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Abstract

Determining the association between a treatment’s effect and time

exposure is of great importance in regards to having a proper under-

standing of the effects, both harmful and beneficial, in the population.

However, the definition of exposure time during treatment varies de-

pending on how the user defines these periods. To answer the question

on the impact of exposure definition, we make use of the Cox propor-

tional hazards model to quantify the difference and accuracies of three

common definitions, and in addition, for comparison with a known

association, a simulated data set is used. The initial model with the

real data set showed that the three definitions showed differing results,

while the two Cox models returned equivalent results with emphasis

on how the users handled certain parameters, such as the gap between

refills. The simulated data further supports this and also shows that

given extreme or non-ideal conditions, some of the definitions return

wildly differing results or models with no statistical power.
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Abstract

Determining the association between a treatment’s effect and time ex-
posure is of great importance in regards to having a proper understanding
of the effects, both harmful and beneficial, in the population. However,
the definition of exposure time during treatment varies depending on how
the user defines these periods. To answer the question on the impact of
exposure definition, we make use of the Cox proportional hazards model
to quantify the difference and accuracies of three common definitions, and
in addition, for comparison with a known association, a simulated data
set is used. The initial model with the real data set showed that the three
definitions showed differing results, while the two Cox models returned
equivalent results with emphasis on how the users handled certain param-
eters, such as the gap between refills. The simulated data further supports
this and also shows that given extreme or non-ideal conditions, some of
the definitions return wildly differing results or models with no statistical
power.
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1 Introduction

There’s always been a need for statistical inferences in a pharmaceutical setting,
and while the topic of the treatment’s efficacy is probably at the forefront, an-
other part of this is the epidemiology of its side effects, such as their proliferation
or the association with the duration of the treatment.

For the data set, one can make use of the database held by the national board
of health and Welfare which contains, among others, the prescription register
present in most health care systems and likely contains information regarding
the substance, dispensation date, and its amount.

However, even with those parameters mentioned, it could still lack some vital
information central to a good statistical analysis, namely the explicit time the
individual is using the drug, i.e,. the period of exposure to potential side effects.
Thus, one needs to find a suitable way to estimate this period; an inability or
poor estimation of this period can lead to the inclusion of serious bias in the
ensuing results.

To address this issue, many ways to define this period have been suggested
[6], ranging from the straightforward amount of defined daily dosage (DDD)
times the amount dispensed[1] to the more statistically data driven method
applying Waiting Time Distribution, a sort of stochastic process [3].

To highlight a specific method relevant to this project, there’s a previously
commonly used strategy designed to test the efficacy of a new treatment in
Randomized Clinical Trials (RCT). The recommended method is to use what
is called intention to treat (ITT) [2] which is biased towards the null effect,
meaning it’s a conservative method to observe the pharmacological exposure
and its efficacy.

Another method of note is PP or Per protocol also called On Treatment,
which is an exposure definition where instead one assigns the outcomes to a
specific drug routine, which in consequence reduces the number of participants
but also makes sure that the drug of interest is in focus. This is usually used
when one wants to prove that a given drug is at least as potent as the comparator
drug.

Despite the existence of numerous studies defining a standardized exposure
duration, there is a lack of focus on comparing the numerous definitions against
each other.
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1.1 Main Thesis

The main suggestion for this thesis is to investigate how assigning the drug
exposure period affects the association between exposure period and time to
side effects. We compare the drug exposure period of three different definitions
using both a real data set and a simulated data set with varying conditions.

1.2 Outline of the Thesis

This thesis consists of seven sections, with its own collection of subsections. We
begin by elaborating on the background in Chapter 2 to the main question
and also showing how the data set is processed so that it’s usable for our ques-
tion. Then we give a short overview and the method to process the data set in
Chapter 3. Chapter 4 defines the numerous mathematical concepts used or
that are useful for applying a Cox mode. In Chapter 5 the models and their
properties are elaborated, while the simulation part is reserved for Chapter 6.
We then finally present the results in Chapter 7, concluding the thesis with a
discussion in Chapter 8 and making final remarks in Chapter 9.
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2 Background

In this section, we’ll be elaborating some of the background and contextualizing
the central keypoints in the thesis.

2.1 Assigning the exposure duration

For this thesis, there’s three ways to estimate the duration of drug exposure.

� Intention to treat (ITT )

� On-treatment (OT )

� Time-varying method (TV )

In ITT, we assume that the exposure episode starts at the dispensation
date; in other words, as soon as the patient is dispensed the medication, it’s
considered in use, and it’s only over either when an event such as a side effect is
observed or the study ends disregarding any switches or halts in the treatment.
This makes ITT one of the simpler ways to define this period.

OT otherwise known as On-Treatment or On Protocol, where instead of
considering the drug in use as soon as possible, we emphasize its usage period.
As such, exposure only starts when the treatment initiates and ceases when
either the individual switches drugs, experiences an event, or the study ends.
As a result, the number of observed events at the end is lower compared to ITT
as we will see soon. Many patients don’t stay on a single drug. In other words,
we emphasize an uninterrupted drug regime for this definition.

The last definition is the TV method, where the individual contributes its
exposure period to multiple groups. Say that the patient starts out on treatment
A and then switches to treatment B. In that case, the individual contributes
its exposure period to two different drugs; in this case, the exposure duration
becomes a time variate due to it aggregating multiple parallel individuals at
once. However, even if it contributes to multiple exposure periods, any events
are associated with the individual’s current drug regime, no matter the starting
or any prior medication.

We return to these definitions when we apply them to the relevant data set.

2.2 Defined Daily Dosage

The defined daily dosage (DDD) is the maintenance dosage per day for a given
drug; in the prescription data set, it refers to the expected amount of days the
dispensation is assumed to last. So a DDD of 20 would mean to enough dosage
for 20 days; the period outside of the expected DDD period where the individual
hasn’t refilled their prescription is referred to in this thesis as the gap period.

8



Figure 1: Visual representation of ITT method of two different treatment meth-
ods on three individuals, where the blue bars represent exposure period. Note
how that blue bar persists even when the individual switches treatment at the
end of the study.

Figure 2: Diagram of OT method for three individuals, notice that when one
switches treatment, the exposure period ceases and is thus considered censored.
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Figure 3: The TV method visualized for two individuals, where the blue bars
represent exposure periods for A and the orange bars for B.

Figure 4: Example of how one can handle overlapping exposure periods. The
blue bar is the expected exposure, while the orange bar represents the accounting
change made by the overlapping gap.

2.3 Overlapping Dosage

Sometimes, the individual might have been dispensed another set of drugs dur-
ing their expected dosage duration due to either losing track of their dispensed
drug, wishing to stock up, or other unforeseen events. Thus, we are faced with
the problem of handling overlapping dosages.

As suggested by the source[5] for anti-depressants, there are two ways to
handle this issue. The first is to treat it as a singular exposure period, adding
the overlap at the end. The other way is to treat it again as the same but end it
at the expected dosage of the latest dispensing date. In the case of this paper,
we reset the DDD period when a prescription dispensation is detected.
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2.4 Medical Setting

The medical condition of interest is plaque psoriasis and its proposed treatment,
Rizankisumab other close derivatives. The condition labeled as plaque psoriasis
is a skin condition where parts of the skin harden into pink like inflammation,
forming a plaque, hence its name. It’s by no means severe, but it’s noted to
affect the individual’s lifestyle for the foreseeable future.

The treatment in question, Rizankisumab, is an immunoglobin G1 mono-
clonal antibody. Its proposed usage is treating adult patients for psoriasis and
psoriatic arthritis with moderate to severe active Crohn’s disease that the pa-
tient has either lost or was intolerant to conventional therapy. The dose regime
interval is a dose at weeks 0, 4, and 8, with a smaller dose at week 12 and every
eight weeks thereafter. In addition, there are 47 other drugs in the data set,
with some sharing the suffix ”zumab” and being in differing medical types used
to treat psoriasis. [9]

The outcome we’ll be looking for is MACE (Major Adverse Cardiovascular
Events), a collection term for any symptoms that display any abnormalities
in the cardiovascular area, such as stroke, nonfatal myocardial infarction, and
potentially cardiovascular death. Any prior MACE before the study doesn’t
count but is used as a covariate in the model.

