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Abstract

Spectral graph theory have many applications in machine learn-
ing and beyond. The graph has been shown to be a very powerful
mathematical object and much can be said about it from its spectrum
(eigenvectors and eigenvalues) alone. Nevertheless, this relies on us
being able to compute the spectrum which is notoriously expensive
and often unfeasible for even moderately large data sets. In this the-
sis we will look at ways to bring down this computational cost while
hopefully preserving most of the relevant information in the graph.
We will examine two methods to accomplish this: 1) Coarse graining,
which reduces the overall size of the graph and thus also the com-
putational cost, and 2) Out-of-sample extension, where we extend an
already known eigenspace to new data points.
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1 Introduction

Graphs are mathematical structures that model relationships between objects.
They were first formalized by Leonhard Euler in 1736 for a proof of the Seven
Bridges of Königsberg problem. This problem asked for a path through the city
that crossed each of its (at the time) seven bridges exactly once. By represent-
ing the problem as a graph Euler could ignore everything but the most relevant
topological features of the city and provided a simple and elegant proof that no
such path exits.

Today, graphs are used to solve a wide range of problems in mathematics and
adjacent fields. For example, to model protein structure, friendship networks,
data structures, energetic states of subatomic particles and much more. Many
applications rely on a special matrix representation of graphs, called the graph
Laplacian.

Much of what we will discuss in this thesis is related to spectral graph the-
ory, which is an area that uses eigenvectors and eigenvalues to study the graph.
It is perhaps not obvious why we would use spectral theory for this. After all,
many of the traditional graph problems do not mention anything about the
spectrum. Despite this, the graph’s spectrum have been shown to reveal a lot of
information about graphs, much of which is of particular importance in machine
learning and computer science. Some of the applications in machine learning
are dimensional reduction, clustering, recommendation systems, computer vi-
sion etc. Cvetković and Simić [5] published an extensive survey of spectral graph
theory applications in computer science.

One of the major problems of graphs theory, and spectral graph theory in par-
ticular, is the high computational cost of storing the graph, computing the
spectrum and performing operations on them in general. To represent all re-
lationships in a graph with n nodes (objects) we are required to store a n × n
matrix, if we want to compute the spectrum then that is done in O(n3) time.
There are various methods one can use that reduces the memory cost, these will
not be a focus in this thesis. Instead, we will study ways of reducing the time
complexity for solving the eigenproblem.

The outline of this thesis is as follows. In section 2 we provide some back-
ground theory, with a focus on spectral graph theory. Then in section 3 we
will present two methods that reduces the overall time complexity of solving
the eigenproblem. In section 4 we will evaluate how much information of the
original spectrum is retained when using these methods. Finally, in section 5
we will finish with a discussion.
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2 Background

2.1 Eigenvalues and eigenvectors

It is assumed that the reader already have a basic understanding of eigenvalues
and eigenvectors but for completeness we will give a short recap. All theory in
this subsection comes from [11], unless otherwise specified.

Let A ∈ Rn×n be a matrix. A scalar λ ∈ R is an eigenvalue of A corresponding
to the non-zero eigenvector v ∈ Rn×1 if it satisfies the eigenproblem

Av = λv. (1)

Every solution to the eigenproblem (λk, vk) is called an eigenpair and the set of
all eigenpairs of A is called the spectrum of A.

We can think of the matrix as a linear transformation of a vector from Rn

to Rn. The eigenvectors are special because this transformation will only multi-
ply them by some constant, other vectors will also point in a different direction.
Each matrix has its own set of eigenpairs.

Solving equation (1) gives the right eigenvector, the left eigenvector solves
uTA = λuT . We note that the left and right eigenvectors are not always
the same, but their eigenvalues are1. Every n × n matrix have n eigenpairs
but not necessarily n unique eigenvalues or n orthogonal eigenvectors, with an
important exception for symmetric matrices.

Theorem 1 If A ∈ Rn×n and A = AT then there exists n orthogonal eigen-
vectors. Furthermore, if we gather the eigenvectors in a matrix V ∈ Rn×n and
their corresponding eigenvalues on the diagonal of Λ ∈ Rn×n then

A = V ΛV T =

n∑
k=1

λkvkv
T
k .

This is known as the eigendecomposition of A. It means that all information in
A is contained in A’s spectrum. This also means that the left and right eigen-
vectors for symmetric matrices are the same. Naturally, since real symmetric
matrices behave so nicely, they are of special interest to us.

2.1.1 Complexity of the eigenproblem

Practically, the eigenproblem is solved with numerical methods. There are two
broad types of methods, direct and iterative. Different eigenproblem algorithms
can offer some advantages or disadvantages over others but the leading time
complexity term is always O(n3) [9]. It is not the purpose of this thesis to study
these algorithms but we will give a very brief overview based mostly on chapter

1Assuming A is a square matrix.
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8 & 10 of [9].

With direct methods the full eigendecomposition is computed. These methods
store the full matrix in memory and therefore do not fully profit from matrix
sparsity2 but they do compute the exact eigenpairs. Several direct methods
have been suggested, some of which are more time efficient then others but they
all require an initial tridiagonalization of the matrix which have time complexity
O(n3).

Iterative methods start with a few initial vectors and approximate eigenpairs
from low dimensional subspaces. Each iteration improves the precision of this
approximation and the algorithm stops when improvements between iterations
are below some threshold. After the initial eigenpairs have been found the al-
gorithm moves on to find more. It is thus possible to stop after a subset of
k < n eigenpairs has been found. Iterative methods do not require us to store
the full matrix in memory and are thus better suited for large eigenrpoblems.
Because of this, they are also able to fully profit from matrix sparsity. There
are several indirect methods but their leading time complexity term are O(kn2)
for dense matrices and O(k2n) for sparse. We note that the time complexity for
iterative methods are still O(n3) when the whole spectrum is computed (even
if the matrix is sparse). Further improvements can be made if we only want to
compute extreme eigenvalues, i.e., the largest and smallest.

2.2 Spectral graph theory

Spectral graph theory studies the properties of graphs via the eigenpairs of their
associated graph matrices, that is, through the adjacency matrix, graph Lapla-
cian and its variants.

Graphs represent similarities between objects. Each object is represented as a
node and similar nodes are pairwise connected to each other with edges. These
edges can be either directed or undirected, directed edges go from one node to
the other but not back. Edges can also be weighted, representing that some
nodes are more similar than other. A very simple graph is illustrated in Figure
1a). The adjacency matrix can be used to represent the graph, Figure 1b), and
the Laplacian can be used instead of the adjacency matrix in a way that is more
mathematically convenient. In this thesis we will study undirected & weighted
graphs. The unweighted graph is just a special case of the weighted one so the
results here will be valid for that graph as well. The directed graph, however,
does not have a symmetric adjacency matrix and some results we present will
therefore not be valid for directed graphs (although others are).

Graphs has many applications in mathematics and related fields. Because of
that, this topic has been very well studied over the years from many different

2A matrix is said to be sparse if many of its elements are 0.
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Figure 1: a) Example of a simple graph. b) The adjacency matrix for the graph
in a).

perspectives and we cannot discuss all of them here. Instead, we will just give
a broad overview of some of the most important results, a much more in depth
treatment can be found in [4] and [16].

