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Abstract

The General Minimum Variance Portfolio (GMVP) has the smallest
variance of all the portfolios. The weight of this portfolio depends on the
inverse of the population covariance matrix, which is an unknown object
in practice and must be replaced by an estimator. Several estimators
of the GMV portfolio weights exist in the literature. The preliminary
aim of the thesis is their comparison with respect to the out-of-sample
performance and their asymptotic behaviors based on Random Matrix
Theory (RMT). For numerical simulations synthetic and real data are
used. Asymptotic behaviors are analyzed when the number of assets p and
the sample size n are going together to infinity at the same convergence
rate p/n, which is called in the literature as double-limit regime or high-
dimensional asymptotic. The different estimators we are interested in
are based on the Sample Covariance Matrix (SCM) and Tyler’s robust
M-estimator in non-regularized and regularized (shrinkage) forms. The
following four approaches are considered: 1-Frahm and Memmel (2010) [2]
They treat the case of the linear shrinkage estimator based on the sample
covariance estimator and a non-random target under the assumption of
serially independent and identically normally distributed asset returns.
2-Bodnar et al. (2018) [1] They improve the estimator of Frahm and
Memmel and suggest shrinking the sample estimator for the portfolio
weights directly and not the whole sample covariance matrix, which is
dominant but not necessarily optimal. A new estimator for the GMV
portfolio based on Random Matrix Theory is derived, which is optimal
and distribution-free. 3-Rubio et al. (2012) [3] They regularize the SCM
estimator, where the shrinkage target is a nonrandom positive-definite
matrix. They invert the sum of the SCM estimator and the target matrix
and in GMVP implementation find the portfolio weights. To find the
minimum realized variance the shrinkage intensity is optimized. 4-Yang
et al. (2015) [4] They are in principle following the same procedure as in
Rubio et al. using instead for the SCM estimator the Tyler´s M-estimator.
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1. Introduction

The classical mean-variance portfolio optimization is based on the frame work studied
by Warkowitz [6]. In the analysis of this portfolio one is confronted with the estimator
errors of the mean and covariance matrix, which depend on the asset returns. It is
shown by Merton [7], that the estimates of the covariance matrix are more accurate
than the expected returns. For this reason one has turned to the performance study of
the global minimum variance portfolio (GMVP), which depends only on the covariance
matrix estimator with the intention to reduce portfolio risk.

The Global Minimum Variance Portfolio (GMVP) is based on the solution of a
quadratic optimization problem. Using the portfolio variance (risk)

min
w

σ2(w) = wTΣΣΣw (1.1)

subject to the linear constraint
wT1p= 1 (1.2)

where w = (w1, ...,wp)T are the portfolio weights and ΣΣΣ is the covariance matrix of the
asset returns. And 1p is the p-dimensional vector of ones. The solution is known as

wGMV P =
ΣΣΣ−11p

1TpΣΣΣ−11p
(1.3)

The corresponding portfolio risk is then

σ2(wGMV P ) = 1
1TpΣΣΣ−11p

(1.4)

which represents the minimum risk bound.
But not knowing the population covariance matrix, instead in Equation (1.3) a plug-

in estimator is used, which we denote by Σ̂(α) and α stands for the shrinkage parameter.
Based on this the GMVP weight is given by

ŵGMV P (α) =
Σ̂ΣΣ−1(α)1p

1Tp Σ̂ΣΣ−1(α)1p
(1.5)

The performance of this kind of an estimator is measured by the achieved out-of-
sample portfolio variance:

σ2(ŵGMV P (α)) =
1Tp Σ̂ΣΣ−1(α)ΣΣΣΣ̂ΣΣ−1(α)1p

(1Tp Σ̂ΣΣ−1(α)1p)2
(1.6)
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If we choose in Equation (1.6) the Sample Covariance Matrix (SCM) Sn as an estimator
of ΣΣΣ, then we get the out of sample variance of the traditional estimator:

σ2
s =

1Tp S−1
n ΣΣΣS−1

n 1p
(1Tp S−1

n 1p)2 (1.7)

The performance of it has been analyzed in [8]. It is known that this realized variance
underestimate the risk and hereby leads to optimistic investment decisions. Classical
asymptotic theory requires the dimension p of the portfolio to be fixed and the number
of samples n goes to infinity n » p.

However in the double limit regime it is of more practical and empirical importance
to analyze the case when n' p, which is done based on Random Matrix Theory such as
in [9] and [10].

In Equation (1.6) the covariance matrix estimator is the only input parameter in the
GMVP framework. We consider the returns of the assets over the consecutive investment
periods to be independent and identically distributed. We use the data matrix (p x n)

Yn = (y1,y2, ...,yn) (1.8)

consisting of n vectors of p row asset returns. Then the Sample Covariance Matrix
(SCM) is obtained as

Sn = 1
n

YnΛΛΛnYT
n (1.9)

where
ΛΛΛn = (In−

1
n

1n1Tn ) (1.10)

is the centering matrix.
As assumed in [2], [5] and [4] we use the following stochastic decomposition for the

data matrix where µµµ is the mean vector of asset returns.

Yn =µµµ1Tn +ΣΣΣ1/2Xn (1.11)

Xn is a pxn random matrix, of which the entries are assumed to be independent and
identically distributed (i.i.d) having mean zero and variance one. ΣΣΣ1/2 stands for the
square root of positive definite population matrix ΣΣΣ, ΣΣΣ = ΣΣΣ1/2(ΣΣΣ1/2)T . Then the stochas-
tic decomposition implies for SCM in Equation 1.9:

Sn = 1
n

YnΛΛΛnYT
n

d= 1
n

ΣΣΣ1/2XnΛΛΛnXT
nΣΣΣ1/2 (1.12)

having used as in [5]
(µµµ111Tn +ΣΣΣ1/2

n Xn)ΛΛΛn = ΣΣΣ1/2XnΛΛΛn (1.13)

The stochastic decomposition in matrix form in Equation (1.11) could be as well written
in stochastic decomposition vector form as

yi
d=µµµ+

√
TiΣΣΣ1/2xi i= 1,2, ...,n (1.14)
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This model includes the class of elliptical distributions and as special cases the mul-
tivariate normal and the multivariate student-t distributions. Ti is a real, positive
random variable and independent of xi’s. For a multivariate student-t distribution√
Ti =

√
(d−2)/d

√
d/χ2

d. χ2
d is a Chi-square random variable with d degree of free-

dom.
For a symmetric random vector y ∈ Rp our interest lies in the centered elliptical

symmetric distribution, which is characterized by [10; 11]

µp(y) = C(gp)det(ΣpΣpΣp)−1/2gp(yTΣΣΣpy) (1.15)

where ΣΣΣp is as positive definite matrix in Rpxp, gp : [0,∞) → [0,∞) is fixed function
called the density generator fulfilling∫ ∞

0
gp(x)xp−1 <∞ (1.16)

and C(gp > 0) is a normalizing constant that only depends on gp, such that µp(y) inte-
grates to one. We denote this case by y ∼ Ep(0,ΣΣΣp,gp). When ΣΣΣp is identity matrix, the
distribution is isotropic and µp is then called the spherically symmetric distribution [10].

