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Abstract

Generative adversarial networks, or GANs, are a type of unsu-
pervised learning method that are known for being able to generate
high-quality data. They can create a completely new image, a fake
image, that looks just like a real one. Typically, to consider a gen-
erated image as a good one, one just lets people look at it. In some
cases, this will not be enough. Specifically, one needs to make sure
that the generated image has the same statistical properties as real
images. In this thesis, images of paperboard surfaces are generated
and evaluated considering their statistical properties. Evaluation of
the generated images is performed in terms of multidimensional scal-
ing (MDS) using Wasserstein distance and histograms to examine the
distributions between images and between groups of images, as well
as autocorrelation to consider vertical and horizontal correlations in
images. Results with statistical properties similar to the real images
were generated. The thesis was conducted together with the food
processing and packaging company Tetra Pak.
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Abstract

Generative adversarial networks, or GANs, are a type of unsupervised learn-
ing method that are known for being able to generate high-quality data.
They can create a completely new image, a fake image, that looks just like
a real one. Typically, to consider a generated image as a good one, one just
lets people look at it. In some cases, this will not be enough. Specifically,
one needs to make sure that the generated image has the same statistical
properties as real images. In this thesis, images of paperboard surfaces are
generated and evaluated considering their statistical properties. Evaluation
of the generated images is performed in terms of multidimensional scaling
(MDS) using Wasserstein distance and histograms to examine the distribu-
tions between images and between groups of images, as well as autocorrela-
tion to consider vertical and horizontal correlations in images. Results with
statistical properties similar to the real images were generated. The thesis
was conducted together with the food processing and packaging company
Tetra Pak.
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Chapter 1

Introduction

Deep generative models can be explained as a mixture of classical generative
models and neural networks. The goal is to, by using machine learning, gen-
erate new data. The models can get very good and it can in some cases be
completely impossible to distinguish a real sample from a generated, fake,
sample.

Generative adversarial networks (GANs) were first mentioned in 2014 by
Ian Goodfellow with colleagues in the proceedings of the international con-
ference on Neural Information Processing Systems, or NIPS [1]. GANs are
a type of deep generative model that was special in the sense that they used
the power of discriminative models. This was new for deep generative mod-
els at the time [2].

The basis of GAN is that a generative model is good if we cannot tell which
data is generated and which is real [2]. In some cases, not being able to
visually distinguish generated data from real data is not enough. We want
to explore the statistical properties of the data to make sure that the real
and generated images have the same ones.

The thesis was executed in incorporation with the food processing and pack-
aging company Tetra Pak. As an application of GAN, we considered a
dataset containing paperboard surface topography, which can be viewed as
images. The goal was to generate new images of paperboard surfaces that
had similar statistical properties as the real images.

Many properties of packaging material depend on the surface topography of
the paperboard. Paperboard surfaces are used as inputs to simulation meth-
ods, for example, finite element analysis. For the simulation to properly re-
flect real-world variation, a large data set is needed. Measuring the surface
topography of paperboard is demanding, and collecting a large enough data
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set is too costly to be practically possible. For this reason, new images are
generated. Generated images with the same statistical properties as the real
images can then be used as inputs to the simulation methods.

It was decided to use GAN to generate the paperboard surface images. The
reason for this was that GAN has been shown to be able to generate high-
quality images, and can be better than other deep generative models such
as variational autoencoders [3]. In the case of generating paperboard sur-
faces, it is important that the generated images are of high quality. This is
because they should not only look like the real images but also have similar
statistical properties as the real ones.

Despite being able to generate images with high quality, GAN is also known
to be difficult to train [3]. The reason for this is that GAN contains two
neural networks, which introduces a saddle point problem.

The expected results of the thesis are to demonstrate that GAN can gen-
erate images that have similar statistical properties as the real images, but
there could be difficulties in the training. The quality of the output images
depends on different factors such as the choices of hyper-parameters, and
the generated images could deviate from the real images in some senses. It
is expected that GAN will be difficult to train, but with a possibility for
high-quality results [3].

The thesis is structured so that theoretical concepts of neural networks and
deep generative models are first explained in Chapter 2. After that, in
Chapter 3, the case study of generating images of paperboard surfaces is
described. Here, the data is described as well as the used methods for ad-
justments of the data. In Chapter 4, the results are presented and evaluated
according to the methods described in the same chapter. In Chapter 5, the
results of the case study are discussed, and in Chapter 6 conclusions are
drawn together with possible improvements to the study.

All analysis is done in the programming language Python. Any pictures
included in this thesis that are a sample of the entire data set were chosen
by using a random number generator.
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Chapter 2

Theoretical Background

In this chapter, the concept of deep generative models and generative ad-
versarial networks is explained. Before getting into generative models, basic
concepts of neural networks are first reviewed.

2.1 Neural Networks

A neural network is a machine learning model designed to mimic the human
brain in some senses. Just like the brain, a neural network consists of nodes
that are connected to each other. In a neural network, the nodes are placed
in layers where each layer is connected to the next layer.

In a neural network, the first layer is always an input layer. This is where
raw data enters the model. The last layer is the output layer, where the
final product exits the network. The layers in between are called hidden
layers. These can be of various types, and have the purpose of transforming
the data to learn patterns from input data. In Figure 2.1, a simple neural
network can be seen. It has two hidden layers containing four and three
nodes, respectively. The input layer has three nodes while the output layer
has two. The number of nodes in a layer is fixed. [4]

The layers in a neural network can be seen as functions with weights and
biases. These are not fixed and for the neural network to learn, these will
be adjusted. This is how a neural network is trained to predict or classify
what is desired. To get a neural network to perform desired tasks, it needs
to be trained. The goal is to get the weights and biases to take values so
that a loss function is minimized.

The usage of neural networks in machine learning is called deep learning.
Deep learning can be either supervised or unsupervised. In supervised learn-
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Figure 2.1: A simple neural network with two hidden layers.

ing, we want to solve a task where we have labeled data to use for the training
of the neural network while there are no such labels in unsupervised learning.
Neural networks can solve various tasks, where two fundamental tasks are
regression and classification. In this thesis, the focus was on classification
tasks.