2.5 Causation

The direct causation of any outcome, intentional or not, is most likely also
affected by other underlying factors. In medical research, factors such as age,
weight, and sex are underlying factors inherent in the individual that may have
a negative or positive correlation that can be observed.

In addition, there are some less inherent factors not directly related to the
individual, as prior treatment with differing drugs or exposure to other diseases
could play such a role as well. Going even deeper, the correlation might even
go to the genetic level to a degree we can’t even describe or give a proper value
to.

The above is meant to contextualize the fact that even with the most rig-
orous analyses of any covariate, there might still be some correlation not being
considered.

3 Data Set

3.1 Drug and Patient Registers

The Swedish Prescribed Drug Register (PDR) held by Socialstyrelsen contains
the data for all the prescribed drug dispensation in Sweden, its amount and the
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Figure 5: Diagram showing right-hand censoring, where we only concern our-
selves with events after the study starts and how we can view those events as
the amount of days from the start. The rounded points denote an event, and
the square points are an individual that reached the end of the study.

recommended DDD but not any specific information regarding the usage of said
drug. The data set we be using is a smaller set with the drugs used to treat
psoariasis with some of the drugs sharing the -zumab suffix.

As a companion piece to the register is the collection of various outcomes
from the National Patient Register (NPR) again sourced from Socialstyrelsen,
it’s a massive data set for all registered patients nation wide containing personal
data such as security number, Age and gender, any admission to healthcare
facilities, main diagnosis and other health conditions for each patients. [4]

Being the most comprehensive data set concerning all kinds of ailment, the
NPR data set is pruned such that we only have the patient relevant to the PDR
set. With some choice parameters which we elaborate later on Chapter 5 .

Both data set start from 2005-07-05 and ends at 2022-12-31, due to the data
set we use, we only concern ourselves with right hand censoring. The number
of participants is 57764 and there were 3815 events registered.
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Figure 6: Distribution of Age in the data set, showing the general, older popu-
lation present in the data set.

3.2 Classifying the drugs

The 48 drugs used for this study are additionally subdivided into smaller cat-
egories based on their medical effects as noted by Figure 3.2. The four main
categories are Other-IL, Non-Biologic, TNF-Inhibitors, Risankizumab by itself,
and Non-exposed for the remainder that’s not part of the -zumab and could
be considered a kind of control group. This batching makes the model more
manageable further down the thesis. A clarification on the specifics of the drugs
in question can be seen in Section 11.4 at page 58

3.3 Switching between treatments

An overview of the data set shows that not many stay on the same drug for too
long, with some of the individuals rapidly switching between two treatments, as
inferred from figure 9. While this is of no concern for ITT as it only concerns
the initial drug, it could misrepresent the data if such switches occur often.
It’s central to the exposure assignment for OT where it’s censored after any
switches, and TV method where any prolonged period outside of the expected
DDD period is considered a Non-exposed period.

Unless stated otherwise, for any treatment that has a refill period longer
than the expected DDD duration, we consider any day over 15 asNon-exposed

13



Figure 7: Diagram for the categorization of each individuals drugs.

period.

3.4 Processing the data set

Due to the varying degree of complexity, each definition requires some specific
data processing methodology. In the context of survival analysis, it’s needed
for us to extract the delay between start to end, the outcome, or the censoring
of the particular individual, which makes up most of the complication for each
definition.

As we noted in the background section, there are some core differences be-
tween the definitions that we’ll now apply to the relevant data set.

3.4.1 Core Concept

For us to process a Cox-friendly data set, we use the same main idea for all
three, with some noted differences for each one.

In general, we aggregate the multiple DDD periods as a single uninterrupted
drug period, including any gap periods that are under 15 days; for ITT this
isn’t as relevant compared to its counterparts.

3.4.2 Intention To Treat

This is the most straightforward of the definitions, as we only care about whether
the individual began its treatment with a specified drug. In such a case, we
ignore all other treatments and also any changes, swaps, or if the individual
leaves the group entirely.

By data processing, we simply take the total delay between the start and the
outcome or end of the study for each participant, disregarding any complicated
assumptions.

14



3.4.3 On Treatment

On-Treatment requires some more finesse, as we want an uninterrupted treat-
ment. As per the definition stated earlier, if any switch between medications is
detected, the individual is considered censored regardless of their true outcome.

Of equal importance for the OT definition are the gaps between each refill of
the drug, which, with a long enough gap in the exposure period, could be seen
as no longer following the drug treatment. In this case, and for the TV method
as well, any extended gap period is considered a different drug exposure period
and censored.

By data processing, we start out the same as ITT until we notice any inter-
ruptions. This means that when we detect that either the individual is taking
a new drug or there’s an extended gap period, we assume that the treatment is
interrupted and thus censored henceforth.

3.4.4 Time Varying

Since we let each individual contribute ”as treated”, we now have to setup the
model with exposure being a time-varying variable; in other words, we divide
the individual into sections for each treatment, making it a time-dependent
model. In such a case, any given individual could contribute to its exposure
period for all potential exposures where the event is associated with its current
drug regime or if it is discovered in the gap period. Though note that since
any prior drug has no bearing on the current medication by this definition, this
could be a source of miss-classifications.

Mechanically, we don’t censor the individual for each new drug regime or
extend the gap between the prescription dates. As an example, if we have drug 1
at time 0 and then switch to drug 2 at time ti, we assign it as an interval of [0, ti]
for drug 1 and then check the next interval [ti, tj ] for drug 2 until another switch
or an extended gap-period is detected, where it’s assigned as Non-exposed.

This turns the data set into an interval-based data set that we can use for a
time-dependent Cox model.

3.5 Coefficients

As a semi-parametric model, the Cox model requires some coefficients, which are
also of interest in regards to how each definition interacts with the coefficients.

However, since we’re more interested in the effect of the hazard ratio between
the definitions than the actual efficacy of the treatment, we’ll include a smaller
selection of covariates than one would expect, with the ones included used to
compare the hazard ratio in the coefficients.
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The covariates of interest are Age, Sex, specific prior health conditions, and
prior drug usage as suggested by the background section, such as prior MACE
symptoms, Hypertension and Obesity.

4 Mathematical Theory

In this section, we properly introduce the mathematical concept used in this
thesis. Note that unless specifically stated, the description of the concepts is
based on Survival and Event History Analysis [10] using the same notation.

4.1 Supporting Concepts

Before we elaborate on the main tool used for this thesis, we need to state some
supporting concepts that are vital to the Cox proportional hazard model.

4.1.1 Survival function

Consider a data set of an n-sized population. We want to estimate the occur-
rence or rate of an event of interest for the individuals in the population; this is
referred to as the hazard rate. In this case, we denote α(t) to specify the hazard
rate of an instanteous probability that an event in the population will occur in
the time frame [t, t+ dt) given that it has not occurred earlier:

Without assuming any parametric assumption, the hazard rate α(t) can be

any nonnegative with the estimated cumulative hazard of A(t) =
∫ t

0
α(s)ds

without any structure assumption. This is akin to estimating the cumulative
distribution function, which leads to the Nelson Aalen estimator:

Â(t) =
∑
Tj≤t

1

Y (Tj)
(1)

Where Y (Tj) is the amount of individual at risk before time Tj , to contex-
tualize this results, if we say have 1.5 at time t that means that any individual
at time t is 1.5 times more likely to experience given that no event has occurred
prior to t.

Following the same data set, if we want to instead find out the probability
that for a randomly selected individual the event will occur after time t we
define the survival rate, we start by dividing the desired time interval [0, t] into
smaller K units of [0 = t0 < ... < tK = t]. Using the multiplicative rule of
conditional probability we have

S(t) =

K∏
k=1

S(Tk|tk−1)
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Such that each interval contains one event. This conditional probability can
be estimated as S(Tk|tk−1) as 1 − 1/Y (tk−1) = 1 − 1/Y (Tj) and setting those
into the estimate we obtain

Ŝ(t) =
∏
Tj≤t

{
1− 1

Y (Tj)

}
(2)

Which is the Kaplan-Meier estimate. In contrast, rather than estimating
the risk of a given individual at t, it instead estimates the probability that
the individual hasn’t experienced an event at t; in other words, if the survival
function at t is 0.4, that states that 40% of the subjects survive to t.

