
is an effective way of mitigating the effects on its capital position and thus ruin probability from
the severity of the Pareto distribution. From the reinsurance company’s perspective, however,
the ruin probability exceeds the threshold value of 0.5% regardless of self-retention level and
initial capital when unlimited coverage is offered. To maintain an adequate capital position,
it should limit its liability to any bounded layer, as shown in Table 12, the results of which
starkly contrasts to the results of Table 9. By the very nature of the situation, the insurance
company will thus have to purchase coverage from multiple reinsurers. With this arrangement,
the insurance company obtains protection and each reinsurance company limits its liability to
claims in its respective layer, with the exception of Reinsurer 5. However, in case of reinsurance
capacity constraints, the insurance company would nonetheless have to resort to other measures
to manage the risk, e.g. raising more capital or increasing premiums either specifically for the
risk in question or for the entire portfolio.

5 Final remarks

The purpose of this thesis has been to try and emphasise the consequences of whether a severity
distribution can be considered light-tailed or heavy-tailed and the implications of this classifica-
tion on the dynamics of the ruin probability of an idealised insurance company’s portfolio.

In Chapter 2, some properties were suggested which a light-tailed and heavy-tailed distribution
should possess. Amongst these were the suggestion of using the exponential distribution as a
reference distribution: if the right-tail decays faster to zero than the right tail of the exponential
distribution, then it could be considered light-tailed; if on the other hand it decays slower, it
could be considered heavy-tailed. Another suggestion for distinguishing between a light-tailed
or heavy-tailed distribution could be to use the mean excess function and require it bounded in
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case of a light-tailed distribution and unbounded if heavy-tailed. The notion of a distribution
function with a regularly varying right tail was introduced exhibiting the property of being
closed under summation implying that heavy-tails can not be ”diversified away” in the sense of
the Central Limit Theorem. An example were provided to show this. As the piéce de resistance,
the class of subexponential distributions was introduced, which derives it name from having a
right tail decaying faster to zero than any exponential tail. This class of functions is a useful and
popular choice in non-life insurance mathematics. Some properties were stated in Theorem 2.2.
A corollary to this is the fact that if the distribution is subexponential, then it does not have a
moment generating function.

Chapter 3 was a very brief summary of ruin theory with Lundberg’s inequality (Theorem 3.2)
and Cramér’s ruin bound (Theorem 3.3) as classical results in the light-tailed case. In particular,
these two theorems state the asymptotic behaviour of the ruin probability and proves the ruin
probability to decay exponentially as the amount of initial capital tends to infinity. Under the
assumption of an exponential severity distribution it is even possible to derive an explicit expres-
sion for the ruin probability. In the heavy-tailed case, Theorem 3.5 provides a fundamentally
different asymptotics in the case of subexponential distributions: the probability of ruin ) (u) is
of essentially of the same order as Fx j(u), which decays slower than any exponential tail.

The results in Chapter 4 indicate a fundamentally different behaviour of the portfolio in the
presence of heavy-tailed severity distribution as opposed to a portfolio containing solely light-
tailed risks. In the former instance, the influence is evident through the occurrence of very large
claims affecting the surplus of the portfolio to the extent of a non-negligible probability of it
becoming negative over the modelled time horizon. Insofar as this probability is unacceptably
high, careful capital and risk management is called for to address this. In the absence of raising
additional capital, purchasing reinsurance might be an option to lower the ruin probability.
However, as shown in 9, the ruin probability for the reinsurance company might as well be
considered unacceptably high even when the attachment point of the contract is quite far out
in the tail, thus forcing the reinsurance company to reduce capacity even further. As shown in
Table 12, an effective way for the reinsurance company to reduce the necessary capital employed
is to limit its commitment to a layer ((d;, d;) and thus its maximum loss. This will again force the
insurance company to consider other measures to mitigate the risk. Purchasing reinsurance from
multiple reinsurers as specified in Table 11, increasing premiums or raising additional capital
might be such measures, whereby some will be preferable to other. In some instances, some
might not even be possible.

6 Appendix

6.1 Karamata’s Theorem

Karamata’s theorem is formulated as

Theorem 6.1 (Karamata’s theorem, p. 9 in [19]). Let L be slowly varying and locally bounded
in [xo,00) for some xyg > 0. Then,

o fora>—1,
/ L@~ (o +1) "2 L), = oo,

0
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o fora< —1,

(o)
/ t*L(t)dt ~ —(a+ 1)tz L(2), = — .
x

By noting that f(x) = 2“L(z), the conclusions of Theorem 6.1 can be expressed as

o for a > —1,

o for a < —1,

6.2 Detailed Numerical Results

Figure 15 shows the distribution of the surplus of Line of Business 1 at ¢ = 25,50, 75, 100.
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Figure 15: Distribution of the surplus of Line of Business 1 at ¢ = 25 (top left), ¢ = 50 (top
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right), t = 75 (bottom left) and ¢ = 100 (bottom right). Initial capital equal to 66.67.