In a neural network, activation functions are used. These functions are con-
tained in the nodes of the neural network. The activation function defines
the output of the node given its input. For classification tasks, a standard
choice of activation functions is to use the ReLU (rectified linear unit) ac-
tivation function for the hidden layers and the sigmoid activation function
for the output layer. The ReLU activation function can be seen as the de-
fault activation function in hidden layers. It only outputs positive values
and is nearly linear, so it preserves many properties that can make linear
models easy to optimize [4]. The sigmoid activation function is an appro-
priate choice for the output layer because it outputs a value between zero
and one. This value corresponds to the probability of belonging to the class
it was characterized into.

The ReLU activation function is defined as

f(x) = max(0, x) =

{
0, if x < 0,

x, otherwise,
(2.1)

while the sigmoid activation function is defined as

f(x) =
1

1 + e−x
. (2.2)
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Figure 2.2: ReLU, sigmoid and leaky ReLU activation functions.

A generalization of ReLU activation function is called leaky ReLU activa-
tion function and is defined as

f(x) = max(αx, x) =

{
αx, if x < 0,

x, otherwise,
(2.3)

where α is a value in the interval [0, 1] [2]. Note that if α = 0, leaky ReLU
and ReLU are the same activation functions. We can say that ReLU is a
special case of leaky ReLU. In Figure 2.2, graphs showing the ReLU acti-
vation function, the sigmoid activation function as well as the leaky ReLU
activation function can be seen.

When training, the goal is to minimize a function [4]. This function is often
called the loss function, but could also be called the cost function or the
error function. This function is minimized using a specific algorithm, often
referred to as an optimization algorithm.

When minimizing or maximizing a simple function, we typically compute
the derivative of that function and find the point(s) in the parameter space
where the derivative equals zero. The algorithm gradient descent uses
this, by moving, in small steps, in the direction suggested by the derivative
[4]. If the derivative is negative, the function is moved slightly in a positive
direction while if the derivative is positive, the function is moved in a nega-
tive direction. After a certain number of iterations, the function will be at
a local minimum. Note that the minimum found might not be the global
minimum. The converging point could also be a saddle point. Typically, it
is enough to find a converging point that is not too far from the true global
minimum.

In machine learning, the gradient of the entire data set is typically not calcu-
lated because of the computational cost. This is where stochastic gradient
descent, or SGD, comes in. Here, a stochastic approximation of the gra-
dient is used instead of the actual gradient of the entire data set. For each
step, a randomly selected mini-batch is used to compute the gradient. A
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mini-batch is just a subset of the entire data set with a size selected as a
hyper-parameter. One epoch is completed when all data have been used
for a step in the algorithm. Each data point is typically used once per epoch.

An important hyper-parameter to specify when using SGD is the learn-
ing rate. The learning rate is the step size that the algorithm takes. In
practice, the initial learning rate is what is specified and this is gradually
decreased over the course of the algorithm. SGD can be slow and because
of this, momentum is sometimes used. The momentum algorithm uses past
gradients by taking the exponentially decaying moving average of them and
continuing to move in their direction [4].

The learning rate can be a difficult hyper-parameter to set. Using an adap-
tive learning rate can help to steer clear of this problem. With an adaptive
learning rate, different learning rate for each parameter of the model is
used, and these are adapted throughout the training. Adam, with its name
derived from adaptive moment estimation, is an adaptive learning rate op-
timization algorithm that uses momentum [4]. Adam uses both first-order
moments and second-order moments of the gradient where two new hyper-
parameters are introduced, β1 and β2. The hyper-parameters β1 and β2
can be seen as exponential forgetting factors, where β1 is the forgetting
factor for past gradients and β2 is the forgetting factor for past second mo-
ments of gradients. Adam is regarded as being quite robust to the choice of
hyper-parameters and is therefore often used in deep learning. A detailed
description of the Adam optimization method is out of the scope of this
thesis and the interested reader is referred to the publication on Adam by
D. P. Kingma and J. Lei Ba [5].

2.2 Convolutional Neural Networks

Convolutional neural networks, or CNNs, are a type of neural network that
typically takes images as input data. Unlike a fully connected neural net-
work, a CNN uses convolutions in at least one layer [4]. Convolution is
defined as

s(t) = (x ∗ w)(t) =
∫

x(a)w(t− a)da. (2.4)

The definition gives the convolution between x and w. Here, x can be seen
as an input and w as a weighting function while s is the output. In a CNN,
the convolution can be found in the so-called convolutional layer. In Figure
2.3, a simple example of how the convolution in a layer works can be seen.
The matrix to the left represents the input to the layer, and the matrix to
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Figure 2.3: The occurrences in a convolutional layer in a CNN. The middle
matrix, or kernel, is placed on top of the input (left) to create the output
(right) by using convolution.

the right is the output of the layer. The kernel, the middle matrix consisting
of 1 and -1, is applied to the input. It can be imagined that the kernel is
placed on top of the input matrix and the convolution between the two is
computed. The values in the same positions are multiplied, and everything
inside the kernel is added together. What is computed is the output of the
layer. Comparing this to Equation 2.4, the kernel corresponds to w, the
input to x, and the output to s.

In some cases, we want a type of opposite convolution. For this, deconvo-
lution is used. Deconvolution is not the inverse of convolution, but more of
a transpose of convolution. Here, the output will be larger than the input.
It can be said that deconvolution broadcasts the input elements with the
kernel, instead of reducing them as regular convolution does. [2]

An example of what happens in a deconvolutional layer can be seen in Fig-
ure 2.4. The orange value in the input is multiplied by each value in the
kernel. The resulting 4 by 4 matrix is placed in the top left corner of the
output matrix. Though, these are not the final values for those positions
in the output. Each value in the input is multiplied by the kernel and the
result is placed in the corresponding position in the output. This means
that values will overlap in all positions, except on the corner values. The
overlapping values will be added together. As an example, in the second
value from the top to the left, there are two overlapping values: −6 and 1.
When summing these we get the final value of −5.

