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Abstract

The main objective of this thesis is to analyze the effects of dis-
criminationfree pricing (DFP) on avoiding direct and indirect discrim-
ination in insurance with respect to gender. This is done by comparing
the DFPs to standard insurance prices that both include and exclude
gender as a covariate. Using a French motor thirdparty liability insur-
ance dataset, we explore two methods: Generalized Additive Models
(GAM) and Gradient Boosting Machines (GBM), to build a model
for claim frequency. A grid search with 10-fold cross-validation se-
lects the optimal parameters of GBMs. Generalized cross-validation
is adapted to find smoothing parameters for the GAMs. We evaluate
the predictive performance of the models using concentration curves,
Root Mean Square Error (RMSE) and deviance loss. The DFPs are
also compared to the standard insurance prices w.r.t partial depen-
dence plots (PDPs) and a certain type of coefficient of determination.
We investigate the impact of nondiscriminatory pricing based on the
GAM and GBM models that include gender as a discriminatory vari-
able. In the analyses, we find DFPs lie closer to unawareness prices
for GBM than GAM. The best-estimate prices have the best predic-
tive performance. Differences in DFPs compared to the best-estimate
prices are less for GBM than GAM.
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Chapter 1

Introduction

In Europe, the law does not allow the use of policyholder information on gender
in insurance pricing. Direct discrimination is defined as treatment differences for
gender reasons [3]. It is not an appropriate way forward to delete discriminatory
covariates. This is because sensitive information may be derived from other non-
protected attributes, see [9]. Such inferring results in indirect discrimination, which
differs from group fairness criteria adapted to restrict the influence of protected
features in machine learning. The primary purpose of the thesis is to analyze the
effects of using discrimination-free pricing (DFP) proposed by Lindholm et al. in
[8] to avoid direct and indirect discrimination in insurance pricing w.r.t gender.
Ensuring protected features remain in the predictive model but do not represent
discriminatory characteristics.

We explore this using GAMs and GBMs on a French third-party motor liability
insurance data set. With generalized additive models (GAM) and gradient boosting
machines (GBM), we build a predictive model to capture the best-estimate price
(including gender as a covariate), unawareness price (excluding gender as a covari-
ate), and discrimination-free price, respectively. The optimal parameters in the
GAM are obtained using generalized cross-validation, which includes finding the op-
timal smoothing parameter. The hyperparameters in the GBM are obtained using
a grid search. The predictive performance of the models is evaluated using con-
centration curves, root mean square error, and deviance loss. Further, the partial
dependence plots (PDPs) are analyzed together with a coefficient of determination
type fidelity measure that tries to quantify the differences between DFPs and best-
estimate prices/unawareness prices. Throughout the thesis, we will explore which
covariates and interaction effects impact the output most. In general, a discrimina-
tion price will not be unbiased. Therefore, an adjusted marginal distribution is used
for obtaining unbiased discrimination-free prices.

Structure of the thesis. The second section introduces methods adapted to
model building and inspection. In the third section, each covariate is presented. We
describe the discrimination-free price based on models from the dataset in the fourth
section. In the following section, we show how best-estimate prices, unawareness
prices, and discrimination-free prices vary for GBM and GAM with simulations.
Conclusion and discussion in the last section.
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Chapter 2

Theory

2.1 Discrimination-free insurance pricing
Our objective is to develop an insurance tariff that ensures non-discrimination.

Let D denote the vector of discriminatory explanatory variables, and X denote the
vector of non-discriminatory explanatory variables. Furthermore, Let X ∼ P(x),
D ∼ P(d) and (D | X = x) ∼ P(d | x) be the marginal and conditional distribution
of covariate under physical probability P. Let the number of claims Yi be Pois(ωiµi)
givenX = xi. Based on definition 2 in [8], the best-estimate price for claim frequency
µ is defined by

µ(X,D) := E[Y | X,D] (2.1)

Generally, the best-estimate price is not discrimination-free because discriminatory
covariate D is directly used in µ(X,D). The best-estimate price is unbiased which
means µ = E[Y ] = E[µ(X,D)].

For the unawareness price for Y w.r.tX, discriminatory covariate are not included
in the modeling, so it is defined by

µ(X) := E[Y | X] =

∫
µ(X,d)dP(d | x) (2.2)

The unawareness price µ(X) evades direct discrimination. However, it may cause
proxy or indirect discrimination because it still has a possibility to deduce pro-
tected policyholder information from these associated variables features. There has
a special case that indirect discrimination avoids when D and X are independent.
Unawareness price is unbiased due to µ = E[Y ] = E[µ(X)].

Lindholm et al.[8] indicate that the goal is to create pricing formulas free from
discrimination while allowing insurers to differentiate policyholders based on non-
discriminatory factors. A discrimination-free price for Y with reference to X is
defined by

µ∗(X) :=

∫
d

µ(X,d)dP∗(d) (2.3)

where d ∈ D and distribution P∗(d) is defined in the same range as the marginal
distribution of discriminatory covariate D ∼ P(d). Potential indirect discrimination
is avoided by using P∗(d) in (2.3) instead of P(d | x) in (2.2) when constructing
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prices [9]. In the thesis, we specify gender as a discriminatory covariate. So we have
discrimination-free prices as

µ∗(x) := µ(x,D = male)P(D = male) + µ(x,D = female)P(D = female) (2.4)

where P(D = female) is the proportion of female in the total portfolio, P(D = male)
is the proportion of men in the total portfolio, µ(x,D = male) obtained by setting
gender as male, same as µ(x,D = female). That is, we use P∗(D = d) = P(D = d).

