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Abstract

In this thesis, we first go through classical results from the field of

credibility theory. One of the most well-known models in the field is

the Bühlmann-Straub model. The model is relatively straightforward

to apply in practice and is widely used. A major advantage of the

model is its simplicity and intuitive dependency on its model param-

eters. From our perspective, the main drawback is the assumption

regarding uncorrelated data. We show that the correlation can be

used to cancel observational noise and therefore obtain more accurate

estimators. This leads to an extended credibility formula that con-

tains the Bühlmann-Straub model as a special case. This comes at

the cost of introducing singularities which may cause the estimators

to behave unexpectedly under certain circumstances. Further research

is needed to better understand how often the circumstances are met

in practice and if transforming the optimal weights could be a way

forward in such cases. Finally, through a simulation study based on

real-world data, it is shown that the proposed model outperforms the

Bühlmann-Straub model.
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1 Introduction

1.1 Key ratios and their estimators

In insurance, there are various key ratios that the actuary may need to consider. In this
thesis, a key ratio observed at time t for cohort j is denoted by µjt. The key ratio consists
of a measurement, xjt, as the numerator and a weight/volume, wjt, as the denominator.
Some common examples are the loss ratio (loss cost divided by premium), claim frequency
(claim count divided by risk volume), claim severity (loss cost divided by claim count), and
risk premium rate (expected loss cost divided by risk volume). Examples of risk volumes
are turnover, number of insureds, sums insured, risk years, etc.

A cohort in this thesis refers to any group of insurance contracts. The cohort is free to
be of any size, therefore it is also possible for a cohort to be a single contract, account, or
client. In the context of credibility theory, the cohort may also be called group ([1] page
74) or risk ([2] page 81).

The key ratio can typically be aggregated in different levels of granularity. For instance,
it can be aggregated by geographical region, insurance cover, customer segment, insurance
product, various details about the insured, etc. The benefit of aggregating by wide groups
is that the amount of data is larger and the volatility in the estimated key ratio will be
reduced. On the other hand, using wide groups will assign less relevant key ratios to
the individual cohorts in the group. In a pricing context, low relevancy implies a high
likelihood of some individual cohorts cross-subsidizing others. This in turn can result in
adverse selection and in a less robust pricing model. Less robust since the pricing would
have to be revisited frequently to account for changes in the mix of the portfolio even if
the underlying risk is unchanged.

It is possible to consider a key ratio being aggregated in a hierarchical structure. For a
motor portfolio, the first level could be the car brand, the second level could be the country
and the last level could be the sex of the driver. In this report, however, we will consider a
two-level hierarchical structure. It will therefore be convenient to consider a portfolio-level
key ratio µ and cohort-specific key ratios µj .

It will be of interest to estimate both µ and µj using the estimators µ̂ and µ̂j respectively.
The portfolio view and the individual cohort view are usually both useful on their own.
As an example, the former can help to better understand the overall profitability while
the latter could help find improvement areas or to adjust the risk appetite. Although one
needs to keep in mind the corresponding drawbacks mentioned above.

A more stable and forward-looking view of the cohort-specific key ratio can be constructed
by blending the two estimators µ̂ and µ̂j into µ̂b

j where

µ̂b
j = zjµ̂j + (1− zj)µ̂, (1)

and zj ∈ [0, 1] is the so called credibility factor. If zj = 1 we say that we fully trust the
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cohort-specific estimate. On the other hand, for zj = 0 we say that we fully trust the
overall portfolio estimate.

Intuitively, factors that should influence the credibility are the uncertainty in the estimators
µ̂ and µ̂j , the homogeneity of the portfolio, and the correlation between the key ratios.

It is not necessarily the case that µ̂b
j should replace µ̂j . One may still be interested in a

purely experience-based and historical view. Furthermore, one may want to use expert
judgment to manually tweak e.g. zj based on µ̂j and µ̂.

A summary of the available estimators can be seen in Table 1. The observed key ratio for
cohort j at time t is denoted by µjt. Note that we assume that the number of terms of
data available for each cohort is the same. Thus we can have T independent of j. This is
sometimes referred to as the balanced model ([4] page 20) in credibility theory.

In this thesis, we will consider µ as unknown, and thus we are in need of the estimator
µ̂. In some models, µ is considered known. A homogeneous credibility model includes an
estimator for µ while an inhomogeneous credibility model does not ([2] pages 63-64).

As will be covered in more detail later, the Bühlmann-Straub model is the classical choice
in credibility theory. It relies on assumptions regarding uncorrelated data. In the next
section, we will motivate why this is not an appropriate assumption for us. The goal of
this thesis can thus be said to extend the Bühlmann-Straub model to include correlated
observations µ̂jt.

Table 1: The set of estimators used to analyze the observed key ratios.
Estimator Target View Parameters Data

µ̂j µj Historical {ajt | t ∈ [1, T ]} {µjt | t ∈ [1, T ]}
µ̂ µ Portfolio {bj | j ∈ [1, J ]} {µ̂j | j ∈ [1, J ]}
µ̂b
j µj Forward-looking zj {µ̂j , µ̂}

1.2 Practical example : Travel insurance

To make the introduction more concrete we will in this subsection discuss some details in
a practical example.

Consider a portfolio of J payment cards each with a certain target customer group and
travel insurance coverages. Each cohort thus corresponds to a particular payment card and
the size of the cohort is the number of cardholders. Specifically, during underwriting year
t we have wjt cardholders that are covered by the jth card.

The task is to estimate the expected loss cost per cardholder, i.e. risk premium per card-
holder, µj . Since the price will be per cardholder the uncertainty in the number of future
cardholders is not a problem. At least as long as we are able to construct accurate indi-
vidual prices. As mentioned earlier, if the individual pricing is inaccurate we are subject
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to the risk of adverse selection.

The incurred losses are aggregated for each underwriting year and card which defines cjt.
The aggregated costs are divided by the number of cardholder years. The result is an
observation µjt = cjt/wjt of the true risk premium µj .

One aspect that most cards might have in common is the travel demand. Increased travel
demand will likely increase the loss frequency (number of losses per cardholder year) across
most cards. However, the increased travel demand might not impact the cards equally.
Therefore, the measurements µit and µjt might be correlated and the correlation may be
a function of i and j. However, we assume no correlation across time, meaning µit and µjs

are independent for all i and j if t ̸= s.

The correlation mentioned above extends the classical models used in credibility theory.
This topic will be discussed in more technical detail within the literature study.

It is assumed that we a priori cannot tell the cards apart. In other words, we know that the
cards are different but if we were to receive loss data without a way of identifying which
losses belong to which card we could not price the cards more accurately than assigning
the same risk premium per cardholder µ to all of j cards. The risk premium µ may for
example be estimated by

µ̂ =
∑
jt

cjt

/∑
jt

wjt.

The assumption regarding a priori knowledge is important in the context of credibility
theory. If we somehow knew that for a particular card i, the coverages were such that we
should expect double the loss cost on average. Then we could transform the data points
µit by dividing by 2 after which the a priori assumption can be assumed to hold. An
even more trivial example would be if we knew that one card had its losses reported in
a different currency. Without converting all losses into the same currency the portfolio
would seem less homogeneous and therefore larger credibilities would be assigned to the
individual estimators.

The problem can thus be summarized as follows. For the jth card - consider only losses
from that card and construct a card-specific risk premium µ̂j . Then estimate the under-
lying average µ by combining the estimates µ̂j . The forward-looking risk premium is then
constructed by blending the two risk premiums as in (1).
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2 Mathematical framework

2.1 Problem formulation : The best unbiased estimator

Let m̂(θ, x) be an estimator of m based on data x and parameter vector θ. The estimator
is said to be unbiased if it has no expected error, i.e. E[m̂(θ, x) −m] = 0. Additionally,
the estimator is considered best if it minimizes the expected square error, i.e. the quantity
E[(m̂(θ, x) − m)2]. Since Var(x) = E[x2] − E[x]2 it is equivalent to say that the best
unbiased estimator m̂(θ, x) minimizes the error variance, i.e. Var(m̂(θ, x) − m). We,
therefore, define the best unbiased estimator as follows,

m̂(x) := m̂(θ∗, x) : θ∗ = argmin
θ

Var(m̂(θ, x)−m). (2)

This definition will be used throughout to select model parameters.

