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Abstract

We study optimal dividend payments and investments of the sur-
plus of with-profit life insurance policies using continuous-time stochas-
tic control. Under some simplifying assumptions, the control prob-
lem studied can be treated as a generalisation of the investment-
consumption problem first set up and studied by Merton.

We use the dynamic programming method, by which the control
problem boils down to solving a second order partial differential equa-
tion (PDE) called a Hamilton-Jacobi- Bellman equation. We consider
cases where the policy holders display constant relative risk aversion,
which implies first that the PDE has a semi-explicit solution and sec-
ond that the optimal investment process is constant. The optimal
dividend process is linear in the surplus.

We illustrate the results with simulations for a simple life annuity,
where the PDE has an explicit solution.
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Notation and symbols

Notation

x ∧ y
x ∨ y
1A

N(0, σ2)

B(U)

ft(t, x), fx(t, x), fxx(t, x)

ODE

PDE

HJB

Explanation

min(x, y)

max(x, y)

indicator function of A

Normal distribution with mean µ and variance σ2

Borel σ-algebra generated by open subsets of U
∂f
∂t (t, x), ∂f

∂x (t, x), ∂2f
∂x2 (t, x)

Ordinary differential equation

Partial differential equation

Hamilton-Jacobi-Bellman

1 Introduction

An important part of life insurance mathematics deals with proper valuation of

the future cash flows between the insured (or other beneficiaries of an insurance

policy) and the issuer of the policy as a result of insurance contracts. Valuation

is done on the level of individual policies as well as on an aggregate portfolio

or company level. Apart from the valuation aspects, life insurance practice also

contains decision problems in a stochastic environment, such as deciding on

asset allocation strategies, dividend payments to insured and/or equity holders,

premium levels etc. A systematic treatment of such decision problems can be

achieved using stochastic control.

The motivating control problem for this thesis was controlling dividend pay-

ments in the with-profit life annuity that is a part of the Swedish Premium

pension system, but we will consider the general setup of controlling the sur-

plus in with-profit life insurance. With-profit life insurance is a traditional form

of life insurance where the insurance company in exchange for an insurance

premium promises payments to the insured, in the form of lump sums and/or

payment streams, depending on states relating to the health and life status of

the insured. Premia are calculated in a prudent fashion, which means that the

premia are larger than what the insurance company actually needs, under best

estimates, to set aside in order to be able to pay out the promised, so-called

guaranteed payments. This difference gives rise to a surplus that the insurance

company should invest and return to the insured as dividends, either in the

form of cash or in the form of additional premia which increases the guaranteed
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payments. Thus, both the investment strategy and the dividend strategy act

so as to control the surplus and it is natural to seek ways of optimising these

controls. The criterion that will be used for optimisation is maximisation of the

expected utility of the insured.

Under some simplyfing assumptions regarding the asset market, where the sur-

plus can be invested, and the product design, it turns out, as first analysed by

Steffensen [Ste04], that the problem can be seen as a version of the investment-

consumption problem first set-up and solved by Merton [Mer69], [Mer71].

We will solve the stochastic control problems using the the dynamic program-

ming approach, which was originally introduced by Bellman [Bel53]. This ap-

proach uses the fact that the value function, the optimum of a gain or cost

functional over admissible controls, satisfies a certain recursive property, which

yields a dynamic programming equation. In the cases considered in this thesis,

where the controlled system can be modelled as a stochastic differential equa-

tion which satisfies the Markov property, the dynamic programming equation

will be a second-order partial differential equation called a Hamilton-Jacobi-

Bellman (HJB)-equation. Finding a solution to the HJB-equation associated

to the control problem is in general difficult. A solution may not even exist

in a classical sense, or, if it exists, it may need to be solved numerically. We

will however consider cases where classical solutions exist and where explicit or

semi-explicit solutions can be found. That the solution to the HJB-equation

indeed is the value function of the control problem and that a candidate for an

optimal control indeed is an optimal control is shown by verification theorems.

Our presentation of the dividend payment problem will follow that of Steffensen

in [Ste04, sections 1-4] and that of Schmidli [Sch08, p 127-132] where we consider

the case where the surplus is paid out as cash and not used for increasing the

level of guaranteed benefits, as this is the case in the with-profit life annuity

in the Premium pension and indeed in most with-profit insurance products in

the Swedish market. Using preferences that can be represented by power utility

functions with constant relative risk aversion, the optimal portfolio strategy is

constant and depends on the mean return and volatility of the risky asset and

the risk aversion of the insured. The optimal dividend allocation strategy is

linear in the surplus with coefficients determined by the utility functions and

the time-dependent part of the value function. The time-dependent part of the

value function can be interpreted as a utility-adjusted value of future payments.

In addition to the presentation that largely follows [Ste04, sections 1-4] and

Schmidli [Sch08, p 127-132], we consider a new example. This example is a life
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annuity with two states, for which the HJB-equation can be solved analytically.

In particular the impact of mortality on the dividend strategy and the surplus

is illustrated and is seen to increase the initial dividend rate since the value of

future consumption is discounted by mortality.

The thesis is organized as follows. In order to make the thesis accessible to

non-specialists with an undergraduate background in mathematics, statistics

or actuarial science, Section 2 introduces necessary definitions, concepts and

results from probability theory, stochastic processes and stochastic calculus as

well as some results concerning ordinary differential equations. In Section 3 we

introduce stochastic control and how to solve stochastic control problems using

dynamic programming. This section concludes with a solved example: a version

of the so-called Merton problem of optimal consumption and investment from

mathematical finance. Section 4 contains the main problem of the thesis. The

section starts with introducing relevant concepts and terms from life insurance

mathematics, in particular the mathematical formulation of a with-profit policy.

This is followed by the presentation and solution of the main problem of optimis-

ing the dividend payments in a with-profit life insurance. The section concludes

with illustrations in the particular case of a simple life annuity. Finally, Section

5 concludes the thesis.
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2 Preliminaries

This section presents some important concepts and results from probability the-

ory and analysis which are used in the remainder of the thesis. We assume that

the reader are familiar with basic concepts of probability (such as the concept of

a σ-algebra, a probability measure and expectation). In most cases, the results

will be given without proof. For proofs and more thorough explanations, the

reader can consult one of numerous resources on probability theory, stochastic

processes and stochastic calculus. The ones that have been used for this section

include [Pha09, ch 1] and [CE15, ch 2 - 3]. Some results are also taken from

[AS20].

2.1 Probability and analysis essentials

In this subsection, the main reference is [CE15, ch 2].

Definition 2.1 (Probability space). Let Ω be a set whose elements represent

outcomes of some state of the world, which we call sample space. Subsets of Ω

are called events. Let F be a σ-algebra on Ω and let P be a finite measure on

(Ω,F) such that P (Ω) = 1. The triplet (Ω,F , P ) is called a probability space.

We think of F as containing events for which we can decide whether they have

occurred or not. The random variables and processes which we consider will

always be defined on an underlying probability space (and explicit reference

to this space will often be suppressed). Properties that hold with probability

one (on the given probability space) are said to hold P -almost surely. In the

following we will often suppress explicit mentioning of this, so that statements

that are claimed as true in fact hold P -almost surely.

Definition 2.2 (Random variable). A map X : Ω → R is called a random

variable if it is measurable with respect to the Borel sigma algebra on R, i.e.

X−1(U) = {ω ∈ Ω : X(ω) ∈ U} ∈ F for any Borel set U .

The σ-algebra generated by X is denoted by σ(X) ⊂ F and is the smallest

σ-algebra such that X is measurable.

It is crucial in the study of probability to be able to model how information

already available (from events contained in some σ-algebra which is smaller

or coarser than the full σ-algebra F) influences probability and expectation of

a random variable. In order to be able to do this one needs the concept of

conditional expectation. (cf. [CE15, Definition 2.3.1]).

Definition 2.3 (Conditional expectation). Let X be a random variable on
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(Ω,F , P ) such that E(|X|) ≤ ∞. Let E ⊂ F be a σ-algebra. The conditional

expectation of X given E , denoted by E(X|E) is given by any E-measurable

random variable Y , such that

E(1AX) =

∫
A

XdP =

∫
A

Y dP = E(1AY ) for any A ∈ E .

If Z also satisfies the conditions above, then Y = Z almost surely.

This corresponds to E(X|E) providing an average of X over the sets of E ([CE15,

Remark 2.3.3]). The above definition is rather abstract, but it can be shown

that a conditional expectation defined in this way satisfies the properties that

one should expect (given knowledge from basic probability courses).

Proposition 2.1 (Properties of conditional expectation). The conditional ex-

pectation defined in 2.3 satisfies

• Linearity.

• Tower property: E(E(X|E)|D) = E(X|D) for a σ-algebra D such that D ⊂
E.

• Factoring out known random variable: if Y is E-measurable, X and the

product XY are integrable, then E(Y X|E) = Y E(X|E).

From analysis we will also need some of the integral convergence theorems,

which provide conditions that allow exchanging the order of limits and integra-

tion/expectation.

Proposition 2.2 (Dominated convergence theorem). Let Xn be a sequence of

random variables such that Xn → X almost surely and let G be non-negative

and integrable such that |Xn| ≤ G. Then

lim
n→∞

E(Xn) = E(X).

Proposition 2.3 (Fatou’s Lemma). Let Xn be a sequence of non-negative ran-

dom variables. Then

E(lim inf
n→∞

Xn) ≤ lim inf
n→∞

E(Xn).

Proposition 2.4 (Monotone convergence theorem). Let Xn be a sequence of

non-negative random variables such that it holds almost surely that Xn ≤ Xn+1

and Xn → X. Then

lim
n→∞

E(Xn) = E(X).

Note that propositions 2.2, 2.3 and 2.4 also hold, mutatis mutandis, for condi-

tional expectations.
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2.2 Stochastic processes and martingales

As the main object of study in this thesis is controlled stochastic processes (and

their applications in an insurance context), we will provide brief definitions of

the most important concepts (where we rely mainly on [CE15, Ch.3, Ch.5]). As

continuous-time stochastic processes is a very technical subject, it is outside

the scope of the text to provide all definitions and results in full detail and

generality. Some technicalities will only be mentioned in this subsection. We

refer to [CE15] and further references given there.

Definition 2.4 (Stochastic process). A stochastic process X = (Xt)t∈T is a

family of random variables indexed by t ∈ T. Usually T = [0, T ] where 0 < T ≤
∞ and we think of T as time. We call Xt (or X(t)) the state of X at time t.

The map X(ω) : t ∈ T→ Xt(ω) is called the sample path of ω ∈ Ω.

We also need to account for how information about Ω (which we encode by

σ-algebras) increases over time (cf. [Pha09, p 1]), which leads to the concept of

a filtration.

Definition 2.5 (Filtration). A filtration {Ft}t∈T is a family of σ-algebras such

that Fs ⊆ Ft ⊆ F for all s ≤ t. A probability space with a filtration is called a

filtered probability space.

The filtration generated by a stochastic process X is given by

{Ft}Xt∈T = σ(Xs, s ≤ t),

the σ-algebra generated by all random variables Xs, s ≤ t.

Whenever we consider a stochastic process X, we will always assume that it

is defined on a filtered probability space. In this thesis we will also assume

that all filtrations satisfy some technical conditions which are called the usual

conditions:

• F0 contains all subsets of P -null sets, i.e. all sets {A ⊂ Ω : A ⊆ B ∈
F such that P (B) = 0}.

• Ft is right-continuous, meaning that Ft = ∩s≥tFs.

Definition 2.6 (Version of a stochastic process). Two stochastic processes

(Xt)t∈T and (Yt)t∈T are versions of each other if

P ({ω : Xt(ω) = Yt(ω)}) = 1 for each t ∈ T.

9



In this thesis, we will assume that there exist versions of the processes studied

that exhibits the so-called càdlàg property, namely that the process is right-

continuous with left limits (and from now on we will not explicitly state that

this property is satisfied). The left limit at t of such a process is denoted by

X(t−) or Xt−.

Definition 2.7 (Adapted process). A stochastic process X is adapted to a

filtration {Ft}t∈T if Xt is Ft-measurable for each t.

Another important concept in the study of stochastic processes is that of a

stopping time. Stopping times (relative to a filtration) are, roughly speaking,

random times for which it is possible to decide whether they have occured at a

fixed time using the information from the filtration.

Definition 2.8 (Stopping time). A random variable τ : Ω → T ∪ {∞} is a

stopping time (with respect to a filtration {Ft}t∈T) if

{τ ≤ t} = {ω : τ(ω) ≤ t} ∈ Ft for each t ∈ T.

Remark. An example of why it is useful to assume the usual conditions is given

in [Pha09, Prop 1.1.4]: it guarantees that if X is càdlàg, then the hitting time

of any open set U ⊂ R is a stopping time. If X is continuous, then the exit time

of any open U ⊂ R is a stopping time.

Definition 2.9 (Stopped stochastic process). Let X be a stochastic process on

a filtered probability space and τ a stopping time. Then the stopped stochastic

process Xτ is given by

Xτ (t) =

X(t) if t ≤ τ

X(τ) if t > τ.

We have now come to an important class of stochastic processes, which will

occur frequently in the following, namely the class of martingales.