2.2.1 Basic notations

We will begin by introducing basic graph notations that will be used throughout
this thesis.

Let G = (Ω, E) be an undirected graph where Ω = {x1, ..., xn} is the set of
nodes and E is the set of edges between nodes. We will assume that the graph
is weighted, that means each edge carries a non-negative weight wij ≥ 0. Since
G is undirected we have wij = wji and if wij = 0 then the nodes xi and xj

are not connected by an edge. The weighted adjacency matrix of the graph is
A = (wij)i,j=1,...,n. That is, it represents all pairwise weights. We note that A
is symmetric. The degree of a node xi is defined as

d(xi) = di =

n∑
j=1

wij .

The degree matrix, D, is the diagonal matrix with the degrees d1, ..., dn on its
diagonal. The volume of a graph is the sum of all degrees, i.e.

vol(G) =

n∑
i=1

di.

We say that the graph is connected if there is a path of edges connecting any
two nodes in the graph. Unless otherwise specified, we will always assume that
the graph is connected.
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2.2.2 Graph Laplacians

In this section we will define different graph Laplacians and point out some of
their basic properties. We will distinguish between different variants of graph
Laplacians but note that there is no unique convention in the literature3. The
three graph Laplacians we will study are

L =D −A, (unnormalized Laplacian)

L =D−1/2LD−1/2, (normalized Laplacian)

Lrw =D−1L = I −D−1A. (Random walk Laplacian)

Because A is symmetric, so is L. Both L and Lrw are normalized but L is
normalized in a way that makes sure it is symmetric. As we saw in Theorem 1,
these have several properties that make them more appealing to study from a
spectral point of view. The random walk Laplacian is not symmetric but it is
closely related to a random walk on a graph and thus has a nice and intuitive
interpretation, we will discuss this in greater detail in section 2.2.3.

These three Laplacians are all related in the following way.

L =D1/2LD1/2 =DLrw

L =D−1/2LD−1/2 =D1/2LrwD
−1/2

Lrw =D−1L =D−1/2LD1/2.

Because of this relationship they also share many properties. We will summarize
the main ones in the following proposition.

Proposition 1 The different graph Laplacians satisfy the following properties

1. L and L are symmetric.

2. (λk, vk) is an eigenpair of Lrw if and only if (λk, vkD
−1/2) is an eigenpair

of L.

3. (λk, vk) is an eigenpair of Lrw if and only if λk and vk solve the generalized
eigenproblem vkL = λkDvk.

4. The smallest eigenvalue of L is 0, the corresponding eigenvector is the
constant one vector 1.

5. The smallest eigenvalue of Lrw is 0, the corresponding right eigenvector
is 1. The smallest eigenpair of L is (0,D1/2

1).

6. L,L and Lrw are positive semi-definite and have n non-negative, real
valued eigenvectors 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

3Often the generic term “graph Laplacian” is used to describe whatever type of Laplacian
the author studies.
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Property 3 follows directly from L = DLrw. A proof for property 6 can be
found in [4, section 1]. We will indirectly prove the remaining properties in the
next section to build intuition for future results. We emphasize that property 2
shows there is a direct relationship between the spectrum of Lrw and L. So, by
studying one of them we gain insight into the other as well.

Which Laplacian to use will depend on the situation. Usually one of the two
normalized Laplacians (Lrw or L) are preferred as their spectrum is consistent
the spectrum in stochastic processes and spectral geometry [4]. In some situa-
tions, such as splitting the graph into subgraphs, the two types of Laplacians
will optimize different objectives (based on subgraph volume or cardinality), see
[18] for more on this. We will focus on the normalized Laplacians in this thesis.

We are also going to allow the nodes to have self-loops (or self-edges), i.e.
wii ≥ 0. Self-loops do not change to unnormalized Laplacian, L = D − A,
as the new weight on the diagonal of A gets canceled out by the extra term
in D. However, the spectrum of the two normalized Laplacians changes in line
with property 2 & 3 of Proposition 1.

The second smallest eigenvalue, λ2, is of particular importance. A graph is
connected if and only if λ2 > 0 [16]. Furthermore, the multiplicity of eigenvalue
0 corresponds to the number of connected components, each with eigenvector 1
(or D1/2

1 for the normalized Laplacian). Cheeger’s inequality generalizes this
further and says that λ2 is large if and only if the graph is well-connected. One
can define graph connectedness in several different ways but simplified we just
say that a graph is poorly connected if one can cut off many nodes by only
removing a few edges.

2.2.3 Random walks on graphs

We will now look at the random walk on a graph, connect it to the random walk
Laplacian and examine some of its properties. We begin with some definitions.
Let G = (Ω, E,A) be a weighted undirected graph. A random walk on G is a
process that begins at some node and at each time step transitions to another
with some probability. If the graph is unweighted then this probability will be
uniform among all nodes with edges to the starting node. When the graph is
weighted then the transition probability will be proportional to the weight of
the corresponding edge [4], i.e.

p(xj |xi) =
wij

d(xi)
.

Here we use the notation p(xj |xi) to denote the probability of going to node
xj given that we are in node xi. We note that the weights are symmetric but
the transition probabilities are generally not, i.e. p(xj |xi) ̸= p(xi|xj). This is
because the degree can vary between nodes. We can write this in matrix form
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as
P =D−1A.

We call P the transition matrix. This matrix describes the random walk on the
entire graph.

We mentioned earlier that the transition matrix P and random walk Lapla-
cian Lrw are related. To see this, let (αk,ϕk) be an eigenpair of P then,

ϕkLrw = ϕk (I − P ) = ϕk − αkϕk = (1− αk)ϕk.

So Lrw have the same left eigenvectors as P but with corresponding eigenvalues
λk = 1 − αk, one can show the same thing for right eigenvectors. This shows
that we can prove properties for the two normalized Laplacians (as Lrw and L
are directly related) by studying the transition matrix and vice versa.

In the remainder of this section we will indirectly prove most of the proper-
ties in Proposition 1 by proving their equivalence for P . Throughout the rest
of this thesis, we will adopt the notation α to denote eigenvalues of P and
λ = 1− α for eigenvalues of the Laplacians.

By taking powers of P we get the transition probability between nodes in a
given number of steps, e.g. the element P t

ij describes the probability of going
from node xi to xj in exactly t steps. As the random walker progresses through
time, he will spend a greater proportion of time in some nodes over others.
After enough time have passed, the distribution will reach an equilibrium and
continuing the random walk will no longer change the proportion of time spent
in each node. That is,

ϕ0P = ϕ0 (2)

where ϕ0 is the distribution of time spent in each node. This is known as the
stationary distribution.

If the graph is connected and non-bipartite4 then the stationary distribution
is unique and given by [4]

ϕ0(x) =
d(x)

Vol(G)
(3)

for every node x. See [4, section 1.5] for a proof. In this thesis we always assume
that a unique stationary distribution exists. We will however note that, since
we allow self-loops, the graph is automatically non-bipartite if p(xi|xi) > 0 for
at least one node xi. So, practically, it would be enough to just make sure that
the graph is connected.