Once we have designed unbiased estimators we will then have to consider the following
three minimization problems.

min
aj

Var(µ̂j − µj), (3)

min
b

Var(µ̂− µ), (4)

min
zj

Var(µ̂b
j − µj). (5)

Notice that the problems can be solved in any order and independently. This is because
the estimators have no parameter in common as seen in Table 1. For instance, ajt is a
parameter of µ̂j but not a parameter of µ̂b

j since for that estimator µ̂j is considered data
and therefore fixed.

2.1.1 The best credibility factor

Recall that µ̂b
j is an estimator of µj . If we assume the estimator is unbiased we should,

according to (5), select zj such that the error variance is minimized. Note that

Var(µ̂b
j − µj) = z2jVar(µ̂j) + (1− zj)

2Var(µ̂) + Var(µj)

+ 2zj(1− zj)cov(µ̂j , µ̂)− 2zjcov(µ̂j , µj)− 2(1− zj)cov(µ̂, µj).
(6)

Differentiation yields

∂

∂zj
Var(µ̂b

j − µj) = 2zjVar(µ̂j)− 2(1− zj)Var(µ̂)

+ 2(1− 2zj)cov(µ̂j , µ̂)− 2cov(µ̂j , µj) + 2cov(µ̂, µj).
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Rearranging by the credibility factor gives

∂

∂zj
Var(µ̂b

j − µj) = 2zj (Var(µ̂j) + Var(µ̂)− 2cov(µ̂j , µ̂))

+ 2 (−Var(µ̂) + cov(µ̂j , µ̂)− cov(µ̂j , µj) + cov(µ̂, µj)) .

The root is given by

zj =
Var(µ̂)− cov(µ̂j , µ̂) + cov(µ̂j , µj)− cov(µ̂, µj)

Var(µ̂)− 2cov(µ̂j , µ̂) + Var(µ̂j)
, (7)

which is the general credibility factor for an arbitrary model.

Observe that zj converges to 1 and 0 asymptotically as Var(µ̂) and Var(µ̂j) tend to infinity
respectively. This makes sense because as the uncertainty in one estimate increases we
should put more trust into the other.

Additional properties of the credibility factor will be investigated once more concrete model
assumptions have been presented.

2.2 Literature study

2.2.1 The random effects and Bühlmann-Straub models

In this section, we will give an introduction to classical results in credibility theory.

Generally speaking, a random effects model is a model with stochastic parameters. This
type of model is well suited for studying credibility theory. This is because the first two
moments of the individual cohort’s key ratios can be seen as drawn from a common dis-
tribution. Thus the moments for cohort j are determined by a random effect Vj . The
moments can be seen as realized firstly and afterward the observable data. For this reason,
the model is sometimes also referred to as a two-urn model.

It is not assumed which distribution the random effects belong to. Only their first two
moments are assumed and they are independent and identically distributed. Following the
notation used in [1] (pages 74-75) it is specifically assumed that

E[Vj ] = µ

Var(Vj) = τ2.
(8)

When it comes to the observable key ratios it is only assumed that

E[µjt | Vj ] = Vj

E [Var(µjt | Vj)] = σ2/wjt.

From the law of total variance, it follows that

Var(µjt) = Var (E[µjt | Vj ]) + E [Var(µjt | Vj)] = τ2 + σ2/wjt. (9)
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In order to derive the credibility factor zj two sets of correlation assumptions need to be
made.

Firstly, assume that the cohorts are independent, i.e.

cov(Vi, Vj) = cov(µit, Vj) = cov(µit, µjt) = 0, (10)

for all i ̸= j and t. Secondly, the observed key ratios are conditionally independent,
i.e.

cov(µjt, µjs | Vj) = 0, (11)

for all t ̸= s and j.

Under the above assumptions, one may derive the classical Bühlmann-Straub model, also
known as the homogeneous credibility estimator ([2] page 89), which can be summarized
as 

aBjt = wjt/wj∗

bBj = zBj /z
B
∗

zBj = wj∗/(wj∗ + σ2/τ2),

(12)

where ∗ indicates summation over all elements in that dimension. E.g. wj∗ =
∑

j wij .

The model parameters themselves are estimated using the following set of estimators ([1]
page 78), 

σ̂2
j =

1

T − 1

∑
t

wjt (µjt − µ̂j)
2

σ̂2 =
1

T

∑
j

σ̂2
j

τ̂2 =

∑
j wj∗

(
µ̂j −

∑
i
wi∗
w∗∗

µ̂i

)2
− (J − 1)σ̂2

w∗∗ −
∑

j w
2
j∗/w∗∗

.

(13)

The suitability of the model for our purposes

The Bühlmann-Straub model may be regarded as the traditional model for credibility
theory. The model has been studied extensively and it is widely used. Using the model
is fairly straightforward. The weights a and b are easy to compute. One could argue that
there are only two parameters in the model, namely σ and τ , which is beneficial for the
robustness of the model.

For our purposes, however, we will not be able to rely on the assumptions regarding un-
correlated cohorts. We are also interested in a more general variance structure. Although
the latter is quite easily achieved already in the classical model.

Since the model is so widely used and known we will use it throughout for comparison with
the proposed model.
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2.2.2 Uncertainty-based credibility theory

An alternative formulation of credibility theory is discussed in [3]. We will later refer to
the model as the Parodi-Bonche model. The model assumes the following structure

µj = µ+ τεj

µ̂j = µj + σjjε
′
j

µ̂ = µ+ sε′.

The first equation describes the homogeneity of the portfolio. A smaller τ will imply a
more homogeneous portfolio. I.e. the individual cohorts are more similar and their key
ratios will be closer on average.

The last two equations describe the uncertainty in estimating the cohort-specific and port-
folio key ratios respectively. The uncertainty in the estimates is measured by the standard
deviations σjj and s.

No distribution is assumed for the error terms. Instead, assumptions are made regarding
the moments. Specifically

E[εj ] = E[ε′j ] = E[ε′] = 0

Var(εj) = Var(ε′j) = Var(ε′) = 1

cov(εj , ε
′
j) = cov(εj , ε

′) = 0

cov(ε′j , ε
′) = ρj .

Please note that εj is conceptually different from ε′j and ε′. The former describes random
noise when observing the key ratios. The latter also includes model and random errors
which originates from constructing estimates based on a limited data set.

With the above assumptions we get

Var(µ̂) = s2

Var(µ̂j) = τ2 + σ2
jj

cov(µ̂j , µ̂) = σjjsρj

cov(µ̂j , µj) = τ2

cov(µ̂, µj) = 0.

Insertion into (7) yields

zPj =
s2 − σjjsρj + τ2

s2 − 2σjjsρj + τ2 + σ2
jj

, (14)

which is the credibility factor presented in [3] (page 21).
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The suitability of the model for our purposes

The uncertainty-based notation is straightforward to work with. It is also an improvement
to the Bühlmann-Straub model for our purposes since it takes into account the correlation
between the individual estimate and the portfolio estimate. The model also contains a
more general variance structure.

However, the model is quite general and does not suggest how to actually construct the
estimates µ̂j or µ̂ based on observed data. Therefore it does also not consider correlation
in the observed key ratios µjt.

In conclusion, the Parodi-Bonche model is well-suited as a foundation for our study.

2.2.3 Other literature on credibility theory with correlation

In [7] correlation is introduced to the classical Bühlmann-Straub model. Specifically, they
let cov(µi, µj) = ρ for all i ̸= j. This is saying that the true cohort-specific key ratios are
correlated. In this thesis, we are only interested in introducing a correlation between the
observed data points. Hence we will have to consider other literature.

In [4] they try to capture correlation effects by introducing a common effect Λ in addition
to the random effects Vj . The common effect is similar to the random effect Vj except
that it is cohort-independent. It is assumed that E[Λ] = µ and Var(Λ) = σ2

λ. One way to
summarize the impact of the assumed common effect is as follows

E[µjt | Vj , Λ] = µ(Vj , Λ)

E[µ(Vj , Λ) | Λ] = Λ

E[Var(µ(Vj , Λ) | Λ)] = τ2

E[Var(µjt | Vj , Λ)] = σ2
jt.

In the same paper, it is also shown that introducing a common effect like the above will only
impact the inhomogeneous credibility estimator ([4] page 23). The homogeneous credibility
estimator we are interested in is thus not impacted by a common effect.

2.3 Data model

We define the two-step data-generating model as

µj = µ+ τεj ,

µjt = µj + σjtεjt,
(15)

where µ, τ and σjt are non-random scalars. The random variables εj and εjt are mutually
uncorrelated with zero expectation and unit variance.