Both of these estimates take censoring into account, as Y (Tj) > 0 implies
that some individuals haven’t experienced the event either by leaving the pop-
ulation or by exceeding the duration of the exposure period.

4.1.2 Martingale process

Let M = {M0, ,M1, ...} be a stochastic process in discrete time. The process
M is called martingale if:

E(Mn|M0,M1, ...,Mn−1) = Mn−1 (3)

For each n ≥ 1. In other words, the process is a martingale if the conditional
expectation given in the past equals the previous value.

As a consequence, if given a sequence where we know that E[M0] = 0, then
we can show that:

E[Mn] = E[E(Mn−1|f0)] = E[E(Mn−1)] = E[M0] = 0 (4)

Where f0 is the known history of outcomes prior to Mn. Applying this to a
counting process N(t)

E {M(t)−M(s)|fs} = E {N(t)−N(s)} − λ(t− s) = 0 (5)

For t > s, we denote:

E{M(t)|fs} = M(s)

Which illustrates that the process is indeed a martingale.

4.2 Cox Proportional Hazard Model

Consider a data set with n individuals where we count each event the population
experiences. We want to model the correlation of each event to a number of
covariates of interest using a regression model.

For the regression model, we have the counting processes N1, N2, ..., Nn

where Ni(t) is the number of occurrences for individual i in [0, t], with Ni(t) =

17



0 or 1 given the context of our survival analysis (events or no events). As we
have a counting process, we have an accompanying intensity process defined as:

λi(t) = Yi(t)α(t|xi) (6)

Yi(t) is the indicator variable if individual i is at risk for the relevant event,
and α(t|xi) is the hazard rate defined conditional on the specific vector of co-
variates xi for the individual i.

The Cox Proportional Hazard Model, called Cox model henceforth, is a
common semi-parametric regression model in survival analysis. As such, by the
nature of regression models, we assume that there’s a x for a given individual i
in relation to the hazard rate α(t|xi):

α(t|xi) = α0(t)r(β,xi(t)) (7)

The term r(β,xi(t)) is called the relative risk function, β = (β1, ..., βp)
T

is the regression coefficient describing the covariates in the model, and α0(t)
is the baseline hazard rate that is inherent in that model. If the relative term
r(β,xi(t)) = 1 then the baseline hazard rate corresponds to the individual
hazard when the covariates are set to zero. Hence, it’s called a semiparametric
model, as we both have a nonparametric and a parametric part in the regression.

The relative risk function can be stated as an exponential variant, yielding:

r(β,xi(t)) = exp(βTxi(t))

Thus, the risk regression model is now presented more in line with the typ-
ical regression model used for the Cox regression model, which has the added
property of proportionality. Consider a Cox model with only one covariate, then
consider what happens if we increase the effect of covariate x:

α(t|x+ 1) = α0(t)exp(β1(x+ 1))

= α0(t)exp(β1x+ β1)

= (α0(t)exp(β1x)) exp(β1)

= α(t|x)exp(β1)

(8)

We can see here that by increasing x by one or any other magnitude, the
increase is proportional to the covariate. Stated differently:

α(t|x+ 1)

α(t|x)
= exp(β1) (9)

We can see that it increases proportionally by β1. Hence the inclusion of
proportionality in its name, which well demonstrates the applications of this
model. As an example between two subjects:

α(t|xi)

α(t|xj)
= exp((xi − xj)β) (10)
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As such, the hazard ratio is proportional between the subjects if the other
covariate is kept the same.

4.2.1 Estimation and Partial Likelihood

Due to the semi-parametric nature, directly using the likelihood method to esti-
mate the parameters is not recommended. Thus, one needs to apply a different
kind of Likelihood estimation.

We note that by combining the intensity process (6) and the hazard rate (7),
we may write:

λi(t) = Yi(t)α0(t)r(β,xi(t)) (11)

We introduce the aggregated counting processN.(t) =
∑

Ni(t) that registers
all the events in the population. Note that this leads to the aggregated intensity
processes λ.:

λ.(t) =

n∑
i

λi(t) =

n∑
i

Yi(t)α0(t)r(β,xi(t)) (12)

This intensity process can be factorized into:

π(i|t) = λi(t)

λ.(t)
=

Yi(t)α0(t)r(β,xi(t))∑n
l Yl(t)α0(t)r(β,xl(t))

(13)

So now we only need to find β such that it maximizes the partial likelihood:

L(β) =
∏
Tj

π(i|t) =
∏
Tj

r(β,xi(Tj))∑
l∈Rj

r(β,xl(Tj))
(14)

Where Rj = {l|Yl(Tj) = 1} is the risk set of individuals at risk at Tj where

t < Tj . The maximum partial likelihood estimator β̂ is the value of which
β maximizes (14); in Section 4.2.3, we show that this estimator enjoys large
sample properties similar to ordinary maximum likelihood estimators.

4.2.2 Cumulative hazard and survival probabilities

Mentioned earlier, we had noted that α0 is the baseline hazard, this can also be
estimated as the cumulative hazard rate of A0(t) =

∫
α0(u)du.

λ.(t) =

(
n∑

i=1

Yi(t)r(β,xi(t))

)
α0(t) (15)

Chances are that we don’t know the true β, we’d have to estimate the
Nelson-Aalen estimation by replacing β with β̂ and estimating the hazard rate
over the aggregated count:
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Â0(t) =

∫ t

0

dN.(u)∑n
i=1 Yi(u)r(β̂,xi(u))

=
∑
Tj≤t

1∑
l∈Rj

Yi(u)r(β̂,xi(Tj))
(16)

Where N. =
∑∞

i=0 Ni(t) is the aggregated counting process. This gives us
an estimator for the cumulative baseline hazard; this is also called the Bres-
low estimator. When the covariates are fixed, we have an adjusted estimation
corresponding to the covariate vector x0:

A(t|x0) =

∫ t

0

α(u|x0)du = r(β,x0)A0(t) (17)

This is then estimated similarly as:

Â(t|x0) = r(β̂,x0)Â0(t) (18)

Conversely, if some of the covariates are time-dependent, it’s not as mean-
ingful to estimate the cumulative hazard for a fixed value of a covariate vector.
As such, one can instead estimate the cumulative hazard in an interval of [0, t]
given a corresponding path x0 : 0 < s ≤ t. The path to such a cumulative
hazard corresponds to:

A(t|x0) =

∫ t

0

r(β,x0(u))α0(u)du (19)

And again, this can be estimated as:

Â(t|x0) =

∫ t

0

r(β̂,x0(u))dÂ0(u) =
∑
Tj≤t

r(β̂,x0(Tj))∑
l∈Rj

r(β̂,xl(Tj))
(20)

The survival function can be estimated in a similar way to the hazard rate
corresponding to either non- or time-based covariates. As such, we can write
the aforementioned estimation as the corresponding product integral denoted
Π:

S(t|x0) = Π {1− dA(u|x0)} (21)

Which then can be estimated with β for the estimator

Ŝ(t|x0) = Π
{
1− dÂ(u|x0)

}
=
∏
Tj≤t

{
1−∆Â(Tj |x0)

}
(22)

Which is an estimate that’s asymptotically normally distributed around its
true value, with variance estimated in Section 4.2.4.
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4.2.3 Large Sample properties of β̂

The following two sections go deeper into the asymptomatic distribution, jus-
tifying the variance estimation. The following sections, 4.2.3 and 4.2.4, are
included for posterity’s sake and can be skipped.

In this subsection, we outline the derivation used to prove that the above
mentioned equation for the cox model and β̂ is indeed multivariate normally
distributed around the true β when it’s used in larger data set. Its covariance
matrix is also in extension the expected information matrix.

Keep in mind that prior to this section, β was denoted for the true value
of the covariates as well as for the partial likelihood estimates; however, when
handling large sample sizes, it is to one’s advantage to distinguish the two uses,
so we define β0 and β as the true and partial likelihood, respectively.