We need to pay attention to the fact that the Discrimination-free price (2.3) is not
unbiased. Generally, there is the possibility that a bias exists with a discrimination-
free price since P∗(d) 6= P(d | x). For the sake of the premium of the entire portfolio
held at a suitable level, the bias requires to be corrected. The portfolio bias of the
discrimination-free price is defined by

B∗ = E[Y ]−
∫
x,d

µ(x,d)dP∗(d)dP(x) (2.5)

One way to allocate the bias B∗ is to allocate the proportion of the total premium
to h∗(X), therefore the adjusted discrimination-free price can be written as

π∗(X) = h∗(X)
µ

µ−B∗
=

∫
d

µ(X,d)dP∗(d|X)
µ

µ−B∗
(2.6)

2.2 Generalized linear models
We assume a Poisson distribution for the number of damaged material claims of

an individual policy during the period. Let Ni denotes the number of claims with
exposure ωi and claim frequency Yi = Ni

wi
. Then let µi be the expected value of

a number of claims when ωi = 1. So, Ni|Xi ∼ Pois(ωiµi) [10]. Function of claim
frequency Yi = Ni

wi
is given by

fYi(yi, µi) = e−ωiµi
(ωiµi)

ωiyi

(ωiyi)!
(2.7)

In the generalized linear model there is an arbitrary function g(µi), which g is
the so-called link function. For Poisson data the log-link is often used:

g(µi) = ηi = ln(µi) =
J∑
j=0

x′ijβj ⇒ µi = e
∑J
j=0 x

′
ijβj (2.8)

where x is a n× J design matrix, β is a J × 1 vector.

2.2.1 Poisson deviance loss

Deviance loss can measure the goodness-of-fit of models, which can be defined as
likelihood-ratio-test statistic [10]. Let logL(µ̂) denote log-likelihood function of the
estimated µ̂. The deviance loss can be:

D(y, µ̂) = 2[log(L(y))− logL(µ̂)]

= 2

[
log

n∏
i=1

exp(−yi)
yyii
yi!
− log exp(−µi)

µyii
yi!

]
= 2

n∑
i=1

(yi log
yi
µi
− yi + µi)

(2.9)
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Claim frequency modeling relates to count data, assumed to follow a Poisson
distribution. Wüthrich and Buser [11] propose Possion deviance as a loss function
for the Poisson distribution. The Poisson deviance can be weighted by duration as:

D(y, ωµ̂) = 2[log(L(y, y))− logL(y, ωµ̂)]

= 2

[ n∑
i=1

−ωiyi + ωiyi log(ωiyi)− log((ωiyi)!)−

(−ωiµ̂i + ωiyi log(ωiµ̂i)− log((ωiyi)!))

]
= 2

[ n∑
i=1

−ωiyi + ωiyi log(yi) + ωiµ̂i − ωiyi log(µ̂i))

]
= 2

[ n∑
i=1

ωi(µ̂i − yi + yi log
yi
µ̂i

))

]
=

n∑
i=1

ωiD̂
∗(yi, µ̂i)

(2.10)

where D̂∗ is unit deviance.

2.3 Generalized additive models
Hastie and Tibshirani introduced Generalized additive models in the 1980s, see

[6]. They mentioned that a continuous variable usually takes on a much smaller
number of values because of rounding. So instead of g(µi) = ηi =

∑J
j=0 x

′
ijβj they

assumed that

ηi = β0 +
J∑
j=1

fj(xij), i = 1, 2, · · · , n (2.11)

where fj is some suitable functions, n denotes the numbers of observations, xij is
the value of the variable j for observation i. Until now, the functions fj(·) are not
identified. We suppose to model with all variables except the first one, and then the
model will look like

ηi =
J∑
j=1

βjx
′
ij + f(xi1), · · · , n (2.12)

A requirement is that the function should be twice continuously differentiable and
also not vary too much, that is

∫ b
a
(f ′′(x))2dx = 0, where a ≤ z1, z1 ≤ b and

z1, · · · , zm denote the possible value of xi1. To find the function that gives the best
performance of the effect of a continuous variable, we take penalized deviance to
measure the goodness of estimated values of the data,

∆(f) = D(y, µ) + λ

∫ b

a

(f ′′(x))2dx (2.13)
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whereD(y, µ) is the Poisson deviance loss, y is the vector with observations, λ
∫ b
a
(f ′′(x))2dx

is a measure of variability of f(·), λ is a smoothing parameter. By tuning the smooth-
ing parameter λ, we can find the balance between a good fit to the data and the
function’s variability by minimizing the penalized deviance ∆(f).

2.3.1 Natural cubic splines

The natural cubic spline is widely used for the function fj(·) in (2.11). For a set
of m knots with u1, · · · , um, we define the function s on the interval [u1, um] has
s(x) = pk(x) where k = 1, ·,m − 1. By setting a twice continuously differentiable
function pk = ak+bkx+ckx

2+dkx
3 as spline function, we say function s is cubic spline

if it satisfies the conditions pk−1(uk) = pk(uk), p′k−1(uk) = p′k(uk) , p′′k−1(uk) = p′′k(uk)
for internal knots k = 2, · · · ,m− 1 [10]. If we extend a cubic spline s to an interval
[a, b] which includes [u1, um] and f ′′ = 0 for x ∈ [a, u1], x ∈ [um, b], we call such
cubic spline as natural cubic spline.

For a set of m knots u1 < · · · < um with given values f ∗1 , · · · , f ∗m, there exits
a unique natural cubic spline s on [a, b], that is s(uk) = f ∗k , k = 1, · · · ,m, see
Theorem 5.1 in [10]. Ohlsson & Johansson [10] indicates that it is adequate to
consider natural cubic spline when we search for twice continuously differentiable
function that minimizes equation (2.13).

Since a B-splines can be expressed as a linear combination of simple basis splines,
see [10], we shall use it to parametrize the set of cubic splines. For a set of m knots
has dimension m+ j − 1, a spline s may be expressed as s(x) =

∑m+j−1
k=1 βkBjk(x),

where k = 1, · · · ,m+ j − 1.

2.3.2 Choosing the smoothing parameter

With different smoothing parameters λ, the fitted cubic spline changes between
two extremes. One is a straight line, and the other is a natural cubic spline that fits
perfectly with the data. Wüthrich and Buser, see [11], point out that the Generalized
cross-validation criterion can be applied to find suitable tuning parameters λ. Hastie
et al., see [6], indicate that GCV takes advantage of K-fold cross-validation with
much faster computation. The GCV criterion with a scaled in-sample loss is given
by

GCV(λ) = (1− M(λ)

n
)−2Lin-s

D = (
n

n−M(λ)
)2Lin-s

D (2.14)

where M(λ) is the effective degrees of freedom of the model, Lin-s
D is the Poisson loss

in-sample function. The effective degrees of freedom is obtained from the sum of
the diagonal elements of an influence matrix only depending on the input vectors xi
and λ, see section 5.4.1 in [6]. For more details, refer to Hastie et al.[6], sections 7.6
and 7.10.1.