10



We do however assume that the correlation between εit and εjs is non-zero for t = s.
Specifically, let

cov(εit, εjs) = ρijδts,

where δts is the Kronecker delta and ρij is the correlation coefficient. The Kronecker delta
is 1 if the indices are equal, otherwise 0. By definition we get ρjj = 1.

The entities µ and µj have already been covered in Section 1.1. The scalar τ relates to the
homogeneity of the portfolio. Finally, the scalar σjt relates to the noise in the observed
data. It should generally be a decreasing function of the volume or weight wjt.

Combining the two steps into one yield

µjt = µ+ τεj + σjtεjt.

The homogeneity parameter τ is present in the variance of µjt. In practice, the empirical
variance will not include τ when looking at a single cohort. That is because when observing
the key ratio for a particular cohort, the underlying true mean µj has already been realized.
Therefore the observed variance will correspond to Var(µjt | µj) = σ2

jt.

If we let µ be the vector with elements µj the law of total covariance gives us the following
covariance tensor

K̄ts
ij := cov(µit, µjs)

= E[cov(µit, µjs | µ)] + cov(E[µit | µ], E[µit | µ])
= E[cov(σitεit, σjsεjs] + cov(µi, µj)

= σitσjsρijδts + τ2δij .

(16)

2.3.1 Comparisson with the Bühlmann-Straub model

If we replace Vj in the Bühlmann-Straub model with µj we can see that the two setups are
consistent. For the random effect we have E[µj ] = µ and Var(µj) = τ2 similarly to (8).
For the observable key ratios, we also have Var(µjt) = τ2 + σ2

jt similarly to (9), but with a
more general variance structure.

The correlation assumptions are however not all identical. The Bühlmann-Straub correla-
tion assumptions can be mapped to assumptions regarding the error terms as follows

cov(Vi, Vj) = 0 ⇐⇒ cov(εi, εj) = 0

cov(µit, Vj) = 0 ⇐⇒ cov(εit, εj) = 0

cov(µit, µjt) = 0 ⇒ cov(εit, εjt) = 0

cov(µjt, µjs | Vj) = 0 ⇐⇒ cov(εjt, εjs) = 0,

for all i ̸= j and t ̸= s. The only assumption that is violated in the proposed model is the
third one.
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As already mentioned and similarly to the Parodi-Bonche model, we will later explicitly
assume that there is a non-negligible correlation between µ̂j and µ̂. This is a consequence
of the third correlation assumption in the previous equation. It is also a consequence of
the fact that the two estimates share data.

2.4 Unbiased linear estimators

Weighted averages are an intuitive and straightforward approach to obtaining estimates of
the key ratio. One way to construct the weighted averages is as follows

µ̂j =
∑
t

ajtµjt,

µ̂ =
∑
j

bjµ̂j .
(17)

Note that these definitions satisfy the general setup in Table 1. By requiring that the
weights sum up to one, i.e.

∑
t ajt =

∑
j bj = 1 the estimators become unbiased. For µ̂j ,

this can be seen by expanding above:∑
t

ajtµjt =
∑
t

ajt(µj + σjtεjt),

= µj +
∑
t

ajtσjtεjt,

from which it follows that

E[µ̂j − µj ] = E[
∑
t

ajtσjtεjt] =
∑
t

ajtσjtE[εjt] = 0,

since εjt has zero mean. Using the above we can also calculate the error variance as

Var(µ̂j − µj) = Var(
∑
t

ajtσjtεjt) =
∑
t

a2jtσ
2
jt,

since εjt and εjs are uncorrelated for t ̸= s. For convenience, we define a more general
relationship, namely,

σ2
ij :=

∑
t

aitajtσitσjt, (18)

from which it follows that
Var(µ̂j − µj) = σ2

jj . (19)

Note that σ2
jj is convex with respect to ajt since

∂2

∂a2jt
σ2
jj = 2σ2

jt > 0,
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and therefore any local minimum is also the global minimum.

For µ̂ we have

E[µ̂] =
∑
j

bjE[µ̂j ] =
∑
j

bj
∑
t

ajtE(µjt) =
∑
j

bj
∑
t

ajtµ = µ,

which proves that the estimator is unbiased.

If we introduce a second covariance matrix K with elements Kij := cov(µ̂i, µ̂j) we may
write the portfolio error variance as

Var(µ̂− µ) = Var(µ̂) = Var(
∑
j

bjµ̂j) = bTKb := s2, (20)

where b is a vector with elements bj . Since K is a covariance matrix it is positive definite.
A quadratic form is convex if the corresponding matrix is positive definite. Therefore, any
local minimum with respect to bj is also the global minimum.

Furthermore,
Kij = cov(µ̂i, µ̂j)

= cov

(∑
t

aitµit,
∑
t

ajtµjt

)
=
∑
ts

aitajscov(µit, µjs)

=
∑
ts

aitajsK̄
ts
ij

=
∑
ts

aitajs(σitσjsρijδts + τ2δij),

= σ2
ijρij + τ2δij .

(21)

Note that we may equivalently write

Kij = aT
i K̄ijaj ,

where K̄ij is a T×T covariance matrix with elements K̄ts
ij and ai is a T dimensional column

vector with elements ait.

We will now investigate the correlation between the cohort-specific estimate and the port-
folio estimate. We have

cov(µ̂, µ̂j) = cov(
∑
i

biµ̂i, µ̂j)

=
∑
i

bicov(µ̂i, µ̂j)

=
∑
i

biKij .
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Using matrix notation, where υj := cov(µ̂, µ̂j) is the jth element in the column vector υ,
we can write

υ = Kb,

from which it follows that s2 = bTυ.

The remaining entities needed for the credibility factor zj in (7) are cov(µ̂j , µj), cov(µ̂, µj)
and Var(µ̂j). Note first that

Var(µ̂j) = Var(µj +
∑
t

ajtσjtεjt)

= Var(µ+ τεj +
∑
t

ajtσjtεjt)

= τ2 + σ2
jj ,

since εj and εjt are assumed uncorrelated. That εj and εjt are uncorrelated also imply
that

cov(µ̂j , µj) = cov(µj +
∑
t

ajtσjtεjt, µj)

= cov(µj , µj)

= τ2.

Finally,

cov(µ̂, µj) = cov(
∑
i

biµ̂i, µj)

=
∑
i

bicov(µ̂i, µj)

=
∑
i

bicov(µi +
∑
t

aitσitεit, µj)

= bjτ
2,

since εi and εj are independent for i ̸= j.

In summary, we now have

zj =
s2 − υj + τ2 − bjτ

2

s2 − 2υj + τ2 + σ2
jj

, (22)

which is the credibility factor for any linear model of the form shown in (17).

Because υj = σjjsρj in the Parodi-Bonche model the proposed credibility factor is very
similar to the one in (14). The only difference is that we subtract the amount bjτ

2 from
the numerator. This is because we do not assume cov(µ̂, µj) = 0.

14



2.5 The best unbiased linear estimators

We are now to select the weights ajt and bj . The best choice is defined by (2).

By combining (3) and (19) we have

min
aj

σ2
jj

s.t
∑
t

ajt = 1,

The corresponding Lagrangian becomes

L(aj , λ) =
∑
t

a2jtσ
2
jt − λ(

∑
t

ajt − 1),

which has the partial derivative

∂

∂ajt
L(aj , λ) = 2ajtσ

2
jt − λ.

The root is given by

ajt =
λ

2σ2
jt

.

The normal condition becomes
λ

2

∑
t

1

σ2
jt

= 1.

The multiplier can thus be written as

λ =
2∑
t

1
σ2
jt

,

which yields

ajt =
1

σ2
jt

∑
s

1
σ2
js

. (23)

This result is the so-called inverse-variance weighting which is sometimes used when aggre-
gating multiple independent measurements measuring the same underlying entity. In our
case, µjt for all t can be considered an independent measurement of µj . Finally, note that
since the variance σ2

jt > 0 it follows that 0 < ajt ≤ 1.

The next step is to select b. By combining (4) and (20) we have

min
b

s2

s.t uTb = 1,

15



where u is a column vector of ones. Note that the inverse-variance weighting does not
apply here since the measurements µ̂j of µ are not independent. However, we can still
apply the method of Lagrange multipliers.

Using (21) we have the following Lagrangian

L(b, λ) = bTKb− λ(uTb− 1),

with gradient
∇b L(b, λ) = 2Kb− λu,

which is solved by

b =
λ

2
K−1u.

Inserting into the normal condition yields

λ

2
uTK−1u = 1,

which means that the multiplier must satisfy

λ =
2

uTK−1u
.