Table 13 shows some information about the distribution of the surplus for Line of Business 1.

44



Time 25 50 75 100

0.1th 43.56  35.85 32.39 27.62
0.5th 48.07  41.78  38.69  34.20
1th 50.12  44.63 41.80 37.85
2.5th 53.07 48.58  46.27  43.31
10th 58.30  55.81 54.70  53.12
Mean 68.09 69.40  70.16 70.93
Standard deviation 7.69 10.67 12.14 13.71
CoV 0.11 0.15 0.17 0.19

Min 32.91 23.51 16.00 2.87

Max 102.41 120.12 123.00 123.00

Table 13: Distributional information about Line of Business 1 at t = 25,50,75,100. Initial

capital equal to 66.67.

By studying both Figure 15 and Table 13 it is evident the influence from Line of Business 1 on
the left tail of the distribution, and hence the values of the ruin probability of interest here, is

negligible.

Figure 16 shows the surplus of Line of Business 2 t ¢ = 25,50, 75, 100.

3000

2000

Frequency

0 500 1000

Frequency
2500

1500

0 500

T
0 50 100

Surplus

Frequency
1000 2000 3000 4000

0

3000

2000

Frequency

0 500 1000

Surplus

Figure 16: Distribution of the surplus of Line of Business 2 at ¢ = 25 (top left), ¢ = 50 (top
right), ¢t = 75 (bottom left) and ¢ = 100 (bottom right). Initial capital equal to 66.67.

Table 14 shows some information about the distribution of the surplus for Line of Business 2.
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Time 25 50 75 100

0.1th 31.93 18.56 7.39 -3.04
0.5th 37.40  26.33 17.79 9.30

1th 40.29  30.12 22.80 15.86
2.5th 44.40  36.36  30.79  25.30
10th 52.36  48.00 45.52  43.14
Mean 69.66 7247 7537  T7.26
Standard deviation  13.93 19.51 23.82 26.38
CoV 0.20 0.27 0.32 0.34

Min 19.97 -3.81 -20.91 -34.81
Max 137.17 175.84 185.67 185.67

Table 14: Distributional information about Line of Business 2 at t = 25,50,75,100. Initial

capital equal to 66.67.

Although somewhat wider, it is evident from Figure 16 and Table 14 that the influence from
Line of Business 2 on the left tail of the distribution, and hence the values of the ruin probability

of interest here, is negligible.

Figure 17 shows the surplus of Line of Business 3 t ¢ = 25,50, 75, 100.
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Figure 17: Distribution of the surplus of Line of Business 3 at ¢ = 25 (top left), ¢ = 50 (top
right), ¢t = 75 (bottom left) and ¢ = 100 (bottom right). Initial capital equal to 66.67.

Table 15 shows some information about the distribution of the surplus for Line of Business 3.
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Time 25 50 75 100
0.1th -340.86  -704.88 -1065.19 -1363.37
0.5th -114.27  -256.57  -445.77  -568.39
1th -54.05 -160.39  -288.67  -568.39
2.5th -3.11 -71.07 -156.98  -222.10
10th 42.36 14.31 -23.37 -56.12
Mean 67.78 69.72 72.77 66.51
Standard deviation 43.15 81.47 120.96 146.73
CoV 0.64 1.17 1.66 2.21
Min -3980.10 -6348.40 -8343.93 -8730.08
Max 201.32 257.27 258.22 258.22

Table 15: Distributional information about Line of Business 3 at t = 25,50,75,100. Initial

capital equal to 66.67.

By studying Figure 17 and Table 15, it is evident that the left tail of the Pareto distribution,
and thus Line of Business 3, has a significant influence on the left tail of the distribution of the
portfolio surplus. This is in stark contrast to the other lines of business.

Figure 18 shows the surplus of the portfolio, at t = 25,50, 75, 100, without any reinsurance.
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Figure 18: Distribution of the surplus of the portfolio, without any reinsurance, at t = 25 (top
left), ¢ = 50 (top right), ¢t = 75 (bottom left) and ¢ = 100 (bottom right). Initial capital equal to
200.

Table 16 shows some information about the distribution of the surplus for the portfolio without
any reinsurance.
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Time 25 50 75 100

0.1th -474.56  -742.65  -993.89 -1192.69
0.5th -94.00 -221.09  -317.35  -401.91
1th -8.62 -96.18 -156.90  -223.05
2.5th 74.62 19.94 -20.03 -56.52
10th 153.61 132.09 116.08 107.67
Mean 207.00 213.39 219.44 234.83
Standard deviation 73.36 105.72 127.84 149.03
CoV 0.35 0.50 0.58 2.21
Min -5750.16 -8176.96 -8168.95 -8559.23
Max 345.56 407.10 453.25 485.68

Table 16: Distributional information about the portfolio, without reinsurance cover, at t =
25,50, 75,100. Initial capital equal to 200.