Now let us analyze the spectrum of P . Our first observation is that P is

4A graph is said the be bipartite if we can assign each node into one of two classes in such
a way that the edges from one node will always go only to nodes of the opposite class.
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not symmetric, meaning that the left and right eigenvectors differ. But we also
notice that P =D−1A is very similar to

S =D−1/2AD−1/2

which is symmetric. Specifically, we can write

P =D−1/2
(
D−1/2AD−1/2

)
D1/2 =D−1/2SD1/2. (4)

Now, since S is symmetric we know that it has a complete set of orthonormal
eigenvectors and real eigenvalues (see Theorem 1). Suppose (αk, vk), k = 1, ..., n,
is an eigenpair of S. If we gather the eigenvectors in V and eigenvalues on the
diagonal of Λ then we can express S with the eigendecomposition as

S = V ΛV T =

n∑
k=1

λkvkv
T
k .

If we insert this into (4) we see that

P =D−1/2SD1/2 =D−1/2V ΛV TD1/2

Now let
Φ =D−1/2V and Ψ =D1/2V

then clearly
P = ΦΛΨT .

This means that the left and right eigenvectors of P are ϕk = D−1/2vk and

ψk = D1/2vk respectively. We note that this implies ϕ = D−1ψ. Since vk are
orthogonal it is easy to confirm that ⟨ϕi,ψj⟩ = δij where δij is the Kronecker
delta. We say that the columns of Φ and Ψ form a bi-orthogonal system, i.e.

P t =
(
ΦΛΨT

)t
= ΦΛtΨ

T
=

n∑
k=1

αt
kψ

T
kϕk. (5)

This will be useful later in the thesis.

We have already seen one eigenpair of P in equation (2). That is, the first left
eigenvector of P (corresponding to eigenvalue 1) is the stationary distribution
of P . Since P is row stochastic, it is easy to confirm that 1 is the correspond-
ing right eigenvector. The remaining eigenvectors cannot be derived so easily
but we can sometimes put bounds on their eigenvalues. The Perron-Frobenius
theorem states that if G is a connected and weighted graph then α1 ≥ −αn

with equality if and only if G is bipartite [16, theorem 4.5.1]. Since the first
eigenvalue is 1 this means that |αk| ≤ 1.

It is usually of interest to be able to say something about the number of steps
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Figure 2: Example of a dendrogram produced by the hierarchical clustering algo-
rithm. Figure is produced by running the agglomerative algorithm on the IRIS6

dataset with Euclidean distance and average linkage. The height represents the
Euclidean distance between nodes/groups where they have been merged.

it takes for the walk to be close to its stationary distribution. It is possi-
ble to show that the time is bounded by an expression which depends on the
second eigenvalue α2, see [4, section 1.5]. This is a special case of Cheeger’s
inequality. Informally, we can explain this with the bi-orthogonal system in (5).
Each left/right eigenvector pair forms a direction in the eigenspace with their
corresponding eigenvalue representing the prominence of that direction. With
α2 = 1− λ2 corresponding to the eigenvector pair with the most prominent di-
rection (largest). If we now think of the random walk on this eigenspace instead
of on the graph then the random walk will reach its stationary distribution on
the whole space when it has been reached in each direction individually. So, a
bound for the convergence time should depend on the direction in which this
takes the longest. This is the direction corresponding to eigenvalue α2 because
traversing this direction requires the largest number of steps.

2.3 Hierarchical clustering

We are now going to introduce a clustering method. Clustering aims at grouping
together a set of objects (data points) in such a way that objects in the same
group (cluster) are more similar to each other (in some way) than to objects in
other groups. There exist many different clustering methods, see [10, chapter
14] for a discussion one some of the most popular methods. Here, we will just

6This is a standard dataset which was introduced by R.A. Fisher in 1936 and today comes
preinstalled in most statistical software packages, such as R. The dataset contains 3 classes of
50 instances each, where each class refers to a type of iris plant.
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introduce one method called hierarchical clustering that we will use later in the
thesis to group together similar nodes.

As the name suggests, hierarchical clustering produces hierarchical represen-
tations of data in which the clusters at each level of the hierarchy are created
by merging clusters from the level below. This means that at the lowest level
each ”cluster” only contains a single observation while at the highest level all
data points belong to the same cluster. Merging is done by minimizing some
dissimilarity measure between (disjoint) groups of observations. The dissimilar-
ity between groups can be calculated in different ways but they are all based on
the individual observations in the groups [10, Section 14.3.12]. See Figure (2)
for an illustration of what hierarchical clustering can look like.

As we can see from Figure (2), hierarchical clustering can be represented as
a dendrogram. The height in the dendrogram where two branches fuse together
indicates how different the two groups are. Groups that fuse at the bottom of
the tree are quite similar to each other while groups fused close to the top tend
to be quite different [10].

One of the advantages of hierarchical clustering is that we do not have to
specify the number of clusters beforehand. Instead, the hierarchical cluster-
ing algorithm will produce a dendrogram. We can then choose the number of
clusters by cutting it at some height (some dissimilarity value). However, this
comes at a computational cost. Stopping after a set clusters have been formed
are cheaper.

The dendrogram can be constructed in two ways. 1) agglomerative (bottom-
up) and 2) divisive (top-down). The bottom-up approach starts from the leafs
(single observations) and fuse clusters together pairwise until we end up with
one big cluster. The top-down approach does the opposite, it starts with one
big cluster and splits it until each cluster only contain one observation [10]. The
most common type of hierarchical clustering is the bottom-up approach [10],
which we will focus on here.

We can describe the agglomerative HC algorithm in the following way

Algorithm 1 Agglomerative hierarchical clustering

1. Define some (dis)similarity measure.

2. Calculate the pairwise (dis)similarity between all clusters.

3. Fuse the two most similar clusters .

4. Repeat step 2-3 until only 1 cluster remains.

11



The time complexity of this algorithm depends on what linkage is used. For
average linkage it is O(log(n)n2) where n the number of data points.

Dissimilarity between clusters can be calculated in many different ways, this
is known as linkage. The wikipedia article on HC lists about 20 different linkage
methods but many more have been suggested throughout the years. However,
the 3 most common are complete-, single- and average linkage. All these meth-
ods start by computing all pairwise dissimilarities between observations in two
clusters. Complete and single linkage uses the maximal and minimal dissimi-
larity respectively while average linkage uses the average dissimilarity [10]. The
resulting dendrogram from HC will depend on both the dissimilarity measure
used and linkage type. Different linkage methods can result in radically different
dendrograms.

One underlying assumption in HC is that data possesses some hierarchical struc-
ture. This is not always the case. For example, suppose that our data consists
of university students split evenly between two universities and three faculties.
We can imagine a scenario where the best division into two clusters will split the
students by university while the best division into three clusters will split them
by faculty. In this case, data does not possess a hierarchical structure. Meaning
that the best division into two clusters does not result from merging two of
the three clusters one level below. Therefore, one should consider whether this
assumption is fulfilled before using HC.

3 Methods

In this section we will present two methods that aims at reducing the computa-
tional cost of solving the eigenproblem while hopefully still preserving most of
the information in the graph. The first method is a coarse graining procedure,
where we reduce the graphs size by merging nodes before solving the eigen-
problem. The second approach extends an existing spectrum to encompass new
out-of-sample points, without solving the whole eigenproblem again. This could
be something we do for new points or simply because the data set is too large
for us to solve the full eigenproblem outright.