The weights are therefore calculated as

b =
K−1u

uTK−1u
.

Since υ = Kb it follows that
υ =

u

uTK−1u
,

i.e. υ is a column vector with all elements equal to 1/K−1
∗∗ .

Consequently, since s2 = bTυ we have

s2 =
uTK−1u

(uTK−1u)2
=

1

uTK−1u
= 1/K−1

∗∗ , (24)

from which we get

bj =
K−1

j∗

K−1
∗∗

. (25)

We also get υj = s2, or cov(µ̂j , µ̂) = Var(µ̂). This means that we have

zj =
(1− bj)τ

2

τ2 + σ2
jj − s2

=
cov(µ̂j − µ̂, µj)

Var(µ̂j − µ̂)
(26)

16



The proposed model can now be summarized as follows.

ajt = σ−2
jt /

∑
s σ

−2
js

σ2
ij =

∑
t aitajtσitσjt

Kij = σ2
ijρij + τ2δij

s2 = 1/K−1
∗∗

bj = K−1
j∗ s2

zj = (1− bj)τ
2/(τ2 + σ2

jj − s2).

(27)

Note that there is a singularity in the credibility factor at τ2 + σ2
jj = s2. This is more

easily understood in (26) from which we see that the singularity occurs when µ̂j = µ̂. At
this point, the blended estimate becomes µ̂b

j = µ̂ for any zj and therefore there is no single
optimal value for zj .

2.6 Special case : The Bühlmann-Straub assumptions

In this section, we will study the special case when{
σ2
jt = σ2/wjt

ρij = δij ,
(28)

which means that there is a cohort-independent base variance σ2 and that the observations
are independent.

Using (23) we have

ajt =
1

σ2
jt

∑
s

1
σ2
js

=
1

σ2

wjt

∑
s
wjs

σ2

=
wjt

wj∗

= aBjt.

(29)

Observe that this identity also holds for the more general case σjt = σ2
j /wjt.

17



Furthermore, (18) gives us

σ2
jj =

∑
t

a2jtσ
2
jt

=
∑
t

w2
jt

w2
j∗

σ2

wjt

=
σ2

w2
j∗

∑
t

wjt

=
σ2

wj∗
.

(30)

The covariance matrix K in (21) becomes a diagonal matrix with elements

Kjj = τ2 + σ2
jj

= τ2 +
σ2

wj∗

=
wj∗τ

2 + σ2

wj∗

= τ2
wj∗ + σ2/τ2

wj∗

=
τ2

zBj
.

We also get

zBj =
τ2

τ2 + σ2
jj

.

The inverse of a diagonal matrix is a diagonal matrix with elements equal to the recip-
rocal of the original diagonal. The inverted covariance matrix is therefore diagonal with
elements

K−1
jj =

zBj
τ2

.

(24) yields

s2 = 1/K−1
∗∗ =

τ2

zB∗
,

while (25) yields

bj = K−1
j∗ /K−1

∗∗ =
zBj
zB∗

= bBj .

Note that we can write

s2 =
τ2

zBj
bj = (τ2 + σ2

jj)bj ,

18



which in turn gives

zj =
(1− bj)τ

2

τ2 + σ2
jj − s2

=
(1− bj)τ

2

(τ2 + σ2
jj)(1− bj)

=
τ2

τ2 + σ2
jj

= zBj .

We have thus shown that the proposed model simplifies to the Bühlmann-Straub model in
(12) if the assumptions in (28) are satisfied.

2.7 Special case : Two cohorts with time-constant weights

Finding the inverse of the covariance matrix K in the general case is a non-trivial task.
However, finding the inverse of a general two-by-two matrix is straightforward. Therefore
we will in this subsection consider two cohorts and for additional simplicity, we will assume
the weights are constant in time and that the cohorts have the same base variance. The
assumptions correspond to J = 2, wjt = wj and σ2

jt = σ2/wj .

From (29) it follows that ajt = 1/T and consequently,

σ2
ij =

∑
t

aitajtσitσjt

=
∑
t

σ2

T 2wiwj

=
σ

Twi
· σ

Twj
:= σiσj .

The covariance matrix thus becomes

K =

[
σ2
1 + τ2 σ1σ2ρ
σ1σ2ρ σ2

2 + τ2

]
,

where ρ = ρ12 = cov(ε1t, ε2t). The inverse is given by

K−1 =

[
σ2
2 + τ2 −σ1σ2ρ

−σ1σ2ρ σ2
1 + τ2

]
· 1

(σ2
1 + τ2)(σ2

2 + τ2)− σ2
1σ

2
2ρ

2
.

From above it follows that

s2 = 1/K−1
∗∗ =

(σ2
1 + τ2)(σ2

2 + τ2)− σ2
1σ

2
2ρ

2

σ2
1 + σ2

2 + 2τ2 − 2σ1σ2ρ
.

For the first cohort, we have

1− b1 = b2 = K−1
2∗ s2 =

σ2
1 + τ2 − σ1σ2ρ

σ2
1 + σ2

2 + 2τ2 − 2σ1σ2ρ
, (31)
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which gives the credibility factor

z1 =
σ2
1 + τ2 − σ1σ2ρ

σ2
1 + σ2

2 + 2τ2 − 2σ1σ2ρ
τ2
/(

τ2 + σ2
1 −

(σ2
1 + τ2)(σ2

2 + τ2)− σ2
1σ

2
2ρ

2

σ2
1 + σ2

2 + 2τ2 − 2σ1σ2ρ

)
=

(σ2
1 + τ2 − σ1σ2ρ)τ

2

(σ2
1 + τ2)(σ2

1 + σ2
2 + 2τ2 − 2σ1σ2ρ)− (σ2

1 + τ2)(σ2
2 + τ2) + σ2

1σ
2
2ρ

2
.

If we introduce a generalized credibility coefficient

κi :=
σ2
i

τ2
=

σ2

Twiτ2
,

above simplifies into

z1 =
κ1 + 1−√

κ1κ2ρ

(κ1 + 1)(κ1 + κ2 + 2− 2
√
κ1κ2ρ)− (κ1 + 1)(κ2 + 1) + κ1κ2ρ2

=
κ1 + 1−√

κ1κ2ρ

(κ1 + 1)2 − 2(κ1 + 1)
√
κ1κ2ρ+ κ1κ2ρ2

=
κ1 + 1−√

κ1κ2ρ

(κ1 + 1−√
κ1κ2ρ)2

=
1

1 + κ1 −
√
κ1κ2ρ

.

(32)

Note that κi is not the same credibility coefficient as in the Bühlmann-Straub model
where κ = σ2/τ2. The generalization is consistent with the standard credibility coefficient.
Intuitively, increasing T or wj should increase the credibility factor zj and therefore reduce
the credibility coefficient κj .

Again, we should get back the Bühlmann-Straub model if ρ = 0, which indeed is the case
since

z1(ρ = 0) =
1

1 + κ1
=

Tw1

Tw1 + σ2/τ2
.

It is interesting to note that for the Bühlmann-Straub model, z1 is only dependent on κ1
and nothing else. While for the proposed model both κ2 and ρ plays a role.

If k2 is sufficiently large, specifically if κ2 ≥ (1+ κ1)
2/κ1, then there exists a singularity in

the credibility factor in (32) at

ρ∗ =
1 + κ1√
κ1κ2

,

and {
z1 > 0 for ρ < ρ∗

z1 < 0 for ρ > ρ∗.

20



The question is what to do when z1 > 1 or z1 < 0. First we realize that ρ has no impact
on µ̂j but only on µ̂. Thus we are interested in learning how the accuracy of the estimator
µ̂ depends on ρ. For this purpose, consider the scaled error variance

s2

τ2
=

(κ1 + 1)(κ2 + 1)− κ1κ2ρ
2

κ1 + κ2 + 2− 2
√
κ1κ2ρ

, (33)

which is concave and maximized at ρ = ρ∗ since

∂

∂ρ

s2

τ2

∣∣∣∣
ρ=ρ∗

=

=
−2κ1κ2ρ(κ1 + κ2 + 2− 2

√
κ1κ2ρ)− ((κ1 + 1)(κ2 + 1)− κ1κ2ρ

2)(−2
√
κ1κ)

(κ1 + κ2 + 2− 2
√
κ1κ2ρ)2

=
2κ1κ2ρ(

√
κ1κ2ρ− (κ1 + 1)− (κ2 + 1)) + 2

√
κ1κ2(κ1 + 1)(κ2 + 1)

(κ1 + κ2 + 2− 2
√
κ1κ2ρ)2

=
−2

√
κ1κ2(κ1 + 1)(κ2 + 1) + 2

√
κ1κ2(κ1 + 1)(κ2 + 1)

((κ2 + 1)− (κ1 + 1))2

= 0.