µp(y) = C(gp)gp(‖y‖
2) (1.17)

and we denote this case by y ∼ Ep(0,Ip,gp).
In the normal distribution case y ∼Np(0,ΣΣΣp) the p.d.f. is [11]

µp(y) = π−p/2det(ΣΣΣp)−1/2exp(−1
2yTΣΣΣ−1

p y) (1.18)

and the density generator is g(t) = exp(−t/2). In the t-distribution case with v degrees
of freedom y ∼ tp,v(0,ΣΣΣp) the p.d.f. is [11]

µp,v ∝ det(ΣΣΣp)−1/2(1 +yTΣΣΣ−1
p y/v)−(p+v)/2,v > 0 (1.19)

and the density generator is gv(t) = (1 + t/v)−(p+v)/2.
The aim of the thesis is the study of different estimators in the GMVP framework.

Their performances and asymptotic behaviors are studied by means of random matrix
theory. For this purpose we use the double limit regime, where p the number of variables
and n the number of samples both together p,n→∞ with cp = p/n→ c ∈ (0,∞). We
consider both the classical case n >> p and the case n' p when n and p are of similar
order. In considering the performances we use Monte/Carlo simulations with normally
and student-t distributed samples. Further we consider daily real data simulations for
stock returns from the Hong Kong’s Hang Sen Index (HSI).

In sections 2, 3, 4, 5 we introduce the study of our different regularized SCM (RSCM)
estimators. In section 6 we study the Tyler’s M-Estimator and the regularized Tyler’s M-
Estimator. In section 7 we compare the performances and asymptotic behaviors between
the Traditional and Tyler’s M-Estimator using synthetic data simulations.
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In section 8 we study the different performances and asymptotic behaviors of our RSCM
estimators and the regularized Tyler’s M-Estimator, using synthetic data simulations.
In section 9 we proceed in analyzing the annualized standard deviations of all our non-
regularized and regularized estimator using real market data simulations.
In section 10 we conclude by analyzing our results.
In Appendix we are interested in spectral norms of different matrix estimators in the
double limit regime, which are known in the literature.
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Notations
The vectors are column vectors. The dependence of vectors and matrices on their

dimension p are sometimes added sometimes neglected, due to clarity. Because p is
dependent on the sample size n sometimes n is emphasized. Ip denotes the identity
matrix. 1p denotes the p-dimensional vector with all the entries to be one. tr(.) stands
for the matrix trace operator. |a− b| a.s→ 0 stands for almost sure convergence, and the
asymptotic equivalence of the quantities a and b. |.| denotes the absolute value. ‖.‖
stands for the Euclidean norm of a vector and the spectral norm of a matrix. The
ordered eigenvalues of a symmetric matrix A of size pxp are denoted by λ1 ≤ ...≤ λp(A).
δλi(ΣΣΣp) denotes the Dirac measure of λi(ΣΣΣp). The spectral norm is defined as the square
root of the maximum eigenvalue of AHA as (λmax(AHA))1/2, where AH is the conjugate
transpose of the square matrix A.
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2. Oracle Estimator [2]

The shrinkage estimator for the weights of the GMVP is defined as a linear combination
of the plug-in sample estimator in Equation (1.5) and a target portfolio bn with bTn1 = 1.

ŵn(αn) = αn
S−1
n 1

1TS−1
n 1

+ (1−αn)bn (2.1)

The out-of-sample variance is

σ2(ŵn(αn)) = ŵT
n (αn)ΣΣΣnŵn(αn) (2.2)

which has to be optimized with respect to the shrinkage parameter αn. Rewriting
Equation (2.2) by using Equation (2.1) result in

σ2(ŵn(αn)) = α2
n

1TS−1
n ΣΣΣnS−1

n 1
(1TS−1

n 1)2 + 2αn(1−αn) 1TS−1
n

1TS−1
n 1

ΣΣΣnbn+ (1−αn)2bTnΣΣΣnbn (2.3)

where σ2
bn

= bTnΣΣΣnbn is the variance of the target portfolio.
In [2] the optimal shrinkage intensity α∗n, which minimizes σ2(ŵn(αn)) is proven to

be

α∗n =
bTnΣΣΣnbn−

1TS−1
n ΣΣΣnbn

1TS−1
n 1

1TS−1
n ΣΣΣnS−1

n 1
(1TS−1

n 1)2
−21TS−1

n ΣΣΣnbn
1TS−1

n 1
+bTnΣΣΣnbn

(2.4)

In the double-asymptotic regime the asymptotic behavior of the terms in Equation (2.3)
and (2.4) are of interest. In [2], using Theorem 1 in [3] they have proven the following
asymptotics (see Appendix in [2]).∣∣∣1TS−1

n 1− (1− c)−11TΣΣΣ−1
n 1

∣∣∣ a.s→ 0 (2.5)∣∣∣1TS−1
n ΣΣΣnS−1

n 1− (1− c)−31TΣΣΣ−1
n 1

∣∣∣ a.s→ 0 (2.6)∣∣∣1TS−1
n ΣΣΣnbn− (1− c)−1

∣∣∣ a.s→ 0 (2.7)

Using Equations (2.5), (2.6), and (2.7) leads to the following asymptotics, which are
used in finding the asymptotic behavior of α∗n and σ2(ŵn(α∗n)).∣∣∣∣∣1TS−1

n ΣΣΣnS−1
n 1

(1TS−1
n 1)2 − (1− c)−1σ2

GMV P

∣∣∣∣∣ a.s→ 0 (2.8)
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∣∣∣∣∣1TS−1
n ΣΣΣnbn

1TS−1
n 1

−σ2
GMV P

∣∣∣∣∣ a.s→ 0 (2.9)

In Equation (2.8) the term

σ2
s = 1TS−1

n ΣΣΣnS−1
n 1

(1TS−1
n 1)2 (2.10)

is the out of sample variance of the traditional estimator. Using σ2
s in Equation (2.8)

and the relative loss of the traditional estimator Rs = σ2
s−σ2

GMV P

σ2
GMV P

we get as in Corollary
2.1 of [2]. ∣∣∣∣Rs− c

1− c

∣∣∣∣ a.s.→ 0 (2.11)

In [2] the assumption 0<Ml ≤ σ2
GMV P ≤ σ2

bn
≤Mu <∞ is made, such that the variance

of the target portfolio converges to a limit σ2
b . The relative loss of the target portfolio

Rbn = (σ2
bn
−σ2

GMV P )/σ2
GMV P = bTnΣΣΣnbn.1TΣΣΣ−1

n 1 (2.12)

is then assumed to converge to the limit Rb = σ2
b−σ

2
GMV P

σ2
GMV P

such as

|Rbn−Rb|
a.s.→ 0 (2.13)

Using Equations (2.8), (2.9) and (2.11) in Equation (2.4) leads as in Theorem (2.1) of [2]
to the asymptotic behavior of the optimal shrinkage intensity α∗n

|α∗n−α∗|
a.s.→ 0 (2.14)

where
α∗ = (1− c)Rb

c+ (1− c)Rb
(2.15)

is a nonrandom quantity. Our interest lies in the optimized relative loss

R(α∗n) = ŵT
n (α∗n)ΣΣΣnŵn(α∗n)−σ2

GMV P

σ2
GMV P

(2.16)

and its asymptotic behavior.
Replacing in Equation (2.3) αn by α∗n, and using Equations (2.8), (2.9), (2.12), (2.13)

we get for R(α∗n) the asymptotic equivalence as in the Corollary 2.1 of [2].∣∣∣∣R(α∗n)−
{