3.1 Coarse graining

The purpose of coarse graining (CG) is to combine nodes that are similar to
each other while preserving some properties of the original graph [8]. By doing
this, we hope to reduce the total number of nodes in the graph and thus also
reduce the computational cost of solving the eigenproblem. However, we still
want to preserve as much of the original spectrum as possible, and by extension
as much of the information in the original graph as possible, without computing
the eigendecomposition of the original graph.

12
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Figure 3: Illustration of CG. Each circle is a node and lines between them are
edges, each edge have their own weight. All nodes inside the three dotted areas
are combined into three groups of nodes.

In section 2.2.3 we discussed the relationship between the random walk on a
graph and its spectrum, we also discussed how the spectrum of different graph
Laplacians are related to each other. The thinking now is that by coarse grain-
ing the graph in a way that preserves large-scale behavior of the random walk
we will also preserve most of the characteristics of the spectrum.

This section is split into 3 subsections. In the first we will look at how the
weight matrix changes when nodes are grouped together from the perspective
of a random walk. We will then look at how the spectrum changes when we
group nodes like this and finally suggest a way to coarse grain the random walk
that hopefully captures this change.

Throughout this section, let A be the adjacency matrix, D be the diagonal
matrix with entries dii =

∑
jAij and P =D−1A be the transition matrix. We

will also use ϕ,ψ and α to denote eigenvectors (left and right) and eigenvalues
of P respectively. Furthermore, we will use ϕk(x) to denote the element of the
k:th (left) eigenvector corresponding to node x.

3.1.1 Constructing a coarse-grained graph

Our aim here is to work out how the weight matrix changes when we group
nodes together. These will make up our new, coarse grained, weight matrix. An
illustration of this is shown in Figure 3.

We start by considering an arbitrary partition of the set of nodes Ω into k
groups {Si}1≤i≤k. Let p(x|y) denote the transition probability of going to node

13



x given that we are in node y and let p(x) denote the stationary distribution of
node x. Standard calculations give us

p(Si|Sj) =
p(Si, Sj)

p(Sj)
=
∑
x∈Sj

p(Si, x)

p(Sj)

=
1

p(Sj)

∑
x∈Sj

p(Si|x)p(x)

=
1

p(Sj)

∑
x∈Sj

∑
y∈Si

p(y|x)p(x). (6)

Where p(Sj) =
∑

x∈Sj
p(x) is the stationary distribution for group Sj . Recall

from section 2.2.3 that

p(x|y) = w(x, y)

d(x)
, p(x) =

d(x)

Vol(G)
and d(x) =

∑
y

w(x, y).

Using this in equation (6) gives us the following,

p(Si|Sj) =
1

d(Sj)

∑
x∈Si

∑
y∈Sj

w(y, x) =
1

d(Sj)

∑
y∈Sj

w(y, Si). (7)

Meaning that the transition probability between groups Sj and Si is just the
sum of all edges between them divided by the degree of group Sj . We note that
this can be computed relatively efficiently by storing the updated edge weights
after each node/group merger and using the right most equation in (7).

This means that the updated weights are given by

w̃(Si, Sj) ∝
∑
x∈Sj

∑
y∈Si

p(y|x)p(x).

We have proportionality here because the transition matrix is invariant to any
scalar multiplication of the weight matrix. The reader can trivially confirm this
by plugging in c · w(x, y) into p(x|y), where c is some constant.

In order to preserve the total weight of the graph we choose to define the updated
weights as

w̃(Si, Sj) = Vol(G)
∑
x∈Si

∑
y∈Sj

p(x|y)p(x) =
∑
x∈Si

∑
y∈Sj

w(x, y).

However, we note that preserving the total weights like this is not strictly nec-
essary. This is because multiplying the weight matrix by a scalar will only scale
the eigenvalues, the eigenvectors will still point in the same direction. Thus,
if we know the scaling constant we can still retrieve the original spectrum7.

7To see this just compare the characteristic polynomials between cA and A, where c is
some constant.
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Figure 4: Example of a situation where two nodes (x1 and x2) have the same
neighbors and weights. a) A unweighted graph with self loops. b) Corresponding
transition matrix, highlighting that column/row 1 and 2 are identical.

We chose this definition to make the eigenvalues of the CG graph more easily
comparable with the original graph and different CG depths (i.e., combining
different number of nodes).

3.1.2 The coarse grained spectrum

We will begin by considering the simple case when two nodes (say node x1 and
x2) in an undirected graph have the same neighbors and weights. This example
is borrowed from Gfeller and Rios [8]. Figure 4a) displays a simple example
when this is the case.

Since node x1 and x2 have the same neighbors and weights, row/column 1 and
2 of the transition matrix will be identical, see Figure 4b). This means that the
two nodes are indistinguishable from a random walk point of view. Because of
this the first and second element of any right (and left) eigenvector will also be
the same, i.e. ψk(x1) = ψk(x2). The obvious coarse graining step now would
be to merge these two nodes. This would result in a new graph where the first
row/column of its adjacency matrix, Ã, carries the sum of the edges of A, as
we discussed in the previous section.

At this point, we could get the coarse grained transition matrix, P̃ , by nor-
malizing in the same way we got P . But we could also write it as a product of
three matrices [8],

P̃ = RPK. (8)

15



Where R and K are two projection like operators, specifically

R =


p1

p1+p2

p2

p1+p2
0 . . . 0

0 0
...

... In−2

0 0

 and K =


1 0 . . . 0
1 0 . . . 0
0
... In−2

0

 .

To simplify the expression we used pi = p(xi) for the stationary probability of
node xi.

By expressing P̃ like this we can easily show that the vector Rψk is a right
eigenvector of P̃ with eigenvalue αk. To see this, we first notice that

KRψk =


p1

p1+p2

p2

p1+p2
0 . . . 0

p1

p1+p2

p2

p1+p2
0 . . . 0

0 0
...

... In−2

0 0

ψk = ψk

because ψk(x1) = ψk(x2). And thus, the eigenproblem becomes

P̃Rψk = RPKRψk = RPψk = αkRψk.

For an undirected graph, we can use a similar argument to show that ϕK is a
left eigenvector of P̃ (where ϕk is a left eigenvector of P ). This is true for the
first eigenvector, ϕ0 (corresponding to the stationary distribution), even if the
graph is directed. This shows that combining nodes by summing up all their
weights will preserve the overall stationary distribution of the random walk, this
is also apparent from equation (2).

In this example we looked at the case when two nodes are combined but the
procedure can be expanded to group several nodes at once and/or combining
nodes into several individual groups by making appropriate changes to R and
K [8]. Of course, in practice two nodes will seldom be exactly identical so the
coarse graining will be approximate. How good this approximation is will de-
pend on how similar the nodes are.

To summarize, we have shown that grouping similar nodes together will pre-
serve the eigenvalue αk, average the components of the right eigenvector and
(for undirected graphs) sum up the components of the left eigenvector. Some
of the information contained in the original graph will be lost but this seems to
preserve most of the information we are after.