Definition 2.10 (Martingale (sub, super)). A stochastic process (Xt)t∈T is a

supermartingale with respect to a filtration {Ft}t∈T if it is adapted and the

following properties hold:

• E(|Xt|) <∞ for all t ∈ T.

• E(Xt|Fs) ≤ Xs for each s ≤ t.

If, in the last property, we replace ”≤” by ”≥”, we say that (Xt)t∈T is a sub-

martingale. A process which is both a supermartingale and a submartingale is

called a martingale.
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It turns out that, for the martingales considered here, this property also extends

to stopping times ([Pha09, Theorem 1.1.3]):

Theorem 2.5 (Optional sampling). Let (Xt)t∈T be a càdlàg martingale (with

respect to some filtration) and let S, T be bounded stopping times such that S ≤ T
and S, T ∈ T. Then

E(XT |FS) = XS almost surely

which yields the following corrollary ([Pha09, Corollary 1.1.1]).

Corollary 2.5.1. Let (Xt)t∈T be càdlàg and adapted to {Ft}t∈T.

1. X is a martingale iff for any bounded stopping time T we have that

E(|XT |) <∞ and E(XT ) = X0.

2. If X is a martingale and T a stopping time, then the stopped process XT

is a martingale.

Another useful concept is that of a local martingale, which is a process that

is a martingale if we stop it at any finite stopping time. In the following, it

will sometimes be the case that showing that a local martingale is in fact a

martingale is a crucial part of establishing the desired result.

Definition 2.11 (Local martingale). Let (Xt)t∈T be càdlàg and adapted to

{Ft}t∈T. Then X is a local martingale if there exists a sequence (Tn)n∈N of

stopping times such that limn→∞ Tn = ∞ almost surely and that the stopped

processes XTn is a martingale for each n. This sequence is called a localizing

sequence for X.

Using Fatou’s lemma (Proposition 2.3) we get the following result.

Proposition 2.6. A nonnegative local martingale is a supermartingale.

Proof. Let Tn be a localizing sequence for X. We have that E(X0) = E(XTn) <

∞. Moreover, we have, for s ≤ t, that

Xs = lim
n→∞

XTn
s = lim

n→∞
E(XTn

t |Fs) ≥ E( lim
n→∞

XTn
t |Fs) = E(Xt|Fs)

where we used the local martingale property in the second step and Fatou in

the second to last step.

Another class of stochastic processes of fundamental importance is the class of

Markov processes, where the current state of the process encodes all information

about the future of the process. Another way of putting it, informally, is that
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future states of a Markov process only depend on its history through the present

state. We give the following definition (from [CE15, Def. 17.2.1]).

Definition 2.12 (Markov process). A stochastic process X is Markov with

respect to a filtration {Ft}t∈T if, for every s ≤ t we have

E[φ(Xt)|Fs] = E[φ(Xt)|Xs] for any bounded, measurable function φ : R→ R.

or, equivalently, that P (Xt ∈ A|Fs) = P (Xt ∈ A|Xs) for any Borel set A ∈ R.

If the property also holds when s, t are stopping times, the process is said to be

a strong Markov process or have the strong Markov property.

In life insurance mathematics, the basic building blocks of models are Markov

processes where the state space is finite, i.e. Xt : Ω→ J = {0, 1, ..., J} (see for

example [AS20, Appendix A.3]). Each state corresponds to a policy state (e.g

”alive”, ”dead”, ”disabled”).

Definition 2.13 (Continuous time Markov Chain). A continuous time Markov

chain is a Markov process X which take values in J = {0, 1, ..., J}. It can be

characterised by its transition probabilities pij(t, s) = P (X(t) = j|X(s) = i) or

equivalently by its transition intensities λij(t) wherepij(t+ h, t) = λij(t)h+ o(h)

pii(t+ h, t) = 1−
∑
i 6=j λij(t)h+ o(h).

Another type of stochastic process which we will encounter are counting pro-

cesses. We will consider counting processes counting the number of jumps be-

tween states in a continuous time Markov Chain. We follow [CE15, p 128] and

[JYC09, p 458].

Definition 2.14 (Counting process). A stochastic process N , defined on a

filtered probability space, is called a counting process if it is non-decreasing,

càdlàg, adapted and takes values in the positive integers Z+.

The associated jump process (∆Nt)t∈T is defined by ∆Nt = Nt−Nt− and takes

values in {0, 1}.

We will next give some important examples of stochastic processes that will form

building blocks for the processes used in the later sections. One of the most fun-

damental processes is the Wiener process, which can be seen as the continuous

time analogue of a random walk and is used ubiquitously in applications.

Definition 2.15 (Wiener process (1-dimensional version)). A Wiener process

W is an adapted stochastic process with W0 = 0 satisfying
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1. For any 0 ≤ s < t, the increments Wt −Ws are independent of Fs.

2. The increments Wt −Ws are normally distributed N(0, t− s).

We also have the following property which follows from the distributional prop-

erties of the increments.

Proposition 2.7. Any Wiener process has a version which is almost surely

continuous.

It is clear that the Wiener process is a martingale. In the following, we want to

study processes that have dynamics which contains Wiener processes, and it is

thus important to be able to set up and study differential equations containing

Wiener processes. In particular, we need to be able to define integrals with

respect to (certain) stochastic processes. This needs the concept of the variation

of a process.

Definition 2.16 (Variation of a process). The variation of a path X(ω) of a

process X on the interval [0, T ] is given by

VT (X(ω)) = sup

(
n∑
i

|Xti+1(ω)−Xti(ω)|

)

where the supremum is taken over all partitions 0 < t0 < ... < tn = T . If this is

finite for almost all paths and any t ∈ T the process has finite variation.

The following related concept is important in order to be able to define a stochas-

tic integral.

Definition 2.17 (Cross-variation and Quadratic variation). If X,Y are contin-

uous local martingales, there exists a process called the cross-variation process

(or bracket) which is given by

〈X,Y 〉t = lim
n→∞

n∑
i

(Xtni+1
−Xtni

)(Ytni+1
− Ytni ) with convergence in probability

where the mesh size |tni+1 − tni | → 0 as n→∞. This process is continuous and

of bounded variation.

We call 〈X〉t = 〈X,X〉t the quadratic variation of X.

Proposition 2.8 (Variation and Quadratic variation of a Wiener process). The

Wiener process has infinite variation for almost all paths. Its quadratic variation

process is given by 〈W 〉t = t.

One important consequence of the above is that it is not possible to define an

integral of an adapted process as a Lebesgue-Stieltjes integral with respect to

13



the Wiener process pathwise, since this requires the process to be of bounded

variation. It is however possible to define a stochastic integral of an adapted

process pathwise if one uses a partition which is carefully chosen to depend on

the local roughness of the process, see [Kar95]. That the standard definition of

the stochastic integral with respect to the Wiener process as a Lebesgue-Stieltjes

integral fails is the starting point for stochastic calculus, which is the topic of

the next subsection.

2.3 Stochastic calculus

In order to be able to do analysis on stochastic processes and in particular to

formulate and solve stochastic differential equations, it is necessary to define

stochastic integration, i.e. integrals where the integrator is some stochastic

process. We will define an integral with respect to the Wiener process but it is

possible to define stochastic integrals with respect to more general processes 1.

In this subsection, we partly follow [Pha09, ch 1], but also [Øks13, ch 3].

We will define an integral with respect to the Wiener process for processes α

with time index set [0, T ] such that

• α is progressively measurable, i.e. for any t ∈ [0, T ] the map (t, ω) →
α(t, ω) is measurable with respect to B([0, t])×Ft .

• α is adapted to the Wiener filtration.

• E

(∫ T
0
|αt|2dt

)
<∞.

Such processes are said to belong to L2(W ). In order to define an integral,

the so-called Itô integral, for processes in L2(W ), we start by defining it for a

subspace of processes where it can be given a natural definition.

Definition 2.18 (Elementary process and its Itô integral). An elementary pro-

cess φ is a process of the form

φt =

n∑
k=1

bk1(tk,tk+1](t)

where bk is Ftk -measurable and bounded and t1, ..., tn is a sequence of stopping

times in [0, T ]. For such elementary processes, the Itô integral is defined as∫ t

0

φsdWs =

n∑
k=1

bk(Wtk+1∧t −Wtk∧t).

1See [CE15, ch 8-12].
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This integral will then be extended from the smaller subspace of elementary

processes to the full space L2(W ) in view of the following results2.

Proposition 2.9. The elementary processes are dense in L2(W ) in the sense

that for each α ∈ L2(W ) there exists a sequence (φn)n∈N of elementary processes

such that

lim
n→∞

E

(∫ T

0

(φns − αs)2ds

)
= 0.

Lemma 2.10 (Itô isometry). For elementary processes φ ∈ L2(W ) it holds that

E

(∫ T

0

φ2
sds

)
= E

(∫ T

0

φsdWs

)2


and in particular
∫ T

0
φsdWs is a square integrable martingale.

Since the elementary processes are dense in L2(W ), we can define the Itô integral

on L2(W ) as follows.

Definition 2.19 (Itô integral with respect to Wiener process). Let α ∈ L2(W ).

Then the Itô integral with respect to the Wiener process is given by∫ T

0

αtdWt = lim
n→∞

∫ T

0

φns dWs

where (φn)n∈N is a sequence of elementary processes such that

lim
n→∞

E

(∫ T

0

(φns − αs)2ds

)
= 0.

and the convergence 3 is in the sense that

E

[
sup

u∈[0,T ]

(∫ u

0

φns dWs −
∫ u

0

αsdWs

)2
]
→ 0

Note that the Itô integral is not defined pathwise since convergence of the

stochastic integral is in mean square. That the Itô integral is a square inte-

grable martingale now yields (in view of corollary 2.5.1) that it has expectation

0.

We will also consider the less involved stochastic integral with respect to a

counting process (cf. [JYC09, p. 458]).

2For more details see [Øks13, ch 3.1].
3See [CE15, Example 12.1.11]].
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Definition 2.20 (Stochastic integral with respect to counting process). Let N

be a counting process such that it has a finite number of jumps in [0, T ]. Let C

be a bounded and measurable stochastic process. Then the stochastic integral

of C with respect to N is defined as∫ t

s

CudNu =
∑
s<u≤t

Cu∆Nu where 0 ≤ s < t ≤ T.

We define the following class of stochastic process following [Pha09, Definition

1.2.11].

Definition 2.21 (Itô process). Let W be a Wiener process on a filtered prob-

ability space. A (1-dimensional) Itô process is a process of the form

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs

where X0 is F0-measurable and bs and σs are adapted and∫ t

0

|bs|ds+

∫ t

0

|σs|2ds <∞.

For such processes we will use the differential notation dXt = btdt+ σtdWt.

We note that Xt is the sum of a process of bounded variation and a (local)

martingale, a class of processes which is called semimartingales.

Using the definition to compute stochastic integrals will be tedious and we will

therefore make repeated use of the following fundamental result which is similar

to the chain rule in standard calculus. We will actually formulate the result,

Itô’s lemma, following [Pha09, sec 1.2.3, p 17], for a slightly more general class

of processes than that for which we have defined the stochastic integral (as it is

outside the scope of this thesis to provide a thorough introduction to stochastic

integration4).

Theorem 2.11 (Itô’s lemma for a (class of) semimartingales). Let X be a

process of the form X = (X1, ..., Xk) where Xi = M i + Ai where M i is a

continuous martingale and Ai is an adapted process of bounded variation. Let

f ∈ C1,2(T × Rk). Note that Ai might have jumps and denote by Ai,c the

continuous part of Ai. Then the process (f(t,Xt))t∈T is also a semimartingale

4For this we again refer to [CE15, ch 8-12].
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(i.e. a sum of a martingale and a process of bounded variation) and is given by

f(t,Xt) = f(0, X0) +

∫ t

0

ft(s,Xs)ds+

k∑
i=1

∫ t

0

fxi(s,Xs)dM
i
s

+
1

2

∑
i,j

∫ t

0

fxixj (s,Xs)d〈M i,M j〉s+

k∑
i=1

∫ t

0

fxi(s,Xs)dA
i,c
s +

∑
0<s≤t

[f(s,Xs)− f(s,Xs−)]

where for Wiener processes W i,W j we have that 〈W i,W j〉t = t if i = j and

0 otherwise and for continuous processes of bounded variation the brackets are

0. In particular, for X an Itô process we have that (f(t,Xt))t∈T is also an Itô

process and

f(t,Xt) = f(0, X0) +

∫ t

0

ft(s,Xs)ds+
k∑
i=1

∫ t

0

fxi(s,Xs)dX
i
s

+
1

2

∑
i,j

∫ t

0

fxixj (s,Xs)d〈Xi, Xj〉s.

The processes that are to be controlled are defined as stochastic differential

equations (SDE) and we will therefore end this subsection by introducing that

concept. Here we follow [Pha09, ch 1.3], but see also [Øks13, ch 5]. We will con-

sider what is called strong solutions, which means that the solution is adapted

to the filtration generated by the driving process of the SDE. This is in contrast

to a weak solution, for which it is only required that the solution is adapted

to some filtration for which the driving process also is adapted. This filtration

may be strictly larger than the one generated by the driving process.

Definition 2.22 (Stochastic Differential Equation (driven by Wiener process)).