(α∗)2 c

1− c + (1−α∗)2Rb

}∣∣∣∣ a.s.→ 0 (2.17)

Further by using α∗ in Equation (2.15)∣∣∣∣∣R(α∗n)− (1− c)cR2
b + c2Rb

(c+ (1− c)Rb)2

∣∣∣∣∣ a.s.→ 0 (2.18)
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3. Bona Fide Estimator [2]

The Oracle estimator cannot be constructed in practice, since it depends on the unknown
Σn. The bona fide estimator for the weights of the GMVP is expressed as

ŵn(α̂∗n) = α̂∗n
S−1
n 1

1TS−1
n 1

+ (1− α̂∗n)bn (3.1)

where

α̂∗n =
(1−p/n)R̂bn

p/n+ (1−p/n)R̂bn

(3.2)

and R̂bn is a consistent estimator of Rbn (2.12) with

R̂bn
= (1−p/n).bTnSnbn.1TS−1

n 1−1 (3.3)

which is to be understood in the following asymptotic equivalence sense∣∣∣R̂bn
−Rbn

∣∣∣ a.s.→ 0 (3.4)

Equations (3.3) and (3.4) make up Theorem 2.3 in [2]. From Equations (3.2) and (3.4)
and using Equations (2.13), (2.15) we get

|α̂∗n−α∗|
a.s.→ 0 (3.5)

For this reason ŵn(α̂∗n) presents an optimal shrinkage estimator, as it is stated in [2].
The relative loss of the Bona Fide Estimator is:

R(α̂∗n) = ŵT
n (α̂∗n)ΣΣΣnŵn(α̂∗n)−σ2

GMV P

σ2
GMV P

(3.6)

We can conclude then ∣∣∣∣R(α̂∗n)−
{

(α∗)2 c

1− c + (1−α∗)2Rb

}∣∣∣∣ a.s.→ 0 (3.7)

or written as in Equation (2.18) for the Oracle Estimator gives∣∣∣∣∣R(α̂∗n)− (1− c)cR2
b + c2Rb

(c+ (1− c)Rb)2

∣∣∣∣∣ a.s.→ 0 (3.8)

as we have
|α∗n− α̂∗n|

a.s.→ 0 (3.9)
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We conclude that the relative loss of the Oracle Estimator in Equation (2.16) and the
relative loss of the Bona Fide Estimator in Equation (3.6) has to be understood in the
sense of asymptotic equivalence

|R(α∗n)−R(α̂∗n)| a.s.→ 0 (3.10)
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4. Dominating Estimator [1]

It is given by

ŵn;FM = α̂n;FM
S−1
n

1TS−1
n 1

+ (1− α̂n;FM )bn (4.1)

with
α̂n;FM = 1− p−3

n−p+ 2 .
1

R̂FM
(4.2)

where

R̂FM =
bTnSnbn−σ2

Sn

σ 2
Sn

(4.3)

with
σ 2

Sn
= 1

1TS−1
n 1

(4.4)

which leads to
α̂n;FM = 1− p−3

n−p+ 2(bTnSnbn.1TS−1
n 1−1)−1 (4.5)

The relative loss is given as

RFM (α̂n;FM ) =
ŵT
n;FMΣΣΣnŵn;FM −σ2

GMV P

σ2
GMV P

(4.6)

We are interested in the asymptotic behavior and following the same procedure as in the
case of the Oracle Estimator of [2], we only need to be concerned to find the asymptotic
of the α̂n;FM in Equation (4.5). The factor p−3

n−p+2 tends to c
1−c for n,p→∞ and n/p→ c.

The asymptotic behavior of 1TS−1
n 1 is as earlier in Equation (2.5).∣∣∣1TS−1
n 1− (1− c)−11TΣΣΣ−1

n 1
∣∣∣ a.s.→ 0 (2.5)

The term bTnSnbn has the asymptotic behavior as proven in [2] [eq.A.38]∣∣∣bTnSnbn−bTΣΣΣnb
∣∣∣ a.s.→ 0 (4.7)

Using the asymptotic behaviors in (2.5) and (4.7) in (4.5) leads to the asymptotic non
random limit of α̂n;FM

αFM = 1− c

1− c
[
bTΣΣΣnb.(1− c)−1.1TΣΣΣ−1

n 1−1
]−1

(4.7)
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Rewriting Equation (4.7) gives

αFM = 1− c

1− c
[
(1− c)−1(Rb + 1)−1

]−1
(4.8)

and rearranging the terms
αFM = Rb

c+Rb
(4.9)

As in the Oracle case in Equation (2.17) we know the limit of relative loss RFM (α̂n;FM )
in (4.6) will have the form

RFM = α2
FM

c

1− c + (1−αFM )2Rb (4.10)

And using αFM in Equation (4.9) gives

RFM = (c/1− c)R2
b + c2Rb

(c+Rb)2 (4.11)

Last we can write ∣∣∣∣∣RFM (α̂n;FM)− (c/1− c)R2
b + c2Rb

(c+Rb)2

∣∣∣∣∣ a.s.→ 0 (4.12)
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5. Regularized Sample Covariance Matrix
Estimator [5]

In [5] the Sample Covariance Matrix (SCM) is regularized such as1 for ρ∈ [max
{

0,1− n
p

}
,1]

Σ̂ΣΣRMP (ρ) = (1−ρ)Sn+ρI (5.1)

The GMVP implementation based on this estimator is given by

ŵRMP (ρ) = Σ̂ΣΣ−1
RMP (ρ)1

1T Σ̂ΣΣ−1
RMP (ρ)1

(5.2)

The corresponding out-of-sample variance is

σ2(ŵRMP (ρ)) = 1T Σ̂ΣΣ−1
RMP (ρ)ΣΣΣnΣ̂ΣΣ

−1
RMP (ρ)1

(1T Σ̂ΣΣ−1
RMP (ρ)1)2

(5.3)

then
σ2(ŵRMP (ρ)) = 1T ((1−ρ)Sn+ρI)−1ΣΣΣn((1−ρ)Sn+ρI)−11

(1T ((1−ρ)Sn+ρI)−11)2 (5.4)

In Equation (5.4) the denominator is given by observable data, whereas in the nu-
merator the unknown population covariance matrix ΣΣΣn appears.+

They point at, that there is a need for a consistent estimator of

b= 1T Σ̂ΣΣ−1
RMP (ρ)ΣΣΣnΣ̂ΣΣ

−1
RMP (ρ)1 (5.5)

in the double-limit regime p,n → ∞,p/n = cp → c ∈ (0,∞) which is proven in their
following theorem.
Theorem 2 (Generalized Consistent Estimator):∣∣∣b− b̂∣∣∣ a.s.→ 0 (5.6)

where b̂ is given as:
b̂= α̂β̂ (5.7)

1In[5] we have choosen the identity matrix as the target matrix
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In Equation (5.7) α̂ and β̂ are defined as

α̂= 1
1
n tr[(1−ρ)ΛΛΛn(In+ δ̂(1−ρ)ΛΛΛn)−2]

(5.8)

and
β̂ = (1−ρ)1T ((1−ρ)Sn+ρI)−1Sn((1−ρ)Sn+ρI)−11 (5.9)

The proof is given in Appendix iii [5].
Then we conclude the following Corollary of Theorem 2.
Corollary 1. ∣∣∣σ2(ŵRMP (ρ))− σ̂2(ŵRMP (ρ))