As an opening, we define the log likelihood of for the upper time limit τ :

lCox(β) =

n∑
i=1

∫ τ

0

{
βTxi(u)− logS0

Cox(β, u)
}
dNi(u) (23)

Where we define the following notations:

S0
Cox(β, t) =

n∑
l=1

Yl(t)exp
{
βTxl(t)

}
S1
Cox(β, t) =

n∑
l=1

Yl(t)xl(t)exp
{
βTxl(t)

}
S2
Cox(β, t) =

n∑
l=1

Yl(t)x
(+)
l (t)exp

{
βTxl(t)

}
(24)

Where (+) denotes where the specific matrix vvt given a column vector v(+).
Score function then follows:

UCox(β) =
∂

∂βT
lCox(β) =

n∑
i=1

∫ τ

0

{
xi(u)−

S1
Cox(β, u)

S0
Cox(β, u)

}
dNi(u) (25)

With its observed information matrix defined as:

ICox(β) = − ∂

∂βT
UCox(β) =

∫ τ

0

S2
Cox(β, u)

S0
Cox(β, u)

−
(
S1
Cox(β, u)

S0
Cox(β, u)

)(+)2

dN.(u) (26)

Following this, we denote a new notation such that:

VCox(β, t) =
S2
Cox(β, u)

S0
Cox(β, u)

−
(
S1
Cox(β, u)

S0
Cox(β, u)

)(+)2
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If we now insert β0 in (25) and use the decomposition:

dNi(u) = λi(u)du+ dMi(u) = Yi(u)α0exp(β
Txi(u))du+ di(u)

Where Mi represents the martingale process. With some algebra, we find
that:

UCox(β0) =

n∑
i=1

∫ τ

0

{
xi(u)−

S1
Cox(β0, u)

S0
Cox(β0, u)

}
dMi(u) (27)

The integrands presented are predictable processes, a process we know at a
prior time, then the score function is a stochastic integral evaluated at the true
β0. Particularly E[UCox(β0)] = 0. If we set the limit on right hand side at
t we have a stochastic process. This process is a martingale with predictable
variational process that, when evaluated at τ become:

< UCox(β0) > (τ) =

∫ τ

0

V (β0, u)S
(0)
Cox(β0, u)α0(u)du (28)

The denotation < M > is a predictable variation process (cf. Appendix

11.2). Note that the counting processN.(t) has an intensity process S
(0)
Cox(β0, t)α0(t),

the observed information matrix at β0 becomes:

Icox(β0) =< UCox(β0) > (τ) +

∫ t

0

VCox(β0, u)dM.(u) (29)

Where M. =
∑n

l=1 Mi is also a martingale. Following this, we can now
show by Martingale central limit theorem (Appendix 11.3) that under suitable
regularity conditions converges n−1/2UCox(β0) in distribution to a multivariate
normal distribution with mean zero and covariance matrix ΣCox

By these results, we can show that the estimated β̂ follows in the same way,
by Taylor expanding the score function:

0 = UCox(β) ≈ UCox(β0)− ICox(β0)(β̂ − β0) (30)

Then we can obtain:

√
n(β̂ − β0) ≈ (n−1ICox(β0))

−1n−1/2UCox(β0) ≈ Σ−1
Coxn

−1/2UCox(β0) (31)

It follows that
√
n(β̂−β0) converges in distribution to a multivariate normal

distribution with mean zero and covariance matrix Σ−1
Cox. Justifiably β̂ then is

approximately multivariate normal around β0 with estimate covariance of the
expected information matrix ICox(β̂)

−1

Following this argument to Cox model, although there’s some minor mod-
ification for the relative risk function r(β,xi(u)) but the formula as a whole
becomes more complicated. As the score function becomes:
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U(β) =

n∑
i=1

∫ τ

0

{
ṙ(β,xi)

r(β,xi(u))
− S(1)(β, u)

S(0)(β, u)

}
dNi(u) (32)

Where ṙ(β,xi) =
∂

∂β
r(β,xi(t)), we also define the following notations.

S(0)(β, t) =

n∑
i=1

Yl(t)r(β, xl(t))

S(1)(β, t) =

n∑
i=1

Yl(t)ṙ(β, xl(t))

S(2)(β, t) =
n∑

i=1

Yl(t)
ṙ(β, xl(t))

(+)2

r(β, xl(t))

(33)

V (β, t) =
S(2)(β, u)

S(0)(β, u)
−
(
S(1)(β, u)

S(0)(β, u)

)(+)2

(34)

We have the predictable variation process of the score function at β0:

< U(β0) > (τ) =

∫ τ

0

V (β0, u)S
(0)(β0, u)α0du (35)

Finally, the observed information matrix I(β) can be written as the sum of
predictable variation process of the score and the stochastic integral. Thus, the
expected information matrix is

I(β) =
∫ τ

0

V (β, u)dN.(u) =
∑
Tj

V (β, Tj) (36)

There are some noted differences between the expected and observed infor-
mation matrixes, but those quantities are for the most part negligible, though
the expected information tends to be the more stable of the two.

4.2.4 Large Sample properties of Hazard and survival functions

In this section we again show that the hazard and survival function presented
earlier is also normally distributed around the true value. Indeed we show this
by first noting the difference:

Â(t|x0)−A(t|x0) =

∫ t

0

r(β̂,x0(u))(dÂ0(u; β̂)− dÂ0(u;β0))

+

∫ t

0

r(β̂,x0(u))(dÂ0(u;β0)− α0(u)du)

+

∫ t

0

(
r(β̂,x0(u))− r(β0,x0(u))

)
α0(u)du

(37)
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And:

Â0(t;β) =

∫ t

0

dN.(u)

S(0)(β, u)
(38)

Asymptotically we are able to replace the estimated relative risk function
with r(β, x0(u)) for the first two terms on the right hand side. Then the first
term by Taylor expansion we can approximate it:

−
∫ t

0

r(β0, x0(u))
S(1)(β0, u)

S(0)(β0, u)
dN.(u)(β̂ − β0) (39)

On the second term, we use the Doob Meyer to decomposition (cf. Appendix
11.4) such:

dN.(u) = S(0)(β0, u)α0du+ dM.(u) (40)

For the approximation ∫ t

0

r(β0, x0(u))

S(0)(β0, u)
dM.(u) (41)

Finally the last term again by Taylor expansion approximates to∫ t

0

r(β0, x0(u))α0du(β̂ − β0) (42)

Then we have the final approximation of (37)

Â(t|x0)−A(t|x0) ≈
∫ t

0

ṙ(β,xi)

S(0)(β̂, u)
dM.(u)

+

∫ t

0

[
ṙ(β0,xi)− r(β0, x0(u))

S(1)(β0, u)

S(0)(β0, u)

]
α0du(β̂0 − β0)

(43)

We can show that the first term is approximately normal distributed with
mean zero and variance estimated by

ω̂2(t|x0) =

∫ t

0

(
r(β̂, x0(u))

S(0)(β̂, u)

)
dN.(u) =

∑
Tj≤t

(
r(β̂, x0(Tj))

S(0)(β̂, Tj)

)2

(44)

This can be expanded further by defining the second term with Ĝ(t|x0)
TI(β̂)−1Ĝ(t|x0)

which Ĝ(t|x0) defined as:

Ĝ(t|x0) =

∫ t

0

{
ṙ(β̂, x0(u))− r(β̂, x0(1))

S(0)(β̂, u)

S(0)(β̂, u)

}
dÂ0(u)
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=
ṙ(β̂,xo(Tj))∑
l∈Rj

r(β̂, xl(Tj))
−
∑
Tj≤t

r(β̂, x0(Tj))
ṙ(β̂,x0(Tj))(∑

Tj≤t r(β̂, xl(Tj))
)2

It can be shown that the last two terms in (43) are asymptotically indepen-
dent; it follows from that the Â(t|x0) is approximately small around its true
value with a variance that’s estimated by

σ̂2(t|x0) = ω̂2(t|x0) + Ĝ(t|x0)
TI(β̂)−1Ĝ(t|x0) (45)