Assume that we have a filtered probability space such that W is a d-dimensional

Wiener process with respect to the filtration. We consider functions b = b(t, x, ω)

and σ = σ(t, x, ω) defined on T×Rn×Ω, where b = (b1, ..., bd) and σ = σij , 1 ≤
i ≤ n, 1 ≤ j ≤ d. For all x ∈ Rn we assume that b(., x, .) and σ(., x, .) are

progressively measurable processes which we shorten to b(., x) and σ(., x). 5

A stochastic differential equation is an expression of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dWt.

A (strong) solution of the SDE starting at time t is an Itô process such that∫ s

t

|b(v,Xv)|dv +

∫ s

t

|σ(v,Xv)|2dv <∞ almost surely

5See [Pha09, ch 1.3.1, p 22].
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and

Xs = Xt +

∫ s

t

b(v,Xv)dv +

∫ s

t

σ(v,Xv)dWv

for any t ≤ s ∈ T.

The solution exists and is unique provided σ and b satisfy some growth condi-

tions, which are given below.

Proposition 2.12 (Existence and uniqueness of solutions). Consider an SDE

as in 2.22. The SDE has a unique solution provided that the following Lipschitz

and growth conditions are satisfied for any t ∈ T:

|b(t, x, ω)− b(t, y, ω)|+ |σ(t, x, ω)− σ(t, y, ω)| ≤ K|x− y|

|b(t, x, ω)|+ |σ(t, x, ω)| ≤ C(1 + |x|).

for some constants K and C. The uniqueness is pathwise and the solution X

satisfies

E

(∫ T

0

|Xt|2dt

)
<∞.

We denote by Xs,z the strong solution to the SDE starting from z at time s.

Moreover X satisfies the strong Markov property (definition 2.12).

2.4 Ordinary differential equations

When solving the (partial) differential equations that are associated to the

stochastic control problem in this thesis, the setup is such that we will use

ansatz solutions which makes the PDEs separable in time and space. Typi-

cally, we will then need to solve ordinary differential equations in time, which

is why we will recall some results concerning solutions to linear ODEs with

non-constant coefficients. The following result is taken from [AS20, Appendix

A.2].

Consider the following linear ODE:

ft(t) = g(t)f(t) + h(t) (2.1)

where t ∈ [a, b] with the boundary condition f(t0) = f0.

Proposition 2.13. If g, h are continuous on [a, b], then (2.1) has a solution,

which is given by

f(t) = f0e
∫ t
t0
g(u)du

+

∫ t

t0

e
∫ t
s
g(u)duh(s)ds
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In the case that t0 = b (final value problem), the solution can be written

f(t) = f0e
−

∫ b
t
g(u)du −

∫ b

t

e−
∫ s
t
g(u)duh(s)ds

We will also discuss existence of solutions to systems of ODEs where we do not

solve the system explicitly. These results can be found in [AO08, ch 15].

Consider the following system of ODEs:

u1
t = g1(t, u1, u2, ..., un)

u2
t = g2(t, u1, u2, ..., un)

. . .

unt = gn(t, u1, u2, ..., un)

(2.2)

where ui(t) is a continuously differentiable function on [0, T ].

With u = (u1(t), . . . , un(t)), we can write the system on vector form as

ut = g(t, u) where ut = (u1
t , . . . , u

n
t ) and g(t, u) = (g1(t, u), . . . , gn(t, u)).

Here, ut and u are maps from [0, T ] taking values in E (a compact) subset6 of

Rn and g(t, u) is a map from [0, T ]× E to E.

We are interested in sufficient conditions that guarantee the existence of solu-

tions.

Remark. Usually the following existence theorem are stated for initial value

problems, i.e. with boundary conditions u0 = (u1(0), . . . , un(0)). In our case,

we will have boundary conditions uT = (u1(T ), . . . , un(T )) for the endpoint T .

The theorem relies on successive iterations [AO08, ch 8-9], which could also be

used in the case of endpoint conditions. We will not prove this and instead state

without proof that the existence theorem also holds with boundary conditions

ui(T ).

The following version then follows from [AO08, Theorem 15.4].

Theorem 2.14. [Peano existence theorem for system of ODEs] Assume that

the following conditions are satisfied in the set |t− T | ≤ T :

1. ||u|| <∞.

2. g(t, u) is continuous and bounded.

3. uT (t) is continuous.

Then the system (2.2) has at least one solution on |t− T | ≤ T .

6Since ui(t) is a continuously differentiable function defined on a compact set.
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3 Stochastic Optimal Control using Hamilton-

Jacobi-Bellman Equations

In this section we will discuss at some length the types of stochastic optimal

control problems that are the focus of this thesis. We will formulate a class of

control problems and outline a method, the so-called Hamilton-Jacobi-Bellman

or dynamic programming approach, in order to step-by-step set up and solve

these problems. We will also solve a version of one of the most classical stochas-

tic control problems in finance, Merton’s problem of optimal consumption and

investment. This problem also serves as a foundation for the main problem dis-

cussed in this thesis, that of optimal allocation of dividends in a with-profit life

insurance, which is the topic of the next section. The scope of the thesis does

not permit the inclusion of the most general formulations of stochastic control

problems and we will make a number of simplifying assumptions in order to

assure that the stochastic differential equations have strong solutions and that

the desired solutions of the Hamilton-Jacobi-Bellman PDE are smooth enough.

In order to simplify the presentation we only consider one-dimensional SDEs.

We will rely on the so-called dynamic programming principle introduced by Bell-

man [Bel53] in order to solve the stochastic control problems. Control problems

where this principle can be used satisfy a certain recursive property which allows

us to split the problem into smaller parts where the optimization can be done

iteratively over each subinterval. By shrinking the length of the subinterval to

0 we will be able to formally derive a partial differential equation called the

Hamilton-Jacobi-Bellman (HJB) equation associated to the control problem.

That a particular solution of the HJB equation indeed solves the control prob-

lem is then established by proving a so-called verification theorem. However, in

many but the simplest cases, explicit smooth solutions may be hard to come by.

3.1 Dynamic programming for control

In this subsection, we will define a prototypical stochastic control problem. We

will also derive the dynamic programming principle and indicate how the dy-

namic programming principle together with Itô’s lemma can be used to formally

derive the associated HJB equation. Here, our main source of inspiration and

reference is [Pha09, p. 35-45], but we have also drawn on [vH07, p 141-148].

The time horizon is finite and we write T = [0, T ], T <∞.

Definition 3.1 (Controlled diffusion process). Consider a filtered probability

space (Ω,F , P ) where the filtration is generated by a (1-dimensional) Wiener
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process W . A controlled diffusion process is an SDE with dynamics described

by

dXα
t = b(t,Xα

t , αt)dt+ σ(t,Xα
t , αt)dWt

where

b : T× R×A→ R

σ : T× R×A→ R

Here, αt is progressively measurable and taking values in A ⊂ R. The functions

b and σ are measurable functions satisfying a Lipschitz condition for each t ∈ T

and each a ∈ A:

|b(t, x, a)− b(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ K|x− y|

Next, we define an admissible control strategy (cf. [vH07, def. 6.1.1, p 141]):

Definition 3.2. A control strategy αt is said to be an admissible control if

1. (αt)t∈T is Ft-adapted (which follows from being progressively measurable).

2. the SDE stated in Definition 3.1 has a unique solution.

It is a Markov strategy if it has the form αt = a(t,Xα
t ) for some measurable

function a : T×R→ A. This means that the control process α does not depend

on the history of Xα
t

7. In this thesis, we will assume that the control strategies

are indeed Markov strategies.

The prototypical control problem which will be considered is the following

(where we follow [Pha09, p 38-39]).

Definition 3.3 (Control problem for a diffusion process). Let Xα
t be a con-

trolled diffusion process as in Definition 3.1 and α an admissible control. The

functions f : T×R×A→ R and g : R→ R are measurable functions satisfying

the following growth conditions:

|f(t, x, a)| ≤ C(1 + |x|2) +D(1 + b(t, 0, a)2 + σ(t, 0, a)2)

|g(x)| ≤ E(1 + |x|2)

g(x) ≥ F

where C,D,E > 0 and F ∈ R are constants. The finite-horizon gain function

(T <∞) is given by

J(t, x, α) = Et,x

[∫ T

t

f(s,Xα
s , αs)ds+ g(Xα

T )

]
(3.1)

7In many cases this is not a very restricting assumption, see [Øks13, Theorem 11.2.3].
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where the notation Et,x means conditioning on Xα
t = x (which will often be

suppressed). The associated value function is given by

V (t, x) = sup
α
J(t, x, α).

The control process α∗ is an optimal control for the control problem if V (t, x) =

J(t, x, α∗).

Remark. The growth conditions above ensures that the gain is finite for any

admissible control α 8.

We will also tacitly assume (see [Pha09, p 39]) that the value function V (t, x)

is measurable in all arguments which is not obvious and require results which

are outside our scope.

The dynamic programming principle for the control problem makes use of the

Markov property of the controlled process, showing that the value function sat-

isfies a certain recursive property. This principle allows for splitting the control

problem into subproblems, where the control problem is solved recursively on

subintervals of [0, T ] By splitting the problem into intervals [tk, tk+1] and let-

ting |tk+1 − tk| → 0 we will be able to (formally) derive a PDE which the value

function should satisfy.

Proposition 3.1 (Dynamic programming principle - finite horizon). Consider

the control problem defined in Definition 3.3. Let Tt,T be the set of stopping

times for the process in the interval [t, T ]. Then the value function satisfies the

following recursive property

V (t, x) = sup
α

E

[∫ τ

t

f(s,Xα
s , αs)ds+ V (τ,Xα

τ )

]
for any stopping time τ ∈ Tt,T .

The proof combines ideas from the sources [Pha09, p. 43-45], [vH07, p 143-45]

and [Sch08, p 30-31].

Proof sketch. Fix τ and consider an arbitrary admissible control strategy α. We

8See [Pha09, Remark 3.2.1].
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get that

J(t, x, α) = E

[∫ T

t

f(s,Xα
s , αs)ds+ g(Xα

T )

]

= E

[
E

[∫ T

t

f(s,Xα
s , αs)ds+ g(Xα

T )

∣∣∣∣∣Xα
τ

]]

= E

[
E

[∫ τ

t

f(s,Xα
s , αs)ds+

∫ T

τ

f(s,Xα
s , αs)ds+ g(Xα

T )

∣∣∣∣∣Xα
τ

]]

= E

[∫ τ

t

f(s,Xα
s , αs)ds+ J(τ,Xα

τ , α)

]
≤ E

[∫ τ

t

f(s,Xα
s , αs)ds+ V (τ,Xα

τ )

]
where we have used the tower property of conditional expectation and the

Markov property of the controlled diffusion process Xα
s (which yields that

J(τ,Xα
τ , α) does not depend on the path of Xα

s for s < τ).

Taking the supremum of the left hand side yields

V (t, x) ≤ sup
α

E

[∫ τ

t

f(s,Xα
s , αs)ds+ V (τ,Xα

τ )

]
Consider the following strategy

α̂ =

α if s ∈ [0, τ ]

αε if s ∈ [τ, T ]

where the strategy αε is such that V (τ,Xα
τ )−ε ≤ J(τ,Xα

τ , α
ε) for some arbitrary

ε > 0. That the strategy α̂ is progressively measurable (and hence an admissible

control) is not a priori obvious, but it can be shown (see [Pha09, p 42]) that

this is the case. We can then use a similar argument as above to obtain

V (t, x) ≥ J(t, x, α̂) = E

[∫ τ

t

f(s,Xα
s , αs)ds+ J(τ,Xα

τ , α
ε)

]
≥ E

[∫ τ

t

f(s,Xα
s , αs)ds+ V (τ,Xα

τ )

]
− ε

Since ε > 0 was arbitrary, we can take supremum of the right hand side to

obtain

V (t, x) ≥ sup
α

E

[∫ τ

t

f(s,Xα
s , αs)ds+ V (τ,Xα

τ )

]
and with both inequalities established, the proposition follows.

23



3.2 Formal derivation of the Hamilton-Jacobi-Bellman equa-

tion and a verification theorem

In this subsection we mainly rely on [Pha09, p 43]. We will make use of a

particular linear differential operator associated to the control problem given in

Definition 3.3. Here, and in the following, we will use the notation C1,2(R+×R)

to mean the space of functions which are continuously differentiable in its first

argument and twice continuously differentiable in its second argument.

Definition 3.4 (Differential operator of a controlled diffusion). Let Xα
s be a

diffusion process as in Definition 3.1. The differential operator La associated to

the controlled diffusion process acts on functions in C1,2(R+ × R) by

Laf(t, x) = b(t, x, a)
∂f

∂x
(t, x) +

1

2
σ2(t, x, a)

∂2f

∂x2
(t, x).

In order to (formally) derive the associated Hamilton-Jacobi-Bellman equation

of the control problem, we use the dynamic programming principle (Proposition

3.1) on a small interval [t, t+ h] and a constant control a:

V (t, x) ≥ E

[∫ t+h

t

f(s,Xa
s , a)ds+ V (t+ h,Xa

t+h)

]
. (3.2)

But, assuming that V is smooth enough (and with Xα
s as in Definition 3.1), we

can apply Itô’s lemma to obtain an expression for V (t+ h,Xa
t+h):

V (t+ h,Xa
t+h) = V (t, x) +

∫ t+h

t

Vt(s,X
a
s )ds+

∫ t+h

t

Vx(s,Xa
s )dXs+

1

2

∫ t+h

t

Vxx(s,Xa
s )d〈Xs, Xs〉

= V (t, x) +

∫ t+h

t

Vt(s,X
a
s ) + LaV (s,Xa

s )ds+∫ t+h

t

σ(s,Xa
s , a)Vx(s,Xa

s )dWs.