2.3.3 Interactions

Assume a two-way interaction exists between continuous and categorical vari-
ables in the GAM model. Let x1i denote the value of a categorical variable for ith
observation with possible values z11, · · · , z1m1 , and x2i denotes the value of the con-
tinuous variable with possible values z21, · · · , z2m2 . There exits a function φj(x) = 1
if x = z1j, and φj(x) = 0 otherwise. Set B1(·), · · · , Bm2+2(·) as the cubic B-splines
for the knots z21, · · · , z2m2 , see [10].

In the thesis, we shall investigate age effects for males and females, there would
exist one spline for males and the other for females. Therefore the expression of our
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model can be

ηi = η(x1i,x2i) =

m1∑
j=1

m2+2∑
k=1

βjkφj(x1i)Bk(x2i) (2.15)

By setting sj(x) =
∑m2+2

k=1 βjkBk(x2i) as cubic spline, we will get ηi = sj(x2j)
since φj(z1j) = 1 when x1i = z1j.

For the Poisson distribution we have µ(x1i, x2i) = exp{η(x1i, x2i)}. Hence the
corresponding penalized deviance is expressed as:

∆(s) = D(y, µ) + λ

∫ µm

µ1

(s′′(x))2dx

= 2
∑
i

ωi(yi log yi − yi log µ(x1i,x2i)− yi + µ(x1i,x2i) +

m1∑
j=1

λj(s
′′
j (x))2dx

(2.16)

The penalized deviance can be minimized with transformed data ω̃jk and ỹjk, where
ω̃jk =

∑
i∈Ijk ωi, ỹjk = 1

ω̃jk

∑
i∈Ijk ωiyi, Ijk the set of i.

2.4 Gradient Boosting Machines
In data mining, usually only a small subset of predictor covariates are relevant for

prediction. During data preprocessing, it is necessary to filter out irrelevant covari-
ates and create relevant special features. Moreover, data mining applications also
require models to explain the relationship between input covariates and predicted
outputs. An off-the-shelf method can be directly adapted to data without data pre-
processing or adjusting the learning process. Decision trees satisfy the conditions of
off-the-shelf procedure for data mining. Decision trees produce interpretable models
quickly and naturally incorporating a mixture of numeric and categorical covariates
and missing values. Executing internal covariates can be selected as a component.
Boosting a decision tree improves accuracy significantly while preserving most of
the properties required for data mining. Gradient boosting machines (GBM) can
generate accurate and effective off-the-shelf methods for data mining, see [6]. In a
predictive learning problem, we have a response variable y and explanatory variable
x. Our goal is to estimate a function F̂ (x) that approximates an unknown function
F ∗(x), which minimizes the expected value of a specified loss function L(y, F (x))
over the joint distribution of all (y,x). For claim frequency, we use Poisson deviance
as loss function, which will be discussed in the next section. Following Friedman in
[4], we restrict F (x) to be of the form

F (x; {βm, am}M1 ) =
M∑
m=1

βmh(x; am) (2.17)

where h(x, a) is a simple parameterized function of variables x with parameters a,
also called a "base learner".

By the optimization method we take the solution F ∗(x) =
∑M

m=0 fm(x) where
f0(x) is an initial guess with incremental functions {fm(x)}M1 . For steepest-descent,
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fm(x) = −ρmgm(x) where ρm is step length, ρm = arg minρEy,xL(y, Fm−1(x) −
ρgm(x)),−gm(x) gives the best steepest decent step direction,

gm(x) = Ey

[
∂L(y, F (x))

∂F (x)

∣∣∣∣ x]
F (x)=Fm−1(x)

(2.18)

We try with a greedy stagewise approach for m = 1, 2, · · · ,M ,

Fm(x) = Fm−1(x) + ρmh(x; am) (2.19)

By construction, we rewrite the unconstrained negative gradient with data-based
analog as

gm(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

∣∣∣∣ x]
F (x)=Fm−1(x)

(2.20)

which is defined only at the data points {xi}N1 . We choose {h(x; am)}N1 most parallel
to −gm ∈ RN and the line search a step length ρm can be written as

ρm = arg minρ
N∑
i=1

L(yi, Fm−1(xi)− ρhm(xi; am)) (2.21)

By considering each base learner h(x; am) as a J-terminal node regression tree,
each regression tree model has additive form

h(x; {bj, Rj}J1 ) =
J∑
j=1

bj1{x ∈ Rj} (2.22)

where {Rj}Ji are disjoint regions that cover the space of all points predictor variables
values. The indicator function is 1 if its argument is true. Otherwise, it is zero,
{bj}J1 are the coefficients. If x ∈ Rj then h(x) = bj due to disjoint regions. Update
equation about Fm(x) to:

Fm(x) = Fm−1(x) + ρm

J∑
j=1

bjm1{x ∈ Rjm} (2.23)

where {Rjm}J1 are the terminal node of the regression tree at mth iteration. Set
γjm = ρmbjm the model updates as

Fm(x) = Fm−1(x) +
J∑
j=1

γjm1{x ∈ Rjm} (2.24)

Therefore, the quality of the fit can be further improved in this case by using the
optimal coefficients for each region. The optimal coefficients are:

γjm = arg minγ
∑

xi∈Rjm

L(yi, Fm−1(xi) + γ) (2.25)

Each iteration reduces the training risk, which can lead to overfitting. Thus, the
shrinkage technique is introduced for controlling the number of iterations M . The
simplest way of using shrinkage is to scale each tree by a factor ν ∈ [0, 1].

11



Fm(x) = Fm−1(x) + ν

Jm∑
j=1

γjm1{x ∈ Rjm} (2.26)

The parameter ν is also called the learning rate of the booting procedure. A
trade-off exists between the number of boosting iterations M , training risk L(fM),
and ν. Lager training risk for the same number of iterations M with a smaller
shrinkage value. It can lead to larger values of M for the same training risk with a
smaller shrinkage value.

Friedman, see [4], introduced stochastic gradient boosting to improve perfor-
mance and computational efficiency. The algorithm of stochastic gradient boosting
is shown in Appendix A. At each iteration, we sample η fraction of the training
observations without replacement, acting as a regularization, and the next tree uses
the subsample. Friedman presented that 0.5 < η < 0.8 can have good results for
small and medium-sized training datasets.