Figure 19 shows the surplus of the portfolio, at ¢ = 25,50,75,100, with excess-of-loss type
reinsurance with deductible d; = 21.62.
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Figure 19: Distribution of the surplus of the portfolio, with reinsurance at deductible d; = 21.62,
at t = 25 (top left), ¢ = 50 (top right), t = 75 (bottom left) and ¢ = 100 (bottom right). Initial
capital equal to 200.

Table 17 shows some information about the distribution of the surplus for the portfolio with
excess-of-loss type reinsurance with deductible d; = 21.62.
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Time 25 50 75 100

0.1th 108.23 78.00  55.45  39.57
0.5th 126.28 100.33 83.02  71.73
1th 134.36 111.03 94.29  86.86
2.5th 146.09 126.35 111.52 109.53
10th 166.73 154.03 144.73 146.88
Mean 201.00 201.58 202.30 211.37
Standard deviation  26.34 36.89 44.545 49.45
CoV 0.13 0.18 0.22 0.24

Min 36.09 2212 -14.17 -51.53
Max 311.00 350.28 378.39 398.30

Table 17: Distributional information about the portfolio, with excess-of-loss type reinsurance
with deductible d; = 21.62, at t = 25,50, 75, 100. Initial capital equal to 200.

Figure 20 shows the surplus of the portfolio, at ¢ = 25,50,75,100, with excess-of-loss type
reinsurance with deductible dy = 34.7.
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Figure 20: Distribution of the surplus of the portfolio, with reinsurance at deductible dy = 34.7,
at t = 25 (top left), ¢ = 50 (top right), t = 75 (bottom left) and ¢ = 100 (bottom right). Initial
capital equal to 200.

Table 18 shows some information about the distribution of the surplus for the portfolio with
excess-of-loss type reinsurance with deductible do = 34.7.
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Time 25 50 75 100

0.1th 86.49 52.62 28.77 9.24

0.5th 109.83 81.14 63.63  50.76
1th 120.81 96.38  78.65  69.90
2.5th 136.16 116.09 101.01 97.37
10th 163.31 150.71 142.04 144.85
Mean 203.70 207.07 210.28 222.38
Standard deviation  30.96 43.34 52.35 59.00
CoV 0.15 0.21 0.25 0.27

Min 4.50 -21.77  -76.31  -96.89
Max 322.84 369.71 404.04 428.24

Table 18: Distributional information about the portfolio, with excess-of-loss type reinsurance
with deductible dy = 34.7, at t = 25,50, 75, 100. Initial capital equal to 200.

Figure 21 shows the surplus of the portfolio, at ¢ = 25,50,75,100, with excess-of-loss type
reinsurance with multiple reinsurers participating in different layers, each layer attaching at
dl = 21.7, dg = 34.7, d3 = 53.2, d4 =90 and d5 = 131.4.

3000

2000

Frequency
0 1000 2000 3000 4000 5000

0 500 1000

.
r T T T T T 1
50 100 150 200 250 300 350

Surplus

Frequency
2000 3000 4000

Frequency

1000 2000 3000 4000
1000

0
0

T T
0 100 200 300 400

Surplus Surplus

Figure 21: Distribution of the surplus of the portfolio, with excess-of-loss type reinsurance with
multiple reinsurers participating in different layers, at ¢ = 25 (top left), ¢ = 50 (top right), t = 75
(bottom left) and ¢ = 100 (bottom right). Initial capital equal to 200.

Table 19 shows some information about the distribution of the surplus for the portfolio with
excess-of-loss type reinsurance with multiple reinsurers participating in different layers, each
layer attaching at dy = 21.7, do = 34.7, d3 = 53.2, dy = 90 and ds = 131.4.
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Time 25 50 (6] 100

0.1th 111.74 84.58 65.20 55.26
0.5th 129.68 107.01 92.85  87.26
1th 137.73 117.64 104.39 102.42
2.5th 149.54 133.13 121.68 125.10
10th 170.20 161.17 155.16 144.85
Mean 204.79 209.22 213.40 162.50
Standard deviation  26.67 37.36 45.11 49.50
CoV 0.13 0.18 0.21 0.22

Min 38.50  28.64 -4.84  -36.99
Max 317.26 360.57 391.97 414.15

Table 19: Distributional information about the portfolio, with excess-of-loss type reinsurance
with multiple reinsurers participating in different layers, at ¢ = 25,50, 75,100. Initial capital
equal to 200.
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