The last term is a stochastic integral with respect to a Brownian motion and,

assuming that σVx satisfies some growth conditions, a martingale with expec-

tation 0. In this formal derivation we will assume this to be the case whereas

a part of establishing the so-called verification theorems is to indeed show that

this is the case. Inserting into Equation 3.2 and dividing by h yields

0 ≥ E

[∫ t+h

t

f(s,Xa
s , a) + Vt(s,X

a
s ) + LaV (s,Xa

s )ds

]

⇒ 0 ≥ 1

h
E

[∫ t+h

t

f(s,Xa
s , a) + Vt(s,X

a
s ) + LaV (s,Xa

s )ds

]
.
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Since the integrands are continuous in x, the mean-value property of integral

calculus can be applied, and we can (at least formally) pass to the limit (h→ 0)

to obtain

f(t, x, a) + Vt(t, x) + LaV (t, x) ≤ 0

Since this holds for arbitrary a ∈ A, we have that

Vt(t, x) + sup
a∈A

[f(t, x, a) + LaV (t, x)] ≤ 0

For the optimal control α∗ (assuming it exists), we have equality in Equation 3.2

and thus, using similar steps as in the derivation above, we obtain

f(t, x, α∗t ) + Vt(t, x) + Lα
∗
V (t, x) = 0.

This indicates that the value function should satisfy

Vt(t, x) + sup
a∈A

[LaV (t, x) + f(t, x, a)] = 0. (3.3)

with a terminal condition (from Equation 3.1) given by V (T, x) = g(x) and the

supremum, if attained, is the optimal control.

The next, and crucial, step in the HJB approach, is to show that a given smooth

solution to the HJB equation is in fact the value function of the control problem.

This step also yields an optimal control. Such a verification theorem can be

formulated for the prototypical stochastic control problem stated in Definition

3.3.

Theorem 3.2 (Verification theorem - finite horizon). Let w ∈ C1,2([0, T )×R)

and continuous at T ×R. Let moreover w satisfy a quadratic growth condition:

|w(t, x)| ≤ C(1 + x2) for all t, x ∈ [0, T ]× R.

Suppose that w is a solution to the HJB equation 3.3 with terminal condition

w(T, x) = g(x) and that there exists an admissible control α∗(t, x) such that

∂w

∂t
(t, x) + sup

a∈A
[Law(t, x) + f(t, x, a)] =

∂w

∂t
(t, x) + Lα

∗(t,x)w(t, x) + f(t, x, α∗(t, x))

= 0.

Then V (t, x) = w(t, x) on [0, T ]×R and α∗(t, x) is an optimal Markovian control

for the control problem given in Definition 3.3.

Proof. See [Pha09, p 47-48].
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In this approach to stochastic control the usage of the DPP to derive the HJB

equation is usually done in a formal, non-rigourous way. Given an HJB equation

obtained by a formal derivation, a verification theorem is established (which

can be done in order to prove that a (sufficiently smooth) solution to the HJB

equation indeed is the value function of the associated control problem. Once

a verification theorem has been established, it remains to find a solution to

the HJB equation. In some cases a solution can be found using a clever guess

(ansatz), but in many cases solutions have to be found numerically (if one has

theorems at hand which establishes existence of solutions).

Remark. In this section we have outlined the HJB/verification approach for

solving stochastic control problems in the case of a diffusion process and for a

finite time horizon. The approach can be generalized in several ways. One way is

to allow for an indefinite time-horizon (where the process is stopped at a random

stopping time) or an infinite time horizon. Another generalization is to extend

the approach beyond pure diffusion processes to processes involving jumps, in

which case the HJB equation will have an integral part and the verification

theorems will be slightly more involved.

If the value function is not smooth enough, it is possible to relax the smoothness

requirements by introducing the concept of viscosity solutions to PDEs. This

approach is described in [Pha09, ch 4], but will not be used in this thesis.

Summing up this subsection, we outline the procedure for solving stochastic

control problems using the Hamilton-Jacobi-Bellman approach with verification

theorems for sufficiently smooth value functions.

• Set up the stochastic control problem.

• Derive (formally) its associated Hamilton-Jacobi-Bellman equation.

• Prove a verification theorem - that a given solution to the Hamilton-

Jacobi-Bellman equation is the value function of the control problem,

thereby obtaining an optimal control.

• Obtain (or show existence of) a (sufficiently smooth) solution to the Hamilton-

Jacobi-Bellman equation (which then coincides with the value function of

the control problem).

This is the approach that will be used for attacking the control problems in this

thesis.
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3.3 Example: Merton’s Problem of Optimal Consumption

One of the pioneering applications of stochastic control in finance is due to

Merton. In a series of seminal papers, [Mer69] and [Mer71], Merton set up and

solved a so-called investment-consumption problem, where the control problem

involves maximising the expected utility of consumption of an agent. The agent

can control the rate of consumption and the allocation of wealth into investments

in different assets, where risky assets are modelled by a geometric Brownian

motion. This problem has been studied in detail and generalized in several

directions since. We will solve a basic version of this problem, in order to

illustrate the procedure outlined in the previous subsection. It will also be the

starting point and reference for the main problem discussed in section 4.

The presentation of Merton’s problem of optimal investment and consumption

in the current subsection draws on [Sch08, sec 3.1, p 114-120] and [AS20, ch

XII, p 400-408]. In this formulation, we will consider consumption over a finite

time horizon [0, T ] with no terminal utility. Investments can be allocated to

a risk-free asset and a risky asset whose dynamics are given by a geometric

Brownian motion.

Definition 3.5 (Controlled wealth process - Merton problem). Consider a fil-

tered probability space with the filtration generated by the Brownian motion

W . Denote the controlled wealth process by Xπ,c. The wealth can be invested

in a market with the following price dynamics

dBt = rBtdt, B(0) = 1

dSt = mStdt+ σStdWt, S(0) = s0.

The agent invests through the portfolio process π = (πt)t∈T, which is the pro-

portion of wealth X invested in the risky asset. The agent consumes according

to the consumption rate process c = (ct)t∈T. The control processes ({πt, ct})t∈T
are chosen to be admissible in the sense of Definition 3.2. Moreover, ct ≥ 0.

With the state of the portfolio process given by πt, the agent will at time t hold

a portfolio of πtXt
St

of the risky asset and (1−πt)Xt
Bt

of the risk-free asset (as the

price processes are given by S and B respectively). The dynamics of the value

of the portfolio is then given by πtXt
St

dSt + (1−πt)Xt
Bt

dBt.

Hence, the dynamics of the full controlled wealth process is given by

dXπ,c
t = πtX

π,c
t

dSt
St

+ (1− πt)Xπ,c
t

dBt
Bt
− ctdt

= [(1− πt)r +mπt]X
π,c
t dt+ σπtX

π,c
t dWt − ctdt. (3.4)
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The problem consists of deciding on a control process ({πt, ct})t∈T which max-

imises the expected utility of consumption over [0, T ], where the preferences of

the agent are assumed to be represented by a class of utility functions which we

define next.

Definition 3.6 (Utility function - Merton problem). We say that φ(c, t) : R+×
R+ → R+, which is differentiable in c and t is a utility function if it fulfills the

following conditions:

• φ is increasing and strictly concave in c.

• φ is non-increasing in t.

• φ(0, t) = 0.

The first condition implies that the agent is risk-averse, so that it gains less

marginal utility from consumption for larger values of c. The second condition,

also common in economics, rules out that consumption in the future is more

valuable than consumption today. The last condition is a normalization factor.

Definition 3.7 (Optimal consumption - finite horizon). Let φ(c, t) : R+×R+ →
R+ be a utility function. Let Xπ,c be a controlled wealth process as in Definition

3.5. The control problem is given by

V (t, x) = sup
c,π

E

[∫ T∧τ

t

φ(c(s), s)ds

]
where c(t) is the consumption rate of the controlled wealth process and τ is a

stopping time determining the time of bankruptcy:

τ = inf{s > 0 : Xπ,c ≤ 0}.

Remark. The bankruptcy condition prevents gaining unbounded utility from

unbounded borrowing. Note that the absence of any final utility also implies

the boundary condition V (T, x) = 0. As in [Sch08, p 115], we will in the

following simplify the notation somewhat by omitting the stopping time and

instead take as given that c(t) = 0 whenever t ≥ τ .

The next step in the procedure outlined in the previous subsection is to formally

derive the Hamilton-Jacobi-Bellman equation associated to the control problem,

by using the dynamic programming principle. Note that we in this formal

derivation assume that V ∈ C1,2([0, T ] × R). The differential operator (cf.

Definition 3.4) for the controlled wealth process given in Equation 3.4 with

constant controls is given by

Lc,πf(t, x) = ([(1− π)r +mπ]x− c) ∂f
∂x

+
1

2
σ2π2x2 ∂

2f

∂x2
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Proceeding as in the previous subsection, applying Itô’s lemma on [t, t+h] where

t ∈ (0, T ), we get that

V (t+ h,Xc,π
t+h) = V (t, x) +

∫ t+h

t

Vt(s,X
c,π
s ) + Lc,πV (s,Xc,π

s )ds+∫ t+h

t

σπsXsVx(s,Xc,π
s )dWs.

If now πsXs is bounded, then the integrand in the stochastic integral above

satisfies growth conditions that assures it belongs to L2(W ). The stochastic

integral is then a square integrable martingale which, in view of Corollary 2.5.1

has expectation 0. Using equation (3.2) (a consequence of the dynamic pro-

gramming principle, Proposition 3.1), we find that

E

[∫ t+h

t

φ(c(s), s) + Vs(s,X
c,π
s ) + Lc,πV (s,Xc,π

s )ds

]
≤ 0.

By dividing by h and (formally) passing to the limit by letting h → 0 we have

found the Hamilton-Jacobi-Bellman equation associated to the control problem:

Vt(t, x) + sup
c,π

[Lc,πV (t, x) + φ(c, t)] = 0. (3.5)

Before proving the verification theorem for the problem, we need a few lem-

mata. The second lemma essentially states that we can find optimal controls

by optimising π and c pointwise on [0, T ]× R+.

Lemma 3.3. V(t,x) is strictly increasing, concave in x and V(t,0) = 0

Proof. Omitted, see [Sch08, Lemma 3.1, p 115].

Lemma 3.4. Assume V (t, x) is a solution to the Hamilton-Jacobi-Bellman

equation (3.5) such that V (t, x) ∈ C1,2([0, T ) × R) and continuous on T × R,

which is increasing and stricly concave in x. The supremum for π is given by

π∗(t, x) = − (m− r)Vx(t, x)

σ2xVxx(t, x)

and there exists c∗(t, x) where the supremum is attained.

Proof. Since V is increasing and strictly concave in x, we have that Vxx < 0 for

almost all x, t. Let H(t, x, Vx, Vxx, c, π) = Lc,πV (t, x) + φ(c(t, x), t) from (3.5).

By differentiating H with respect to π we obtain a first-order condition for a

local extremum:
∂H

∂π
= (m− r)xVx + πσ2x2Vxx = 0
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which yields the local extremum

π∗ = − (m− r)Vx(t, x)

σ2xVxx(t, x)

Since the second derivative of H is negative, the local extremum is indeed a

local maximum which is global since H is quadratic in π.

Since φ is strictly concave in c, we have that H(t, x, Vx, Vxx, c, π) is strictly

concave in c. Hence, it has a global maximum for which

∂H

∂c
= φc(c(t, x), t)− Vx(t, x) = 0

so that c∗(t, x) solves the equation φc(c
∗(t, x), t) = Vx(t, x).

The next step is then to prove a verification theorem - that a given smooth so-

lution to the Hamilton-Jacobi-Bellman equation (3.5) coincides with the value

function and that the optimal control is given by the functions given in Theo-

rem 3.4. The formulation (and elements of the proof sketch) of the verification

theorem follows [Sch08, p 117-118]. Some steps of the proof sketch also use ideas

from [Pha09, p 47-48]. As in the formal derivations, it involves applications of

Itô’s lemma. We also indicate why the stochastic integrals involved are in fact

martingales.

Theorem 3.5 (Verification theorem - Merton problem finite horizon). Assume

that there exists a solution f(t, x) to the Hamilton-Jacobi-Bellman equation (3.5)

such that f(t, x) ∈ C1,2([0, T ]×R) and increasing in x with boundary conditions

f(T, x) = 0. Then V (t, x) ≤ f(t, x). If, in addition, π∗(t, x) is given by

π∗(t, x) = − (m− r)Vx(t, x)

σ2xVxx(t, x)

and is bounded and f(t, 0) = 0, then V (t, x) = f(t, x) and an optimal strategy is

given by {π∗(t,X∗t ), c∗(t,X∗t )} where c∗(t, x) solves the equation φc(c
∗(t, x), t) =

Vx(t, x).