∣∣∣ a.s.→ 0 (5.10)

where
σ̂2(ŵRMP (ρ)) = α̂× β̂

(1T ((1−ρ)Sn+ρI)−11)2 (5.11)

In the optimization of the out-of-sample variance we base our finding on the optimized
shrinkage parameter by a numerical grid search optimization:

ρ∗ = argmin
ρ∈[max{0,1−C−1

p },1]

{
σ̂2(ŵRMP (ρ))

}
(5.12)

Introducing the following relative losses as defined

RRMP (ŵRMP (ρ)) = σ2(ŵRMP (ρ))−σ2
GMV P

σ2
GMV P

(5.13)

and
R̂RMP (ŵRMP (ρ∗)) = σ̂2(ŵRMP (ρ∗))−σ2

GMV P

σ2
GMV P

(5.14)

we get for the asymptotic equivalence of the estimator for the relative loss∣∣∣RRMP (ŵRMP (ρ))− R̂RMP (ŵRMP (ρ∗))
∣∣∣ a.s.→ 0 (5.15)

To find the estimator σ̂2(ŵRMP (ρ)) in Equation (5.11) we still are in need to find the
generalized estimator δ̂ which appears in α̂ Equation (5.8). The parameter δ to be
estimated is introduced in [5], when they define the following matrices

E = ΣΣΣ(δ̃ΣΣΣ +ρI)−1

Ẽ = (1−ρ)ΛΛΛn(In+ δ(1−ρ)ΛΛΛn)−1
(5.16)

with
δ̃ = 1

n tr[Ẽ]

δ = 1
n tr[E]

(5.17)
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Then the following system of equations have to be solved which are unique and positive
introduced in [12] in Proposition 1:

δ̃ = 1
n tr[(1−ρ)ΛΛΛn(In+ δ(1−ρ)ΛΛΛn)−1]

δ = 1
n tr[ΣΣΣ(δ̃ΣΣΣ +ρIp)−1]

(5.18)

To find the generalized consistent estimator of δ [5] they use their Proposition 1.
Proposition 1:

â := tr[(1−ρ)Sn((1−ρ)Sn+ρI)−1] = δtr[(1−ρ)ΛΛΛn(I+ δ(1−ρ)ΛΛΛn)−1] (5.19)

We are using on the right hand side of Equation 5.19 the matrix inversion lemma

(I+ δ(1−ρ)ΛΛΛn)−1 = I− δ(1−ρ)
1 + δ(1−ρ)(n−1)ΛΛΛn (5.20)

and get for the generalized consistent estimator of δ:

δ̂ ∼=
1

1−ρ.
1

n−1 .â (5.21)

Then δ̂ being given, b̂ in Equation (5.7) turns out to be a strongly consistent estimator
of b.
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6. Tyler’s M-Estimator and the Regularized
Tyler’s M-Estimator [4]

Tyler introduced the following M-estimator [13; 14], which is the unique solution to the
fixed-point equation

Ĉ = 1
n

∑n
i=1

ỹiỹTi
1
p ỹiĈ

−1ỹi
where ỹi = yi− 1

n

∑n
t=1 yt

(6.1)

Concerning the regularized Tyler’s M-estimator introduced in [14; 15], we have the
unique solution to the fixed-point equation for ρε(max

{
0,1− n

p

}
,1]:

Ĉreg(ρ) = (1−ρ) 1
n

n∑
i=1

ỹiỹTi
1
p ỹTi Ĉ−1

reg(ρ)ỹi
+ρI (6.2)

which is based on the Tyler’s M-estimator [13] and the shrinkage estimator of Ledoit-
Wolf [16].

The GMVP portfolio weights in the case of Equation (6.1) are given by

ŵYMC = Ĉ−11
1T Ĉ−11

(6.3)

and in the case of Equation (6.2) by

ŵYMC(ρ) =
Ĉ−1
reg(ρ)1

1T Ĉ−1
reg(ρ)1

(6.4)

To gain insight into their performances, the out-of-sample variances have to be considered

σ2(ŵYMC) = 1T Ĉ−1ΣΣΣnĈ−11
(1T Ĉ−11)2

(6.5)

and

σ2(ŵYMC(ρ)) =
1T Ĉ−1

reg(ρ)ΣΣΣnĈ−1
reg(ρ)1

(1T Ĉ−1
reg(ρ)1)2

(6.6)

In Equation 6.6 the goal is to find the optimized value of the shrinkage parameter ρ,
such that σ2(ŵYMC(ρ)) is minimized. Because in Equation 6.6 the unobservable pop-
ulation matrix ΣΣΣn is appearing this optimization cannot be solved. In this case as it is
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done in [5] based on the double asymptotic regime they derive in their Theorem 1 first
a deterministic asymptotic equivalence of the realized portfolio risk and thereafter they
find a consistent asymptotic estimator for σ2(ŵYMC(ρ)) in their Theorem 2. To avoid
their lengthy results in their Theorem 1, we mention only their Assumption 1, which
they use in their asymptotic analysis and are of value to be used in their Theorem 2.

Assumption 1:

(a) As p,n→∞,p/n= cp→ c ∈ (0,∞)

(b) Denoting 0<λ1 ≤ ...≤ λp the ordered eigenvalues of ΣΣΣp as p,n→∞,νp
∆= 1

p

∑p
i=1δδδλi

satisfies νp→ ν weakly with ν 6= δ0 almost everywhere, where δχ is the Dirac measure
at χ. In addition limsupp λp <∞.

In their asymptotic analysis they define for ρ ∈ (max(0,1− c−1),1] the unique positive
solution to the equation in γ

1 =
∫

t

γρ+ (1−ρ)tν(dt) (6.7)

and
κ=

∫
tν(dt) (6.8)

The asymptotic consistent estimator of the scaled out-of-sample variance σ2(ŵYMC(ρ))
by 1/κ is denoted as σ̂2

sc(ρ) and given in their following theorem.
Theorem 2: For ε ∈ (0,min

{
1, c−1}), define Rε = [ε+max

{
0,1− c−1} ,1]

Then as p,n→∞,

sup
ρ∈Rε

∣∣∣∣σ̂2
sc(ρ)− 1

κ
σ2(ŵYMC(ρ))

∣∣∣∣ a.s.→ 0 (6.9)

where σ̂2
sc(ρ) is defined in Equation 6.10.

Note: κ is independent of ρ, therefore same ρminimizes σ2(ŵYMC(ρ)) and σ2(ŵYMC(ρ))/κ.

σ̂2
sc(ρ) = γ̂sc

(1−ρ)− (1−ρ)2cp
.
1T Ĉ−1

reg(ρ)(Ĉreg(ρ)−ρI)Ĉ−1
reg(ρ)1

(1T Ĉ−1
reg(ρ)1)2

(6.10)

Further of use is their Lemma 1, of which the proof is given in Appendix C in [4], when
they use their Theorem 1.
Lemma1: Under the settings of Theorem 1, as p,n→∞

sup
ρ∈Rε

|γ̂sc−γ/κ|
a.s.→ 0 (6.11)

where

γ̂sc = 1
1− (1−ρ)cp

1
n

n∑
i=1

ỹTi Ĉ−1
reg(ρ)ỹi
‖ỹi‖

2 (6.12)
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Then in the Appendix E [4], they derive the following corollary of Theorem 2.