2.5 Interpretation
A single decision tree is easy to interpret. The entire model can be fully repre-

sented in a simple two-dimensional graph that is easy to visualize. However, linear
combinations of trees lose this important feature, therefore it must be interpreted
in a different way.

2.5.1 Relative importance of predictor variables

Input covariates are rarely equally relevant. Usually, only a few substantially
impact the response variable, and the vast majority are insignificant. Knowing each
input variable’s relative importance or contribution in predicting the response is
often useful. For measuring of relevance of each predictor covariate Xl, Breiman et
al [1] suggested

I2l (m) =
J−1∑
t=1

ι̂2t I(v(t) = l) (2.27)

which take the sum of the improvement ι̂2t in Poisson deviance loss function over the
J − 1 nodes of the tree. At each node t, input variable Xv(t) divides the region into
two subregions with the node t, which means indicator I(v(t) = l) = 1 if predictor
Xv(t) same as predictor variable Xl in the tth node, otherwise I(v(t) = l) = 0. The
most important covariate is the one that accumulates the max improvement ι̂2t in
the Poisson deviance loss function. The above measure can easily expand to adapt
to additive trees. Summing up the importance measure for each variable among all
decision trees M , then taking the average of it, it will have a more stabilizing effect,
which is more reliable than the above equation.

I2l =
1

M

M∑
m=1

I2l (m) (2.28)
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2.5.2 Partial Dependence Plots

After identifying the most relevant predictors, we attempt to understand the
effect of variables on the response variable, claim frequency. Through plots, we can
view the partial dependence of proximities on selected subsets of input variables.
Consider XS as subvector and S ⊂ {1, 2, · · · , p}. Let C be the complement set,
with S ∪ C = {1, 2, · · · , p}. A general function f(X) has f(X) = f(XS,XC).
Partial dependence functions can be estimated by

fS(XS) =
1

n

n∑
i=1

f(XS,xiC) (2.29)

where {x1c, x2c, · · · , xnc} are the values of complement set XC in the training set.
The partial dependence functions represent the effect of XS on f(X) after comput-
ing the average effects of the other predictors XC on f(X). In the thesis, we are
interested in the effect of age and gender on claim frequency.

2.5.3 Feature Interaction: Friedman’s H-statistic

In section 2.5.2, we focus on the marginal partial dependence of grouped covari-
ates, however, the interaction of covariates plays an important role. By applying
Friedman’sH-statistic where the properties of the partial dependence function (2.29)
will be adapted we can measure the effects of the interaction in the predictive GBM.
If two covariates xj and xk are dependent, then the partial dependence of fs(Xs) on
Xs = (xj, xk) can be expressed as:

fjk(xj, xk) = fjk(xj, xk)− fj(xj)− fk(xk) (2.30)

Friedman’s H-statistic for an interaction between two covariates (xj, xk) is defined
[5]

H2
jk =

∑n
i=1[f̂jk(xij, xik)− f̂j(xij)− f̂k(xik)]2∑n

i=1 f̂
2
jk(xij, xik)

(2.31)

In section 4, we will plot a partial dependence plot and H-statistic for claims fre-
quency vs. age by gender.

2.6 Model performance assessment
In regression, the predicted values are compared to values of observations, and

measure model performance should be taken. Then, various model parameters are
adjusted iteratively to obtain the optimal value of the performance index. The
performance measure used is Concentration curves, root mean square error (RMSE)
and deviance loss. The concentration curve is a good choice to validate two or more
competing alternative models. Additionally, the discriminatory-free prices will be
compared to best-prices and unawarness prices using a coefficient of determination
based fidelity measure.
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2.6.1 Concentration curves

Denuit et al., see [2], propose that concentration curves can be used to compare
two competing alternatives

CC[Y, π(X);α] =
E
[
Y 1[π(X) ≤ F−1π (α)]

]
E[Y ]

(2.32)

Assuming data samples (Yi,Xi), i = 1, · · · , n, to be independent and identically
distributed, the concentration curve can be estimated as:

ĈC[Y, π(X);α] =
1

nȲ

∑
i|π̂(Xi)≤F̂−1

π (α)

Yi

=

∑
i|π̂(Xi)≤F̂−1

π (α) Yi∑n
i=1 Yi

(2.33)

where π̂ denotes the estimated predictor. In this thesis, we will evaluate the
performance of the estimated claim frequency that is obtained through GAM, GBM,
and discrimination-free prices. For the out-of-sample dataset, we have (Xi, µ̂(xi))

k
i=1

and sort the estimated claim frequency µ̂(x(i))
k
i=1 in ascending order, that means

µ̂(x(1)) ≤ µ̂(x(2)) ≤ · · · µ̂(x(k)).

ĈC(µ̂(x);α) =

∑k
i=1 ni1{µ̂(xi) ≤ µ̂(x([α·k]))}∑k

i=1 ni
(2.34)

where α ∈ [0, 1], indicator 1{µ̂(xi) ≤ µ̂(x([α·k]))}means that the ith number of claims
add to the denominator if the µ̂(xi) ≤ µ̂(x[α·k]). The concentration curve will be
far from the 45-degree line if claim frequency explains much information about the
number of injuries. If a prediction is bad, the concentration curves will coincide
with the 45-degree diagonal line, while a good predictor should lie as far below the
45-degree diagonal line as possible.

2.6.2 Root Mean Square Error and CV-error

Root-mean-square error is usually used to measure the divergence between the
predicted value by the target model and observed values

RMSE =

√√√√ 1

m

m∑
i=1

(ni − n̂i)2 (2.35)

where m is the number of out-sample datasets, ni is observed value, n̂i is predicted
value. For selecting the best parameters to fit the gradient boosting model on the
in-sample dataset, we apply grid search with k-fold cross-validation, k = 10. In
addition to Poisson deviance, the root mean square error is also the criteria to
validate the model’s performance. For K-fold cross-validation, we split data into
K equal-sized parts, then use K − 1 partition to fit the model and kth part to
test data. Additionally, we calculate the prediction error of the fitted model when
making predictions on the K-th fold of the data. The cross-validation estimate of
prediction error is:

CV(f) =
1

n

n∑
i=1

ωiL(yi, f̂
−k(i)(xi)) (2.36)
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where f−k(i) is the fitted function calculated with data that without kth part data,
L is the poisson deviance loss function, n is the number of in-sample data.