Proof sketch. Taking π = c = 0, the fact that f is a solution to (3.5) implies

ft(t, x) ≤ 0. Together with the boundary condition f(T, x) = 0 this yields that

f(t, x) ≥ 0.

We consider an arbitrary strategy {π, c} which is admissible.

By Itô’s lemma we have for any stopping time τ that

f(s ∧ τ,Xc,π
s∧τ ) = f(t, x) +

∫ s∧τ

t

ft(v,X
c,π
v ) + Lc,πf(v,Xc,π

v )dv

+

∫ s∧τ

t

σπvX
c,π
v fx(v,Xc,π

v )dWv
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In particular, we consider stopping times

τn = inf{s > t :

∫ s

t

|σπvXc,π
v fx(v,Xc,π

v )|2dv ≥ n}

which is a localisation sequence for
∫ s
t
σπvX

c,π
v fx(v,Xc,π

v )dWv. Since f is a

solution to the HJB-equation (3.5), we get

f(s∧τn, Xc,π
s∧τn)+

∫ s∧τn

t

φ(v, c(v,Xv))dv ≤ f(t, x)+

∫ s∧τn

t

σπvX
c,π
v fx(v,Xc,π

v )dWv.

We note that, for any n, the stopped process

(

∫ s∧τn

t

σπvfx(v,Xc,π
v )dWv)

τn
s∈[t,T ]

is a martingale (with expectation 0). Thus we have

E

(
f(s ∧ τn, Xc,π

s∧τn) +

∫ s∧τn

t

φ(v, c(v,Xv))dv

)
≤ f(t, x).

Since
∫ s∧τn
t

φ(v, c(v,Xv)dv =
∫ s
t
φ(v, c(v,Xv))1v≤τndv and {φ(v, c(v,Xv))1v≤τn}n

is an increasing sequence of non-negative functions, the monotone convergence

theorem yields that

lim
n→∞

∫ s∧τn

t

φ(v, c(v,Xv)dv =

∫ s

t

φ(v, c(v,Xv)dv

so that, when taking n→∞, we can apply MCT to obtain

E(f(s,Xc,π
s ) + E(

∫ s

t

φ(v, c(v,Xv)dv) ≤ f(t, x).

This holds for any s ∈ [t, T ], so we can take the limit as s→ T to obtain (using

the boundary condition f(T, x) = 0)

E(

∫ T

t

φ(v, c(v,Xv)dv) ≤ f(t, x)⇒ V (t, x) ≤ f(t, x)

by considering the supremum of all admissible strategies {π, c}.

Assume now that {π∗, c∗} is an optimal strategy and denote the (optimally)

controlled process by X∗. By assumption, π∗(t,X∗t ) is bounded. As in the first

part, we apply Itô’s lemma to obtain

f(s ∧ τn, X∗s∧τn) = f(t, x) +

∫ s∧τn

t

ft(v,X
∗
v ) + Lc∗,π∗f(v,X∗v )dv

+

∫ s∧τn

t

σπ∗vX
∗
vfx(v,X∗v )dWv
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where we consider the stopping time

τn = inf{s > t :

∫ s

t

|σπvXc,π
v fx(v,Xc,π

v )|2dv ≥ n}.

Since {c∗t , π∗t } attains the supremum in equation (3.5), we get that

f(s∧τn, X∗s∧τn) = f(t, x)−
∫ s∧τn

t

φ(v, c∗(v,X∗v ))dv+

∫ s∧τn

t

σπ∗vX
∗
vfx(v,X∗v )dWv.

As in the first part of the proof sketch, the stochastic integral stopped at τn is

a martingale, hence

E(f(s ∧ τn, X∗s∧τn)) = f(t, x)− E(

∫ s∧τn

t

φ(v, c∗(v,X∗v ))dv).

Again, we use the monotone convergence theorem to obtain

lim
n→∞

E(

∫ s∧τn

t

φ(v, c∗(v,X∗v ))dv) = E(

∫ s

t

φ(v, c∗(v,X∗v ))dv)

and

lim
n→∞

E(f(s ∧ τn, X∗s∧τn) = E(f(s,X∗s ).

Now, by sending s to T we get that E (f(T,X∗T ) = 0 by the boundary condition.

Hence

f(t, x) = E(

∫ T

t

φ(v, c∗(v,X∗v ))dv) = V (t, x).

The final step is to provide a suitable solution of the Hamilton-Jacobi-Bellman

equation (3.5) satisfying the boundary conditions as in the verification theorem

above, which then will yield the value function and the optimal investment and

consumption processes (control processes).

For some classes of utility functions, it turns out that it is possible to find

explicit solutions to the HJB equation by the use of an ansatz. We will consider

such a class next. The utility functions that we consider are separable in time

and consumption, a property that will be inherited by the solutions.

Proposition 3.6. Assume φ(c, t) = exp(−ρt) 1
1−γ c

1−γ where γ ∈ (0, 1). Then a

solution to the Hamilton-Jacobi-Bellman equation (3.5) satisfying the conditions

in Theorem 3.5 is given by

V (t, x) =
1

1− γ
f(t)γx1−γ

where

f(t) =

c0e
−r∗t + e

− ρ
γ
t

ρ
γ−r∗

if r∗ 6= ρ
γ

(t− T )e
−ρ
γ t if r∗ = ρ

γ
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with r∗ = 1−γ
γ (r + (m−r)2

2γσ2 ) and c0 =
exp(−T ( γρ−r

∗))

r∗− ργ
.

The optimal controls are given by

π∗(t, x) =
m− r
γσ2

, c∗(t, x) = exp(−ρ
γ
t)

x

f(t)
.

Proof. We will demonstrate the proposition by using an ansatz of the form given

in the statement of the proposition. We consider a continuously differentiable

function f : [0, T ] → R+ with f(T ) = 0. Computing the relevant derivatives

yield

Vt(t, x) =
γ

1− γ

(
x

f(t)

)1−γ

· f ′(t),

Vx(t, x) =

(
x

f(t)

)−γ
,

Vxx(t, x) = −γ
(

x

f(t)

)−γ−1

· 1

f(t)
.

Considering the left hand side of the HJB equation (3.5), we notice that it is

concave in c. Thus, there is a unique c∗ where the supremum is attained which

satisfies φc(c
∗, t) = Vx(t, x). With φc(c

∗, t) = (c∗)−γ exp(−ρt) this yields

(c∗)−γ exp(−ρt) =

(
x

f(t)

)−γ
⇒ c∗(t, x) = exp(−ρ

γ
t)

x

f(t)
.

From Lemma 3.4 we get

π∗ = − (m− r)Vx(t, x)

σ2xVxx(t, x)
= − (m− r)

σ2

(
x

f(t)

)−γ
1

−γ

(
x

f(t)

)γ
⇒ π∗(t, x) =

m− r
γσ2

.

Here, we in particular notice that π∗ does not depend on t or x. We can now

plug in the expressions for the candidate optimal controls π∗(t, x) and c∗(t, x)

and the derivatives of the ansatz solution V (t, x) in the HJB equation (3.5).

After some tedious calculations we notice that we can factor out
(

x
f(t)

)1−γ
:(

x

f(t)

)1−γ (
γ

1− γ
f ′(t) + (r +

1

2

(m− r)2

γσ2
)f(t) +

γ

1− γ
e−

ρ
γ t

)
= 0.

Assuming that we can divide by
(

x
f(t)

)1−γ
, we obtain the following ordinary

differential equation in t:

f ′(t) +
1− γ
γ

(r +
1

2

(m− r)2

γσ2
)f(t) + e−

ρ
γ t = 0

⇒ f ′(t) + r∗f(t) + e−
ρ
γ t = 0
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with boundary condition f(T ) = 0 where we have set r∗ = 1−γ
γ (r + 1

2
(m−r)2
γσ2 ).

This ODE has to be satisfied in order for the ansatz V (t, x) to solve the HJB

equation. It is a linear ODE with constant coefficients which has the solution

f(t) = c0e
−r∗t +

e−
ρ
γ t

ρ
γ − r∗

with c0 =
exp(−T ( γρ−r

∗))

r∗− ργ
. This holds whenever r∗ 6= ρ

γ . If r∗ = ρ
γ we instead

have the solution

f(t) = (t− T ) exp
−ρ
γ t .

Remark. This type of utility function (power utility function) exhibits a property

called constant relative risk aversion (CRRA) [AS20, ch I.2], which holds for any

(twice differentiable) utility function u that satisfy

x
−uxx(x)

ux(x)
= C (constant).

We notice that the rate of consumption relative to current wealth c∗(t,x)
x tends

to infinity when t → T . This seems reasonable and is due to the fact that in

this particular setup of the optimal consumption problem, we have not included

any utility from consumption at t = T . What is also striking in this problem is

that π∗, the investment strategy, does not depend on x or t, but it does depend

on properties of the risky asset (its return and volatility) and the risk aversion

γ of the agent.

4 Optimal Allocation of Dividends in With-profit

Insurance

In this section, we will consider the main problem of optimally allocating divi-

dends to the insured in a with-profit life insurance. It will turn out that our par-

ticular formulation makes it a generalized version of the consumption-investment

problem (Merton’s problem) from the previous section. We will start by in-

troducing necessary concepts from life insurance mathematics and define the

relevant processes that relate to a with-profit life insurance policy. In this, we

follow the presentation, and in most cases also the notation used, in [AS20, ch.

V and ch. VI.4].
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4.1 Life insurance - the with-profits contract

We consider a life insurance policy as a stream of payments (possibly including

lump sum transfers) which are exchanged between the insured (or other benefi-

ciaries of the policy) and the issuer (insurance company) depending on a finite

number of states J = {0, . . . , J}. The states are typically depending on the

life and/or health status of one or more beneficiaries. The contract is issued

at time 0 and runs until time T 9. The state evolution is taken to be an inho-

mogeneous continuous-time Markov chain Z = (Zt)t∈[0,T ] defined on a filtered

probability space (Ω,F , P ) where the filtration (FZt )t∈[0,T ] is generated by the

process. As described in Definition 2.13, its distribution is determined by its

transition intensities µij(t), which are given by

P (Z(t+ h) = j|Z(t) = i) = µij(t)h+ o(h).

The associated counting process

N j(t) = #{s ∈ (0, t] : Z(s−) 6= j, Z(s) = j} (4.1)

counts the number of jumps to state j until time t.

Definition 4.1 (Benefit process). By the Benefit process we mean the (FZt )t∈[0,T ]-

adapted process B which gives the total net benefits (benefits minus premiums)

to be paid out during the course of the contract. The state B(t) gives total net

benefits paid until time t. Its dynamics is given by

dB(t) = bZ(t)(t)dt+ ∆BZ(t)(t) +
∑

k 6=Z(t−)

bZ(t−)k(t)dNk(t)

meaning that it includes (continuous) payment streams (bj(t)) as well as lump

sum payments due either at deterministic times (∆Bj(t)) or at jumps between

states (bjk(t)) .

Example 4.1 (Survival model). A canonical and simple model is the survival

model with two states J = {0, 1} corresponding to {alive, dead}.

Typical insurance contracts in this model include

• pure endowment that pays 1 unit upon survival until time m, which have

all coefficients equal to zero except ∆B0(m) = 1.

• term insurance that pays 1 unit upon the time of death if death occurs

before T , which have all coefficients equal to zero except b01(t) = 1t<T .

9We consider T < ∞ but it is possible in practice to consider lifelong contracts in this

model by choosing T large enough.
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• deferred annuity that pays 1 unit per time from the time of withdrawal m

until the time of death or contract termination, which have all coefficients

equal to zero except b0(t) = 1m<t<T .

Given a certain benefit process and an associated Markov process, it is also

fundamental to consider how to valuate the payment stream given by the benefit

process. This concept is called the reserve. For our purposes, valuation will be

done using a deterministic interest rate r(t).

Definition 4.2 (Reserve). Let r be a deterministic interest rate process and

Z be an inhomogeneous Markov process with state space J = {0, . . . , J} and

transition intensities µij(t) determining the state of the policy.

The reserve associated to the insurance policy is given by

R(t) = E

[∫ T

t

exp(−
∫ s

t

r(τ)dτ)dB(s)
∣∣∣ FZt

]

= E

[∫ T

t

exp(−
∫ s

t

r(τ)dτ)dB(s)|Z(t)

]
, (4.2)

the conditional expected present value of the payment stream using r as discount

rate. We also write RZ(t)(t) for the reserve function in the state Z(t).

A well-known relation in life insurance mathematics is that the dynamics of the

reserve follow the so-called Thiele differential equation.

Proposition 4.1 (Thiele differential equation). Let R(t) be as in equation (4.2).

Then Rj(t) has the following dynamics at points t such that ∆Bj(t) = 0:

dRj(t)

dt
= r(t)Rj(t)− bj(t)−

∑
i:i 6=j

µji(t)
(
bji(t) +Ri(t)−Rj(t)

)
(4.3)

Rj(T ) = 0

At points where ∆Bj(t) 6= 0 we have Rj(t−) = Rj+∆Bj(t). The term Ψji(t) =

bji(t) +Ri(t)−Rj(t) is called sum at risk.

Proof. See [AS20, p 128-129] for the standard proof using Kolmogorov’s back-

ward equations and [AS20, p 130-132] for a proof using martingale methods.