Corollary 1:

When ρ◦ stands for the minimizer of σ2
SC(ρ) and ρ∗ for the minimizer of the unobservable

σ2(ŵYMC(ρ))over Rε respectively, then there exist an asymptotically equivalence of the
form, as p,n→∞,. ∣∣∣σ2(ŵYMC(ρ◦))−σ2(ŵYMC(ρ∗))

∣∣∣ a.s.→ 0 (6.13)

They conclude, that the GMVP optimization in the case of the regularized Tyler’s
estimator can be handled by the minimization of σ2

SC(ρ).
As stated in their Algorithm 1, the optimization parameter ρ◦ which minimizes

σ̂2
SC(ρ) has to be found by a numerical optimizing grid search of the form:

ρ◦ = argmin
ρ∈[ε+max{0,1−c−1

p },1]

{
σ̂2
SC(ρ)

}
(6.14)

Thereafter the unique solution to the fixed-point equation is sought:

Ĉreg(ρ◦) = (1−ρ◦) 1
n

n∑
i=1

ỹiỹTi
1
p ỹTi Ĉ−1

reg(ρ◦)ỹi
+ρ◦I (6.15)

And the portfolio weights constructed

ŵYMC(ρ◦) =
Ĉ−1
reg(ρ◦)1

1T Ĉ−1
reg(ρ◦)1

(6.16)

Further we are in need of the out-of-sample variance

σ2(ŵYMC(ρ◦)) =
1T Ĉ−1

reg(ρ◦)ΣΣΣnĈ−1
reg(ρ◦)1

(1T Ĉ−1
reg(ρ◦)1)2

(6.17)

As we are interested in the out-of-sample relative loss then from Corollary 1, Equation
(6.13) we receive ∣∣∣Rreg(ρ◦)−Rreg(ρ∗)∣∣∣ a.s.→ 0 (6.18)

where
Rreg(ρ◦) = σ2(ŵYMC(ρ◦))−σ2

GMV P

σ2
GMV P

(6.19)

and
Rreg(ρ∗) = σ2(ŵYMC(ρ∗))−σ2

GMV P

σ2
GMV P

(6.20)
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7. The Traditional and Tyler’s M-Estimator
in Synthetic Data Simulations

Here we describe our results for the performance and asymptotic behaviors of the Tra-
ditional and Tyler’s M-Estimator based on their relative losses and variances under the
setting of the normally and student-t distributed data simulations.

In [10] it is proven in Theorem 3.2 that in normally distributed data the scaled Tyler’s
M-Estimator pĈ converges to the sample covariance estimator in operator norm (see
Appendix, Equation 1). Further in Theorem 3.5[10], their analysis is based on sampling
from elliptical distribution and they receive the property for Tyler’s M-Estimator as in
Equation (3) in operator norm (see Appendix).

In Corollary 3.7 [10] it is proven under the sampling from spherically symmetric dis-
tribution, that the empirical spectral density (e.s.d.) of pĈ converges to the Marchenko-
Pastur distribution [17]. As shown for B = 1

nXXT in [17] the e.s.d converges to the same
limiting distribution. For this reason pĈ and B are asymptotically equivalent.

In Corollary 3.9 [10] for elliptical distribution, the e.s.d of tr(ΣΣΣp)Ĉ converges to a
limiting density of which the Stieltjes transform has the form as in Equation (5) (See Ap-
pendix). But this is the same Stieltjes transform as in Theorem 1, Silverstein (1995) [18]
for the limiting distribution of the sample covariance matrix B = 1

nΣΣΣ
1
2 XXTΣΣΣ

1
2 . We

conclude that the SCM B and tr(ΣΣΣp)Ĉ are asymptotically equivalent.
From these theoretical results we conjecture that there exist asymptotic equivalence

between the Traditional and Tyler’s M-Estimator for the different convergence rates in
the case for normally and student-t distributed data.

Our results, which are based on GMVP framework confirm these theoretical findings
in the case for relative loss as in Figure 7.1 and Figure 7.2 and for variance data in
Table 7.1 and Table 7.2.

Concerning the performances at the convergence rate c= 0.9 when p' n the Tyler’s
M-Estimator slightly out-performs the Traditional estimator for the normal and student-
t distribution in Figure 7.1 and 7.2.

For c= 0.5 there are almost no differences in performances for the Tyler’s M-Estimator
and the Traditional estimator as in 7.1 for the normally distributed and in Figure 7.2
for the student-t distributed data. For c = 0.1 in Figure 7.1 and 7.2 the Traditional
Estimator outperforms the Tyler’s M-Estimator. This reflects the large n case, despite
even p is changing and not of constant values.

From these considerations concerning the performances of the Tyler’s M-Estimator
and the Traditional Estimator the convergence rate has a direct impact on the results.
We point at that the Dominating estimator outperforms the Traditional and Tyler’s
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M-Estimator as in Figure 7.1 and Figure 7.2 for the relative loss and in Table 7.1 and
Table 7.2 for the variance measure.

Figure 7.1: Simulation results for normally distributed data in the case of c = (0.9,0.5,0.1)
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Table 7.1: Simulation results for normally distributed data in the case of c = (0.9,0.5,0.1)

p Traditional Tyler Dominating Traditional-Tyler
9 13.5546647 17.5478020 11.71873853 -3.9931373

18 6.1136104 9.6941739 2.15411127 -3.5805635
27 4.2790146 2.6726175 2.63487532 1.6063971
36 1.3799321 1.1663630 0.50940721 0.2135691
54 1.6524064 1.2164466 0.63966062 0.4359598
72 0.8275216 0.8404607 0.25519016 -0.0129391
99 0.6550977 0.7045928 0.22490137 -0.0494951

144 0.3279908 0.3153696 0.08868296 0.0126212
207 0.3388997 0.3257346 0.07658475 0.0131651
288 0.2131356 0.2058218 0.03553428 0.0073138

p Tyler Traditional Dominating Tyler-Traditional
9 2.14877188 2.12858757 1.36285457 0.02018431

18 0.87552168 0.83380404 0.57425159 0.04171764
27 0.61844475 0.57680239 0.34397835 0.04164236
36 0.38550044 0.38270985 0.24665432 0.00279059
54 0.23261050 0.22887736 0.13833496 0.00373314
72 0.15673794 0.15218561 0.10223421 0.00455233
99 0.10772424 0.10773146 0.06858013 0.00000722

144 0.08161804 0.08157693 0.04811871 0.00004111
207 0.05766335 0.05754882 0.03566776 0.00011453
288 0.03905404 0.03904288 0.02400289 0.00001116

p Traditional Tyler Dominating Tyler-Traditional
9 1.01224868 1.04405250 1.00171379 0.03180382

18 0.49421939 0.49942659 0.47567704 0.0052072
27 0.30135697 0.30467058 0.29278346 0.00331361
36 0.21048328 0.21089176 0.20203564 0.00040848
54 0.12580194 0.12594448 0.12183838 0.00014254
72 0.08650063 0.08682755 0.08422620 0.00032692
99 0.06105162 0.06111273 0.05934233 0.00006111

144 0.04307651 0.04314448 0.04186647 0.00006797
207 0.03268785 0.03271517 0.03163168 0.00002732
288 0.02189992 0.02191370 0.02117194 0.00001378
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Figure 7.2: Simulation results for student-t distributed data with 5 degrees of freedom in
the case of c = (0.9,0.5,0.1)
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Table 7.2: Simulation results for student-t distributed data with 5 degrees of freedom in
the case of c = (0.9,0.5,0.1)

p Traditional Tyler Dominating Traditional-Tyler
9 8.9534710 10.9685926 6.90775176 -2.0151216