2.6.3 Quantifying differences in prices

In order to quantify differences in discriminatory-free prices (DFP) compared to
best-estimate prices, and unawareness prices we use the following R2 measure

R2 = 1− SSE

SST
= 1−

∑n
i=1(ŷ

DFP
i − ŷi)2∑n

i=1(ŷi − ¯̂y)2
(2.37)

where ŷDFP
i is the predicted value for ith observation using DFP, ŷi the prediction of

the reference (best-estimate or unawareness) model and ¯̂y is the mean value of the
DFP model predictions. If the R-square value is close to 1, the DFP model captures
the behavior of the reference model very well. Otherwise, the DFP model cannot
approximate the reference model.

The R2 measure from equation (2.37) has been used as a measure of fidelity when
comparing a black-box model with a surrogate model, see [7]. Using R2, we can see
the proportion of the variation that the model for the best-estimate price is captured
by the model for unawareness price and the model for the discrimination-free price.

15



Chapter 3

Data description

In this thesis, we use the data pg15training included in the R package CAS-
datasets for building the model to material claim frequency. Original data pg15tra-
ining contains 100, 021 policies for private motor insurance and 14 covariate for each
policy. Because the information is confidential, several categorical levels are unclear.
Table 3.1 shows a detailed description of each covariate.

Covariate Description
Gender the gender of the car driver: Male, Female
Occupation the occupation of the driver: Employed, Housewife, Retired, Self-

employed, Unemployed
Age age of the driver in years
Group2 the region of the drive home with ten classes
Density the density of inhabitants (number of inhabitants per km2) in the

city the driver of the car lives in
Type the car type: A, B, C, D, E, F
Category the car Category: Medium, Large, Small
Value the car value in Euro
PolDur Individual insurance policy duration in years
Adind a dummy variable indicating a material cover
Group 1 the group of the car with twenty classes
Bonus the bonus-malus
Exposure total exposure in yearly units
Numtpbi the number of third-party material claims

Table 3.1: Data description for French Motor Insurance.

To have a more comprehensive understanding of claims, we calculated the total
number of policies and duration. Table 3.2 provides an overview of the total policies
and the corresponding total duration of different claims from least 0 to max 7. We
observe that 11, 905 claims are one-year long, and the smallest duration is 0.249 year
with 7 claims.

Number of claims 0 1 2 3 4 5 6 7
Number of Policies 85,273 10,358 3,036 918 248 85 54 49

Exposures 564,248 62,244 8,423 1,589 337 57.8 34 29

Table 3.2: Number of claims and total durations
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In the thesis, we will investigate how we treat the discriminatory covariate, w.r.t
Gender impacts the claim frequency. In Figure 3.1, the covariate Gender has a
different distribution over ages from 18 to 75.

Figure 3.1: The Density of Age per Gender

It is not surprising to see that the driver occupation was employed with the
greatest exposure compared to other occupational statuses. Because the description
of the original data is not very comprehensive, it is not possible to explain the
performance of the car in detail. According to the distribution of the type of car,
the group of the car, and the cover material of the car, it shows that A type car
belongs to the 11th classes group with 1 material cover has the longest duration.
It is not the most expensive car with the greatest exposure, but it is worth about
70,000 euros. Living in an area with high residential density does not give you the
greatest exposure. Exposure gradually rises to the top as residential densities start
from a low of 14/km2 to 240/km2 before dropping again. In France, 18 years are
allowed to start driving car. At age 40, the exposure gradually rises to the maximum
value and then decreases with age. Compared with large cars, medium-sized cars
are more exposed. Not surprisingly, the drivers with the fewest bonuses also had
the most exposure. The longer contracts Those policyholders have with insurance
companies, the lower exposure belong to they. Plotting of covariates is shown in
Figure B.2 in Appendix.
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Chapter 4

Model building

We build models for claim frequency N | X, ω ∼ Pois(ωµ(x)) with GAM and
GBM for each of the 100, 021 individual motor insurance policies with 13-dimensional
feature covariates, where i = 1, · · · , 100, 021.

xi = (Genderi,Occupationi,Agei,Group2i,Densityi,Typei,Categoryi,Polduri,Group1i,Bonusi,
Valuei,Adindi,YearDurai)

Furthermore, we have a number of material claims as the response variable, Ni ≥
0, and yearly duration as weight ωi ∈ (0.2491, 1). To compare the models’ predictive
performance, we partition our data set into two sets: the in-sample set denoted D
for fitting models and the out-sample as T for comparing the predictive performance
of models.

By randomly allocating 80% of data from the original dataset to D and holding
20% of the data to T , we have

D = {(Ni,xi, ωi), i = 1, · · · , 800, 16}

T = {(Nk,xk, ωk), k = 1, · · · , 20, 005}
For fitting GAMs and GBMS, we will use the same data partitioning as shown above.

4.1 Generalized additive model (GAM)
4.1.1 GAM with Gender

Initially, we need to convert covariate Bonus to a factor in GAM. By adapting
quantile as cut points, we divide the range of covariate Bonus into four different
continuous classes, xBonus ∈ [−50,−40] = 1, xBonus ∈ (−40,−30] = 2, xBonus ∈
(−30, 10] = 3 and xBonus ∈ (10, 150] = 4.

There are four continuous covariates (Age, Value, Density, Poldur) and eight
categorical covariates, Gender, Type, Category, Occupation, Adind, Group2,
Group1, Bonus. We select the most extended duration as the reference level
in GAM (RefGender = Male,RefType = A,RefCategory = Medium,RefOccupation =
Employed,RefAdind = 1,RefGroup2 = L,RefGroup1 = 10,RefBonus = 1).

The thesis focuses on the two-way interaction between Gender and other co-
variates. We fit the GAM Sat.GAM shown in table 4.1 to the in-sample data set
D and add all possible two-way interactions between Gender and other covariates.
However, covariates Age and Value are treated as natural cubic splines.
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Sat.GAM
SkadeFrekvens ∼ Gender + Type + Category + Occupation + Adind + Group2 + Group1 +
s(Age, bs = "cr") + Density + Poldur + Bonus + s(Age, bs = "cr", by=Gender) +
s(Value, bs="cr") + s(Value, bs="cr", by=Gender)+ Gender:Category + Gender:Occupation +
Gender:Adind + Gender:Group2 + Gender:Group1 + Gender:Bonus,
family=quasipoisson(link = "log"), data = train, weights = YearDura)

Table 4.1: GAM with all covariates and all possible two-way interactions between Gender and
other covariates

After dropping covariates that are not significant at 5% level each time, we have
the Model Gam.AllSig shown in the table 4.2, where the interaction between Gen-
der and Age, the interaction between Gender and Category are significant at 5%
level.