Therefore, the estimator µ̂ will be least accurate when ρ = ρ∗ and then gain in accuracy as
ρ moves away, in either direction, from ρ∗. Hence one might want to consider the following
transformation of the credibility factor

z̃i = max(min(zi, 1), 0). (34)

2.7.1 Numerical example

Since wi is a free variable it in turn means that both κ1 and κ2 are free. The covariance
ρ is also free. This means that we are able to vary the three variables in (32) freely and
independently. The only restrictions are κi > 0 and |ρ| ≤ 1.

As an example, we may consider κ1 = 1 and κ2 = 16 and investigate what happens as we
vary ρ from -1 to 1. This means that the singularity will occur at ρ∗ = 1/2. It also means
that κ2/κ1 = w1/w2 = 16 and that the first cohort has significantly more exposure than
the second.

For comparison, we will consider the Bühlmann-Straub model where

zB1 =
1

1 + κ1
= 1/2

zB2 =
1

1 + κ2
= 1/17

bB1 = zB1 /(z
B
1 + zB2 ) = 17/19

bB2 = 1− bB1 = 2/19
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As mentioned earlier, the accuracy of µ̂j is independent of ρ. Therefore, we will start by
considering the accuracy of µ̂. Since µ̂ is unbiased the expected square error of the estimator
is given by its error variance s2. To get an expression in the credibility coefficients we will
consider the scaled expected square error s2/τ2. We therefore define

hs(ρ) :=
1

τ2
E[(µ̂− µ)2] = s2/τ2 = bT

(
K/τ2

)
b = bT

[
κ1 + 1

√
κ1κ2ρ√

κ1κ2ρ κ2 + 1

]
b. (35)

For the proposed model we have (33). For the Bühlmann-Straub model we can use

hBs (ρ) =

[
17/19
2/19

]T [
2 4ρ
4ρ 17

] [
17/19
2/19

]
.

The result has been visualized in Figure 1. It is clear that the proposed model has a lower
expected square error for all ρ, ignoring the fact that the models are identical at ρ = 0. As
expected, we see that for the proposed model the expected error is concave and maximized
at ρ = ρ∗.

We will now move on to the credibility factor itself. We will only consider the first credibility
factor. For the Bühlmann-Straub model, there is no dependency on ρ and zB1 = 1/2. For
the proposed model we can use (32) and (34). The credibility factors can be viewed in
Figure 2. We again see that the models intersect at ρ = 0. The singularity is clearly visible
at ρ = ρ∗.

Finally, we will consider the scaled expected square error of µ̂j . For simplicity, we will only
consider the first cohort. We do this by first introducing

hσ(ρ) :=
1

τ2
E[(µ̂1 − µ1)

2]

= z21(κ1 + 1) + (1− z1)
2s2/τ2 + 1 + 2z1(1− z1)ν1/τ

2 − 2z1 − 2(1− z1)b1

(36)

which follows from (6). To be able to evaluate this expression for the two models we need
to calculate ν1/τ

2. For the proposed model we have ν1 = s2. For the Bühlmann-Straub
model, we can use

ν1/τ
2 = eT1

(
K/τ2

)
b =

[
1
0

]T [
2 4ρ
4ρ 17

] [
17/19
2/19

]
,

which follows from ν = Kb. For the proposed model we also need to evaluate b1 which we
can do by slightly modifying (31) into

b1 =
κ2 + 1−√

κ1κ2ρ

κ1 + κ2 + 2− 2
√
κ1κ2ρ

.

The result is presented in Figure 3 where we have also included the modified credibility
factor which includes a floor and a ceiling. It is clear that the modified credibility factor
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performs worse than the unmodified one which should not be surprising considering it is a
deviation from the optimum. It is however promising that the modified credibility factor
is expected to perform considerably better than the Bühlmann-Straub model for strong
positive correlations.
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Figure 1: Scaled expected square error of µ̂, see (35), as a function of ρ for the two models.
A vertical line is drawn at ρ = ρ∗.
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Figure 2: A comparison of the three candidates for the credibility factor. A vertical line is
drawn at ρ = ρ∗.
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Figure 3: Scaled expected square error of µ̂j , see (36), as a function of ρ for the three
models. A vertical line is drawn at ρ = ρ∗.
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2.8 Parameter estimation

In this section, we will construct unbiased estimators of the model parameters. We will do
this for the special case when

σ2
jt =

σ2
j

wjt
.

The special case is similar to the Bühlmann-Straub model but with the extension that
the base variance depends on the cohort. It is also an extension due to that ρij ̸= δij in
general.

By slightly modifying (29) we see that the more general special case still implies
ajt = wjt/wj∗. Since the weights wjt are known it follows that the weights ajt are also
known.

For the covariance matrix K we will need the product σ2
ijρij as seen in (21). By using (18)

we can see that
σ2
ijρij =

∑
t

aitajtσitσjtρij

= ρij
∑
t

wit

wi∗

wjt

wj∗

σi√
wit

σj√
wjt

=
σiσjρij
wi∗wj∗

∑
t

√
witwjt.

Because the weights wjt are known, the above relation tells us that if we can find an
unbiased estimator for the product σiσjρij then we also have an unbiased estimator for
σ2
ijρij . We may therefore write

σ2
ijρiĵ =

∑
t
√
witwjt

wi∗wj∗
σiσjρiĵ . (37)

Note that we only need to construct the unbiased estimators σ2
ijρiĵ and τ 2̂. This can be

seen by inspecting (27) and noting that σ2
jj can be written as σ2

jjρjj . I.e. we do not need

to estimate σ2
jj separately.

We will start by searching for the unbiased estimator σ2
ijρiĵ . Note first that

E[(µit − µ̂i)(µjt − µ̂j)] = cov(µit − µ̂i, µjt − µ̂j) + E[µit − µ̂i]E[µjt − µ̂j ]

= cov(µit, µjt)︸ ︷︷ ︸
1

− cov(µit, µ̂j)︸ ︷︷ ︸
2

− cov(µjt, µ̂i)︸ ︷︷ ︸
3

+ cov(µ̂i, µ̂j)︸ ︷︷ ︸
4

.

The expectations are zero since E[µjt] = E[µ̂j ] = µ we only need to expand the covariance
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expression. The four terms can be expanded as follows

1 = K̄tt
ij = σitσjtρij + τ2δij

2 =
∑
s

ajscov(µit, µjs) =
∑
s

ajsK̄
ts
ij =

∑
s

ajs(σitσjsρijδts + τ2δij)

= ajtσitσjtρij + τ2δij

3 = aitσitσjtρij + τ2δij {by j → i in 2 }

4 = Kij = σ2
ijρij + τ2δij .

The τ2δij terms cancel and we get

E[(µit − µ̂i)(µjt − µ̂j)] = σitσjtρij − ajtσitσjtρij − aitσitσjtρij + σ2
ijρij

= (1− ait − ajt)σitσjtρij + σ2
ijρij

=

(
1− wit

wi∗
− wjt

wj∗

)
σiσjρij√
witwjt

+
σiσjρij
wi∗wj∗

∑
s

√
wiswjs

=

(
wi∗wj∗ − witwj∗ − wjtwi∗√

witwjt
+
∑
s

√
wiswjs

)
σiσjρij
wi∗wj∗

.

It follows that

wi∗wj∗E

[∑
t

√
witwjt(µit − µ̂i)(µjt − µ̂j)

]

=

(∑
t

(wi∗wj∗ − witwj∗ − wjtwi∗) +
∑
t

√
witwjt

∑
s

√
wiswjs

)
σiσjρij

=

Twi∗wj∗ − 2wi∗wj∗ +

(∑
t

√
witwjt

)2
σiσjρij .

Thus the following estimator is unbiased

σiσjρiĵ =
wi∗wj∗

∑
t
√
witwjt(µit − µ̂i)(µjt − µ̂j)

(T − 2)wi∗wj∗ +
(∑

t
√
witwjt

)2 .

(37) then yields

σ2
ijρiĵ =

∑
t
√
witwjt(µit − µ̂i)(µjt − µ̂j)∑

t
√
witwjt + (T − 2)wi∗wj∗/

∑
t
√
witwjt

.