With convolution or deconvolution, something called stride can be added.
This means that when applying the kernel to the input, for both convo-
lution and deconvolution, rows and columns are slipped. As an example,
with a stride of two, every other row and column is skipped. This will give
an even smaller output in the convolution case and a larger output in the
deconvolution case. Another tool that can be added to the convolution or
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Figure 2.4: The occurrences in a deconvolutional layer. The middle matrix,
or kernel, is placed on top of the input (left) to create the output (right) by
using deconvolution.

deconvolution is zero-padding. Zero-padding means that, before applying
the kernel, zeros are added around the input as a frame. If zero-padding
with value one is added, then the added frame has a width of one. With
zero-padding, the size of the output can be adjusted depending on the value
of zero-padding. [2]

2.3 Deep Generative Models

The purpose of a deep generative model is just as the name implies, to
generate. Specifically, its goal is to learn a representation of an intractable
probability distribution where generated samples can be drawn from [3].
What will be generated can be of several types, but it is common to gener-
ate images. Commonly, a set of images are used for training the generative
model. After the training, the model will then, if trained correctly, be able
to generate images that are indistinguishable from those in the training set
of images.

The way a deep generative model learns to generate is by learning a proba-
bility distribution. From this distribution, generated samples can be drawn.
These generated samples are different from those in the training set of data
but look, in case of successful training, indistinguishable from them. Deep
generative models assume independent and identically distributed samples
[3].

We define the probability distribution of the input data as pX (x). The goal
of the generator is to map points to a distribution that is as similar to pX (x)
as possible [3]. The generator is defined as

gθ : Rq → Rn (2.5)

where θ are the parameters of the generator, q is the dimension of what we
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call a latent space and n is the dimension of the output space. Note that the
input data is defined on a space with dimension n. The points are mapped
from a known distribution, which we call pZ(z). We denote a point from
pX (x) by x and a point from pZ(z) by z. The mapping will give us the
distribution pgθ(z) and we aim for this to be as close to pX (x) as possible.
We want that for every point x in pX (x) that there should exist a point z
in pZ(z) such that gθ(z) ≈ x.

The points of the distribution pZ(z) exist in the latent space. This space
has to be defined and the distribution pZ(z) is chosen before training. A
typical example of how it can be set is as a univariate Gaussian.

2.4 Generative Adversarial Networks

A generative adversarial network, often referred to as a GAN, is a type of
deep generative model. There are several other types of deep generative
models such as variational autoencoders and normalizing flows. GANs are
chosen for this thesis because they can generate with high- quality and can,
if trained correctly, be better than other types of deep generative models [3].

A GAN consists of two neural networks. The first neural network is the
generator, which is the one that will generate the results and is the func-
tion presented in Equation 2.5. The second one is the discriminator, which
works as a neural network for classification. It will take the real data and
the generated data, and try to classify which is which.

Figure 2.5 presents a schematic picture of what happens in a GAN. A vec-
tor is drawn from the latent space and inserted into the generator. In the
generator, a generated image is produced. Both generated and real images
go into the discriminator, to classify whether they are fake or real.

The learning in GAN is often described as a tug-of-war between the genera-
tor and the discriminator. If the generator performs well, the discriminator
struggles to classify the real and the generated data correctly. If the dis-
criminator performs well, the generator is not generating very convincing
data.

In GAN, the weights of θ are trained by minimizing a loss function [3]. The
loss function measures the distance between pgθ(z) and pX (x). This loss
function needs to be chosen before training. This is an important choice
and can make a great difference in the training. When training a GAN,
no likelihoods are used which is common in other types of deep generative
models.
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Figure 2.5: The process of a GAN. A vector z is drawn from the latent
space. It goes into the generator to generate a sample gθ(z). The sample
goes into the discriminator to classify whether it is generated (fake) or real.
Real samples x also go into the discriminator for classification.

There are several ways to define the discriminator [3]. A quite standard
way to define the discriminator is based on binary classification and the
discriminator is defined as

dϕ : Rn → [0, 1]. (2.6)

This is what is used in this thesis. For real data, dϕ(x) ≈ 1, and for generated
data, dϕ(x) ≈ 0. Typically, a binary cross-entropy loss function is used,
which is defined as

J(θ, ϕ) = EX [log(dϕ(x))] + EZ [log(1− dϕ(gθ(z)))] (2.7)

where E[·] is the expected value. The goal for the discriminator is to mini-
mize−J(θ, ϕ) while the generator has the goal to minimize J(θ, ϕ) [3]. Recall
that the goal when training a neural network is to minimize a loss function
with an optimization algorithm. In GAN there are two neural networks and
two loss functions that are minimized.

The goals of the two neural networks are conflicting and training them gives
a saddle point problem. This is a reason why GANs can be quite difficult
to train. If either the discriminator or the generator is performing too well,
the other one will not be able to improve. In practice, this can mean that
all generated images will look the same as each other early in the training
curve and will not improve over the epochs.
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Chapter 3

Case study: Generating
Images of Paperboard
Surfaces

For the case study, images of paperboard surfaces were generated. An ex-
ample of what the real paperboard surface images in the training set look
like can be seen in Figure 3.1. The goal was to generate images that both
visually looked like these but also possessed similar statistical properties.
The reason for generating paperboard surface images was that they can be
used as inputs to simulation methods. Quite a lot of data is needed for the
simulation methods, and it is too costly to measure the surface topography
of paperboard for that large of a data set.

Figure 3.1: Example data images of the paperboard surfaces. Note that
these images have been adjusted, see Section 4.2 for details.
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3.1 Image Data

The data used in this thesis is images of paperboard surfaces, where we can
see the fiber structures in the images. In total, the data set consisted of
110 image data frames, though due to outliers 108 were used. A data frame
consisted of three columns where the first two described the location of the
pixel and the last one the pixel’s intensity. The data frame can be seen as a
matrix due to locations being relatively evenly distributed. The matrix can
then be considered as an image with a single scale for the color (for example
a black-and-white image only has one numerical scale for the shades in it).