We lastly consider the converse for the survival function, given that it’s quite
similar to the hazard function we can see from:

Ŝ(t|x0)− S(t|x0) =≈ −S(t|x0)(Â((t|x0))−A(t|x0)) (46)

It follows that the survival function Ŝ(t|x0) is also normally distributed
around S(t|x0) with a variance of S(t|x0)

2 times the variance of Â(t|x0). Then
the estimator for the variance of the survival function is:

τ̂2(t|x0) = Ŝ(t|x0)σ̂
2(t|x0) (47)

4.2.5 Martingale residual

Martingale residual is an approach to detecting or assessing nonlinearity in any
continuous covariates. First, we introduce the cumulative intensity processes:

Λi(t) =

∫ t

0

λi(u)du =

∫ t

0

Yi(u)r(β,xi(u))α0(u)du (48)

Setting it with the estimated partial likelihood β̂ and the Breslow estimate
we attain:

Λ̂i(t) =

∫ t

0

Yi(u)r(β̂,xi(u))dÂ0(u) =
∑
Tj≤t

Yi(Tj)r(β̂,xi(Tj))∑
l∈Rj

r(β̂,xl(Tj))
(49)

And consequently, we have the martingale residual process

M̂i(t) = Ni(t)− Λ̂i(t) (50)

When evaluated at the upper limit τ of the study, we have the martingale
residual

M̂i = M̂i(τ) = Ni(τ)− Λ̂i(τ) (51)

Where it shows the residual between the observed and the estimated outcome
by the model.
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4.2.6 Model check and hypothesis testing

One of the assumptions made that needs to be fulfilled is the proportional
hazards assumption. In the case that the hazard and covariable are linearly
correlated in a similar way to other regression models. This can be checked
visually by making sure that the hazard plot of the model is proportional to
a satisfactory degree in comparison to other variables in the model. In other
words, the assumption does not hold if the curves diverge or cross each other.

Alternatively, one can test the null hypothesis of non-proportionality for
either each term or all the terms in the model, which is the method utilized by
this thesis.

In order to test the null hypothesis of β = β0 where β0 is a known value,
one applies one of the usual test statistics using the score function U(β) =
∂

∂β
logL(β) and the observed information matrix I(β) = − ∂2

∂βh∂βj
logL(β) with

three distributional and asymptotically similar test statistics:

� Likelihood ratio test statistics

χ2
LR = 2

{
logL(β̂)− logL(β0)

}
(52)

� Score test statistics

χ2
SC = U(β0)

T I(β0)U(β0) (53)

� Wald test statistics

χ2
W = (β̂ − β0)

T I(β̂)(β̂ − β0) (54)

With test statistics, we can utilize the common method of null-hypothesis
testing for χ2 distributed testing with p degree of freedom. As an example, if
we use the Wald test statistics, we would use the following test settings:

ZW = (β̂ − β0)I(β̂)
1/2 (55)

In general, all three are roughly equivalent in their results and are mostly
chosen based on preferences. These are used to test whether the current set
of estimated parameters β∗ is indeed reasonably justified as not being equal to
zero.

4.2.7 Stratified Cox model

The regression model presented in the opening section describes a model where
we assume that all the individuals share a common baseline hazard. However,
for the most part, this is not the case, for example, where factors such as age are
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important contributing factors to comorbidity in most health diagnoses. Due
to varying baseline hazards, one can instead divide the individuals into groups
or strata sharing the same relevant baseline hazard.

Assume that we have the same data set as the original Cox model with the
population divided into k strata or groups, we define the regression model for
individual i in strata s

α(t|xi) = αs0r(β,xI(t)) (56)

Note that while the baseline hazard αs0 may vary, the covariates for each
stratum remains constant. Additionally, the stratification also involves time
dependency, it however per assumption of martingale that the information is
based on past and not future information.

For the estimation of a strata model, we have the vector of β

L(β) =

k∏
s=1

∏
Tsj

r(β,xij(Tsj))∑
l∈Rsj

r(β̂,xl(Tsj))
(57)

For Ts1, Ts2, ... is the time of each event in strata s for the relevant risk set
Rsj with the same properties that follow it as in the non-stratified estimation.
Furthermore, martingale residual processes are adaptable to stratified as well,
and the Breslow estimator is equivalently:

Âs0(t) =
∑
Tsj

1∑
l∈Rsj

r(β̂,xl(Tsj))
(58)

5 Model

The analysis in this paper is characterized by two components: the main survival
analysis of the actual data set with the Cox model and the analysis of the
simulated data set with the same method. Simulation and graphics presented
in this thesis were made using RStudio version 4.2.2 with the packages survival
for the calculation and data management.

For the first part, we make use of the real data set, with it only differing per
definition. As a reminder of the three definitions used for the data set,

� ITT ; We assume the individual has the same medication throughout the
study, ignoring any gap periods, the simplest definition.

� OT ; We emphasize the individual using the same drugs, as such any
switches from the original drug or extended gap periods is considered
censored beyond that time point.
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� TV ; Where the exposure is a time-dependent variable, such that each
individual contributes to multiple drug types and exposure periods. Refer
to Chapter 3 for details.

For the OT and TV definitions, we assume any period where the gap period
is longer than 15 days as censored or as Non-exposed period, respectively.

5.1 Non-parametric model

For the initial part of the project, we decided on a non-parametric model. Since
we want to compare and contrast the three definitions, it’s helpful to attain a
quick overview regarding the overall effects on survival rate.

As such, by setting up a Cox model with no covariate and a time-dependent
version by using Kaplan-meier estimation, we have a non-parametric survival
function for the three definitions for each specific drug type. Its main purpose
is to provide a general overview of the correlation and causation of the outcome
and drug exposure period by just using the outcomes.

5.2 Cox model

The hazard model for the semi-parametric Cox model can be explicitly surmised
as:

α(t|xi) = αs0(t)exp(Agei + Sexi +Hyperi +MACEi +Obesityi)

Where α0 is the baseline hazard for individual i for each strata of drug s.
The Cox model will be used to determine how the magnitude and confi-

dence are affected by each definition. Elaborating on the covariate, we have the
following factors with the implementation of strata for each drug category:

� Age; continous integer, as of the start of the study

� Sex; binary, 1 = Male, 2 = Female

� MACE; binary, 0 = No prior history of MACE

� Hypertension; binary, 0 = No history of hypertension

� Obesity; binary, 0 = Not obese on start of study.

� Code; Categorical = {1,2,3,4,5}, Differing drug regime
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Figure 8: Distribution of days spent in the study for all three definitions, notice
how ITT follow a somewhat uniform structure.

Figure 9: Total delay in the initial exposure period by OT definition, in other
words, how long each is in a given treatment before switching. Notice the
exponential distribution-like structure; when interpreted alongside Figure 8 it
implies that many participants don’t stay too long on a given medication and
switch often when comparing them in the total amount of delay.
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Figure 10: The aggregated delay of all the exposure periods, TV differs due
to how the exposures are assigned, but note that most uninterrupted exposure
periods lie on the shorter side.

This selection of variables was chosen due to their perceived relatedness
to cardiovascular conditions, as the expectation was that a small selection of
significant covariates would be prudent to display any potential differences in
the three definitions.

We additionally let Code be used to stratify the model where s = 1, 2, 3, 4, 5
is the five drug category on the baseline hazard function αs0, allowing the vari-
able to contribute without making the model too complicated. As such, in this
model, we assume that each drug has an underlying hazard rate similar to the
other.

6 Simulation

After we have completed a Cox model of the data set, we now wish to test
the definition in a controlled setting, putting the three definitions into extreme
cases.

6.1 A simulated data set

Even with a Cox model fitted for each definition, using only the actual data
set does not allow for a satisifiable statistical conclusion to be reached due to
missing many important factors and assumptions for the remaining factors as
well.
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Figure 11: Pie chart for the fraction of exposure periods in the data set, the
starting one displaying the initial medication relevant for ITT and the total
amount of uninterrupted exposure periods as defined by TV for the duration
of the study. Risankizumab was not available at a large amount at the start of
the study, hence its exclusion in the left pie chart.