As mentioned in [AS20, p 130], this gives an interpretation to the reserves as

evolving as a (policy) account from which payments bj(t) are paid out, inter-

est r(t)Rj(t) is accrued and the risk premia
∑
i:i 6=j µji(t)Ψ

ji(t) is debited the

account (or credited in case the sum at risk is negative). The risk premium
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µjk(t)Ψjk(t) should cover the cost of the transition payments bjk(t) as well as

the net cost of setting up the reserve in state k.

The reserve at the start of a contract with a given benefit process can be used

to determine its premium. In the case of the with-profit insurance contract,

the insurance company specifies a set (r(t), µij(t)) of interest rates and transi-

tion intensities, called technical basis, under which benefits and premiums are

calculated such that they satisfy

R∗(0−) = E

[∫ T

0−
e−

∫ t
0
rdB(t)

∣∣∣ Z0

]
= 0, (4.4)

the so-called equivalence principle. Here,

dB(t) = bZ(t)(t)dt+ ∆BZ(t)(t) +
∑

k 6=Z(t−)

bZ(t−)k(t)dNk(t)

is the benefit process of the contract where the underlying Markov chain Z is

defined by the transition intensities µij(t) of the technical basis.

The payments specified by the benefit process determined by the technical basis

are usually denoted first-order payments [AS20, p 166]. The technical basis is

set in a prudent manner, which means that (r(t), µij(t)) should be chosen so that

the reserve evaluated using best estimates on interest rates and and transition

intensities is smaller than when using the technical basis.

The difference that hereby arises determines a free reserve, which, after taking

into account possible capital requirements on the side of the insurance company,

should be returned to the policy holders as dividends. This free reserve, or

contract surplus, will be invested in some kind of asset market. Thus, during

the duration of the contract, the insurance company has to decide on a dividend

strategy and an investment strategy (given an asset market). The dividend

strategy can be specified in terms of a dividend process.

Definition 4.3 (Dividend process). The dividend process D gives the total

dividends that are to be paid out (in addition to the payments specified by the

benefit process) during the course of the contract. The state D(t) gives total

dividends paid out until time t. Its dynamics is given by

dD(t) = δZ(t)(t)dt+ ∆DZ(t)(t) +
∑

k 6=Z(t−)

δZ(t−)k(t)dNk(t) (4.5)

meaning that it includes (continuous) payment streams (δj(t)) as well as lump

sum payments due either at deterministic times (∆Dj(t)) or at jumps between

states (δjk(t)). Here N j is a counting process as in equation (4.1). The dividend
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process is adapted to the filtration Ft = (FZt
∨
FSt) where, for each t, FSt is

the σ-algebra generated by the asset market process. Note that in this case the

intensities specifying the Markov process Zt is the objective measure (and not

the technical basis).

Thus, the total payments which the policy holders receive will be given by

B + D. Characterising for the with-profit contract is that dividends can never

be negative, i.e. D is positive and increasing, and we then speak of the first-

order payment process B as guaranteed, since the total payments will always be

greater than or equal to B.

4.2 Optimal dividends in a with-profit life insurance as an

extension of Merton’s Problem

The main problem of this thesis, which will be considered in this subsection,

is to determine dividend and investment strategies for a with-profit insurance

policy using the stochastic optimal control methods described in previous parts

of the thesis.

We will make a number of simplifying assumptions (see also [Ste04, p 9-10] and

[Sch08, p 127]):

• The guaranteed payments B will be perfectly hedged (outside of the model

of the free reserve) so that no gains nor losses stemming from covering

these payments affect the free reserve.

• Premium is paid as a one-time premium (lump sum) at t = 0−. This im-

plies in particular for the dividend process that δZ(t)(t) ≥ 0 and δZ(t−)k(t) ≥
0.

• ∆DZ(t)(t) = 0 for t ∈ (0, T ), no lump sum payments apart from the

premium, termination or at transitions between states.

This problem was initially put forward in [Ste04]. The presentation here draws

on that paper and that in [Sch08, p 127 - 132]. The state of the policy is given

by an inhomogeneous Markov process Z with state space J = {0, . . . , J} and

has associated counting processes Nk(t) as in Subsection 4.1. The free reserves

can be invested in an asset market which is the same as for the Merton problem

in Subsection 3.3 (one risk-less asset and one risky asset whose price process is

given by a geometric Brownian motion).

Given a with-profit life insurance policy with a free reserve, we consider a div-

idend process D(t) which is specified by the collection of processes (δi(t))t∈T,
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(δij(t))t∈T where i, j ∈ J and random variables ∆Di(T ) (as in Equation 4.5),

and an investment process (πt)t∈T, which as in Definition 3.5 denotes the port-

folio weight of the risky asset. These processes will be the control processes and

the free reserve as a controlled process will be denoted, following [Sch08, p 127

] the surplus process.

Definition 4.4 (Controlled Surplus process). Let (Ω,F , P ) be a probability

space, {Ft}t≥0 a filtration satisfying the usual conditions, generated by the pro-

cesses {(Z,W )} defined on the probability space. Here, Z is an inhomogeneous

Markov process representing the state of the policy and W is a Brownian mo-

tion. By X we denote the surplus process, whose value, for each t ∈ [0, T ], can

be invested in a market with the following price dynamics

dBt = rBtdt, B(0) = 1

dSt = mStdt+ σStdWt, S(0) = s0

where r,m, σ are positive constants satisfying m − r > 0 and from which

dividends can be paid out according to the processes (δi(t))t∈T, (δ
ij(t))t∈T for

i, j ∈ J 10. Let (πt)t∈T be the process denoting the proportion invested in the

risky asset.

The dynamics of the controlled surplus process will then be given by (cf. Equa-

tion 3.4):

dXπ,δ
t = [(1− πt)r +mπt]X

π,δ
t dt+ σπtX

π,δ
t dWt

−δ(t)Z(t)dt− δZ(t−)Z(t)(t)dNZ(t)(t). (4.6)

Here, N j(t) is a counting process as in equation (4.1).

We will consider control strategies (δi(t))t∈T, (δ
ij(t))t∈T, (πt)t∈T that are admis-

sible in the following sense (cf. [Sch08, p 127]):

• They are adapted to the filtration {Ft}t≥0 of Definition 4.4.

• The stochastic differential equation (4.6) is well defined and admits a

unique solution.

• δi(t), δij(t) ≥ 0 for all i, j, t and XT− = ∆DZ(T )(T ) ≥ 0.

The last condition ensures that dividends are non-negative and that all remain-

ing surplus are paid out at contract termination.

Comparing the current setup to that of the Merton problem discussed in the

previous section, we note that in place of the consumption process (ct)t∈T in

10We will often supress explicit mention of the state space and assume that i, j runs over

J when referring to dividend strategies.
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Definition 3.5, we have dividend processes (δi(t)), (δij(t)) and that we have

introduced jumps corresponding to changes in the state of the policy. The

control problem can be formulated by introducing utility functions which are

similar to those defined in Definition 3.6, but are also state dependent (cf.

[Sch08, p 128]).

Definition 4.5. The functions φc(i, d, t) : J ×R+×R+ → R+ and φl(i, j, d, t) :

J ×J ×R+×R+ → R+ which are differentiable in d and t represent the utility

that the policy holder experiences from the dividend payments. The function

φT (i,D) : J ×R+ → R+ represent the utility gained from the terminal payment

at T . As utility functions they satisfy

• φ is increasing and strictly concave in d.

• limd→∞
∂φ
∂d = 0.

• φc(i, 0, t) = φl(i, j, 0, t) = φT (i, 0) = 0.

Note that φc represents the utility gained from a dividend rate whereas φl and

φT represent utilities gained from lump sum payments. In this approach we

assume that the utilities of rates and lump sums can be added so as to represent

the total utility of the policy holder. See [Sch08, Remark 3.9, p 128].

We are now finally able to formulate the stochastic control problem that maxi-

mizes the utility of the dividend payments (cf. [Sch08, p 128]).

Definition 4.6 (Optimal dividend allocation). Let φc(i, d, t), φl(i, j, d, t) and

φT (i,D) be functions as in Definition 4.5 representing the utility from dividend

payments. Let X be a controlled surplus process as in Definition 4.4. The gain

function of an investment-dividend strategy (δit), (δ
ij
t ), (πt) is given by

J(t, i, x, δ, π) = E

[∫ T

t

φc(Z(s), δZ(s), s)ds

+

∫ T

t

φl(Z(s−), Z(s), δZ(s−)Z(s), s)dNZ(t)(t)

+ φT (Z(T ),∆DZ(T )(T ))
∣∣∣ Z(t) = i,Xt = x

]
and the value function

V (t, i, x) = sup
δ,π

J(t, i, x, δ, π)

where supremum is taken over admissible strategies.
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In order to perform the formal derivation of the Hamilton-Jacobi-Bellman of

the control problem, we proceed in similar fashion as in Subsection 3.3, and

assume that V is smooth enough and that stochastic integrals exist and are

zero mean martingales. For simplicity of notation we will drop the superscripts

for the controlled wealth process X and suppress the dependence of δ and π on

X,Z. We will also sometimes use the compressed notation Et,i,x for denoting

conditional expectation given the state Z(t) = i,X(t) = x. Applying Itô’s

lemma (Theorem 2.11):

V (t+ h, Z(t+ h), X(t+ h)) = V (t, i, x) +

∫ t+h

t

Vs(s, Z(s), X(s))ds

+

∫ t+h

t

Vx(s, Z(s), X(s))dX(s) +
1

2

∫ t+h

t

Vxx(s, Z(s), X(s))d〈X(s), X(s)〉

+
∑

t<s≤t+h

[V (s, Z(s), X(s))− V (s−, Z(s−), X(s−))]

= V (t, i, x) +

∫ t+h

t

Vs(s, Z(s), X(s))ds+∫ t+h

t

(
[(1− πs)r +mπs]X(s)− δZ(s)

)
Vx(s, Z(s), X(s))ds

+

∫ t+h

t

1

2
σ2π(s)2X(s)2Vxx(s, Z(s), X(s))ds+

∫ t+h

t

σπsVx(s, Z(s), X(s))dW (s)

+
∑

t<s≤t+h;Z(s−) 6=Z(s)

[V (s, Z(s), X(s))− V (s−, Z(s−), X(s−))] .

Applying the dynamic programming principle, Proposition 3.1, with constant

controls, we get that

V (t, i, x) ≥ E

[∫ t+h

t

φc(Z(s), δZ(s), s)ds

+

∫ t+h

t

φl(Z(s−), Z(s), δZ(s−)Z(s), s)dNZ(t)(t)

+ V (t+ h, Z(t+ h), X(t+ h))
∣∣∣ Z(t) = i,X(t) = x

]
.
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Combining the previous two equations yields

0 ≥ Et,i,x

[∫ t+h

t

φc(Z(s), δZ(s), s)ds

+

∫ t+h

t

φl(Z(s−), Z(s), δZ(s−)Z(s), s)dNZ(t)(t)

+

∫ t+h

t

(
[(1− πs)r +mπs]X(s)− δZ(s)

)
Vx(s, Z(s), X(s))ds

+

∫ t+h

t

Vs(s, Z(s), X(s)) +
1

2
σ2π2

sX(s)2Vxx(s, Z(s), X(s))ds

+
∑

t<s≤t+h;Z(s−)6=Z(s)

[V (s, Z(s), X(s))− V (s−, Z(s−), X(s−)]

+

∫ t+h

t

σπsVx(s, Z(s), X(s))dW (s)

]
.

In this formal derivation, we assume that the stochastic integral of the last line

is a zero mean martingale. Comparing to the previous HJB-equations, the above

expression also contains a jump part related to the Markov process determining

the state of the policy. Using the properties of the transition intensities defining

the Markov process and the assumption that δii = 0, the expectation of the

jump part becomes

Et,i,x

(∫ t+h

t

φl(Z(s−), Z(s), δZ(s−)Z(s), s)dNZ(t)(t)

+
∑

t<s≤t+h;Z(s−)6=Z(s)

[V (s, Z(s), X(s))− V (s−, Z(s−), X(s−))]

)
=

J∑
j=0

φl(i, j, δij , t) · µij(t)h+ o(h)+

J∑
j=0

[
V (t, j, x− δij)− V (t, i, x)

]
· µij(t)h+ o(h).

In order to arrive at the HJB-equation, we divide by h and consider the limit

as h→ 0, which means that the above expression becomes

J∑
j=0

µij(t)
[
V (t, j, x− δij)− V (t, i, x) + φl(i, j, δij , t)

]
which, together with the diffusion part, yields the following HJB-equation (cf.
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[Sch08, eq 3.8, p 128]):

sup
π,δ

{
φc(i, δc, t) + ([(1− π)r +mπ]x− δc)Vx(t, i, x)

+
1

2
σ2π2x2Vxx(t, i, x) + Vt(t, i, x)

+

J∑
j=0

µij(t)
[
V (t, j, x− δl)− V (t, i, x) + φl(i, j, δl, t)

]}
= 0, (4.7)

where we have used the notation δc and δl to distinguish between dividend rates

and dividend lump sums paid at transitions between states (corresponding to

the control processes (δi(t)) and (δij(t))).

As in the previous section, the value function should satisfy some regularity

conditions, in particular that it is twice continuously differentiable in x and

continuously differentiable in t. The following property also holds for the value

function (cf. [Sch08, p 129]).