The images in the data set were actually height values, that have been mea-
sured on top of the paperboard surface. They were measured in a square
with a side of 1.56 mm. Every row had 1000 values measured evenly spaced
on the row, though some values were missing. There were 1000 rows, mean-
ing that in total 1 000 000 height values were measured, and this was only
for one image.

The images are anisotropic, meaning they are not the same in the horizon-
tal and vertical directions. The fibers lay a bit differently depending on the
direction. We call the directions machine direction, or MD, and cross direc-
tion, or CD. All images in the thesis have a vertical MD and a horizontal CD.

Two images of the data set contained a spot where the pixels had much
larger height values than the rest of the image. These were considered to be
outliers because it was concluded that the spots most likely were a product
of a measurement error. These images were discarded from the data set.

The original images had a size of 1000 by 1000 pixels, which is a quite large
image size for deep learning. It was decided to split each image into 250-by-
250-pixel images instead. There were two reasons for this; firstly, that there
would be more data to train on. Each 1000-by-1000-pixel image was divided
up into 42 = 16 new images. This meant that 108 images were divided up
resulting in a larger data set containing 1728 images (108 · 42 = 1728).

Secondly, enough information about the fiber structure was contained by
only viewing 250 pixels ahead. To see this we consider the autocorrelation
of the images in each direction. We view each row and each column as sepa-
rate time series and calculate their autocorrelation. The CD autocorrelation
is the mean value of all autocorrelations calculated from the row-wise time
series, and the MD autocorrelation is the mean value of all autocorrelations
calculated from the column-wise time series. An example of how these kinds
of autocorrelation can look can be seen in Figure 3.2. It can be seen that
both the CD autocorrelation and the MD autocorrelation decrease quite
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Figure 3.2: Autocorrelation of a data image. Each row and column in the
image matrix is viewed as a time series. The CD curve is the mean value
of all row-wise autocorrelations, while the MD curve is the mean value of
all column-wise autocorrelation. It can be seen that there is not much
correlation after the red line at 390 µm corresponding to 250 pixels.

fast. A red line is drawn in Figure 3.2 at 390 µm, which corresponds to 250
pixels. It can be seen that after the line, there is not much correlation for
either CD or MD. Here, 200 lags are used. This means that the lag length
is 5 pixels or 7.8 µm.

3.2 Adjusting the Data

Before the GANs could be implemented, the data had to be adjusted in a
few senses. The images in the data set contained missing values which had to
be filled in. The images also had to be untilted because some images were
slightly tilted or possibly bent, which is not beneficial for the simulation
methods. It was decided to also apply a Gaussian kernel to the image by
using convolution. This removed irrelevant unevenness in the images that
were not of interest for the simulations.

Firstly, the missing values in the data set had to be managed. The method
for filling in missing values was put forward by E. Bergvall at Tetra Pak. It
involved using a Gaussian kernel as well as convolutions to find values for

14



the missing points. We call the data image matrix I, and the value that is
in row m and column n we call imn.

We have a Gaussian kernel G, which can be described as a two-dimensional
Gaussian function. The size of the Gaussian kernel was chosen to be 24
by 24 pixels with a standard deviation of 7 pixels. A zero-one matrix C is
defined, which specifies whether the entry cmn is missing or not. The entry
cmn in C is defined by

cmn =

{
1, if imn is not missing,

0, if imn is missing.
(3.1)

The matrix J is calculated as

J =
(I · C) ∗G

C ∗G
(3.2)

where · is element-wise multiplication and ·
· element-wise division. The

operator ∗ is convolution as defined in Equation 2.4. This matrix can be
seen as a slightly more blurred version of I, but in contrast to I it does not
contain any missing values. The matrix Ffill is obtained by calculating its
values fmn as

fmn =

{
imn, if cmn = 1,

jmn, if cmn = 0.
(3.3)

Here, jmn are the values in the matrix J . This means that if the value in
the image matrix I is not missing, then the matrix Ffill will take the same
value as I. Only the values that are missing in I are changed, and the rest
stay the same. The missing values are changed to values in J , the slightly
blurred version of I. Because J look so similar to I, the filling in of the
values matches very well with the image.

In Figure 3.3, the Gaussian kernel used can be seen as well as the matrix J
and the matrix Ffill. It can be seen that J and Ffill look very similar, but
that J is blurrier than Ffill.

When the height values for the images were measured, the images did in
some cases lay slightly tilted. This means that one side of the image may
appear closer than the other side of the image. The paperboard might also
have been slightly bent when being measured. These qualities are undesir-
able and were settled by using a method for untilting.

The position of each measured height value is included in the data set. The
positions are aimed to be spaced out evenly, but might not be in every case.
We have a matrix X defined as
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Gaussian kernel Matrix J Matrix Ffill

Figure 3.3: The Gaussian kernel, the matrix J which is a blurred version
of the initial data matrix I and the matrix Ffill where missing values have
been filled in.

X =



1 cd1 md1
1 cd2 md1
1 cd3 md1
...

...
...

1 cdn−1 mdn
1 cdn mdn


(3.4)

where cdk is the position in CD and mdk the position in MD. The matrix
Ffill is reshaped to a column vector

Freshape =


f11
f12
f13
...

fnn

 . (3.5)

The vector θ, which is a vector with three values where each one corresponds
to a column in X, is calculated as

θ = (XTX)−1(XTFreshape) (3.6)

where XT is the transpose of X, and X−1 the inverse of X. We get the
untilted image matrix by subtracting Xθ from Freshape as

Funtilt = Freshape −Xθ, (3.7)

though Funtilt needs to be reshaped from a column vector to a matrix. The
next step was to apply a Gaussian kernel to the images. The reason for this
was to remove additional irrelevant unevenness in the image. The chosen
width of the kernel was 64, or about 100 µm. The choice was based on and
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Matrix Funtilt Matrix S Matrix Ffinal

Figure 3.4: The matrices Funtilt, S and Ffinal. Ffinal is obtained by sub-
tracting S from Funtilt.

tested so that it would not remove too much of the background.