18 7.9588469 4.3110919 5.42465915 3.6477550
27 3.9040361 4.1135582 1.83510074 -0.2095221
36 1.8405034 1.6244985 1.00244878 0.2160049
54 1.4608603 1.1533409 0.24759407 0.3075194
72 0.8623609 0.8186027 0.34415092 0.0437582
99 0.7011578 0.5220861 0.19795376 0.1790717

144 0.4226358 0.4316890 0.14700240 -0.0090532
207 0.3311891 0.3210649 0.06542999 0.0101242
288 0.2067173 0.2027040 0.03841953 0.0040133

p Tyler Traditional Dominating Tyler-Traditional
9 2.81193855 2.14717757 1.59022084 0.66476098

18 0.96241907 0.93241086 0.58324533 0.03000821
27 0.58870819 0.56788558 0.34950602 0.02082261
36 0.36396269 0.36219831 0.22794760 0.00176438
54 0.24467459. 0.24203511 0.14537727 0.00263948
72 0.16643199 0.16535967. 0.10302973 0.00107232
99 0.10835379 0.10727003 0.06862263 0.00108376

144 0.07811830 0.07720750 0.04658911 0.00091080
207 0.05758098 0.05731993 0.03612357 0.00026105
288 0.03864983 0.03863484 0.02425704 0.00001499

p Traditional Tyler Dominating Traditional-Tyler
9 8.9534710 10.9685926 6.90775176 -2.0151216

18 7.9588469 4.3110919 5.42465915 3.6477550
27 3.9040361 4.1135582. 1.83510074 -0.2095221
36 1.8405034 1.6244985 1.00244878 0.2160049
54 1.4608603 1.1533409 0.24759407 0.3075194
72 0.8623609 0.8186027. 0.34415092 0.0437582
99 0.7011578 0.5220861 0.19795376 0.1790717

144 0.4226358 0.4316890 0.14700240 -0.0090532
207 0.3311891 0.3210649 0.06542999 0.0101242
288 0.2067173 0.2027040 0.03841953 0.0040133
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8. The Regularized Tyler’s M-Estimator
and the Regularized SCM Estimators in
Synthetic Data Simulations

We describe our results for the performances and asymptotic behaviors of these esti-
mators analyzing their relative loss and variance under the setting of the normally and
student-t distributions using synthetic data simulations. In [9] Couillet and McKay have
shown in Theorem 1 (see Appendix) that the Tyler’s M-Estimator Ĉp(ρ) in Equation
(6) converges to the following regularized SCM estimator in Equation (8):

Ŝp(ρ) = 1
γ(ρ) .

1−ρ
1− (1−ρ)cSp+ρIp

in spectral norm almost surely as in Equation (7).
In [9] it is mentioned that the statistical characteristics of Ŝp(ρ) are well studied

by Marchenko-Pastur(1967) and are simpler then the ones for Ĉp(ρ). Further in [9]
in Corollary 1 it is proven that the empirical spectral distribution of the regularized
Tyler’s M-Estimator Ĉp(ρ) converge to the limiting spectral distribution of Ŝp(ρ). From
these theoretical results we conjecture that there should exist asymptotic equivalence
between the regularized SCM estimators we have considered and the regularized Tyler’s
M-Estimator for the different convergence rates. Our results which are based on GMVP
framework confirm these theoretical findings in the case for relative loss as shown in
Figure 8.1 to Figure 8.2 and in the case for variance data in Table 8.1 to 8.2. Concerning
the performances for the convergence rate c = 0.9 when p ' n the regularized Tyler’s
M-Estimator performs best in Figure 8.1 for normally and in Figure 8.2 for student-
t distributions. Whereas the Bona Fide estimator performs worst, even valid for the
variances in Table 8.1 and Table 8.2.

For c= 0.5 there are slight differences in performances between the estimators as seen
in Figure 8.1 and Table 8.1 for normally and in Figure 8.2 and Table 8.2 for student-t
distributions.

In case c= 0.1, when n is large and p is small n >> p, even when p is not constant
the Tyler’s regularized M-Estimator performs worst, whereas the Bona Fide estimator
performs best as in Figure 8.1 and Figure 8.2 and as well in Table 8.1 and Table 8.2.
Concerning the performances the converge rate plays a distinct role, as we would have
expected based on theoretical considerations.

We kept the graphs for the relative loss and the variance data for the Dominating
estimator separate from the optimized shrinkage estimators.
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Figure 8.1: Simulation results for normally distributed data in the case of c = (0.9,0.5,0.1)
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Table 8.1: Simulation results for normally distributed data in the case of c = (0.9,0.5,0.1)

p Bona Fide Rubio Oracle Tyler reg Bona Fide-Tyler reg
9 4.08178878 1.07430912 1.14799448 1.01345225 3.06833653

18 0.62458461 0.54071681 0.50410291 0.48675588. 0.13782873
27 0.36079012 0.31342402 0.31662911 0.31417463. 0.04661549
36 0.22545512 0.23515514 0.22189471 0.22114407 0.00431105
54 0.14623494 0.13642877 0.13279122 0.13047164. 0.01576330
72 0.10305926 0.10222143 0.10077011 0.09939092. 0.00366834
99 0.07300678 0.07219243 0.06922180 0.06849047 0.00451631

144 0.04855209 0.05028696 0.04776063 0.04720797 0.00134412
207 0.03679009 0.03760040 0.03637268 0.03571429 0.00107580
288 0.02424431 0.02449399 0.02418399 0.02378314 0.00046117

p Bona Fide Rubio Oracle Tyler reg. Bona Fida-Tylerreg
9 1.07429862 1.06315473 1.29390640 1.01037024 0.06392838

18 0.51789605 0.52563841 0.51357199 0.48851473 0.02938132
27 0.32078548 0.32977316 0.31973103 0.31468502 0.00610046
36 0.22579827 0.22311287 0.21751726 0.22032850 0.00546977
54 0.13209345 0.13059950 0.13041298 0.13016334 0.00193011
72 0.09828684 0.09648343 0.09772825 0.09819627 0.00009057
99 0.06726127 0.06824591 0.06779729 0.06814057 -0.00087930

144 0.04656598 0.04689275 0.04713495 0.04693028 -0.00036430
207 0.03494074 0.03510185 0.03593032 0.03545593 -0.00051519
288 0.02348580 0.02388381 0.02401391 0.02372171 -0.00023591

p Tyler reg. Oracle Rubio Bona Fide Tyler reg.-Bona Fide
9 1.01004401 1.00093009 0.97269210 1.02485001 -0.01480600

18 0.48907843 0.48116093 0.47563528. 0.47674048 0.01233795
27 0.31173244 0.29325679 0.29744335 0.29371714 0.01801530
36 0.21526571 0.20153445 0.20114816 0.20174446 0.01352125
54 0.12976997 0.12157329 0.12300741 0.12191604 0.00785393
72 0.09757281 0.08602127 0.08899255 0.08421351 0.01335930
99 0.06724043 0.06137966 0.06225437 0.05933165 0.00790878

144 0.04642515 0.04373157 0.04315827 0.04186993 0.00455522
207 0.03533096 0.03355145 0.03291386. 0.03161827 0.00371269
288 0.02349356 0.02279750 0.02191858. 0.02116584 0.00232772

For c= 0.9 when Table 7.1 is compared with Table 8.1 the Dominating estimator per-
forms worst relative to the other estimators for normally distributed data. Furthermore
there is no asymptotic equivalence between the Dominating estimator and the other
estimators. The same findings apply for the student-t distribution when Table 7.2 is
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compared with Table 8.2. If we would have incorporated the results for the relative loss
of the Dominating estimator in Figure 8.1 and Figure 8.2 then due to scaling the graphs
of the other estimators would have been compressed and became indistinguishable.