What remains is to construct the unbiased estimator τ 2̂. First, observe that

E

(µ̂j −
∑
i

wi∗
w∗∗

µ̂i

)2
 = Var

(
µ̂j −

∑
i

wi∗
w∗∗

µ̂i

)
+ E

[
µ̂j −

∑
i

wi∗
w∗∗

µ̂i

]2
.
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The second term on the right-hand side is zero since E[µ̂j ] = µ independently on the index
j. Therefore, consider the following expansion of the variance.

Var

(
µ̂j −

∑
i

wi∗
w∗∗

µ̂i

)
= Var

(∑
i

(
δij −

wi∗
w∗∗

)
µ̂i

)

=
∑
ik

(
δij −

wi∗
w∗∗

)(
δkj −

wk∗
w∗∗

)
Kik

=
∑
ik

(
δij −

wi∗
w∗∗

)(
δkj −

wk∗
w∗∗

)(
σ2
ikρik + τ2δik

)
.

(38)

The expression above will be expanded in two steps. Consider first∑
ik

(
δij −

wi∗
w∗∗

)(
δkj −

wk∗
w∗∗

)
σ2
ikρik

=
∑
ik

(
δijδkj − δij

wk∗
w∗∗

− δkj
wi∗
w∗∗

+
wi∗wk∗
w2
∗∗

)
σ2
ikρik

=
∑
i

(
δij − 2

wi∗
w∗∗

)
σ2
ijρij +

∑
ik

wi∗wk∗
w2
∗∗

σ2
ikρik.

Observe that the second term is a constant. Therefore it follows that∑
j

wj∗
w∗∗

∑
ik

(
δij −

wi∗
w∗∗

)(
δkj −

wk∗
w∗∗

)
σ2
ikρik

=
∑
ij

(
wj∗
w∗∗

(
δij − 2

wi∗
w∗∗

)
+

wi∗wj∗
w2
∗∗

)
σ2
ijρij

=
∑
j

wj∗
w∗∗

∑
i

(
δij −

wi∗
w∗∗

)
σ2
ijρij︸ ︷︷ ︸

:=cj

.

Note that below is an unbiased estimator.

ĉj =
∑
i

(
δij −

wi∗
w∗∗

)
σ2
ijρiĵ .
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Now consider the weighted average of the second term in (38).∑
j

wj∗
w∗∗

∑
ik

(
δij −

wi∗
w∗∗

)(
δkj −

wk∗
w∗∗

)
τ2δik

=
∑
j

wj∗
w∗∗

∑
i

(
δij −

wi∗
w∗∗

)2

τ2

=
∑
j

wj∗
w∗∗

∑
i

(
δ2ij +

w2
i∗

w2
∗∗

− 2δij
wi∗
w∗∗

)
τ2

=
∑
j

wj∗
w∗∗

(
1 +

∑
i

w2
i∗

w2
∗∗

− 2
wj∗
w∗∗

)
τ2

=

1 +
∑
i

w2
i∗

w2
∗∗

− 2
∑
j

w2
j∗

w2
∗∗

 τ2

=

(
1−

∑
i

w2
i∗

w2
∗∗

)
τ2.

We now have

E

∑
j

wj∗
w∗∗

(
µ̂j −

∑
i

wi∗
w∗∗

µ̂i

)2
 =

∑
j

wj∗
w∗∗

cj +

(
1−

∑
i

w2
i∗

w2
∗∗

)
τ2.

From this, it follows that below is an unbiased estimator of τ2.

τ 2̂ =

∑
j
wj∗
w∗∗

{(
µ̂j −

∑
i
wi∗
w∗∗

µ̂i

)2
− ĉj

}
1−

∑
iw

2
i∗/w

2
∗∗

.

The results of this section can be summarized as follows.

σ2
ijρiĵ =

∑
t
√
witwjt(µit − µ̂i)(µjt − µ̂j)∑

t
√
witwjt + (T − 2)wi∗wj∗/

∑
t
√
witwjt

ĉj =
∑
i

(
δij −

wi∗
w∗∗

)
σ2
ijρiĵ

τ 2̂ =

∑
j wj∗

{(
µ̂j −

∑
i
wi∗
w∗∗

µ̂i

)2
− ĉj

}
w∗∗ −

∑
iw

2
i∗/w∗∗

K̂ij = σ2
ijρiĵ + τ 2̂δij .

(39)
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As a final note, due to its construction, τ 2̂ may come out negative. This is also a possibility
in both the Bühlmann-Straub and Parodi-Bonche models. As suggested in [2] (page 95 and
consequently also in [3] page 25) one may want to consider the following transformation
instead

τ 2̂
+

= max
(
τ 2̂, 0

)
. (40)

The transformed estimator will unfortunately be biased. Additionally, τ2 = 0 implies that
there is no difference between the individual cohorts and we should therefore not consider
them separately. This is in line with the fact that

lim
τ2→0

zj = 0,

in the Bühlmann-Straub model and the proposed model.

Notice that the estimators for σj are consistent between the two models. This can be seen
by realizing that

σ2
j

wj∗̂
= σ2

jĵ = σ2
jjρjĵ =

∑
twjt(µjt − µ̂j)

2

wj∗ + (T − 2)wj∗
=

σ̂2
j

wj∗
, (41)

where σ̂j is the Bühlmann-Straub estimator in (13).

2.9 The balance property

A set of credibility blended estimates µ̂b
j is said to satisfy the balance property if the

following condition is met. ∑
jt

wjtµjt =
∑
jt

wjtµ̂
b
j .

Observe that the property is satisfied in expectation for any unbiased model. This follows
from E[µjt] = E[µ̂b

j ] = µ.

Note that wjtµjt is not a key ratio. Instead, it is the measurement xjt in the numerator
of the key ratio. The balance property then states that the blended estimate is unbiased
with respect to x∗∗, i.e. the aggregation of measurements for the portfolio historically. As
an example, suppose xjt is the aggregate loss amount for cohort j over the term t. The
blended estimate µ̂b

j then corresponds to a risk premium. The balance property states that
if the insurer would have charged the risk premium historically, the net result would have
been exactly 0.

We will now study the balance property closer for all models with ajt = wjt/wj∗. Conse-
quently ∑

t

wjtµjt = wj∗µ̂j .
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Additionally, since µ̂b
j is independent on t the balance property can be written as∑

j

wj∗(µ̂j − µ̂b
j) = 0,

or ∑
j

wj∗(1− zj)(µ̂j − µ̂) = 0.

This condition is not satisfied in general. It is however satisfied by the Bühlmann-Straub
model regardless of whether the underlying assumptions of the model are satisfied or not.
To see this, note first that for the Bühlmann-Straub model, we have

wj∗(1− zj) = wj∗

(
1− wj∗

wj∗ + κ

)
=

wj∗κ

wj∗ + κ
= κzj ,

and therefore also ∑
j

wj∗(1− zj)(µ̂j − µ̂) =
∑
j

κzj(µ̂j − µ̂)

= κ
∑
j

zjµ̂j − κz∗µ̂

= 0,

since µ̂ =
∑

j zjµ̂j/z∗. We have thus shown that the balance property is always satisfied
for the Bühlmann-Straub model regardless of whether the assumptions in (28) are met or
not.
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3 Simulation study

3.1 Motivation

In this section, we will generate random but realistic data to which the proposed and
Bühlmann-Straub models will be applied. The benefit of using simulated data is that the
accuracy of the models can be easier assessed using the (mean) relative error since we have
access to the true model parameters.

The basic idea is to run a large number of N simulations and investigate the distribution of
the relative errors in estimating µ, µj , and τ2. Since the proposed model does not satisfy
the balance property in general the relative error for the aggregated measurements will be
considered as well.

The simulations will be run for the special case{
σ2
jt = σ2

j /wjt

ρij = ρ+ (1− ρ)δij .

The second assumption states that all pair-wise correlations are identical and equal to ρ.
In other words, ρij is the elements of a so-called equicorrelation matrix [5]. In practice the
correlations will most likely not be equal, however, using a single correlation parameter
should be good enough to capture the average overall correlation. It will also enable us to
easier study the error’s dependency on the correlation.

The parameters µ, τ , J , and T will be considered fixed and will therefore not change
between the simulations. The entities µj , wjt, µjt and σj will be randomly generated for
each simulation. When it comes to ρ it turns out we cannot select any ρ ∈ [−1, 1]. Since
variance is non-negative a lower bound for ρ can be constructed as follows.