The Gaussian kernel was applied to the matrix Funtilt with convolution as
defined in Equation 2.4 and the matrix S was obtained. S contained only
the very broad changes in the image. The final image Ffinal was calculated
by removing the broad parts of the image as

Ffinal = Funtilt − S. (3.8)

In Figure 3.4, Funtilt, S and Ffinal can be seen. It can be seen that Ffinal

contains less unevenness broadly considered.

Both the untilting and the Gaussian filtering were suggested by M. Arnér
at Tetra Pak, and a Matlab code for the computations was available.

3.3 Generative Adversarial Networks on Data

GANs were applied to two nearly identical data sets that only differed in im-
age size. First, it was applied to the images as they were. 1728 images sized
250 by 250, as described in Section 3.1, were used to train the model. We say
that the GAN is trained on the full images when referring to this application.

250 by 250 is quite a large image size, and issues with this training were
expected, such as training time and finding the right hyper-parameters. Be-
cause of this, a GAN was also applied to smaller images. To not increase
the training time, the training image set size was kept the same as for the
full image GAN. Smaller images were extracted from the full images by cut-
ting out a corner from each image. The same corner for each image was
extracted, and the size of the data set remained the same. The size of the
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smaller images was chosen to be 64 by 64 and we call them the partial images.

The type of GAN used in this thesis was DCGAN, which stands for deep
convolutional generative adversarial network. DCGAN uses convolutions,
as the name implies, and is more straightforward in the training than some
other types of GANs. The code and parameter choices for this thesis were
inspired by the DCGAN tutorial for PyTorch [6]. We call the parameters
used in this tutorial the default parameters. These have been tested and
shown to work for 64 by 64 images.

The most important default hyper-parameters can be seen in Table 3.1. The
first hyper-parameter in the table is the size of the vector that is drawn from
the latent space, which is chosen to have a normal distribution with a mean
of 0 and a variance of 1. Secondly, the learning rates for the optimization
algorithm are specified. The optimization algorithm used in this thesis is
Adam because of its robustness. Lastly, the two hyper-parameters β1 and
β2 that are the forgetting factors for the first and second moment of the
gradient in Adam are specified.

For both image sizes, binary cross-entropy loss was used. For the convolu-
tional and deconvolutional layers, the sizes of the kernels were chosen to be
4 by 4. This was for all of the layers and for both image sizes. A reason
for using 4 by 4 kernels for deconvolution is to avoid checkerboard artifacts
[7]. Checkerboard artifacts mean that the image does not look smooth and
pixels can be seen in the image clearer than without the artifacts. With
a stride of two, the overlap of the 4 by 4 kernel will be the same over the
entire image meaning the overlap will be even. There will be no emphasis
on certain points in the generated images. If the kernel length is divisible
by the stride, then checkerboard artifacts should not be an issue. 4 by 4
kernels are also what is used in the original DCGAN paper [8]. It is quite
convenient to use a convolutional or deconvolutional layer that downscales
or upscales the input by a factor of exactly two. It is also convenient to
design to architectures of the generator and the discriminator so that they
mirror each other.

Size of latent vector/nz Learning rate/lrD & lrG β1 β2

100 0.0002 0.5 0.999

Table 3.1: The default parameters that were originally used for training.
The latent vector is the vector drawn from the latent distribution. The
learning rate for the discriminator is lrD while the learning rate for the
generator is lrG.
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For the partial images, four different parameter settings were tested and
reported, each of them run two times giving two models. The chosen pa-
rameter settings can be seen in Table 3.2. The choices of these were based
on what had improved the full image training as well as general suggestions
from various sources. It was suggested in an article by T. Mittal [9] to use
different learning rates for the discriminator and the generator, which was
shown to improve the training for the full-sized images, and because of this
also tested for the partial images.

The last layers in both the discriminator and the generator, as seen in Table
3.3 and Table 3.4, are sigmoid layers. Though they are the same function,
they work quite differently depending on their placement. In the discrimi-
nator, the sigmoid layer outputs a probability, that of an image being real or
generated. In the generator, the sigmoid layer outputs a value of each pixel
in the image. Using sigmoid for a probability is reasonable because it takes
values between 0 and 1. Though there are other options such as softmax
activation function which also takes values between 0 and 1. The reason
for using sigmoid as the output function for the generator was because the
training images were scaled to take values between 0 and 1, and thus the
output should also take values between 0 and 1.

In Table 3.3 and Table 3.4, it can be seen that stride and zero-padding are
used in most layers. The architecture that is used in the DCGAN tutorial
[6] is for 64 by 64 images. It has five convolutional, or deconvolutional,
layers where all layers have a stride of two and zero-padding of one except
in the last layer. Here there is no zero-padding and a stride of one, mean-
ing no skips. If the image size would be increased by a factor of 2k, then
adding k convolutional and deconvolutional layers with a stride of two and
zero-padding of one would be the corresponding architecture for this size
of an image. For the 250 by 250, we can proceed from the architecture for
a 256 by 256 image. This would mean that we add two convolutional and

O B Z D

β1 0.5 0.3 0.5 0.5
nz 100 100 500 100
lrD 0.0002 0.0002 0.0002 0.00005

Table 3.2: Parameter settings for the partial images. The table describes the
choices for each parameter setting. O, B, Z, and D are the four parameter
settings. Each of the four parameter settings were run two times, giving two
models for each parameter setting that can be viewed as replicates of each
other. Two models are called O1 and O2 if they have parameter setting O
and so on. O1 and O2 have identical parameter settings: O.
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deconvolutional layers with a stride of two and zero-padding of one, because
64 · 22 = 256. For a 250 by 250, this would mean a too fast decrease of the
inputs to the generator and the discriminator. Removing the zero-padding
and using a stride of one in the second to last layer would make the ar-
chitecture work for an input of size 250 by 250. There are other changes
that could be done, such as changing the kernel sizes in the convolutional
and deconvolutional layers, but this change is quite minimal and therefore
chosen. The two architectures should be as similar as possible to be able to
compare as well as possible.