Thus, the intention is to make use of a new set of data based superficially on
the real data set, which will allow us to further stress test the three definitions in
a more controlled manner conducive to more mathematical conclusions. Also of
interest is whether the definition handles data sets with skewed results, such as
higher intensity of outcomes or disruptions in the individual’s treatment plan.

6.2 Generating a new set

As the simulated data is needed to be ostensibly based on the real data set, we
put forth an algorithm for how we intend to simulate this new data set.

6.2.1 Participants

The initial set of data could be generated however one wants; as such, the initial
set of participants is generated proportionally in regards to the actual data set,
as shown by Figure 3.1, which in turn allows for a quick setup of somewhat
equally distributed variables for the participant and the actual data set.

6.2.2 Event time

With the main set of participants, the following event times are generated based
on the results of the Cox model utilizing the inverse survival function defined
as follows:
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t = h−1(
log(U)

exp(x ∗ β̂)
) (59)

Where x is the covariate of an individual, U ∼ Unif(0.1) and β̂ is the
coefficient attained by the Cox model. Additionally, we set the baseline hazard
to h0(t) ∼ Wei(0.5, 4.5) as the Weibull distribution is commonly used in survival
analysis, thus the explicit inverse survival becomes:

t =

(
− log(U)

λexp(x ∗ β̂)

)1

ρ
(60)

Where it is multiplied by 12 000 such that the mean becomes more in line
with the distribution in Figure 8 for ITT using that definition as a base and
reference due to it retaining most of the total exposure period in the actual data
set.

6.2.3 Censoring

For the censoring time, based on the results of the number of days each partic-
ipant has spent in the study, we use Figure 8 with its uniform distribution as a
base and set the censoring time as C ∼ Unif(0, 6000).

Whichever the censoring time or the event time is lowest, we consider it as
observed; in other words, if the censoring time is lower than the event time, we
consider that event censored, and vice versa for the event time.

6.2.4 DDD

The DDD were chosen from a sample data set of the actual data, as an ex-
ploratory analysis of the real data showed that the DDD amounts were to be
pre-determined based on the medication and not generated by chance or random
number.

6.2.5 Switch Time

As noted by the actual data set, such as Figure 9 and comparing it to Figure 8,
not many linger too long on a single medication, with some being quite liberal
with it and often switching from it after some period. We call this period switch
time, the duration in which the individual is on one drug, and based on the same
figure, we determined it as an exponential distribution, more explicitly:

tswitch ∼ Exp(0.0006)

Also observed was that the DDD value was constant throughout that period,
only changing when the patient received a new drug. So for each switch time,
we fill each entry with the drug, date, and DDD with a randomized gap interval
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between each entry using a combination of exponential and poisson distributions
with a mean of 10 time units. Explicitly we use the formula:

G = Pois(20)− Exp(0.1)

Where G is the gap between the expected DDD periods.

This is repeated until we reach the end of the switch time, at which point
a new switch time is generated, or if we reach the censoring or event time, at
which point we repeat the generation for the next participant.

Which drug is assigned is based on the same proportionality of drug usage
present in the real data set, which is illustrated in Figure 11. This, in practice,
means we can expect a sort of proportionality in play between the drug and the
survival rate on the simulated data set, though it likely won’t capture the true
interplay present in the real data set.

6.2.6 Modelling unpredictability

To add further stress to comparing the definitions, we also wish to inject some
unpredictability into select data sets. An example of such is if the outcome is of
higher or lower intensity, whether the individual misses their prescription dates,
and other elements of that nature.

As such, the two main ways we have chosen to mutate the results are the
intensity of outcomes, abstracted as shorter event times, and adherence to the
treatment plan, which is abstracted as increases or decreases in the gap periods.

When we have generated the new data set, we put it through the same
data processing as the actual dataset and compare the Non-parametric and Cox
models. A overview of the generation process can be viewed from figure 12

6.3 Test models

We generate three distinct models to contrast them: the control, intensive, and
lazy models.

6.3.1 Control model

The control model, as the name suggests, is the basis on which we test and also
base our interpretation in comparison to the two other models. As such, any
unpredictability is set to default; in other words, there are no changes in the
number of events or the gap period.

This model also serves to compare the simulated data to the actual data set
to see how well the data was simulated without any modifications.
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Figure 12: Flowchart for generating a data set for each participant
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6.3.2 Intensive model

In the intensive model, we want to simulate a data set where the event is more
widespread and common; this is done by decreasing the event time across the
board, such that more outcomes bypass the censoring step. In effect, we can
expect the new data set to contain more and earlier events compared to the
control model. In practice the time to events becomes:

t =
tSurvEvent

I

Where we tSurvEvent refers to (60) and I is the intensity parameter we set.

The context behind the event time might be strange considering how we
defined the event or censor time, but we digress and leave it to the discussion
section.

6.3.3 Lazy model

The Lazy model is made to model a data set where the individual has low
adherence such as not following the prescribed schedule for dosage or refill. In
effect, this is abstracted as the gap between each refill increasing as lack of
adherence is interpreted as a lower dosage or less frequent refills. Explicitly we
set that:

G =
Pois(20)

A
− Exp(0.1) ∗A

Where A denotes the parameter for laziness.

While this method ignores some other possible sources of adherence, such
as taking a large dosage or refilling too early, due to the way we defined gap
periods, this isn’t represented in the data processing.

7 Results

In this section, we aggregate the results from both the actual and simulated
data sets contained within each section.

7.1 Main data set

This section concerns the model based on the data set from Social Styrelsen.

7.1.1 Non-parametric measure

In the initial overview, we examine how the definitions compare the hazard rate
given only the outcomes and their time delay.
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Figure 13: Survival plot for ITT for the real data set, displaying low hazard
rate.

Age Sex Hypertension Prior Mace Obesity
ITT 0.06 -0.48 0.37 0.79 0.19*
OT 0.059 -0.34 0.48 1.15 0.11*
TV 0.069 -0.48 0.37 0.70 0.19*

Table 1: The fitted coefficients of the Cox model, where * denote a particular
parameter with less than ideal confidence (p > 2e16)

ITT offered the easiest way to aggregate the data, and it displays in Figure
13 stable and low hazard rate. It detected 3815 outcomes, which is indeed what
the data set itself recorded.

OTdisplays some jagged curves on Figure 14 which stem from the reduced
outcomes assigned in the data set per its definition, from 308 events compared
to 3815 in the actual data set. The survival rate surprisingly aligns with the
results suggested by ITT despite the lower count of outcomes, likely due to
proportionally less exposure time assigned in the definition.

The TV method offers the most radical difference of the three definitions in
Figure 15, inflating the hazard for the Non-exposed category, while the other
four still align towards the result by ITT. It could be explained since all four
drug categories also contribute toNon-exposed which means that the category
has more opportunity to inflate its hazard rate.
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Figure 14: OT survival plot set in the real data set, where we notice more jagged
curves suggesting less statistical power due to fewer observations. Though the
survival rate is in line with ITT.

Figure 15: Survival plot for TV method, notice that there appears to be a
”inflated” risk associated with Non-exposed category.
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Figure 16: Martingale residual of the TV method: red dots indicate outcomes,
and if any dots bleed below 0, we have a miss-classification at hand.

7.1.2 Cox Model

The Cox model displays the magnitudes for the parameters of interest, with
positive values equating to correlating effects for risk factors in contrast to
negative values presented in table 1.

The Cox Model variant of the definitions displays the same proportional
difference in its covariates; ITT and TV lie in the same ballpark in regards to the
magnitude of their coefficients while also displaying the same level of confidence
on each parameter. OT was oddly quite separate from its two counterparts, with
its increased magnitude of Hypertension and Prior Mace being most noticeable,
likely stemming from the fact that we have a shorter exposure period as a whole,
so the hazard rate likely increases as a consequence. Suggesting that the three
definitions are not equivalent in their results.

Obesity in general was considered low-confidence in its correlation for all
three definitions, and given that obesity is often miss-classified and something
of a definition question, it’s reasonable to assume that the state of obesity is of
questionable value. Of course, it could be regarding differing degrees of obesity,
but that’s speculation.