Lemma 4.2. V(t,i,x) is increasing and concave in x and satisfies the boundary

conditions V (t, i, 0) = 0.

Proof. The proof is omitted but is similar to that of Lemma 3.3.

Moreover, at the termination of the contract, we require the value function

to coincide with the terminal utility, which leads to the boundary condition

V (T, i, x) = φT (i, x).

Lemma 4.3. Assume V (t, i, x) is a solution to the Hamilton-Jacobi-Bellman

equation (Equation 4.7). The supremum for π is given by

π∗(t, i, x) = − (m− r)Vx(t, i, x)

σ2xVxx(t, i, x)
.

The optimal strategy for dividends is given by the solutions to the equations

φcδ(i, δ
c∗(t, i, x), t) = Vx(t, i, x)

φlδ(i, j, δ
l∗(t, i, j, x), t) = Vx(t, j, x− δl∗(t, i, j, x))

provided that the solutions exist. If no solution δc∗(t, i, x) exists, the optimal

strategy is given by δc∗(t, i, x) = 0. If no solution δl∗(t, i, j, x) exists, then

δl∗(t, i, j, x) = 0.

Proof. The proof is similar to that of Lemma 3.4 - finding first order conditions

for the right hand side of (4.7) which have to be zero in the case of a local

extremum. The supremum is unique since (4.7) is strictly concave in π.
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The statement and proof of the verification theorem will resemble that of The-

orem 3.5, but the presence of jumps complicate the derivations somewhat. The

strategy is again to use Itô’s lemma and then establish that a particular part of

the process is a martingale which have expectation zero.

Theorem 4.4 (Verification theorem - Optimal Dividends in Life Insurance).

Assume that there exists a solution f(t, i, x) to the Hamilton-Jacobi-Bellman

equation (4.7) such that f(t, i, x) is increasing in x, is continuously differentiable

in t and twice continuously differentiable in x. Assume moreover that it satisfies

the boundary condition f(T, i, x) = φT (i, x). Then V (t, i, x) ≤ f(t, i, x). If, in

addition, π∗(t, x) is given by

π∗(t, i, x) = − (m− r)Vx(t, i, x)

σ2xVxx(t, i, x)

and is bounded and f(t, i, 0) = 0, then V (t, i, x) = f(t, i, x) and an optimal strat-

egy is given by (π∗(t, i,X∗t )), (δc∗(t, i,X∗t )), (δl∗(t, i, j,X∗t )) and ∆Di(T, x) = x.

Here, (δc∗(t, i,X∗t )) and (δl∗(t, i, j,X∗t )) are as in Lemma 4.3.

The outline of the proof sketch follows [Sch08, Theorem 3.10, p 129-130] and

the proof of Theorem 3.5. As in subsection 3.3 we introduce the following linear

differential operator associated to the controlled wealth process:

Lδ,πf(t, i, x) = ([(1− πt)r +mπt]x− δc)
∂f

∂x
+

1

2
σ2π2

t x
2 ∂

2f

∂x2
.

and we let

Aδ,πf(t, i, x) =
∂f

∂t
+ Lδ,πf(t, i, x).

Proof sketch. We start by noting that the conditions that f be increasing in x

and that f(t, i, 0) = 0 imply that f is non-negative and bounded from below.

For the first part, we consider an arbitrary strategy {π, δc, δl} which is admissi-

ble. We fix t ∈ [0, T ) for which we have f(t, Z(t), X(t)) = f(t, i, x) and consider

the evolution up to s ∈ (t, T ]. We let

Hs = {v ∈ (t, s] : Z(v) 6= Z(v−)} = {η1, ..., ηk}

the set of jump times of Z in (t, s] and assume that the set is finite. Between

the jumps, we apply Itô’s lemma as follows (where j ∈ {k, ...2}):

hk = f(s, Z(s), X(s))− f(ηk, Z(ηk), X(ηk))−
∫ s

ηk

Aδ,πf(v, Zv, Xv)dv

=

∫ s

ηk

σπvfx(v, Zv, Xv)dWv
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hj−1 = f(ηj , Z(ηj), X(ηj)− f(ηj−1, Z(ηj−1), X(ηj−1))−
∫ ηj

ηj−1

Aδ,πf(v, Zv, Xv)dv

=

∫ ηj

ηj−1

σπvfx(v, Zv, Xv)dWv

h0 = f(η1, Z(η1), X(η1))− f(t, Z(t), X(t))−
∫ η1

t

Aδ,πf(v, Zv, Xv)dv

=

∫ η1

t

σπvfx(v, Zv, Xv)dWv

where we note that each term is a stochastic integral, which will be the subject

of the following localization. Consider (as in the proof of Theorem 3.5) stopping

times

τn = inf{u > t :

∫ u

t

|σπvfx(v, Z(v), X(v))|2dv ≥ n}, (4.8)

where we note that τn →∞ as n→∞. Consider the process which is the sum

of the above terms

h(s) =

k∑
i=0

hi

which is a local martingale, since

(h)τn =

k∧|Hs∧τn |∑
i=0

hi

is a martingale.

For the jump part, we have, according to [Sch08, p 129], that the following

compensated jump process is a martingale (with respect to the filtration of

Definition 4.4):

M̃(s) =
∑
η∈Hs

f(η, Z(η), X(η)) + φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

− f(η, Z(η−), X(η−))

−
∫ s

t

∑
j∈J

µZ(v)j(v)
[
f(v, j,Xv − δl(v, Z(v), j,X(v)))

+ φl(Z(v), j, δl(v, Z(v), j,X(v)), v)− f(v, i,X(v))] dv

Now, the sum

M̃(s) +

k∑
i=0

hi
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is a telescoping sum where the terms f(η, Z(η), X(η)) and f(η, Z(η−), X(η−))

cancel out so that we get

M̃(s) +

k∑
i=0

hi = f(s, Z(s), X(s))

+
∑
η∈Hs

φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

−
∫ s

t

(
Aδ,πf(v, Z(v), X(v))

+
∑
j∈J

µZ(v)j(v)[f(v, j,Xv − δl(v, Z(v), j,X(v)))

+φl(Z(v), j, δl(v, Z(v), j,X(v)), v)− f(v, i,X(v))]
)
dv.

Moreover, the telescoping sum is a local martingale, whose stopped version,

according to the localisation in (4.8), can be written as

M̃(s ∧ τn) +

k∧|Hs∧τn |∑
i=0

hi.

Since f is a solution to the HJB-equation (4.7) we have, for any u ∈ [0, T ],

i, j ∈ {0, ..., J} and y ∈ R+,

sup
π,δ

{
φc(i, δc, u) +Aδ,πf(u, i, y)

+

J∑
j=0

µij(u)
[
f(u, j, y − δl)− f(u, i, y) + φl(i, j, δl, u)

]}
= 0

which leads to the following inequality for the stopped processes

f(s∧τn, Z(s∧τn), X(s∧τn))+
∑

η∈Hs∧τn

φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

+

∫ s∧τn

t

φc(Z(v), δc(v, Z(v), X(v)), v)dv ≥ M̃(s ∧ τn) +

k∧|Hs∧τn |∑
i=0

hi.

Hence, the left hand side of the equation above defines a supermartingale. Since

the process is a supermartingale we have that

f(t, i, x) ≥ E (f(s ∧ τn, Z(s ∧ τn), X(s ∧ τn))

+
∑

η∈Hs∧τn

φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

+

∫ s∧τn

t

φc(Z(v), δc(v, Z(v), X(v)), v)dv.
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where we in particular note that each term is non-negative. We can then apply

Fatou’s lemma (Proposition 2.3) when letting n→∞ to obtain

f(t, i, x) ≥

E

f(s, Z(s), X(s)) +
∑
η∈Hs

φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

+

∫ s

t

φc(Z(v), δc(v, Z(v), X(v)), v)dv

)
.

and, applying the boundary condition f(T, i, x) = φT (i, x), we get that

f(t, i, x) ≥

E

φT (JT , XT ) +
∑
η∈HT

φl(Z(η−), Z(η), δl(η, Z(η−), Z(η), X(η)), η)

+

∫ T

t

φc(Z(v), δc(v, Z(v), X(v)), v)dv

)
= J(t, i, x, π, δ).

Taking supremum of the right hand side yields that f(t, i, x) ≥ V (t, i, x).

The second part amounts to showing that the process

f(s, Z(s), X∗(s)) +
∑
η∈Hs

φl(Z(η−), Z(η), δl∗(η, Z(η−), Z(η), X(η)), η)

+

∫ s

t

φc(Z(v), δc∗(v, Z(v), X(v)), v)dv

is a martingale whenever we have the optimal strategies

(π∗(t, i,X∗t )), (δc∗(t, i,X∗t )), (δl∗(t, i, j,X∗t ))

which attains the supremum of equation (4.7). For this part we refer to [Sch08,

p 130].

In order to make further progress towards existence of solutions, it is necessary

to introduce some structure to the utility functions. As in the previous section,

a natural starting point is to consider utility functions with constant relative

risk aversion γ ∈ (0, 1). Following [Ste04, p 12] and [Sch08, p 130-131] 11 we

11We have changed the notation slightly so as to make γ the coefficient of relative risk

aversion, instead of 1− γ. This is in line with [AS20, ch XII].
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specify the preferences over time using a set of weight functions a(t, i), a(t, i, j)

and ∆A(i) so that the utility functions become

φc(t, i, x) =
1

1− γ
x1−γa(t, i)γ ,

φl(t, i, j, x) =
1

1− γ
x1−γa(t, i, j)γ ,

φT (i, x) =
1

1− γ
x1−γA(i)γ .

(4.9)

The weight functions do not represent a dividend stream per se, but can be

interpreted as stating preferences on the side of the policy holder on how the

dividends should be distributed over time and over policy states. As mentioned

in [Ste04, p 12], one way for the insurance provider to determine the weight

functions a(t, i), a(t, i, j) and ∆A(i) would be to set

a(t, i) = bi(t)

a(t, i, j) = bij(t)

∆A(i) = ∆Bi(t)

where bi(t), bij(t) and ∆Bi(t) are taken from the benefit process (Definition 4.1)

that determine the guaranteed payments. But one could also imagine situations

where policy holders would have preferences over time and policy states that

diverge from that. For example, in the case of a life annuity the rate of guaran-

teed payments might be constant but policy holders might prefer the dividend

rate to increase or decrease over time.

As in the previous section, we will consider an ansatz solution to the HJB-

equation 12 separating x and t:

V (t, i, x) =
1

1− γ
g(t, i)γx1−γ . (4.10)

Here, g(t, i) is continuously differentiable in t.

With this separation, the optimal strategies will have a simple form. In partic-

ular, the investment strategy is identical to that of the Merton problem in the

previous section.

Proposition 4.5. Consider the ansatz solution (Equation 4.10) to the HJB-

equation of the control problem (Equation 4.7) where the utility functions are

12This can also be considered as a system of J+1 equations if one chooses the representation

(V (t, x))i, i = 0, ..., J .
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specified in equation (4.9). Then, candidates for the optimal strategies are

π∗(i, t, x) =
m− r
γσ2

δc∗(t, i, x) =
a(t, i)

g(t, i)
x

δl∗(t, i, j, x) =
a(t, i, j)

g(t, j) + a(t, i, j)
x

Proof. For the ansatz (4.10) and utility functions (4.9) we have

Vx(t, i, x) = g(t, i)γx−γ

Vxx(t, i, x) = −γg(t, i)γx−γ−1

φcδ(t, i, δ) = a(t, i)γδ−γ

φlδ(t, i, j, δ) = a(t, i, j)γδ−γ

which, when inserted in the expressions for candidate solutions from lemma 4.3,

after some intermediary steps, yield the result.

We also note the structure of the optimal dividends strategies. The dividend

strategies are linear functions of the surplus, with the functions a and g appear-

ing in the numerator and denominator respectively. In order to obtain more

information on the structure of g, it is necessary to attack the HJB-equation

directly (which is similar in spirit to what is done on [Sch08, p 131]).

Theorem 4.6. Let utility functions φc, φl and φT be specified as in equation

(4.9). Then the function

V (t, i, x) =
1

1− γ
g(t, i)γx1−γ

is a solution to the HJB-equation (Equation 4.10) satisfying the conditions of

Theorem 4.4 whenever there exists a solution to the following (system of) ordi-

nary differential equations:

gt(t, i) = r∗g(t, i)− a(t, i)−
J∑
j=0

µij(t)R
g,ij(t, i, j) where

r∗ = −1− γ
γ

(
r +

(m− r)2

2σ2γ

)
and

Rg,ij(t, i, j) =
1

γ

(
g(t, i)1−γ(g(t, j) + a(t, i, j))γ − g(t, i)

)
(4.11)

with the boundary condition g(T, i) = A(i).
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Existence is guaranteed whenever

h(t, g) = (h(t, g(t, 0)), ..., h(t, g(t, J))) where

h(t, g(t, i)) = r∗g(t, i)− a(t, i)−
J∑
j=0

µij(t)R
g,ij(t, i, j)

is continuous and bounded.