The outputs from the generator had values as an RGB-colored image, mean-
ing it had the dimension 3×n×n, where n is the length of the image. It can
be seen as three pretty much identical matrices. The mean value of these
was taken, and a one-channel colored image was created.
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# Layer Stride Pad C part C full

1 2D deconvolutional layer 1 0 512 8000
2 Batch normalization layer
3 ReLU layer

4 2D deconvolutional layer 1 0 - 4000
5 Batch normalization layer
6 ReLU layer
7 2D deconvolutional layer 2 1 - 2000
8 Batch normalization layer
9 ReLU layer

4/10 2D deconvolutional layer 2 1 256 1000
5/11 Batch normalization layer
6/12 ReLU layer
7/13 2D deconvolutional layer 2 1 128 500
8/14 Batch normalization layer
9/15 ReLU layer

10/16 2D deconvolutional layer 2 1 64 250
11/17 Batch normalization layer
12/18 ReLU layer
13/19 2D deconvolutional layer 2 1 1 1
14/20 Sigmoid layer

Table 3.3: Layers in the generator for the partial and full images. The
first and last rows (in black) are common for both the partial and the full
images, while the red rows are solely for the full images and not the partial
images. C stands for channels and is the number of output channels for the
partial images (C part) as well as the full images (C full). Pad stands for
zero-padding.
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# Layer Stride Pad C part C full

1 2D convolutional layer 2 1 64 250
2 LeakyReLU layer
3 2D convolutional layer 2 1 128 500
4 Batch normalization layer
5 LeakyReLU layer
6 2D convolutional layer 2 1 256 1000
7 Batch normalization layer
8 LeakyReLU layer
9 2D convolutional layer 2 1 512 2000

10 Batch normalization layer
11 LeakyReLU layer

12 2D convolutional layer 2 1 - 4000
13 Batch normalization layer
14 LeakyReLU layer
15 2D convolutional layer 1 0 - 8000
16 Batch normalization layer
17 LeakyReLU layer

12/18 2D convolutional layer 1 0 1 1
13/19 Sigmoid layer

Table 3.4: Layers in the discriminator for the partial and full images. The
first and last rows (in black) are common for both the partial and the full
images, while the red rows are solely for the full images and not the partial
images. C stands for channels and is the number of output channels for the
partial images (C part) as well as the full images (C full). Pad stands for
zero-padding.
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Chapter 4

Results and Evaluation of
Them

In this chapter, the results of the case study are presented and evaluated
according to the methods described in Chapter 3.

4.1 Results: Full Images

What was found when training on the full-size images was that either the
discriminator loss or the generator loss converged to zero quickly. After
only one epoch, the loss was pretty much zero for the discriminator or the
generator.

For most parameter settings, the loss of the discriminator was the one that
converged to zero. It was first when experimenting with using different
learning rates for the discriminator and the generator, that the loss of the
generator went to zero. In Table 4.1, two parameter settings that are quite
similar are shown. It was found that Training 1, with a smaller learning
rate for the discriminator and a smaller size of the latent vector, led to
the generator loss converging to zero quickly. Here, the learning rate for
the discriminator was 0.00001, and the latent vector size was 10000. When
the learning rate for the discriminator and the latent vector size were just
slightly larger in Training 2, 0.00005 and 12000, the loss of the discriminator

Parameter Training 1 Training 2

Learning rate discriminator 0.00001 0.00005
Size of latent vector 10000 12000

Table 4.1: Hyper-parameters that gave different convergence in the discrim-
inator versus the generator.
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Figure 4.1: Training process for the full-sized images. It can be seen that
when we have the parameters for the first training (left), we have a generator
that goes to zero, and when we have the parameters for the second training
(right) the discriminator goes to zero, both within the first epoch. The blue
curve (G) is the loss of the generator while the orange curve (D) is the loss
of the discriminator.

went to zero quickly. In Figure 4.1, two examples of training curves can be
seen.

The behavior of the training curves could be a consequence of the game
between the generator and the discriminator. When the images are larger,
the power will be in one player’s hands for a longer time and give that player
an immediate advantage. Both Training 1 and Training 2 were trained in
replicates and the results of the replicates were quite similar to those shown
in Figure 4.1. These can be seen in Figure A.1 (Appendix A).

4.2 Results: Partial Images

For the partial images, the default parameters worked well so there was no
struggle with finding parameter settings that worked. In Figure 4.2, we see
the results from the eight runs. Without considering the results too closely,
they all seem to resemble the real images quite well. Recall that the label
of a set of generated images, O1 or B2 for example, refers to the parameter
settings shown in Table 3.2.

One thing that can be seen though, is that B2, Z1, and D1, which are runs
from the parameter settings in Table 3.2, seem to be slightly lighter in color.
This means that they most likely have a greater mean value than the other
runs. This actually not an issue because these mean values can be adjusted.

In Figure 4.3, two training curves can be seen, and in Figure A.2 two ad-
ditional curves can be seen. Jumps in the losses can be seen in all training
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Figure 4.2: The generated images compared to the real images (center row).
The labels of the generated images refer to the parameter settings in Table
3.2. Overall, the generated images look quite similar to the real images.

curves. This could be an indication that the training is not completely
healthy. The losses should fluctuate to be able to train properly, but these
training curves might have too great peaks.
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B2 Z1

Figure 4.3: Two training curves where quite a lot of fluctuation can be seen.
The blue curve (G) is the loss of the generator while the orange curve (D)
is the loss of the discriminator.