Var

∑
j

εjt

 ≥ 0,

∑
j

Var(εjt) +
∑
i ̸=j

cov(εit, εjt) ≥ 0,

J + J(J − 1)ρ ≥ 0,

ρ ≥ 1

1− J
.

The same result is also mentioned in [5]. For simulation n ∈ [1, N ] we therefore set

ρn =
N − 1− J(n− 1)

(1− J)(N − 1)
. (42)
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For later reference, we will also define the following relative errors

REµ = (µ̂− µ)/µ (43)

REµj =
∑
j

(µ̂b
j − µj)/µj/J (44)

REτ = (τ̂2 − τ2)/τ2 (45)

REBP =

∑
j

wj∗(µ̂
b
j − µ̂j)

/∑
j

wj∗µ̂j . (46)

As a final note, we will use the ”raw” estimators i.e. we will not use the transformations
mentioned in (40) or in (34).

3.2 Parameter choice

The following parameter choice is based on actuarial expert judgment and is considered
realistic for transformed loss ratio data. Each cohort is thus a sub-portfolio within a larger
portfolio. The key ratio corresponds to a loss ratio and the weights correspond to earned
premium. This description is intentionally vague in order to protect company information.
The actual choice is summarized in Table 2. As can be seen, the parameter table states
that we are studying 9 cohorts over 10 terms.

With the current parameter choice, it is possible that µjt is negative. Although this seems
strange for a loss ratio it is not a problem for the model itself.

Table 2: Parameter choice for simulation study
Variable Sampled from, if random Value, if fixed

µ 1
τ 0.6
J 9
T 10
N 105

µj Γ(µ2/τ2, µ/τ2)

σ2
j Lognormal(16,

√
2)

wj N (3 · 107, 3 · 105)
wjt N (wj , wj/10)

3.3 Simulation procedure

In this subsection, we describe how the data, ultimately µjt, is generated. We do this by
defining a couple of simulation steps as follows.
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1. Set simulation fixed parameters according to Table 2 and simulation counter n to 1.

2. Construct the nth equicorrelation matrix by using (42).

3. Generate the random parameters according to Table 2.

4. Generate the matrix elements εjt with columns drawn from a multivariate normal
distribution with zero mean vector and covariance matrix equal to the equicorrelation
matrix.

5. Generate the data points by the identity µjt = µj + σ/
√
wjt · εjt.

6. Estimate model parameters and evaluate the model. Calculate the relative errors
REx defined in Section 3.1.

7. Go back to step 2 and increment n by 1. Stop once n = N is reached.

Once the data points have been generated (step 5) the proposed and Bühlmann-Straub
models are evaluated using (27) and (12) respectively. The model parameters are estimated
using (39) and (13) respectively.

3.4 A single simulation

For illustrative purposes, one out of the N simulations will be investigated in closer detail.
Specifically, we will use the first simulation, meaning that ρ = ρ1 = −0.125. Remember
that we are studying 9 cohorts over 10 insurance periods.

In Table 3.4 and in Table 3.4 the weights and key ratios can be seen respectively. In Table
3.4 the two models have been evaluated. A part of the table has been visualized in Figure
4 as well.

Due to (29) and (41) the estimators µ̂j and σ̂jj are identical between the two models. The
models are only different in µ̂, zj , and µ̂b

j . This explains the structure of Table 3.4.

The proposed model contains an estimator for the correlation matrix. The outcome of the
estimator can be seen in Table 3.4. Notice that the estimator in (39) could be improved if
the correlation was assumed to be identical between the cohorts. Since this is not the case
here the proposed model will in a sense overfit the correlations. The average of the elements
in the lower diagonal of the correlation matrix can be seen in Table 3.4 and we see that
it is fairly close to the actual value nevertheless. Remember that the Bühlmann-Straub
model has no estimator for the correlation.

The relative errors as defined in Section 3.1 are shown in Table 3.4. For the first simulation,
the proposed model estimated τ noticeably better than the Bühlmann-Straub model. It
also performed somewhat better at estimating the vector of elements µj when using the
blended estimate, although both models performed quite badly in this simulation. No
noticeable difference can be seen when estimating µ̂. Finally, a slight error in the balance
property is seen for the proposed model as expected.
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Table 3: Weights wjt in millions for the first simulation

j \ t 1 2 3 4 5 6 7 8 9 10

1 2.9 2.5 2.1 2.3 2.3 2.5 2.5 2.6 2.5 2.6
2 3.7 3.5 3.1 3.1 2.7 3.2 3.4 2.7 3.1 3.8
3 3.7 2.8 3.1 3.1 3.2 2.4 2.7 2.9 3.1 2.6
4 2.9 3.0 2.9 1.9 3.0 3.2 2.8 2.2 2.9 2.6
5 3.5 3.5 3.2 2.8 3.2 3.3 3.6 3.1 3.0 3.7
6 3.0 2.9 3.0 2.9 2.5 2.5 2.8 3.4 2.4 2.9
7 3.2 3.5 2.9 3.5 3.1 3.8 3.3 3.4 3.2 3.1
8 2.4 2.1 2.6 2.9 2.7 2.8 2.8 2.9 2.1 2.4
9 3.5 2.7 3.4 3.1 3.1 3.2 3.1 3.6 3.1 3.2

Table 4: Data points µjt for the first simulation

j \ t 1 2 3 4 5 6 7 8 9 10

1 5.00 -3.16 -0.61 -0.77 1.12 1.09 -0.23 2.22 -1.24 1.21
2 3.11 1.33 3.08 0.98 -0.81 1.86 -2.05 2.05 3.28 2.10
3 -0.98 -1.03 -0.52 -0.16 1.21 1.30 4.77 -1.25 0.98 0.08
4 1.74 0.36 0.53 0.82 1.24 -0.28 0.36 0.96 2.98 2.70
5 -7.38 -0.47 0.19 4.07 1.88 1.09 -2.26 3.68 3.25 0.23
6 -3.19 4.42 1.56 0.10 -1.60 -1.13 -0.48 -2.93 -2.72 -0.58
7 1.21 0.14 0.82 0.98 0.91 1.98 1.24 0.22 -1.69 0.46
8 3.04 6.56 1.68 3.65 2.05 1.97 4.20 0.39 4.00 -0.38
9 1.36 0.63 0.30 -1.33 0.08 -0.99 0.33 1.85 -0.52 -0.43

Table 5: Model evaluation for the proposed and Bühlmann-Straub models for the first
simulation

j wj∗ · 10−5 σjj σ̂jj µj µ̂j µ̂ µ̂B zj zBj µ̂b
j µ̂b,B

j

1 2487 0.65 0.73 1.05 0.55 0.7173 0.7180 0.38 0.48 0.65 0.64
2 3244 0.64 0.55 0.83 1.52 0.7173 0.7180 0.53 0.54 1.14 1.15
3 2968 0.54 0.55 1.08 0.37 0.7173 0.7180 0.52 0.52 0.54 0.54
4 2738 0.33 0.34 0.98 1.12 0.7173 0.7180 0.74 0.50 1.02 0.92
5 3271 0.76 1.08 0.34 0.24 0.7173 0.7180 0.23 0.54 0.61 0.46
6 2837 0.65 0.74 0.97 -0.65 0.7173 0.7180 0.38 0.51 0.19 0.02
7 3302 0.30 0.31 0.15 0.65 0.7173 0.7180 0.77 0.55 0.66 0.68
8 2565 0.73 0.61 1.70 2.63 0.7173 0.7180 0.48 0.48 1.63 1.64
9 3196 0.39 0.32 0.10 0.16 0.7173 0.7180 0.76 0.54 0.29 0.42
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Table 6: Estimated correlation matrix for the proposed model for the first simulation
j \ j 1 2 3 4 5 6 7 8 9

1 1.000 0.220 -0.188 0.191 -0.503 -0.756 0.381 -0.547 0.439
2 0.220 1.000 -0.738 0.396 -0.041 -0.155 -0.351 -0.257 0.099
3 -0.188 -0.738 1.000 -0.153 -0.028 -0.084 0.177 0.198 -0.329
4 0.191 0.396 -0.153 1.000 0.020 -0.443 -0.694 -0.227 -0.008
5 -0.503 -0.041 -0.028 0.020 1.000 0.048 -0.357 -0.202 -0.418
6 -0.756 -0.155 -0.084 -0.443 0.048 1.000 0.057 0.490 -0.211
7 0.381 -0.351 0.177 -0.694 -0.357 0.057 1.000 -0.167 -0.075
8 -0.547 -0.257 0.198 -0.227 -0.202 0.490 -0.167 1.000 -0.113
9 0.439 0.099 -0.329 -0.008 -0.418 -0.211 -0.075 -0.113 1.000

Table 7: Estimation outcome for the model parameters for the first simulation
Parameter True value Proposed estimator Bühlmann-Straub estimator

µ 1 0.7173 0.7180
τ 0.6 0.617 0.652
ρ -0.125 -0.120 0

Table 8: Summary of the relative errors in percent for the first simulation
Error type Proposed model Bühlmann-Straub model

REτ 5.66 18.02
REµj 54.79 62.47
REµ -28.27 -28.20

REBP 4.07 0
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Figure 4: A visualization of the first simulation in the series of N simulations.