GAM.AllSig
SkadeFrekvens ∼ Gender + Type + Category + Occupation + Adind + Group2 + Group1 +
Density +Poldur + s(Age, bs = "cr") + Bonus + s(Age, bs = "cr", by=Gender) + Gender:Category,
family=quasipoisson(link = "log"), data = train, weights = YearDura)

Table 4.2: GAM model with covariates are all significant at 5% level

We find that the partial interaction between Age and GenderMale is not sig-
nificant at 5% level. Therefore, we gradually increase the knot for the interaction by
one. All covariates in the Model GAM.Final shown in the table 4.3 is significant at
the 5% level. Generalized cross-validation(GCV) is applied in the algorithm to de-
termine good smoothing parameter λ. For modelGAM.Final, the optimal smoothing
parameter (λ is λAge, λAge:Female, λAge:Male) = (10, 11, 772).

GAM.Final
SkadeFrekvens ∼ Gender + Type + Category + Occupation + Adind + Group2 + Group1 +
Density +Poldur + s(Age, bs = "cr") + Bonus + s(Age, bs = "cr", by=Gender, k = 4)
+ Gender:Category, family=quasipoisson(link = "log"), data = train, weights = YearDura)

Table 4.3: GAM with each covariate is significant at 5% level, but the knot of interaction between
age and gender increases to 4.

Additionally, analyzing poisson deviance and RMSE is shown in Table 4.4 for
the Model Sat.GAM, Model GAM.ALLSig and Model GAM.Final. Finally, we
determine that Model Gam.Final as our final generalized additive model with
discriminatory Gender.

Model In-sample loss Out-of-sample loss Out-of-sample RMSE
Saturated Model 0.76724 0.50525 0.40248
GAM.AllSig 0.49442 0.49941 0.40302
GAM.Final 0.49441 0.49935 0.403054

Table 4.4: Comparison of In-sample Poisson deviance, out-of-sample Poisson deviance, and RMSE
of out-of-sample among models

Figure 4.1 shows the effect for cubic spline Age and the partial effect between
Age andGender. Effective degree freedom(EDF) for smooth terms, s(Age), s(age):-
GenderFemale and s(age):GenderMale, are 7.033, 2.968, 1.035, respectively. In the
left upper panel, we can see the highest claim frequency is at the age allowed to
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Figure 4.1: Partial effect of cubic spline for covariate Age, the interaction between Age and Gender

drive, 18 years in France. At about age forty, the lowest claim frequency occurs.
After forty, however, claim frequency continued to increase, although there was a
local minimum claim frequency near age sixty. The left upper panel shows the claim
frequency of males decreased as age increased. The right upper panel shows that
female has the highest claim frequency at about age thirty-eight from beginning to
driving. Subsequently, the frequency declined until the age of sixty and then began
to increase.

4.1.2 GAM without Gender

For determining how discriminatory covariate Gender affects the claim frequency.
A model without Gender will be briefly presented here.

GAM.withoutGend
SkadeFrekvens ∼ Type + Category + Occupation + Adind + Group2 + Group1 + Density
+Poldur + s(Age, bs = "cr") +Bonus, family=quasipoisson(link = "log"), data = train,
weights = YearDura)

Table 4.5: GAM without Gender

More detail about the model will be introduced in the comparison among different
models.

4.1.3 Discrimination-free analysis with GAM

After obtaining the suitable generalized additive model with/without Gender, we
calculate discrimination-free price as mentioned in Section 2.1. For the computation
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of the discrimination-free insurance price, we need the proportion of each class of
gender of the total portfolio. P(D = female) = 0.365 and P(D = male) = 0.634.
From Figure 4.2, we find bias in the discrimination-free price, which means bias
needs to be considered in the discrimination-free analysis, and the price should be
corrected. The average predicted price is 1

n

∑n
i=1 µ̂(xi,di) = 0.1652 and the average

discrimination-free price is 1
n

∑n
i=1 ĥ(xi) = 0.1669. We have a negative bias of 1%

of µ. By using an adjusted marginal distribution P∗(D), we may obtain a bias-
corrected price. Because discriminatory covariate gender has just two classes, we
set 1

n

∑n
i=1 ĥ

∗(xi) = 1
n

∑n
i=1 µ̂(xi,di) = 0.1652, adjusted P∗(D = female) = 0.405,

which is higher than the empirical proportion P(D = female) = 0.365.

Figure 4.2: Predicted claim frequency obtained by GAM without Gender against predicted claim
frequency through GAM with Gender. Red points are estimated claim frequency for females, blue
points are claim frequency for males, and black points are discrimination-free prices

GAM In-sample loss Out-of-sample loss Out-of-sample RMSE
Model with Gender 0.494418 0.499355 0.403054

Model without Gender 0.501764 0.505254 0.40594
Discrimination-free 0.494418 0.504469 0.40578

Table 4.6: In-sample Poisson deviance, out-of-sample Poisson deviance, and root mean square
error of out-of-sample for GAM with Gender, GAM without Gender, and Discrimination-free,
respectively.

GAM Reference model Out-of-sample R2

Best-estimate Unawareness 0.89463
Best-estimate DFP 0.91076

DFP Unawareness 0.98463

Table 4.7: Coefficient of determination to quantify the differences between best-estimate price
and unawareness price, best-estimate price and discrimination-free pricing, unawareness price and
discrimination-free pricing with GAM.

From Table 4.6, we can see that the performance of discrimination-free price is
better than unawareness price regardless of training or testing data set. Further-
more, a discrimination-free price has a lower RMSE value of out-of-sample than the
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unawareness price. The best-estimated price has the best-predicted performance.
Additionally, Figure 4.2 shows µ̂(x) against µ̂(x,D). The predicted µ̂∗(x) is ob-
tained from the discrimination-free analysis that lies between the estimated claim
frequency for males and females. Table 4.7 shows a coefficient of determination type
fidelity measure to quantify the differences between DFPs and BE prices/unaware-
ness prices. The DFP model captures the behavior of the BE price model more than
the unawareness price model captures the behavior of the BE price model. However,
the R2 is almost 1 between the DFP model and the unawareness price model, which
quantifies the differences between these two models are quite small.