As a final remark we note that the coarse grained adjacency matrix Ã is still an
adjacency matrix and behaves as we have come to expect. This means that ap-
plications which are defined on standard graphs will also work on coarse-grained
graphs.
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3.1.3 Coarse graining the random walk

We will now suggest a way to coarse grain the graph based on node similarity
from a random walk point of view. Our idea is to use hierarchical clustering
with squared diffusion distance as a dissimilarity measure and average linkage.

To motivate our choice of dissimilarity measure we need to think about what
we want to achieve with it. We want to define a metric between nodes such that
they are close if their transition probabilities are similar. There are several ways
one could do this, such as using the Kullback-Leibler divergence or a simple L1

norm but we choose squared diffusion distance because it has a nice spectral
interpretation, as we shall see soon.

The squared diffusion distance between two nodes is the weighted L2 sum [6]

D2
t (xi, xj) =

∑
y∈Ω

1

d(y)

(
P t(y|xi)− P t(y|xj)

)2
. (9)

Where P t(y|xi) denotes the probability of going from node xi to y in exactly t
steps. It is worth noting that the transition probabilities from one node always
sum up to 1 but the degree can differ between nodes. It is usually the case
that nodes in denser regions have more edges than those in sparser regions. So,
weighting the terms with the target nodes degree tends to penalize discrepancies
in sparser regions more. This makes sense from a random a random walk point
of view. Because there are less paths in sparse regions, small changes can have
an outsized effect on the overall random walk. In dense regions there will be
many alternative paths so changes will have a relatively small impact.

Most nodes that are similar in this sense will be close to each other and thus
have a strong edge between them. So, for this to work we will need to include
self-loops in our graph. If we do not include self-loops then (9) could punish
nodes that are close and have one dominant edge between each other.

Our main motivation behind using squared diffusion distance is that it can
be expressed as a weighted Euclidean distance in diffusion space (space spanned
by left or right eigenvectors), specifically equation (9) can be expressed as

D2
t (xi, xj) =

n∑
k=2

α2t
k (ψk(xi)−ψk(xj))

2
.

This follows from the spectral decomposition of P , see appendix A for a proof.
So, by using equation (9) as a dissimilarity measure in hierarchical clustering
we are minimizing a weighted sum of differences between components of right
eigenvectors8 at each merger in the dendrogram. The sum is weighted by the
corresponding eigenvalue which means that priority is given to preserving the

8These are related to the left eigenvectors, see section 2.2.3
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leading eigenpairs, which we know corresponds to large-scale behavior of the
random walk. However, we note that the combined sum of several smaller
eigenpairs can ”overturn” decisions made by the dominant eigenpairs. So this
dissimilarity measure will look at preserving the whole spectrum as well as pos-
sible, not just the leading eigenpairs.

We can further control the priority of large-scale behavior by setting t. As
we discussed in section 2.2.3, increasing t corresponds to propagating the local
influence of each node with its neighbors. This could be of interest in some
situations although it comes at an additional computational cost in computing
P t. Out of time considerations, we will restrict ourselves to only study the case
when t = 1.

Recall that one assumption in HC is that data possesses some hierarchical struc-
ture. This seems to fit our intuition for the random walk. If two nodes belong
to the same cluster for the best k partitioning of the nodes, then we would also
expect them to be in the same cluster when there are m < k clusters. If this is
not the case, then the dynamics of the random walk must be different between
the two situations.

Note that by using average linkage the node to group dissimilarity is the average
distance from a given node to all nodes in the group, and similar for group to
group dissimilarity. This means that we always compare distances against the
original graph, thus ensuring that they are comparable and that the hierarchical
structure assumption holds.

The biggest drawback of this method is that we do not have a way of knowing
when to stop coarse graining, other than to reduce the graph until the eigen-
problem is solvable.

3.2 Out-of-sample extension

In this section we will study a method to extend the embedding from a graphs
spectrum to new points without solving the eigenproblem again. The work here
originates from a series of articles written by Williams, Seeger & Shawe-Taylor
in the early 2000’s. They studied the eigenfunctions of a kernel and suggested
a way (among other things) to extend eigenvector embeddings to new points.
Bengio et al. later used this to provide a method for out-of-sample generaliza-
tion for a wide family of spectral dimensional reduction & clustering methods [3].

Informally, we can interpret their suggested out-of-sample (OOS) extension
method in the following way: Instead of saying that we gathered m new data
points we assume that we had N = n+m data points from the beginning and
projected it down to a n-dimensional space such that the spectrum of A rep-
resent the best n-rank approximation of M . Where M ∈ RN×N is the matrix
containing all N data points. So, under this interpretation what we want to
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do when ”adding back” the m points is to approximate their coordinates in the
reduced space. That is, find an approximation for their projection from the
eigenspace of M to the eigenspace of A.

To accomplish this, we reinterpret data as being output from a kernel. A kernel
is a type of function that lets us compute the dot product between two vectors
in some (possible high dimensional) feature space without explicit knowledge
about that space [17]. That such a space exists was proven by Aronszajn in [1],
under the assumption that the kernel is positive semi-definite (PSD)9 and sym-
metric. Here, we will not actually compute anything new with the kernel. Our
data is just reinterpreted to be output from some kernel, that isK(xi, xj) = Aij .
Note that A is symmetric and only has non-negative elements, so we know that
there exists an appropriate kernel. And because the kernel is a function, we also
reinterpret the eigenvector problem as an eigenfunction problem.

The eigenfunctions of a linear operator D, defined on some function space,
is any non-zero function f in that space such that f acted upon by D will only
multiply f by some scaling factor, λ′, called an eigenvalue, i.e.,

(Df)(x) = λ′f(x).

For all practical purposes here, we can just interpret eigenfunctions as eigen-
vectors. However, we note that, because the underlying space could be infinite
dimensional, there could be an infinite number of eigenfunctions. Our linear
operator will be the kernel K and

(Kf)(x)
def
=

∫
K(x, y)f(y)p(y)dy

where p(y) is a density function.

Using this one can formulate the following proposition.

Proposition 2 (Out-of-sample extension [3]) Let K(x, y) be a kernel func-
tion giving rise to the symmetric kernel matrixK with entriesKij = K(xi, xj) ≥
0 upon a dataset D = {x1, ..., xn}. Let (vk, λk) be the eigenvector/value pair that
solves Kvk = λkvk and let (fk, λ

′
k) be the eigenfunction/value pair that solves

(Kfk)(x) = λ′fk(x) for any x. Then

fk(x) =

√
n

λk

n∑
i=1

vk(xi)K(x, xi). (10)

Proof We first note that the exact eigenfunction problem is∫
K(xi, x)fk(xi)p(xi)dxi = λ′fk(x). (11)

9An n× n matrix, M , is said to be PSD if xTMx ≥ 0 for all x ∈ Rn [11].
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But because we do not know p we approximate the problem using the sample
distribution

1

n

n∑
i=1

K(x, xi)fk(xi) = λ′
kfk(x). (12)

This is not directly solvable either. However, if x was one of the original data
points, for which the spectrum has already been calculated, we know that

n∑
i=1

K(xj , xi)vk(xi) = λkvk(xj).

Comparing this with equation (12) when x = xj ∈ D directly gives λ′
k = 1

nλk

and fk(xj) =
√
nvk(xj). If we enforce this similarity between eigenfunctions and

eigenvectors then we will be able to solve equation (12) by inserting fk(xj) =√
nvk(xj).