For the case c = 0.1 in Table 8.1 the Bona Fide estimator is performing best and
as seen in Table 7.1 the Dominating estimator performs equivalently well in normal
distribution and for student-t distribution, when we compare Table 7.2 with Table 8.2.
Then the optimization in Bona Fide estimator doesn’t cause any advantage compared
with the Dominating estimator. There is no asymptotic equivalence in the sense of
double-limit regime.

For c = 0.5 comparing the variance of the Dominating estimator in Table 7.1 with
the other estimators in Table 8.1 for normal distribution and Table 7.2 with Table 8.2
for student-t distribution the Dominating estimator performs worst.
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Figure 8.2: Simulation results for student-t distributed data
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Table 8.2: Simulation results for student-t distributed data with 5 degrees of freedom in
the case of c = (0.9,0.5,0.1)

p Bona Fide Rubio Oracle Tyler reg Bona Fide-Tyler reg
9 2.30567350 1.08010099 1.09434730 1.01496034 1.29071316

18 0.87412240 0.51117505 0.51294215 0.49646301 0.37765939
27 0.43361364 0.31164999 0.32213546 0.31222905 0.12138459
36 0.28674840 0.21737124 0.22083098 0.21736361 0.06938479
54 0.13367616 0.13324179 0.13278974 0.13161257 0.00206359
72 0.10800923 0.09986017 0.10065469 0.09869612 0.00931311
99 0.07076372 0.06866098. 0.06925810 0.06763322 0.00313050

144 0.05073993 0.04710060 0.04775329 0.04698520 0.00375473
207 0.03660035 0.03592598 0.03636112. 0.03551563 0.00108472
288 0.02425151 0.02398028 0.02418357. 0.02385389 0.00039762

p Bona Fide Rubio Oracle Tyler reg. Bona Fide-Tyler reg.
9 1.17166364 1.04937829 1.27847948. 1.00441340. 0.16725024

18 0.51782748 0.54390687 0.53294061 0.49374568 0.02408180
27 0.31927393 0.36644980 0.31841933 0.31529992 0.00397401
36 0.22096800 0.21842125 0.21938211 0.21557137 0.00539663
54 0.13334240 0.13075494 0.12973983 0.13001776 0.00332464
72 0.09862209 0.09576301 0.09803059 0.09767171 0.00095038
99 0.06640040 0.06614937 0.06769920 0.06739667 -0.00099627

144 0.04628242 0.04599063 0.04709199 0.04668642 -0.00040400
207 0.03525223. 0.03488433 0.03597014 0.03550068 -0.00024845
288 0.02355080 0.02381625 0.02401543 0.02371727 -0.00016647

p Bona Fide Oracle Tyler reg Rubio Tyler reg-Bona Fide
9 1.00113020 1.02735528 1.00977428 1.00164650 0.00864408

18 0.47616419 0.48756823 0.48476516 0.47166446 0.00860097
27 0.29248692 0.29431832 0.31248925 0.30284483 0.02000233
36 0.20061766 0.20056577 0.21745393 0.20626829 0.01683627
54 0.12319845 0.12279641 0.13000567 0.12771050 0.00680722
72 0.08415056 0.08626404. 0.09798220 0.09450744 0.01383164
99 0.05941188 0.06141362 0.06731534 0.06430885 0.00790346

144 0.04143847 0.04338370 0.04635478 0.04313180 0.00491631
207 0.03165103 0.03357844 0.03543206 0.03323798 0.00378103
288 0.02116680 0.02279259 0.02348341 0.02221303 0.00231661
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9. Real Market Data Simulations

In this section we study the performances of the different GMVP estimators using the
real market data. We base the analysis on 45 constituents from the Hang Seng Index
(HSI). The dividend adjusted closing prices are down loaded from the Yahoo! Finance
(http://finance.yahoo.com). Than converted into logarithmic returns over T = 739 work-
ing days from Aug. 1, 2019 to July 31, 2022. As a performance measure we use out-
of-sample variance in terms of rolling-window approach as described by De Miguel et
al [19]. The portfolio weights are estimated for an estimation window length n< T . The
covariance and weights at a certain day t are estimated by using the previous n days as
an estimation window. This procedure is followed until the day index reaches the last
day T of trading. The out-of-sample variance has the following form [2].

σ̂2
out = 1

T −1−n

T−1∑
t=n

(ŵT
t rt+1− µ̂µµt)2 (9.1)

with

µ̂µµt = 1
T −n

T−1∑
t=n

ŵT
t rt+1 (9.2)

We are concerned in annualized realized risk, which are obtained when the standard
deviations are multiplied by

√
250. In Figure 9.1 we compare the performances of the

regularized Tyler’s and Rubio et al. estimator.
It is seen that the regularized Tyler’s estimator outperforms Rubio et al. estimator.

When the estimation window length is n=230 the lowest risk is achieved for both. For
estimation windows greater than n=230 their performances start to degrade increasingly.
Similar degrading happened as well in [4]. They claim this presumably could be due to
the lack of data stationarity, when such long durations are taken into considerations.
In Figure 9.2 we are considering the Bona Fide, Dominating, Traditional and Tyler’s
estimator. And the Rubio and Tyler’s regularized estimator. The estimation window
lengths in Figure 9.1 and Figure 9.2 are ranging from n= 50 to n= 450 by steps of 20.
Than, because we are considering a fixed p = 45 our rate of convergence cp = p/n lies
in the range 0.9 to 0.1. This is of importance as we used in the simulation studies the
set (0.9, 0.5, 0.1) and therefore should allow us to compare the performances of different
estimators in synthetic data simulations and real market data simulations. We see from
Figure 9.2 for all window lengths from n = 50 to n = 450 the Bona Fide estimator
outperforms the Dominating and the Dominating outperforms the Traditional.

In the range of for n = 50 to around n = 270 the Tyler’s estimator outperforms the
Bona Fide and hereby the other ones too. But around n = 270 to n = 450 the Tyler’s

34

http://finance.yahoo.com


Figure 9.1: Out-of sample portfolio risks over 739 days chosen from HSI real market data
from Aug. 1, 2019 to July 31, 2022

Figure 9.2: Out-of sample portfolio risks over 739 days chosen from HSI real market data
from Aug. 1, 2019 to July 31, 2022
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estimator performs worst compared to the rest of estimators. From Figure 9.2 it could
be seen, that in the range from 50 to almost n = 250 the regularized Tyler’s and the
Rubio et al. estimator perform better than the Bona Fide estimator. But as we know
already from n= 230 on they start to degrade in their performances and the comparison
with the other estimators are not useful.
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10. Conclusion

In this thesis we considered several estimators of the GMV portfolio weights which exist
in the literature. The preliminary aim was their comparison with respect to their out-of-
sample performance of the GMV portfolio based on Random Matrix Theory. We were
as well interested in their behavior in high dimensional asymptotic, when the number of
assets p and the sample size n together were going to infinity, whereas the convergence
rate p/n remained finite.