4.2 Gradient boosting model (GBM)
4.2.1 GBM with gender

Next, we consider a Poisson GBM; see Section [2.3]. First, we tune hyperparam-
eters by grid search, which involves systematically iterating over each combination
of hyperparameter values, the number of trees (J), subsample size, which is the
percentage of training data for each tree, tree depth is restricted to 2, and learning
rate (ν ∈ [0.01, 0.3]). Hastie et al., see [6], point out that the number of terminal
nodes of the trees, 4 ≤ J ≤ 8 works well in the context of boosting. However, in
the thesis, we will tune J from 1 to 8. Among the 699 different Gradient boosting
Poisson models, we select the best ten based on RMSE and Poisson deviance criteria
for the out-of-sample data set. In Table 4.8, the first GBM with 399 optimal trees,
learning rate 0.14, and tree size J = 4 has the lowest out-sample poison deviance
chosen as our GBM.

Model J ν optimal trees subsample Out-of-sample Loss out-of-sample RMSE
1 4 0.14 399 0.75 0.4850212 0.3968325
2 3 0.08 403 1 0.4851113 0.3964255
3 5 0.09 593 1 0.4852663 0.3958001
4 7 0.2 375 1 0.4853259 0.3964711
5 2 0.23 278 0.75 0.4858241 0.3969464
6 1 0.16 399 0.75 0.4860617 0.872603
7 6 0.17 599 1 0.4862308 0.3952606
8 4 0.07 581 0.5 0.4865334 0.3958239
9 3 0.12 581 0.5 0.4869393 0.3970489
10 2 0.14 393 0.5 0.4870474 0.3972603

Table 4.8: Performance indicators of GBMs and their respective parameters

Figure 4.3 shows which covariate impacts claim frequency most. The order of
influence strength from strong to weak for covariate is Bonus, Age, Density, Group1,
Gender, occupation, Group2, Type of car, Policy duration, Value. Covariate Gender
has the fifth strongest effect.

Next, we analyze which covariate has interaction with any other covariate and
two-way interaction strength with Friedman’s H-statistic. Figure 4.4a shows that
Gender and Age give the strongest interaction with others. Overall, interaction
effects between the covariate are not strong about around 10% of prediction variance.
Additionally, Figure 4.4b displays the two-way interaction with H-statistic between
Gender and each other covariate. Interaction between Age and Gender significantly
affects claim frequency.
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Figure 4.3: Relative importance for the motor insurance.

(a) The interaction strength for each covariate with
all other covariates.

(b) The two-way interaction between gender and any
other covariate strength

Figure 4.4: Interaction strength

4.2.2 GBM without gender

How does the GBM change if Gender is excluded from our model? Same as
the previous step, first, we tune the hyperparameter by grid search. We find that
model with optimal 474 trees, learning rate ν = 0.18, tree size J = 3, and 80% of
subsample has the best-predicted performance.

4.2.3 GBM with non-discriminatory Pricing

As in the Section 4.1.3, we calculate the discrimination-free price, µ̂∗GBM(X). The
number of claims, N∗|(X, ω) ∼ Pois(ωµ̂∗GBM).
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From Table 4.9, we can see that the performance of discrimination-free price is
better than unawareness price with the testing data set. Furthermore, a discrimination-
free price has a lower RMSE value than an unawareness price. Same as in the GAM,
the best-estimated price has the best-predicted performance. As shown in the table
4.10 DFP captures better behavior of best-estimate prices than unawareness prices
capture BE prices. Compared to R2 shown in Table 4.7, DFP and Unawareness
prices have smaller differences between best-estimate prices. Figure 4.5 shows µ̂(x)
against µ̂(x,D). The predicted discrimination-free prices µ̂∗(x) lies between the
estimated claim frequency for males and females. In contrast to Figure 4.2, it is
obvious that the range of predicted claim frequency by the GBM is broader and
more stable.

GBM Out-of-sample loss Out-of-sample RMSE
Best-estimate price 0.4863853 0.3960513
Unawareness price 0.5083443 0.4028289

Discrimination-free price 0.491571 0.4020983

Table 4.9: out-of-sample Poisson deviance, and root mean square error for GBM with Gender,
GBM without Gender, and Discrimination-free, respectively.

GBM Reference model Out-of-sample R2

Best-estimate Unawareness 0.92172
Best-estimate DFP 0.92824

DFP Unawareness 0.98201

Table 4.10: Coefficient of determination to quantify the differences between best-estimate price
and unawareness price, best-estimate price and discrimination-free pricing, unawareness price and
discrimination-free pricing with GBM.

4.3 Comparison Between GAMs and GBMs
To compare the predicted performance of models, we plot concentration curves.

Figure 4.6 shows that the GAM model performs better than GBM for small claims.
As the number of claims increases, the predictive ability of the GBM gradually
improves. GBM performs better than GAM as the number of claims increases.
The figure shows clearly that the best-estimate price with GBM is better than the
other models. DFP with GBM also has better performance than prices obtained
from GAM as claims number increases. Especially at the end of the CC plot, GBM
performs better than GAM because GAM almost lost much information at a large
number of claims.
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Figure 4.5: Predicted claim frequency obtained by GBM without Gender against predicted claim
frequency through GBM with Gender. Red points are estimated claim frequency for females, blue
points are claim frequency for males, and black points are discrimination-free prices

Figure 4.6: Concentration curves among best-estimate price, unawareness price, and
discrimination-free prices based on GAM and GBM.

Figure 4.7 shows the partial dependence plot for the best-estimate price obtained
from GAM and GBM. Regardless of sex, the highest value in GAM and GBM occurs
when driving is allowed. The difference in claim frequency for males and females
is less for GBM than for GAM. Males have a higher claim frequency than females
in the GAM. However, GBM is exactly the opposite. Females reach a higher claim
frequency than males.
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(a) PDP for best-estimate price with GAM (b) PDP for best-estimate price with GBM

Figure 4.7: Comparison of the partial dependence plot for best-estimate price with GAM and GBM
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Chapter 5

Simulation

In this part, with the optimal GAM and GBM, using the cross-validation
method, we simulate 100 times to predict the number of claims, N (k)|(X(k)

ij , ω
(k)
i ) ∼

Pois(ωiµ
(k)
i ), k = 1, · · · , 100. Figure 5.1 shows that the GBM has a lower RMSE

value than the GAM over 100 simulations, regardless of whether the model includes
gender or discrimination-free analysis in the out-sample data set.