4.3 Methods for Evaluation

To compare the results from the partial images to each other, the use of some
statistical measurements was required. This was because the generated im-
ages needed to have the same statistical properties as the real images. Below,
the used methods of evaluation are listed. Each set of images, generated or
real, was always the same randomly selected 64 images.

• Visual inspection of the outputs

• Compare distributions between groups of images using histograms

• Autocorrelation to consider vertical and horizontal correlations in the
images

• Multidimensional scaling (MDS) with Wasserstein distance to examine
the distance between images

A simple, but effective, tool of investigation is to just look at the images
and see how well you can distinguish the real images from the generated
images. If we can clearly see that the generated images do not resemble the
real images, there is no reason to further consider them as good results with
the same statistical properties as the real images. The statistical methods
of evaluation might even tell the same thing.

Another method of evaluation is the use of histograms. They show how the
intensity in the pixels is distributed. One histogram per set of images is
computed, taking all pixels, or values, in the images and plotting it in a
histogram. Recall that an image contains 64 · 64 = 4096 pixels, and a set
of images contains 64 images. This means that a histogram will contain
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643 = 262144 pixels.

Autocorrelation is used to see how the correlation in the images behaves.
The autocorrelation is computed as described in Chapter 3, computing the
autocorrelation in both MD and CD and summing the results for each di-
rection.

Multidimensional scaling, or MDS, is an unsupervised learning method for
visually representing distances or similarities between objects. Objects that
are closer together on the graph are more similar to each other. When using
MDS, a choice of how many dimensions to construct a graph for is made.
Typically two, or possibly three, dimensions are used because this is where
it is the easiest to visualize. In this sense, MDS works as a dimensionality
reduction technique. With MDS, a matrix containing pairwise distances be-
tween objects can be analyzed. This matrix is symmetric and has a zeros
diagonal; because the distance between an object and itself is zero. [10]

To get a distance matrix, Wasserstein distance is used. Wasserstein distance
is a distance measure between distributions of objects pairwise. For this the-
sis, the usage of Wasserstein distance was to find the distance between the
distributions of the images. This is used to create a distance matrix for the
MDS.

4.4 Evaluation of Results

In this section, the generated images from the set of partial images are eval-
uated using the methods from Section 4.3. Only these results are evaluated
by statistical methods. This is because it is straightforward by looking at
the training curves of the full images, that the results do not resemble those
in the training set.

Figure 4.4 shows a sample image from the two models within the four pa-
rameter settings as seen in Table 3.2. Note that these images are quite small;
a length of 64 pixels is only about 100 µm. For the parameter setting O,
which is the default parameter setting, we see some checkerboard artifacts
in the generated images, and more so in replicate O1. This effect is also seen
in B1, Z2, and D1, though not as strongly as in O1 and O2. For this reason,
the main models of consideration will be B2, Z1, and D2. Evaluation will
also be done on O1 along with B2, Z1, and D2 to compare the performance
of the methods.

Histograms of B2, Z1, D2, and O1 were computed together with the real
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Figure 4.4: A few generated images compared to a real image (center row).
The labels of the generated images refer to the parameter settings in Table
3.2.

images. In Figure 4.5 we see these histograms. Overall, the generated im-
ages tend to have a larger variance and a greater mean value than the real
images. Though, they do all seem to have very similar distributions. O1
has the mean value closest to the real mean value, while B2 seems to have
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B2 Z1

D2 O1

Figure 4.5: Histograms of the generated images (blue bars) together with
the histogram of the real images (purple steps).

a variance that is closest to the real variance. The distribution of D2 looks
to be the furthest from the real distribution. In Figure A.3 we see the his-
tograms of the remaining generated images.

Considering the autocorrelation of a few images, we see in Figure 4.6 that
the autocorrelations of B2 and Z1 both have similar behaviors to the au-
tocorrelation for the real image. Looking at the autocorrelation of an O1
image, an irregular behavior can be seen, especially in the MD. This is likely
a consequence of the checkerboard artifacts seen in the generated images.

Note that autocorrelation is computed for one image and does not represent
the entirety of the 64 images in each set. In Figure A.5, another six image’s
autocorrelations from each set are shown, including two autocorrelations
from D2 that show similar behavior to those of B2 and Z1. Considering all
autocorrelation plots in Figure 4.6 and A.5, all sets of generated data de-
crease slower in the MD in most cases. This is also true for the real images
and can be seen in Figure 4.6 and A.5, but also in Figure 3.2 which shows an
autocorrelation for a full-sized image (1000 by 1000). Here, the number of
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Real B2

Z1 O1

Figure 4.6: Autocorrelation for a few of the generated and real images. The
CD curve is the mean value of all row-wise autocorrelations, while the MD
curve is the mean value of all column-wise autocorrelation.

lags is 12, which gives a lag length of approximately 5 pixels. This is about
the same lag length as in Figure 3.2.

Looking at the MDS plot in Figure 4.7, we see that only O1 seems to lay
close to the real images. Just as for the histograms, this could be a conse-
quence of B2, Z1, and D2 having greater mean values than both the real
images and images of type O1. The Wasserstein distance was plotted against
the Euclidean distance in Figure A.4 to check that they coincide.

Concluding from these methods, B2 seems to be the run that performed the
better. The fact that the mean value of B2 seems to be slightly off is not
really an issue because this can be adjusted. In Figure 4.8, the generated
images of type B2 have been shifted in mean value to have the same mean
value as the real images. It can be seen that the overall shades of the images
now match better with the real images.
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Figure 4.7: MDS for four runs of generated images together with the real
images.

In Figure 4.9, we see the histogram and MDS for the shifted B2. In the
histogram, it can be seen that the distribution matches quite well with the
real images’ histogram, but the variance is still slightly too large. In the
MDS graph, both the real images and B2 seem to center around the same
area as opposed to before the shift of the mean value. The points for B1 are
possibly a bit more spread out than the real images, but overall they seem
to lay quite close in distribution. The correlation in the images will stay the
same and is because of this not plotted.
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Figure 4.8: Real and generated images of parameter settings B2, where the
generated images have been shifted to have the same mean value as the real
images.