Proof. The conditions for existence of solutions to the system of ordinary differ-

ential equations follows from Theorem 2.14. From now on, we solve the equation

assuming that these conditions are satisfied. In particular, it is sufficient that

µij(t), a(t, i) and a(t, i, j) are continuous on [0, T ].

Using the ansatz solution (Equation 4.10) to the HJB-equation (Equation 4.7)

we obtain the following expressions for the derivatives of the candidate value

function:

Vt =
γ

γ − 1
g(t, i)γ−1x1−γgt(t, i),

Vx = g(t, i)γx−γ ,

Vxx = −γg(t, i)γx−γ−1.

We then plug in these expressions, together with the candidates for optimal

strategies given in Proposition 4.5, in the HJB-equation (4.7) with utility func-

tions as in (4.9).

Some tedious calculations yield that it is possible to factor out 1
1−γ

(
x

g(t,i)

)1−γ

to obtain

1

1− γ

(
x

g(t, i)

)1−γ (
γa(t, i) + (1− γ)(r +

(m− r)2

2σ2γ
)g(t, i) + γgt(t, i)

+

J∑
j=0

µij(t)
(
g(t, i)1−γ(g(t, j) + a(t, i, j))γ − g(t, i)

) = 0

which after rearrangement becomes

gt(t, i) = −1− γ
γ

(
r +

(m− r)2

2σ2γ

)
g(t, i)− a(t, i)

− 1

γ

J∑
j=0

µij(t)
(
g(t, i)1−γ(g(t, j) + a(t, i, j))γ − g(t, i)

)
.

The boundary condition V (T, i, x) = φT (i, x) means that

1

1− γ
g(T, i)γx1−γ =

1

1− γ
A(i)γx1−γ ⇒ g(T, i) = A(i).
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Thus, when the system of ODEs (4.11) has a solution, the ansatz (4.10) is a

solution to the HJB-equation (4.7) attaining the supremum.

When the conditions of Theorem 4.6 are fulfilled, the verification theorem (The-

orem 4.4) then implies that the function given in (4.10) is the value function of

the control problem and the candidate control processes given in Proposition

4.5 are optimal controls.

Note that Equation (4.11) can be represented as a system of J + 1 ordinary

differential equations in t and that this system is determined by the parameters

γ, σ,m, r and the transition intensities of the Markov process determining the

state of the policy. It is thus not dependent on the surplus.

The structure of the system of equations also resembles the Thiele differential

equations (proposition 4.1), which was an expression for the reserve.

In fact, it is possible to show (see [Ste04, p 16]) that g(t, i) can be written

on conditional expectation form and can be given a similar interpretation as a

kind of reserve. However, it is not the reserve of the actual dividend stream, but

rather of the artificial stream determined by the weight functions a(t, i), a(t, i, j)

and A(i) which specified the policy holders preferences over time and policy

states. Thus, one could consider g(t, i) as a utility reserve, which, in addition

to the preference weight functions, depends on the asset returns and volatility

and transition intensities between states.

With this interpretation, the optimal dividend payment stream is to pay a share

of current surplus corresponding to the current value of the weight function

a(t, i) divided by the utility reserve. The optimal lump sum payments can be

given a similar interpretation, with the optimal payment being to pay a share

of current surplus corresponding to the current value of the weight function

a(t, i, j) divided by the utility reserve including the lump sum payment itself.

4.2.1 Example: Life annuity

We will illustrate the results from subsection 4.2 by considering an example not

found in the sources [Ste04] and [Sch08].

We consider a simple survival model with two states J = {0, 1} corresponding to

{alive, dead}. There is no value or utility in the state ”dead”, i.e. V (t, 1, x) = 0.

This means that the notation can be simplified by dropping the explicit state

references, so that V (t, 0, x) = V (t, x) and g(t, 0) = g(t). It also means that we
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will have a single HJB-equation. We consider the utility functions

φc(t, x) =
1

1− γ
a(t)γx1−γ

φl(t, 0, 1, x) = 0

φT (x) =
1

1− γ
AγTx

1−γ .

The utility function φl(t, 0, 1, x) being identically 0 (which also implies that

δl = 0) corresponds to a with-profit life annuity without any survivor benefit

paid out at death (a very typical contract). This yields the following HJB-

equation:

sup
π,δ

{
φc(δc, t) + ([(1− π)r +mπ]x− δc)Vx(t, x)

+
1

2
σ2π2x2Vxx(t, x) + Vt(t, x)− µ01(t)V (t, x)

}
= 0.

with the boundary condition V (T, x) = 1
1−γx

1−γAγT . This is similar to the

specification in the problem considered in subsection 3.3, except for the presence

of the last term and the boundary condition. With the utility function specified

above we use the results from Proposition 4.5 and the ansatz

V (t, x) =
1

1− γ
g(t)γx1−γ

as in (4.10), to obtain the candidate optimal strategies

π∗ =
m− r
γσ2

δc∗(t, x) =
a(t)

g(t)
x.

From Theorem 4.6 we get that the ansatz is a solution to the HJB-equation

whenever g(t) solves the differential equation

gt(t) =

(
r∗ +

µ01(t)

γ

)
g(t)− a(t)

with the boundary condition g(T ) = AT . The verification theorem (Theorem

4.4) then gives that the solution to the HJB-equation is the value function of

the control problem and that the candidate strategies are indeed the optimal

controls.

In this case, we can use Proposition 2.13 to write down an explicit, unique
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solution to the ODE, given by

g(t) = AT exp

(
−
∫ T

t

(r∗ +
µ01(u)

γ
)du

)

+

∫ T

t

exp

(
−
∫ s

t

(r∗ +
µ01(u)

γ
)du

)
a(s)ds.

We then have to specify parameters and weight functions. We let a(t) =

exp(−ργ t) and AT = 0.2. Note that AT is the coefficient specifying preferences

for a final payment at the end of the contract. Thus, if AT is relatively larger,

the payment profile will be “back-loaded”. The force of mortality

µ01(t) = µ65+t = a+ b exp (c(65 + t))

is a Gompertz-Makeham function, where the set of parameters {a, b, c} is taken

from the pay-out basis13 used by the Swedish Pensions Agency for insured born

1950-1959, see [Pen22, bilaga A]. It is displayed in figure 4.1.

Figure 4.1: Force of mortality µ01(t) = µ65+t

The rest of the parameters are given in Table 4.1 below.

The simulation of the controlled surplus process are done using the Euler-

Maruyama method [KP92, ch 9.1] with step size ∆t = 1/1000. This gives

the following expressions for the simulated processes:

X∗t+∆t = X∗t + ((1− π∗t )r + π∗tm)X∗t ∆t− δ∗t∆t+ σπ∗tX
∗
t ∆Wt

δ∗t =
a(t)

g(t)
X∗t

where ∆Wt ∼ N(0,∆t) and t = i ·∆t, i ∈ {0, ..., T∆t}.
13Swedish: prognosgrunder.
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Parameter Value

age (when t = 0) 65

T 30

r 0.02

m 0.08

σ 0.33

γ 0.6

ρ 0.03

X0 100000

Table 4.1: Parameter values used for simulated trajectory

We have chosen to illustrate the example using one simulated trajectory, with

and without including the force of mortality µ65+t (which enters the expressions

through g(t)) 14. Doing so illustrates the effect that mortality has when allocat-

ing the dividend optimally. Since g is the expected value of discounted preferred

future payments - the utility reserve - the inclusion of mortality risk reduces the

value of g, thus increasing the dividend rate relative to current surplus.

As the contract starts at age 65 and runs for 30 years (until age 95 when µ65+t >

0.2), we would expect to be able to observe this effect. For illustrative purposes

we assume that T65, the remaining lifetime at age 65 satisfies T65 > 30 in this

simulation.
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Figure 4.2: Simulation of dividend process

14The same normal random sample is used in both cases.
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In Figure 4.2, which is a simulated trajectory of the dividend rate process,

we see that in the case where mortality is accounted for, the dividend rate is

initially higher. This reflects that the mortality risk is taken into account when

discounting the future preferred payment stream. The remaining surplus is paid

out as a lump sum at T = 30.
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Figure 4.3: Simulation of surplus process

Higher initial dividends, on the other hand, means slower growth of the surplus

process. In Figure 4.3, which illustrate the trajectory of the surplus process from

the same simulation, it is evident that the surplus process grows faster in the

case without mortality risk. We note that there is a larger remaining surplus,

to be paid out at T = 30, in the case without mortality risk (X∗T = 14642) than

in the case with mortality risk (X∗T = 2427).

The value function from the same simulation is shown in Figure 4.4. As we

would expect, the value function is strictly larger in the case where the policy

holder runs no risk of dying and entering a state of zero value. At the endpoint,

V (T,X∗) = 1
1−γA

γ
T (X∗T )1−γ , the utility of the remaining surplus that is paid

out at termination of the contract.
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Figure 4.4: Simulation of value function

We also plot the value function as a function of x for some fixed values of t

in Figure 4.5. From this illustration, it is clear that the value function indeed

is concave in x and that the reducing effect of mortality on the value function

diminishes with t, as the remaining time at risk gets smaller. At the endpoint,

as noted above, we have for both cases that V (T, x) = 1
1−γA

γ
Tx

1−γ .
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Figure 4.5: Value function V (t0, x) for t0 ∈ {5, 15, 25}

5 Discussion

This thesis deals with applying stochastic control methods to problems in life

insurance mathematics. We used the dynamic programming principle method

to derive a PDE called the Hamilton-Jacobi-Bellman equation associated to

the control problem. The connection between solutions to the HJB-equation

and the value function of the stochastic control problem is established through

verification theorems - proving that a solution to the HJB-equation coincides

with the value function. A candidate for the optimal control is obtained by
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pointwise optimisation of the HJB-equation over the control space. If the HJB-

equation with this candidate optimal control has a (smooth) solution it is indeed

the value function of the control problem and, perhaps more importantly in

applications, the optimal control candidate is indeed the optimal control.

The particular control problem that we had in mind was to control the sur-

plus process of a with-profit life insurance contract, where the surplus is to be

invested in an asset market and paid out to the policy holders as dividends

so as to maximise their utility. Under some simplifying assumptions regarding

the product design and the asset market, it turned out that the dividend al-

location problem could be formulated as an investment-consumption problem

generalizing the well-known Merton problem from mathematical finance.

Finding explicit solutions to the HJB-equation depended crucially on the form of

the utility function. With the power utility function with constant relative risk

aversion, a semi-explicit solution to the HJB-equation could be found which

separated variables. The time-dependent part turned out to be solutions to

a system of ordinary differential equations whose structure resembled that of

the Thiele differential equations for the reserve of a life insurance contract.

The optimal portfolio process was in this case constant, whereas the dividend

processes were linear functions of the surplus with the time-dependent part

involving the preference weights and solutions to a system of ODEs.

In order to illustrate and interpret the results, we used a simple version of

the model with only two states (”alive” and ”dead”) and without lump sum

payments due at transitions between states. This simple version corresponds

to a life annuity where the premium is paid in the form of a lump sum at

retirement. In this simple version we illustrated the effect of mortality on the

dividend and surplus processes.

This particular simplification is however not that serious of a limitation con-

sidering the motivation behind writing this thesis. One of the purposes was to

illuminate possible strategies for the with-profit life annuity which is offered as

part of the Premium pension in the Swedish public pension system. This with-

profit life annuity has a very simple design with no lapse or surrender options

and can, for all practical purposes, be considered as having a single premium

at t = 0−. One interpretation of the result in this case is that if one would

consider subportfolios (or individual accounts) with similar risk aversion and

mortality, the optimal controls yield portfolio weights and weights for paying

out the surplus to the policy holders.
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There are a number of more serious limitations, however, which require attention

and limit the direct applicability of the results.

The model used for the asset market is the simple Black-Scholes asset market

model, with a risk-free asset with deterministic interest rate and a risky asset

modelled as a geometric Brownian motion with constant coefficients. This is

not very realistic, as mean returns and volatility typically are non-constant,

non-deterministic and might as processes not even be fully observable. It has

also been argued that (see e.g. [CT04, ch 1]) that assuming continuity of sample

paths and Gaussian returns of the risky asset are somewhat unrealistic. In the

context of the standard Merton problem (without insurance policy states), gen-

eralizations in these directions have been made. Allowing for non-deterministic

coefficients is dealt with in detail in [KS98, ch 3] and the case of partial observ-

ability of returns and/or volatility is considered in several sources, e.g. [HS17].

Versions of the consumption-investment problem with jumps in the risky asset

price process can be found in [ØS19, Example 5.2] and [APW14]. It would

be interesting to investigate to what extent these extensions of the standard

Merton problem would carry over to the version considered in this thesis.

Another limitation is the representation of preferences of the policy holders by

utility functions with constant relative risk aversion. This structure allowed for

the HJB-equation to have a semi-explicit solution and implied constant optimal

portfolio weights. However, this does not seem to be in line with empirical

evidence (see e.g. [BC97]). It also does not agree with the practice of target

date funds (lifecycle funds), which are common default options in pension plans,

where there is a shift away from risk with increasing age (i.e. the risk aversion of

the policy holder is assumed to increase with age). The case of time-dependent

relative risk aversion is considered in [Ste11] and [Aas17]. The first paper uses

dynamic programming, wheras the latter (which also considers the effect of

mortality) uses other methods. It would also have been interesting to explore

this setting using dynamic programming methods.
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