Figure 5.1: RMSE

Additionally, to examine how the prices vary with GAM and GBM, we compare
R2 between the reference models and DFPs, see equation 2.37. Figure 5.2 shows the
differences among best-estimated price, unawareness price, and discrimination-free
price for GAMs and GBMs. DFPs have smaller differences with BE prices obtained
from GBM than DFPs compared to BE prices obtained from GAM. For GBM,
the differences between unawareness prices and DFPs are fairly small. It seems R2

between DFPs and BE prices for GBM overlay R2 between DFP and unawareness
prices for GAM. We assume that insufficient data about large claim numbers causes
an unstable situation with the tail.
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Figure 5.2: Coefficient of determination

Moreover, we plot the local coefficient of determination for more details about
local prediction performance. First, we split 20, 005 estimated claim frequency
µ̂i, i = 1 · · · , 20, 005 into 400 groups and set it on the ascending sort. In Figure
5.3, we find that most regions are similar, the closer to the tail the greater the dif-
ference. The trend for R2 between µ̂(x) and µ̂∗(x) for GBM shows that the biggest
differences occur compared to others. Unawareness prices have the lowest differences
with DFP for GBM.

Figure 5.3: Grouped R-square for the best-estimate price, unawareness price and discrimination-
free price for GAMs and GBMs
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Partial Figure 5.4a, 5.4b, 5.4c in Figure 5.4 show the concentration curves value
over 100 simulations for best-estimate prices, unawareness prices, and discrimination-
free prices for GAM and GBM via 25%, 50% and 75%, which show prices obtained
from GBM perform better than GAM in most situations. It reveals that GBM
captures more information about covariates relationships than GAM and provides
a wider estimated range. Moreover, differences between DFPs and best-estimate or
unawareness price are shown in histogram 5.4d. It is obvious that DFPs get the
nearest to the unawareness prices for GBM.

(a) Concentation curve at 25% value (b) Concentation curve at 50% value

(c) Concentation curve at 75% value

(d) Difference between GAM and GBM with different
price

Figure 5.4: Comparion of concentration curves over 100 simulations

As shown in the partial dependence plot 4.7, we are interested in the effect
of incorporating those age ranges with significant claim frequency. So, we consider
merging individuals over 70 years old. Using GAM and GBM, we get the proportion
between the estimated number of claims and total observed data is 0.16. We also
merged the individuals’ age under 30 in the data, and the proportion obtained is
slightly lower.
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Chapter 6

Conclusion and Discussion

In the thesis, we have studied discrimination-free insurance pricing built on Gra-
dient boosting machines and Generalized additive models. According to European
law, sensitive information w.r.t the gender and ethnicity of policyholders should not
be used in insurance pricing. It will still cause indirect discrimination because we
can derive the protected features from associated information although this type of
information is not included in insurance pricing.

By grid search, we find the optimal parameters for learning rate, bag fraction,
tree size, and optimal trees of GBM. Using partial dependence plot and Friedman’s
H-statistic test show the most important individual feature and two-way interaction.
Moreover, comparing local performance through concentration curves and R-squared
shows that GAMs perform better than GBMs when small insurance claims occur.
In contrast, GBMs perform better than GAMs with large insurance claims.

Unsurprisingly, the best-estimate price has the best predictive performance for
GBMs and GAMs. Under investigation in the thesis, we find that the discrimina-
tion-free prices lie closer to the unawareness prices for GBM than GAM. Com-
pared to the differences between the best-estimate and discrimination-free prices,
the discrimination-free prices differ less from the best-estimate prices for GBM. Even
though discrimination-free insurance pricing is not unbiased, it is easy to correct this
bias by adapting the empirical marginal proportion.

In the thesis, we have shown that GBMs have better performance than GAMs.
One is that GBM can produce interpretable models and naturally incorporate a
mixture of numeric, categorical covariates and missing values. The other is that
it may indicate that GAMs do not capture the dependence on gender well enough.
The relative importance plot for GBM reveals that discriminatory covariateGender
does not have the greatest impact. Although our data set contains 100, 021 policies,
most are distributed in 0 claim numbers. We believe that a bigger and more widely
distributed dataset can enhance the impact of each covariate, even two-way interac-
tion. Due to time limitations, we restrict grid search for training GBM when tuning
the hyperparameters. To some extent, this limits the predictive power of the GBM
models.

Several important changes need to be made for future works. Firstly, a more
complex simulation method should be implemented in simulation for building mod-
els and exploring the effect of covariates. Secondly, model interpretation methods
should be more proficiently adopted in the investigation.
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Appendix A

Stochastic Gradient Boosting
Algorithm

Algorithm 1. Stochastic Gradient Boosting
- Initialize F0(x) = arg minγ

∑N
i=1 L(yi, γ)

- For m = 1, · · · ,M :
Randomly choose subsample η · n from {y,xi}Ni=1 entire training data sample,

without replacement.
- For i = 1, · · · , η · n, compute

gim(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

fit a regression tree to the targets gim giving terminal regions Rjm, j = 1, · · · , Jm
- For j = 1, · · · , Jm compute

γjm = arg minγ
∑

xi∈Rjm

L(yi, Fm−1(xi) + γ)

Update Fm(x) = Fm−1(x) + ν
∑J

j=1 γjm1(x ∈ Rjm)

- Output FGBM(x) = FM(x)
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Appendix B

Supplementary Figures

(a) Histogram of Exposure per
Driver Age

(b) Histogram of Exposure per
Car Type

(c) Histogram of Exposure per
Car Category

(d) Histogram of Exposure per
Gender

(e) Histogram of Exposure per
Region of Driver

(f) Histogram of Exposure per
Group of Car

Figure B.1: Histogram of covariates
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(a) Histogram of Exposure per
Driver Occupation

(b) Histogram of Exposure Pol-
icy Duration

(c) Histogram of Exposure per
Vehicle Value

(d) Histogram of Exposure per
Material Cover

(e) Histogram of Exposure per
Population Density

(f) Histogram of Exposure per
Bonus-malus level

Figure B.2: Histogram of covariates
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