Checking the diagnostic on Table 2, it seems that the assumption of pro-
portional hazard seems to hold, if barely only for ITT, The Martingale residual
in Figure 25 shows that the outcomes don’t diverge too far from its expected
outcome. We also note that there appears to be some misclassification on the
TV residual plot in Figure 16. The following diagnostic plots are referred to
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p Age Sex Hypert MACE Obes Global
ITT 0.838 0.028 0.228 0.053 0,821 0.114
OT 0.213 0.277 0.941 0.006 0.274 0.040
TV 0.088 0.117 0.253 0.021 0.843 0.027

Table 2: P-table for proportional hazard, where’s the null is non-proportional
hazard

Age Sex Hypertension Prior Mace Obesity
ITT 0.058 -0.66 0.39 -0.23* 0.62
OT NA NA NA NA NA
TV 0.058 -0.66 0.38 -0.22* 0.61

Table 3: The fitted coefficients of the Cox model for the Control model, NA
were added to the OT row due to lack of viable model for the simulated data
set.

henceforth in the Graphical Plot Section on pages 51 to 55.

In short, ITT and TV method seemed to be in practice equivalent in terms of
Cox parameters, while OT emphasizes the hazard rate, increasing it for the same
allotted exposure period, though the diagnostic property makes this assumption
questionable. In contrast to the results suggested by the non-parametric model,
where the survival rates of ITT and OT were equivalent, the TV method was
the outlier with its inflated risk in theNon-exposed category under the context
of a non-parametric model.

7.2 Simulated data set

In this part, we analyze the simulated data set using the same data processing
process used for the actual data set. All three present models were generated
with the same 10,000 participants, with only the event time and adherence being
modified.

7.2.1 Control model

The control model were simulated with no modification for adherence or inten-
sity, yielding us 551(5%) observed outcomes in line with the main data set.

The control model displayed notable divergence from the actual data set
that these generated data were based on; ITT as an example, didn’t capture
the differing survival rate for each drug, nor did it display the same general
survival rate in the Non-parametric model. It’s notable that the Cox parameter
is quite different compared to the ITT in the main data set, as the importance
of obesity and prior MACE were switched, with the magnitude being radically
different as well.
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Figure 17: Survival plot for ITT in the control model, where’s a increased
hazard rate is induced by the simulation

Figure 18: Survival plot for OT, where by its definition didn’t detect any out-
comes
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Figure 19: TV in this simulated data set retains the proportionality defined in
the simulated steps, showing that given how each outcomes is discovered/written
down determines the results

OT model didn’t appreciate the new model, because the drastic amount of
less observation lowered the already low number of events observed. Even at
a level that makes an appreciable Cox model impossible, in comparison, the
real data set (n=57764) had 308 observed outcomes in the OT definition. The
Control model had no events observed.

Comparing TV and the ITT definition in the control model, we note again
that the two definitions seem to be equivalent in the results of the Non-parametric
model, suggesting great divergence from the base data set, though it likely stems
from the way the data were generated with most of the outcome occurring dur-
ing the expected DDD period. ITT and TV are also equivalent in the Cox
model, which is in line with the base data set.

The diagnostic plot seemed to be agreeable with the simulated data, as the
proportional hazard assumption in table 6 holds for both definitions in contrast
to the real data set, and the Martingale plot with Figures 27 and 28 doesn’t show
too much bleeding of the outcome, confirming good prediction and linearity of
the model.

7.2.2 Intensity model

In the intensity model, the event time for any observations was halved, which
consequently increased the number of outcomes to 4001 (40%) marking a sharp
increase in outcomes.
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Age Sex Hypertension Prior Mace Obesity
ITT 0.059 -0.47 0.38 0.20 * 0.62
OT NA NA NA NA NA
TV 0.077 -0.67 0.50 0.39 0.82

Table 4: Cox Coefficients for intensity model: we note the shifting magnitudes
for Hypertension compared to the results of Control model, refer to Figure 3.
In addition we note that the parameters for ITT and TV definitions now differs
in contrast to the Control model. While OT did observe some events, they were
not enough for a satisfactory Cox model hence the NA on its row.

Figure 20: High intensity survival plot for ITT where the proportionality of the
drug types is retained.

The ITT definition surprisingly handled the increased outcomes quite well,
owing to its admittedly simple data processing. The survival rate in the Non-
parametric model showed a rather decreased survival rate, which is to be ex-
pected from the modification, but the proportionality of the drug types is still
present. The Cox model, in turn, has more positive coefficients to make up for
the decreased survival rate; most notable is that MACE is now positive again
and Age is more of a contributing factor.

OT even with the increased observed outcomes, still didn’t capture enough
observations to make for a passable Cox model or anything at all. Of the
4001 outcomes, only two passed the process, which states more the fact that
adherence is more important to this definition than the volume of outcomes.

TV method showed some concerning results; instead of continuing the trend
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Figure 21: Even with the heightened intensity, OT didn’t detect enough out-
comes to make for a usable model.

Figure 22: Interestingly, in the intensity model, the drug category Non-
exposed is now underrepresented in the survival rate compared to both Figure
14 and 17.
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Age Sex Hypertension Prior Mace Obesity
ITT 0.057 -0.64 0.54 0.05 * 0.81
OT NA NA NA NA NA
TV 0.057 -0.63 0.55 -0.077 * 0.88

Table 5: Cox parameters for Lazy model, here we note that ITT and TV differs
in the Cox parameters induced by the participants low adherence. OT were
again omitted due to likely producing no better results than the Control model.

of being roughly equivalent to ITT we now note extreme divergence.

The non-parametric model showed a higher survival rate than ITT with
Non-exposed, being the least likely to experience an event, which is a se-
vere departure from the norm produced by the base data set where the Non-
exposed category was the most inflated. In addition, the proportionality be-
tween drugs that was present in Control model is not retained in this model,
and the general survival rate is much higher in comparison to the ITT in the
high intensity model.

The Cox model did not appreciate the increased outcomes, diverging com-
pletely with its results from the expected norm by ITT, with it now stating that
all the parameters are significant.

The diagnostic shows some strong miss-classification with its Martingale
in figure 29 for ITT, denoting non-linearity. Its counterpart, TV showed no
such degree of miss-classification, though interestingly, proportional hazard is
retained in ITT while it doesn’t hold for TV.

7.2.3 Lazy model

In the lazy model, we have the same event time, but the expected gap between
refills is drastically increased with the same amount of observed outcomes (563),
in line with the control data.

ITT showed no difference from the control model, as the ITT model only
concerned itself with the starting drug and the eventual censoring or event time.

OT probably won’t make the cut; if it stuttered on the control model, a
model with a noted lack of adherence likely won’t do much good. If the adher-
ence were instead increased, this likely would converge to the ITT definition
suggested by Figure 14.

TV as the only model to be sensibly impacted by the adherence factor, the
Non-parametric model showed a lessened survival rate, with the Non-exposed
again having the highest survival rate, likely due to the increased amounts of
”harmless” Non-exposed periods.

44



Figure 23: ITT for low adherence, where it as expected is unaffected by the
adherence level

Figure 24: We notice again that the Non-exposed category is again underrepre-
sented for the TV method, and there appears to be a drop in one of the curves
with particular jaggedness. Suggesting a low amount of events related to that
drug
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With the exception of Prior MACE, ITT and TV shared the same mag-
nitude and confidence for the same parameters, though this does display some
inequalities present between the definitions.

The diagnostic showed that the proportional hazard is satisfied for both
ITT and TV by table 8. The martingale plot for TV in Figure 32 showed some
notable bleeding for the outcomes, implying some non-linearity in the model.

In short, it appears that inducing some unusual conditions in the simulated
data makes the definition diverge in its results; specifically, it appears that
while TV and ITT remain somewhat equivalent in the Control model, any
modification removed that common element for both higher outcome and low
adherence parameters. Implying that for conditions where we can expect some
extreme non-standard conditions, the three definitions start to differ severely.

8 Discussion

8.1 The base data set

Some of the entries in the data set had individuals experiencing an event before
any drugs were dispensed. This mostly concerned ITT given the definition of
whether one starts at the beginning of the study entry or the start of the actual
treatment. In this case, they were left out as censored outcomes, meaning they
didn’t contribute to the model.