We analyzed the unregularized Tyler’s M-estimator and the unregularized SCM es-
timator. In the regularized cases we analyzed Tyler’s M-estimator and different SCM
estimators. The shrinkage target was the non-random identity matrix and the asymp-
totic of the optimal shrinkage intensities were found and estimated consistently. We used
different convergence rates which have an impact on the performances of the estimators
and their asymptotic behaviors.

Our results have shown that there do exist asymptotic equivalences between the dif-
ferent estimators in agreement with the theoretical results. In the case of unregularized
estimators [10] have proven that a scaled Tyler’s M-estimator converges to the SCM
estimator in operator norm using normal and elliptical distributions. Further the em-
pirical spectral density of a scaled Tyler’s M-estimator converge to the limiting spectral
distribution of the SCM estimator.

In the case of regularized estimators [9] have proven a convergence based on spectral
norm between Tyler’s M-estimator and a specific SCM estimator. Even they have shown
that the empirical spectral density of the regularized Tyler’s M-estimator converges to
the limiting spectral distribution of a specific regularized SCM estimator.

Concerning the performances of the different estimators we applied different conver-
gence rates. For p/n = 0.9 when the number of assets p is close to the sample size n,
considered as the high dimensional asymptotic case the unregularized and the regularized
Tyler’s M-estimator outperforms the other estimators which were based on unregular-
ized SCM estimator and the different regularized SCM estimators. In the case p/n= 0.5
there are similar performances between the unregularized Tyler’s M-estimator and the
SCM estimator. This applies even for regularized estimators. For p/n= 0.1 when p < n
we can consider it as an approximative standard asymptotic case, even when the number
of assets p is not fixed. The unregularized SCM estimator outperforms the unregularized
Tyler’s M-estimator and the different regularized SCM estimators outperform the reg-
ularized Tyler’s M-estimator. From these considerations it is seen that from p/n = 0.9
on towards p/n = 0.5 the Tyler’s M-estimators perform better than the SCM estima-
tors. From p/n= 0.5 on towards p/n= 0.1 the SCM estimators perform better than the
Tyler’s M-estimators. For this reason, at p/n = 0.5 when there are slight differences in
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performances between these estimators, we can consider the case c= 0.5 as a transition
zone.
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Appendix

Theorem 3.2 [10]
Suppose that {yi}

n
i=1 are i.i.d. sampled from N (O,I),p,n→∞ and p/n = c, where

0< c < 1, and yi ∼N (0,I) for all 1≤ i≤ n, then a scaled Tyler’s M-estimator converges
to the sample covariance estimator in operator norm almost surely, and there exist
C,c,c′ > 0 such that for any ε < c′,

Pr
(∥∥∥∥∥pĈ− 1

n

n∑
i=1

yiyTi

∥∥∥∥∥≤ ε
)
≥ 1−Cne−cε2n (1)

In Theorem 3.5 they extend Theorem 3.2 to the case of elliptical distributions.
They base their arguments by using Theorem 3.2 and two properties of Tyler’s M-

estimator based on the fixed-point equation

Ĉ =
n∑
i=1

yiyTi
yTi Ĉ−1yi

(2)

The first property is achieved when in (2) {yi}
n
i=1 are replaced by {ciyi}

n
i=1, where

{ci}
n
i=1 are arbitrary numbers in R, then the solution Ĉ in equation (2) remains the same.

The second property is achieved when in (2) {yi}
n
i=1 are replaced by

{
ΣΣΣ−1/2
p yi

}n
i=1

and

Ĉ by ΣΣΣ−1/2
p ĈΣΣΣ−1/2

p /tr(ΣΣΣ−1/2
p ĈΣΣΣ−1/2

p ), then the fixed-point equation (2) still holds.
And taking further steps in Section 3.2.1 [10], they prove their Theorem 3.5.

Theorem 3.5 [10]
If {yi}

n
i=1 are i.i.d. sampled from the centered elliptical distribution

µp(y) = C(gp)det(ΣΣΣp)−1/2gp(yTΣΣΣ−1
p y), then there is the following property for Tyler’s

M-estimator: there exists c,C,c′ > 0 such that for any ε < c′,

Pr
(∥∥∥∥∥ pΣΣΣ−1/2

p ĈΣΣΣ−1/2
p

tr(Σ−1/2
pΣ−1/2
pΣ−1/2
p ĈΣΣΣ−1/2

p )
− p

n

∑n
i=1 zizTi

∥∥∥∥∥≤ ε

)
≥ 1−Cne−cε

2n

for zi = ΣΣΣ−1/2
p yi/

∥∥∥∥ΣΣΣ−1/2
p yi

∥∥∥∥
(3)



Theorem 1 [18]
For the Sample Covariance Matrix (SCM):

B = 1
n

ΣΣΣ1/2
n XXTΣΣΣ1/2

n (4)

Silverstein (1995) has proven, assuming that there exists an asymptotic eigenvalue dis-
tribution function for ΣΣΣn as H(t) and the empirical spectral density of SCM converges
almost surely to a limiting spectral distribution, then the Stieltjes transform of it satisfies
for z ∈C+

mB(z) =
∫
t(1− c− czmB(z))−z dH(t) (5)

Theorem 1 [9]
They consider n sample vectors y1, ...,yn ∈Rp with the following characteristics:
Assumption 1 (Growth Rate): cp = p/n,cp→ c ∈ (0,∞) as p→∞
Assumption 2 (Population Model): The vectors y1, ...,yn ∈Rp are independent with (a)
yi = Σ1/2

pΣ1/2
pΣ1/2
p xi, where xi ∈Rp is a random zero mean unitarily invariant vector with norm

‖xi‖
2 = p

(b) ΣΣΣp = ΣΣΣ1/2
p (ΣΣΣ1/2

p )T is nonnegative definite, with trace 1
p trΣΣΣp = 1 and spectral norm

satisfying lim supp ‖ΣΣΣp‖<∞.
(c) νp = 1

p

∑p
i=1δδδλi(ΣpΣpΣp) satisfies νp→ ν weakly with ν 6= δδδo almost everywhere.

Based on their Assumptions 1 and 2 their Theorem 1 is as follows:
For ε ∈ (0,min

{
1, c−1}), define Rε = [ε+max

{
0,1− c−1} ,1].

For each ρ ∈ (max
{

0,1− c−1
p

}
,1], let Ĉp(ρ) be the unique solution to

Ĉp(ρ) = (1−ρ) 1
n

n∑
i=1

yiyTi
1
pyTi Ĉp(ρ)−1yi

+ρIp (6)

Then as p→∞,

sup
ρ∈Rε

∥∥∥Ĉp(ρ)− Ŝp(ρ)
∥∥∥ a.s.→ 0 (7)

where

Ŝp(ρ) = 1
γ(ρ) .

1−ρ
1− (1−ρ)c

1
n

n∑
i=1

yiyTi +ρIp (8)

and γ(ρ) is the unique positive solution to the equation.

1 =
∫

t

γρ+ (1−ρ)tν(dt) (9)

where, the function ρ→ γ(ρ) is continuous on (0,1]. The proof is given in Section
5.1 [9].
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