(a) Histograms of the generated images
(blue) and real images (purple).

(b) MDS of the real and generated im-
ages.

Figure 4.9: Histogram and MDS for the generated images of parameter
settings B2, where the generated images have been shifted to have the same
mean value as the real images.
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Chapter 5

Discussion

The ideal outcome of the study would be to be able to generate images of
paperboard surfaces that captured the entire span of information in the im-
ages. The size of these, after dividing them into 16 smaller images, was 250
by 250. This is a quite large image size for GAN, which typically takes the
input size of 64 by 64. Considering the number of pixels in a 64 by 64 image
we have 4096, while in a 250 by 250 image, there are 62500 pixels. There are
thus 15.26 times more pixels in a 250 by 250 image than in a 64 by 64 image.

A challenge with generating larger images is the training time. It increases
quite rapidly, firstly because the input is 15.26 times larger, but also because
the neural network has to be larger architecturally with a larger input. Find-
ing parameter settings that work is more difficult because only training a
few epochs to test for convergence takes several hours. This does not leave
space for much trial and parameter tuning. Even with a lot of research and
knowledge about the subject, the reality is that at least some parameter
tuning has to be done. If hyper-parameters that do not lead to a failure
within the first few epochs are found, it might still lead to a failure a few
epochs later. In any case, training 500 epochs, which is considered to be the
minimum epochs needed for the problem, would take several weeks.

A checkerboard effect can be seen in some of the generated images. On
some generated images it is solely seen on the edges. A way to treat this
would be to use an upsampling layer and a convolutional layer instead of a
deconvolutional layer [7]. Because a kernel size of four together with a stride
of two was used, this was not expected to be a large problem. Though, it is
something to consider and something that possibly could improve the results.

DCGAN is only one out of several types of GAN. This is one of the simpler
types of GANs. The learning in a DCGAN can be seen as a game, where
each player, the generator and the discriminator, has the power during its
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entire round. Because of this, DCGAN does not work that well with larger
image sizes. Too much will happen in a round, and this will make it more
difficult for the other player to catch up.

The best results of the partial images were for B2, where parameter settings
B were used. The deviation from the default hyper-parameters was that
β1 = 0.3 instead of β1 = 0.5. This means that using a lower forgetting
factor for past gradients improved the training. The previous steps of the
gradients will then matter more for future steps. A small β1 will make the
Adam algorithm more similar to another algorithm called the RMSProp al-
gorithm. This is, just like Adam, a popular optimization algorithm so it is
not surprising for a lower β1 to improve the learning.
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Chapter 6

Conclusion

To conclude this thesis: The size of the images have a great effect on GAN
and specifically on DCGAN. Training on 64 by 64 images gave good results
with all tested parameter setting, and have the potential to generate images
that are completely indistinguishable from the real images. The final results
of this thesis were not far from this.

For the 250 by 250, no results were obtained. Training with larger images is
more difficult and also unexplored. For the 64 by 64 images, it was easy to
find parameter settings that had been tested to work for others, but for 250
by 250 sized images, nothing like this was found. GAN is very sensitive to
changes in parameters, and without a ground to start out on this becomes
a large issue.

6.1 Further Studies

It is possible that GAN is not the better deep generative model for the prob-
lem of 250 by 250-sized images. Other models worth trying are variational
autoencoders as well as diffusion models.

A variational autoencoder, or VAE, has the same architecture as an autoen-
coder, but different goals and mathematical formulations. An autoencoder,
for that part, is an artificial neural network that finds features in unlabeled
data (unsupervised learning) [11]. Their architecture is encoder-decoder.
They produce codes for the input data and are trained so that the decoded
outputs resemble the input as much as possible.

A VAE can be explained as an autoencoder that uses a variational Bayesian
approach to the encoding [11]. They have a generator that is not invert-
ible, so the loss cannot be computed directly. Instead, maximum likelihood
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training is used. We have

pθ(x) =
pθ(x|z)pZ(z)

pθ(z|x)
(6.1)

which is called the evidence. Recall that θ are the parameters of the gen-
erator and pZ(z) is a known distribution. pθ(z|x), the posterior, is what is
approximated using variational inference.

Using diffusion models would be another option. This is a quite new method
that has been proven to perform well [12]. A diffusion model is a Markov
chain where Gaussian noise is gradually added to it [13]. The process is then
reversed by training a neural network to recover the original data. Just as
VAEs, diffusion models use likelihoods for the optimization.

VAEs and diffusion models are not based on a two-player game where the
players take turns, as DCGAN is. Because of this, these types of deep gen-
erative models may work better with larger image sizes.

Other types of GANs that train in a different way than DCGAN could per-
form better when the input images are larger. An example is StyleGAN
[14]. StyleGAN has been shown to be able to generate with high quality for
images as large as 1024 by 1024.
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Appendix A

Figures

Figure A.1: Training process for the full-sized images. It can be seen that
when we have the parameters for the first training (left), we have a generator
that goes to zero, and when we have the parameters for the second training
(right) the discriminator goes to zero, both within the first epoch. The blue
curve (G) is the loss of the generator while the orange curve (D) is the loss
of the discriminator.
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D2 O1

Figure A.2: Two training curves where quite a lot of fluctuation can be seen.
The blue curve (G) is the loss of the generator while the orange curve (D)
is the loss of the discriminator

B1 Z2

D2 O2

Figure A.3: Histograms of the generated images (blue bars) together with
the histogram of the real images (purple steps).
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Figure A.4: The Wasserstein distance was plotted against the Euclidean
distance for the distances between the real data, O1, B2, Z1 and D2.
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Real B2

Z1 O1

D2 D2

Figure A.5: Autocorrelation for a few of the generated and real images. The
CD curve is the mean value of all row-wise autocorrelations, while the MD
curve is the mean value of all column-wise autocorrelation.
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