3.5 All N simulations

Now we will perform a similar analysis as in the previous subsection but averaged over all
N runs.

We will use a pseudo-log scale for the visualization of the relative error distributions. The
pseudo-log transform is defined as

psuedo log (x) := arsinh
(x
2

)
= ln

(
x

2
+

√(x
2

)2
+ 1

)
.

This transformation retains the sign of the original variable while at the same time behaving
like the regular log transform for large x. Since the relative errors will span across multiple
orders of magnitude a log-like transformation will help visualize the data. In Figure 5
the transformation has been visualized and can be compared to the natural logarithm and
identity transformations.

The large variance in the proposed model is mainly due to singularities in zj and bj .
Similar to what we saw in the two-dimensional special case previously. If the estimated
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parameters happen to be close to the points of singularity the error may be magnified quite
significantly.

We will start by inspecting density plots for the relative errors. Please see Figures 6, 7, 8
and 9. A summary is also available in Table 3.5.

For all targets, except for τ , and for both models, the median relative error is lower than the
average relative error. This indicates that outlier behavior is driving the average relative
error. This likely originates from the heavy tail in the random data connected to the
log-normal distribution assigned to σ2

j . If one focuses on the mode of the density plots
it is more clear that the proposed model outperforms the Bühlmann-Straub model in the
simulations.

The blended estimate from the proposed model seems to outperform the Bühlmann-Straub
model at estimating µj . This comes at the cost of losing the balance property, but only by
a couple of percents in the median.

The same data can also be plotted as a function of the correlation coefficient. Please see
Figures 10, 11, 12 and 13. Since we already have the overall average from the summary
statistics it would be of added interest to consider local averages. The local average is
studied using the function ggplot2::geom smooth() in R. By default, it uses a GAM with
smoothing. The exact details of the trend line are not of interest here, as long as it is
flexible enough.

The accuracy of the proposed model seems to be independent of ρ. This is good because
otherwise, it would indicate there is still some bias left in the estimators. It is interesting to
see that both models seem to be performing equally well at estimating µ when less focus is
put on extreme values. The benefit of the proposed model seems to be a growing function
of ρ when estimating µj and τ . Most notably so for µj .
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Figure 5: A comparison of the transformation candidates used for scaling the relative
errors.

Table 9: Summary statistics in percent for the relative errors for the two models over 105

simulations.
Error type Proposed model Bühlmann-Straub model

Average Median Average Median

REµ -10.4 0.5 0.4 -0.1
REµj -22.3 16.7 55.0 39.4
REτ -0.9 -33.7 -60.2 -77.6
REBP -15.1 -2.7 0 0
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Figure 6: The distribution of relative error in the estimator µ̂ as defined in (43) over 105

simulations for the two models. A vertical line is drawn at the average.
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Figure 7: The distribution of relative error in the estimator µ̂b
j as defined in (44) over 105

simulations for the two models. A vertical line is drawn at the average.
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Figure 9: The distribution of relative error in the balance property as defined in (46) over
105 simulations for the proposed model. A vertical line is drawn at the average.
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Figure 10: The ρ-dependency of the relative error in the estimator µ̂ as defined in (43) over
105 simulations for the two models. A smooth trend line has been added to help identify
local behavior.
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Figure 11: The ρ-dependency of the relative error in the estimator µ̂j as defined in (44)
over 105 simulations for the two models. A smooth trend line has been added to help
identify local behavior.
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Figure 12: The ρ-dependency of the relative error in the estimator τ̂2 as defined in (45)
over 105 simulations for the two models. A smooth trend line has been added to help
identify local behavior.
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Figure 13: The ρ-dependency of the relative error in the balance property as defined in
(46) over 105 simulations for the proposed model. A smooth trend line has been added to
help identify local behavior.
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4 Discussion

The proposed model extends the homogeneous version of the Bühlmann-Straub model by
allowing for correlation between the cohorts and also a more general variance structure.
Remember that homogeneous here means that there is a built-in estimator for µ in the
model. The inhomogeneous model takes µ as known. It was shown that the proposed model
is an extension in the sense that the homogeneous Bühlmann-Straub model is included as
a special case.

The proposed model is a so-called balanced model. Meaning that the number of terms
with data is equal for all cohorts. In other words, T is assumed to be independent of j.
This assumption was made to simplify the notation and derivation of the estimators.

The basic idea behind the proposed model is to use the correlation between the cohorts to
cancel noise and obtain more accurate estimators. This was especially clear in Section 2.7.1
where only two cohorts were considered. There we saw that a more extreme correlation
could be used to gain superior estimators. It was also shown that when the size of the
second cohort was increased the amount of noise that could be canceled when estimating
the first cohort was increased. This is different from the classical model where only one
credibility coefficient is present in each credibility factor.

It is worth noting that the extension introduced singularities in the credibility factor and
weights b. For the credibility factor, this happens when the optimal weights bj imply
µ̂j = µ̂. This point by itself is no problem since any zj would suffice here. However, it
does mean that around this point the credibility factor is unbounded. If zj > 1 then the
credibility put into µ̂ is negative. Similarly for bj since we did not put any bounds on it,
it may be optimal to choose bj > 1. If this is optimal then it would give zj < 0.

From a practical standpoint, it might seem strange to use negative weights in the calculation
of a weighted average. Although from a mathematical standpoint, it is not actually a
problem. Consider for instance short-selling in the context of minimum variance portfolios
in finance mathematics. When there is a positive correlation, using a negative weight may
reduce the variance of the weighted average. This is quite easy to see when looking at the
weighting of two variables. It is, of course, possible to apply transformations to zj and bj ,
such as ceilings and floors, at the cost of losing accuracy.

The simulation study seems to indicate that the proposed model and the Bühlmann-Straub
model are equally well suited for estimating the portfolio average µ. The largest difference
between the models is seen when estimating µj using the blended estimator for large overall
correlations. It was also noted that the result is quite volatile and ignoring extreme relative
errors was needed to more easily compare the models.

It is important to note that the balance property in the homogeneous Bühlmann-Straub
model is lost in the general case for the proposed model. The significance of this in practice
is however unclear to the author.
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The main concern with the proposed model from the author’s perspective is the risk of
over-parametrization. The bulk of the parameters will be captured by the covariance
matrix K meaning that the number of parameters in the model grows with the square of
the number of cohorts. It is not fully understood how much benefit is gained from these
added parameters compared to the Bühlmann-Straub model if the data set is limited. A
somewhat limited data set was studied in the literature study but further studies are needed
to better understand the practical ramifications.

44



5 Further research

It is unavoidable at some point to stumble upon a data set with cohort data that spans
different ranges. Therefore there should be an alternative formulation of the proposed
model that allows for a cohort-dependent time length, i.e. the extension T → Tj . The
extension should only have an impact on the estimator of σ2

ijρij .

Further research is needed to better understand how often unconventional weights (negative
or larger than one) occur in practice and how reasonable the final blended estimates are
in such cases. It is possible to receive extreme values of the estimators if the parameters
are close to a singularity.

With the above in mind, it could be insightful to look into searching for the optimal
weights b under additional constraints. One option is to add the constraint bj ≥ 0 for
all j. Inequality-constrained optimization is unfortunately not as easily solved generally.
Alternatives exist, such as optimizing with respect to a transformed variable b̃j = b2j which
is always non-negative. These modifications would require an adjustment to the credibility
factor since νj = s2 would no longer hold. It would also result in a worse expected square
error, but it would likely still perform better near the singularities.

Further research is also needed to study the risk of over-parametrization. With this in
mind, it would be interesting to study a simplified model with only a single correlation
parameter. To pursue this, it is suggested to modify the estimator of the covariance matrix
K accordingly. Some kind of weighted average of the elements ρij seems intuitive.
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