1

n

n∑
i=1

K(x, xi)fk(xi) =

√
n

n

n∑
i=1

K(x, xi)vk(xi) = λ′
kfk(x)

⇐⇒ fk(x) =

√
n

λk

n∑
i=1

vk(xi)K(x, xi).

Q.E.D.

Equation (10) is known as the Nyström formula and has been used to speed
up various numerical methods since at least 1977 [2]. It can (and has) been
used to approximate eigenvectors and speed up kernel machines [20]. The com-
putational cost of this is linear in n for each fk(x) we compute. It has also been
noted that equation (10) is proportional to the kernel PCA projection formula
[19]. As for the theoretical justification. It is possible to show that (12) con-
verges to (11) when n → ∞, even under the limited assumptions made here [2].
It is also possible to put bounds on the convergence error [15]. This means that,
as n → ∞, we can expect each eigenvector to converge to an eigenfunction for
the kernel K (up to a normalization factor).

An alternative way of deriving equation (10), which I think is more informative,
is by minimizing

n∑
i=1

K(x, xi)−
n′∑
t=1

λ′
tft(x)ft(xi)

2

(13)

w.r.t. fk(x) when fk(xi) =
√
nvk(xi) and n′ ≤ n. The proof is a little bit

tedious but trivial since this is a convex optimization problem10. So, we will
skip the proof and focus on the intuition.

10Just set the derivative w.r.t. fk(x) to zero and solve for fk(x).
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Figure 5: Orthogonal projection of a function f down to the space spanned by

first N eigenfunctions. Where SN (f) =
∑n′

t=1 λ
′
tft(x)ft(xi). Figure taken from

[17].

A standard result in Fourier analysis is that the best approximation of K(x, y)
(in the sense of minimizing expected square error) while using only n′ terms is
the eigenfunction-decomposition using the n′ first eigenfunction-pairs [17], i.e.

K(x, y) ≈
n′∑
t=1

λ′
tft(x)ft(xi).

So with the optimization problem in (13) we are saying that the eigenfunctions
we have already computed is the best approximation of K(x, y) and try to find
the remaining, unknown terms. The geometrical interpretation of this is that
fk(x) is the orthogonal projection of the full function f in the plane spanned by
the first n′ eigenfunctions. This is illustrated in Figure 5 (which is taken from
[17]).

The time complexity of equation (10) is linear in training data, i.e., O(n). But
that is only for one eigenfunction. If we want to embed a new point x into
the eigenspace of A we need to compute equation (10) for all n eigenfunctions,
which makes the cost O(n2).

4 Results

In this section we will test the coarse graining and OOS extension methods on
two data sets, described below. We will use the R programming language for
these tests. The eigenvalues/vectors are always computed using the built in
“eigen” function, which computes the eigenpairs down to computer precision.

The tests here will be carried out on the normalized Laplacian, L. Mostly
because the OOS-extension method requires this and we do not want to mix be-
tween subsections. Since L is symmetric we do not have to distinguish between
left and right eigenvectors.
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Figure 6: a) Non-linear (NL) data. Two arches in a 3-dimensional space (color-
ing is just for orientation). b) log-transformed eigenvalues of the breast cancer
data.

4.1 Preliminaries

4.1.1 Data

Throughout this section we will use two data sets. A non-linear (NL) data set
and a breast cancer data set from the UCI ML repository [7].

The NL data is displayed in Figure 6a). This data consist of 2 arches, each
containing 400 points, in a 3-dimensional space. This data set was chosen for
its simplicity and friendly properties. Specifically, each of the two arches are
essentially 1-dimensional structures and the data is dense, as we can see in the
figure. Because of this we can expect there to be a lot of redundancies in the
spectrum of this data set. Unfortunately, the data is a little bit ”too dense”.
This results in some extremely small eigenvalues and eigenvector components
which might causes numerical instabilities. This is not an insurmountable prob-
lem (perhaps not even a problem at all) but it is easier to just add some noise
and ignore it. To this end, we will add 3 more dimensions to the data, each
generated from a Gaussian distribution with mean 0 and standard deviation 1.
This will make the second smallest eigenvalue about 15 times larger, the largest
eigenvalues are roughly the same.

The breast cancer data’s eigenvalues on the log-scale are displayed in Figure
6b). As we can see, they look linear. This indicates that the spectrum of the
graph Laplacian follows a power law [14] with slope parameter less than 2. The
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power law, f(x) ∝ λ−k, have some interesting characteristics. It only has a well
defined mean over x ∈ [1,∞) if k > 2 and finite variance if k > 3. Not having a
finite variance means that the eigenvalue sum diverges as n → ∞. If we think
of the eigenvalues as capturing information in one direction of space then this
would translate into ”an infinite amount of information not being included in
any finite sample size”. Graphs like these arise naturally in many large real-
world graphs/networks, like the world-wide-web [14] (although most often with
slope 2 < k < 3 , thus having a well defined mean but not variance).

4.1.2 Graph construction

From the raw data we construct the adjacency matrix in the following way.
Data is first standardized so that each variable have mean 0 and unit variance.
We then compute the pairwise Euclidean distance between points and find their
k-nearest neighbors (kNN). These neighbors will be the edges from the node
and each edge will have weight

wij =
1

1 + ||xi − xj ||2
.

Where ||xi − xj ||2 is the Euclidean distance between node xi and xj . One can
calculate the weights in different ways. The perhaps most popular way is by

using Gaussian weights, i.e. wij = exp
(

−||xi−xj ||2
2σ2

)
, but Gaussian weights re-

quire us to set the scale parameter σ [18]. We chose to use the above defined
weights mainly to avoid having to set this parameter.

Note that some nodes can have more than k edges. This is because xi can
be among xj ’s kNN but not the other way around and we will still connect
them with an undirected edge. Also note that we have not excluded self-loops
(which is usually the convention). Obviously, the Euclidean distance from a
point to itself is 0, so all self-loops have weight 1, i.e., wii = 1.

This is just one out of several possible ways to construct a graph from data, see
[18, section 2.2] for a concise explanation of some of the most popular graph
construction methods. Different construction methods will give graphs with
slightly different sets of edges and thus different adjacency matrices. This will
naturally result in somewhat different spectrum’s but this is not of any particu-
lar importance in this thesis. We are just interested of approximating a graph’s
spectrum, no matter what the adjacency matrix looks like.

4.1.3 Distance validation

We can think of both coarse graining and OOS-extension as dimensional re-
duction techniques. We are interested in knowing how well the reduced graph
approximate the full graph. One way to gauge this is to look at rank distances
between the two graphs.
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Rank distances converts distances to rank orderings where the closest point
have rank 1 and the point furthest away rank n. These methods are used as
we do not care about absolute differences in distances, only relative differences.
That is, if two nodes are a given distance away from each other in the full graph
then the distance should be comparable in the reduced graph, relative to all
other nodes.

We are going to use two rank correlation methods for this, Spearman’s rho
and Kendall’s tau. Intuitively, they both measure the degree of similarity be-
tween two rankings (although in a slightly different way) and can therefore be
used to assess the significance between them.

We first note that there are
(
n
2

)
= n(n−1)

2 ways of ordering n objects. So,
in order for a rank method to be comparable between data sets, we should nor-
malize by this coefficient [12].

Let ri and si be the rankings of the i:th member of the two vectors x and
y respectively and let R(x) denote the rank ordering of x. Spearman’s rho is
defined similarly as Pearson correlation coefficient but between rank variables.
Simple but long and tedious calculations give [12]

ρ =
cov
(
R(x), R(y)

)
σR(x)σR(y)

= · · · = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
.

Where di is the rank difference between ri and si.

Kendall’s tau count the number concordant and discordant pairs. Any pair
of observation rankings (ri, si) and (rj , sj) are said to be concordant if their
order agrees. That is, if both ri > rj and si > sj holds or if both ri < rj and
si < sj . If this is not the case, then the pair is discordant. One can calculate
this as [12]

τ =
2

n(n− 1)
(# concordant pairs−# discordant pairs)

= ... =
2

n(n− 1)

∑
i<j

sgn(ri − rj)sgn(si − sj).

where # reads as ”number of”.

Both ρ and τ takes values between −1 and 1. With 1 indicating perfect rank cor-
relation, 0 no correlation and −1 complete rank distortion. These two measures
are in fact both special cases of a more general correlation coefficient [12].
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Figure 7: (left) Eigenvalue ordered by size for the NL data for the original
graph (blue line) and a few coarse graining graphs. (right) Same figure but
with stretched lines for relative difference.

4.2 Coarse graining

We begin by looking at how well the set of eigenvalues is preserved for a few
CG depths. The eigenvalues for the non-linear (NL) data is displayed in Figure
7 (left). The blue line is the original graph while the red, green and black lines
are eigenvalues for CG graphs of different depths. The graph behind the red
line have had 12.5% of its nodes combined. For the green and black line that
figure is 37.5% and 80% respectively. In Figure 7 (right) we stretch the CG
lines so that they have equal length as the blue line. This is done to illustrate
which part of the eigenvalue set that gets reduced. We can see that the more
nodes we combine the bigger difference in eigenvalus. It is worth noting that
when only a relative few nodes are merged we still get fairly good results with
the biggest difference being for the first few eigenvalues.

Figure 8 displays the CG eigenvalues for the cancer data. The slope parameter
changes somewhat but they still seem to follow the power law. Since data is
scale-free, decreasing the number of data points by CG will only reduce the
information captured in the eigenvalues (roughly) linearly.

We might also be interested in knowing how individual eigenvalues change as we
CG the graph. And in particular how the first non-trivial eigenvalue λ2 changes.
Recall that, by Cheeger’s inequality, λ2 tells us how connected the graph is and
gives bounds on the stationary distribution convergence time. So, if λ2 changes
too much we have good reason to believe that the random walk, and therefore
also the spectrum, have changed significantly.

Figure 9a) and 10a) displays λ2 against CG depth (how many nodes have been
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Figure 8: Eigenvalues ordered by size for the cancer data set for the original
graph (blue line) and a few coarse grained graphs.

merged), the depth is down to 80% of the data (640/800 for the NL data and
455/569 for the cancer data). We can see from both figures that λ2 values tend
to group up and then ”jump” to form a gap. This is also true for most other
eigenvalues, although less pronounced, see Figure 9b) and 10b). This could
mean that, as we combine nodes, the random walk will change (relatively) little
up to some critical point where it undergoes a larger change. Unfortunately, we
do not have time to study this further. But we will say that just before the first
such gap would be a natural candidate for a place to stop CG. The first few
eigenvalues can be computed efficiently using the Arnoldi method [9] but this
is still likely too slow practically. So, it is probably not usable in practice.

As a final measure we will test how well distances are preserved on the CG
graph. If the CG graph is well preserved then pairwise distances should be
comparable to the full graph. With comparable we mean similar in a relative
terms. If two nodes are close on the original graph then the distance might be
longer or shorter on the CG graph in absolute terms but should be comparable
relative to all other nodes. We will test this using Spearman’s rho and Kendall’s
tau on the biharmonic distance. The biharmonic distance is given by [13]

Cij = Vol(G)

n∑
k=2

1

λ2
k

(
vk(xi)√

di
− vk(xj)√

dj

)2

.

Where di is the degree of node i. There is no direct geometric interpretation for
this distance but it is similar to the commute time distance (CTD). In CTD the
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Figure 9: Eigenvalue gap for the non-linear data. a) Second eigenvalue. b) 4th
(green), 7th (blue) and 10th (red) eigenvalue. x-axis represent the number of
nodes merged.

Figure 10: Eigenvalue gap for the cancer data. a) Second eigenvalue. b) 4th
(green), 7th (blue) and 10th (red) eigenvalue. x-axis represent the number of
nodes merged.
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Figure 11: Spearman’s rho (blue) and Kendall’s tau (red) for the NL-data (solid
lines) and cancer data (dotted lines). Y-axis start at 0.75.

eigenvalue in the denominator is not squared, i.e., 1/λk weightings, otherwise
they are the same. CTD measures the expected time it takes a random walk to
go from xi to xj and back. The different weighting in the biharmonic distance
have been shown to increase stability when estimating larger distances [13].

One can only look at rank correlation when comparing distance vectors of equal
length. Since the CG graph have less nodes there is obviously going to be less
pairwise distances. Therefore, when the distance on the CG graph goes to a
group (a node that have been merged) we will compare it to the average distance
of all nodes in that group on the full graph. The result is displayed in Figure
11. The solid line is for the NL-data and dotted lines are for cancer data, blue
indicates Spearman’s rho and red Kendall’s tau.

From Figure 11 we can see that rank distances are preserved fairly well for
both data sets but noticeably better for the cancer data. This is perhaps a
little bit surprising as the cancer data follows the power law11 and the NL data
was purposefully chosen to have a lot of redundancies. So, one would perhaps
think it should be the other way around. However, as we saw in Figure 8, the
eigenvalues of a power law are proportional to each other and this still holdes
for the CG power law. So there should only be a (roughly) linear change in
graph distances. Thus, good rank preservation.

11Thus an ”infinite amount of information” is not included in any finite sample.
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We also observed from Figure 11 that the Spearman’s rho indicates a better
rank correlation than Kendall’s tau. This means that CG is better at capturing
linear rank changes. That is, when rank distances increase/decrease on the full
graph, they tend to do so on the CG graph as well.

4.3 Out-of-sample extension

We will now look into the OOS-extension method. Before we can start we need
to consider what the kernel looks like. Recall the formula for the extension is
(from equation (10))

fk(x) =

√
n

λk

n∑
i=1

vk(xi)K(x, xi).

Now, as previously mentioned, we will not actually compute anything with the
kernel. We just say that ”data comes from some kernel”. This means that
each kernel term will just be a term from the Laplacian, i.e., K(xi, xj) = Lij .
However, we still need to compute this Laplacian. We construct the adjacency
matrix according to the procedure in section 4.1.2. Naturally, if we include the
test points when we construct the adjacency matrix we will get a different result
then if we do not. So, we will make the choice not to include them in the original
graph and instead add these nodes as if we ”found more data”. That means,
connecting these ”new points” with their kNN but not changing any other edge
in the adjacency matrix. So, we do not recompute the entire graph. Both test
points and removed data is chosen randomly. Which points are chosen/removed
will effect the final result so we will redo the test several times (10 times in each
situation) and compute standard error (SE) bars.

To test how well the spectral embedding works for ”new points” we will use
the same rank distance procedure as we used in the CG section (with bihar-
monic distance). Specifically, rank correlation will be computed between the
distances in the original graph (where the spectrum have been computed with
the entire data set) and those in the reduced graph after we have extended the
embedding. We note that, unlike in the CG case, each pairwise distance is rep-
resented in both cases but the distance will be exact for the original graph and
an approximate projection for the reduced graph.

Our first observation is that just removing 1 point will generally give a good
rank correlation, generally over 0.95 for both Spearman’s rho and Kendall’s tau.
Furthermore, the standard error is fairly small, often the difference between up-
per and lower bound is under 0.03. But as more points are removed the mean
rank correlation decreases and the standard error increases, on average. This
change is not linear and happens fastest in the beginning when only a relative
small number of points have been removed. We once again observe that Spear-
man’s rho indicates a better rank correlation than Kendall’s tau.
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Figure 12: a) Rank correlation for the NL-data when extending to 15% of the
total data points with standard error bars. The blue bars represent Spearman’s
rho and the red Kendall’s tau. Each bar is 1 OOS-extended data point. x-axis
are the number of data points added but they are all added independently. b)
Same but for the cancer data.

Figure 12 shows the result when 15% of the data is removed (for the NL-data in
Figure 12a and cancer data in 12b). Each SE-bar represents one OOS-extended
data point, the black dot is the mean value. Note that the bars are independent
of each other. That is, when we have extended the spectrum for one point, xn+1,
we do not use the extended spectrum when extending for the next point, xn+2.
That would result in multiplicative error. In Figure 12 we can see that rank
correlation is similar for all points but different points seems to give slightly
different results. Further studies could look into if this is caused by randomness
or if some points (perhaps those in denser regions) give better embeddings. We
also note that the cancer data have better rank correlation, this is likely because
of the same reason we discussed for CG but ”in reverse”.

Recall that one of the motivations behind using this formula is that equation
(12) converges to equation (11) as n → ∞. And specifically that λ′

k → 1
nλk

as n → ∞. Of course, in practice this will never have infinite data and this
will always be an approximation. Williams and Seeger show in [19] that this
approximation is better if λk is large (for fixed n), Shawe-Taylor and Williams
gave bounds for this in [15]. The implications of this for us here is that if
the eigenvalues are smaller, generally speaking, then the OOS-extension will be
worse.

It is hard to directly test this since the approximation statement is for eigen-
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Figure 13: Same test as in Figure 12a but with added random Gaussian noise
to the NL-data. Blue bars represent Spearman’s rho and red Kendall’s tau.

values of the same spectrum and the OOS-extension method requires the whole
spectrum (equation (10) for all k = 1, ..., n). But perhaps we can indirectly
test it using similar data sets with similar spectrums. Specifically, by adding a
dimension of random Gaussian noise to the data (as we did for the NL-data set,
see section 4.1.1). Adding random noise like this decreases the edge weights,
as the local Euclidean distance used to construct the graph increases (see the
graph construction section). This means that the graph is less connected and
thus, by Cheeger’s inequality, larger eigenvalues.

Figure 13 shows the rank correlations for the NL-data when an additional 5
dimensions of Gaussian noise have been added. The rank correlations are now
computed against this extended NL-data so they are not directly comparable
to the result in Figure 12a but we note that the rank correlations are better
with the noisy NL-data. The other properties discussed above still holds, just
with slightly better rank correlation at each step. One can show even better
rank correlation by adding more noise. Similar result holds for the cancer data.
This shows that OOS-extension works better when the smallest eigenvalues are
larger. However, we will point out that this noisy data is a worse representation
of the true manifold (from which we assume data is sampled) so it does not
follow that adding noise improves the overall result. In fact, it probably does
not. But we can be more comfortable using this method if the graph already
have large eigenvalues to begin with.
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5 Discussion

In this thesis we have given an introduction to spectral graph theory and ex-
amined ways to reduce the time complexity of the eigenproblem. We did this
using two methods: 1) Coarse graining (CG), where we reduced the graph by
combining nodes based on a random walk on the graph, and 2) Out-of-sample
(OOS) extension, where we tried to find an embedding for new nodes in a spec-
trum that we had already computed. Both methods have some merits and we
can envision them being used for different purposes.

One advantage with the OOS-extension method is that it is computationally
cheaper, especially if we do not need to compute fk for all k = 1, ..., n. For ex-
ample, in spectral clustering one only uses a few leading eigenvectors. It would
then be possible to just compute a few eigenpairs using an iterative method and
then extend them to new points. But even if the full embedding is computed
OOS will still be faster than CG, under direct comparison. If the full data set
consist of n = k + m data ponints then the dominant terms in the time com-
plexity will be at best O(kn2+k3) for CG but ”only” O(k3+mk2) = O(kn) for
OOS-extension (assuming that the matrix is dense and that the whole spectrum
is computed).

This might be reason enough to use OOS-extension over CG for applications
in spectral clustering or dimensional reduction. However, CG essentially just
combines nodes. The end result is still a proper graph, the same is not the case
for OOS-extension. Therefore, any algorithm that works on the input graph
will also work on the CG graph but not necessarily on the OOS-extension.

Other things to consider is the underlying assumptions made for each method.
CG requires self-loops and this might not always be justifiable. We do not need
the self-loop assumption in the OOS method but we need the matrix that rep-
resents the graph (adjacency matrix or some Laplacian) to be symmetric and
(probably12) positive semi-definite.

12Bengio et al. [3] claims that the PSD assumption can be dropped but I’m not completely
convinced as I think that assumption is needed to justify using results from function analysis
in the first place.
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Appendix

Diffusion distance

The squared diffusion distance can be written as

D2
t (xi, xj) =

∑
y∈Ω

1

d(y)

(
P t(y|xi)− P t(y|xj)

)2
=

n∑
k=2

α2t
k (ψk(xi)−ψk(xj))

2

Proof. From the result in section 2.2.3 we know that the spectral decomposition
of P t(xi, xj) is given by

P t
ij =

n∑
k=1

αt
kψk(xj)ϕk(xi).

If we insert this into D2
t (xi, xj) we get

D2
t (xi, xj) =

∑
y∈Ω

1

d(y)

(
n∑

k=1

αt
kψk(xi)ϕk(y)−

n∑
r=1

αt
rψr(xj)ϕr(y)

)2

=
∑
y∈Ω

n∑
k,r=1

αt
kα

t
r

(
ψk(xi)−ψk(xj)

)(
ψr(xi)−ψr(xj)

)ϕl(y)ϕr(y)

d(y)

=

n∑
k,r=1

αt
kα

t
r

(
ψk(xi)−ψk(xj)

)(
ψr(xi)−ψr(xj)

)
δkr

=

n∑
k=2

α2t
k (ψk(xi)−ψk(xj))

2

The k = 1 term is 0 as the first right eigenvector is 1. On the second line we
used ψk =D1/2vk and the fact that vk is orthogonal (see section 2.2.3).
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