The namesake of the drug, Risankizumab, was not available in large numbers
during the early days of the study, hence why it only showed up as a switched
drug and not as an initial medication. This has no large mathematical bearing
on the thesis but has an interesting effect on the definition used, as the two
definitions, ITT and OT, only care about the initial treatment plan, which
means that one of the major drugs used is not represented. Again, this likely
has a clinical interest when one uses ITT as it uses the whole exposure period
and most likely plays a role in the event of an outcome.

Though, in regards to the OT part, there was one participant assigned as
Risankizumab in contrast to ITT, this is likely just a quirk with the original
data set as we detected too few participants for it to be noticeable.

Figure 15 displayed a notable inflated risk associated with Non-exposed
category; again, as mentioned in the results themselves, it could stem from the
fact that the four main categories contribute to Non-exposed with its gap period,
so the dump category has more opportunities for more outcomes. Another way
to see this is that most outcomes are assigned when they’re detected and not
the actual date they occurred. As such, it could be that most of the symptoms
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are detected at a later date, such as the refill date, and then the outcome would
be assigned as Non-exposed exposure period.

8.2 Cox model

Some notable steps were taken when fitting the Cox model; the most apparent is
the set of variables and stratifying the model by drug type. It was decided to do
so since having the categorical parameters of each drug type would complicate
the model to an unreasonable degree.

The current set of variables was chosen more as a set of variables that could
easily be interpreted for the effects each definition has. Hence, there was no
extensive process for choosing a set of parameters, as the main purpose was to
find comparable parameters and not an exhaustive examination of the efficacy
of any psoriasis medication. The fact that one of the parameters, obesity, was
prone to miss-classifications is a benefit to us as a way to test how the definition
handles less reliable parameters.

In addition, no attempt was made at finding any interaction between the
variables, as again, we were interested in comparative parameters and not the
actual true parameter for the outcomes.

Some interesting thoughts about a specific definition, OT, were that, given
the treatment or set-up of the data set, it could either return a data set us-
able for survival analysis or, more unhelpful, nothing usable. For the actual
data set, we were fortunate enough to have anything, but the loss of observed
outcomes (308 against 3815) was almost not enough, and we still would prefer
more observed outcomes. If the data were any more diluted, smaller, rarer, or
in any combination, we wouldn’t have any usable data, as demonstrated by the
simulated data set.

Interesting enough, even the drastic reduction of observed outcomes still
returned the same level of survival rate compared to ITT, likely due to the
proportionally lowered exposure periods in general for OT. It can be interpreted
that OT can return a sensible survival rate if given a reasonable amount of data.

8.3 Simulated data

While the intent of this thesis was to measure the difference in hazard rate
between the three definitions, comparing those in the same equally distributed
data set should be sound reasoning. Though the simulated data set turned out
to be diverging from the real data set by the start, some analytic value could
still be had by examining the results internally between the three test models.

The varying results shown by the TV method showed a lot of variance when
given a data set with extreme conditions. While the divergence in the Control
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model from the real data set likely stems from the way the data were generated,
it still shows that how the data are laid out or collected affects the end model.
This goes further internally in the simulated data, which demonstrates that TV
method starts displaying wildly different results compared to ITT when applied
to modified data.

This then led to some observations regarding the TV method: given preset
parameters by the user, it can drastically alter the results. Indeed, if we, for
example, increase the gap delay in the two modified simulated models of Non-
exposed category, we could expect a less inflated survival rate due to creating
fewer ”harmless” exposure periods. This also extends to the actual data set,
where such a change could result in us assigning the outcome to another category
that’s not Non-exposed hence its ”proper” category.

Conversely, how the data set is collected could also matter, since if most of
the outcomes occur during the gap period, then it is expected that we will have
an inflation of the hazard rate on the Non-exposed which we saw in the real
data set. It probably is in one’s interest to introduce another ”dump” category
for any potential gap in the refill period to at least avoid these kinds of results
in the future or at least differentiate between actual Non-exposed and gap
periods.

This again relates to how TV performed in the actual data set, where Non-
exposed were inflated and the intensity and lazy models were deflated. This
could be interpreted as meaning that in a controlled environment where we
know the true dates, Non-exposed period is de-emphasized while the data set
with no known true date emphasizes the risk associated with the Non-exposed
period, if, of course, the simulated data is as close to life as possible.

The results of the OT on the simulated data are unfortunate and could be
seen as a waste of analysis; however, they serve some analytical value. It shows
that OT doesn’t detect any outcomes if the adherence is too low, depending on
the user’s definition of the course. It also shows that even if the data set has
a high hazard rate, OT wouldn’t still detect if the adherence is still too low,
arguing that OT needs some pre-data processing or exploration before being
considered.

When the event and censoring time were simulated, we censored all event
time that occurred after the censoring time. This is strange since this implies we
assume everyone in the study will eventually experience MACE, and we haven’t
observed it because it hasn’t happened yet. In the context of survival analysis,
this is fine, though that approach could be a factor in why we had a dip in the
survival rate at the end of the study period on the simulated data set.

It should be stressed that the simulated data set is made with assumptions
and caveats; despite the attempt to base the simulated data on the real data
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set, digressions and shortcuts were taken to explain why the simulated data set
is based on and is not the real data set. A factor that wasn’t used were any
potential hospital or health care visits; it doesn’t affect the thesis in any major
way, but one of the qualifications used for the definition is that healthcare visits
are taken into account.

When generating the covariates for the participant, a simple spread done by
uniform distribution was used to assign the covariates. This could create some
entries that could be considered nonsensical, such as a 1-year-old having prior
health complications from cardiovascular disease, which likely don’t happen in
reality. Of course, given that we based this on the real data set, this shouldn’t
really affect the general mean of the model, but it still retains some compromise
made for abstraction over realism.

One of the assumptions made is that the prior drug used in an individual’s
prescription history does not have a lingering half-life effect; in other words,
we assume that the prior medication has no bearing on the current survival
rate. In extension, due to the Cox model chosen, the underlying base hazards
inherent in each drug were largely omitted for a more readable model with it
being stratified by the drug category, hence why the actual choice of medication
actually doesn’t have an effect on the survival rate, though the simulated data
represented this as proportionally randomly divvying the drug to each period,
which is fine on a macro level but does not represent the actual drug usage or
its efficacy.

Another part that’s suspected but also outside the scope is the interaction
between exposure periods. It stands to reason that combining some of the drug
in a certain way after a certain period could be a notable factor in the event of
an outcome. Given that the Cox model was likely not catching this interaction,
the simulated data also omitted this interaction, and realizing this concept on
a simulated data set is a far deeper task that extends the scope of this work.
This also concerns the Cox model of the real data set, as no thought was given
to prior interactions between drug exposures, lending some digression regarding
the precision of the thesis.

8.4 Misc

Some thought about a specific definition in general, ITT, is that it doesn’t use
the adherence of the participant as a factor to be concerned about. Indeed,
given the way we processed the data set, ITT doesn’t care how diligent the
participant is. Of course, adherence does likely have an effect on the definition
as one needs to use the drug to be able to experience the side effect, but during
analysis that factor is missed more as a preventative measure than a direct
correlation. Which likely explains its sturdiness in the simulated data set.
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For the applicability of any extreme cases, while one hopefully won’t find a
situation where half of the participant experiences a side-effect, though it could
be useful for another data set with differing context, the other model for laziness
is definitely a more real and applicable situation one could find itself in.

9 Conclusion

Concluding the study, we have found that in terms of discussing the overall
hazard of the models, the three definitions had wildly differing results, which
seemed to stem from how the data were collected, processed, or interpreted.
ITT was the definition that was the least volatile, which might be due to its
simplicity; OT however needed some pre-data processing as if it’s given a data
set that’s small, diluted, applying too much of a gap, or the participant has
low adherence, it has low statistical power, but it can be expected to converge
towards ITT and is a better fit for specific findings. Time-varying method
shows stability when the data is relatively reasonable in line with ITT but
when it’s applied to a data set that’s extreme in one way or another, it can
produce wildly differing results. It’s also noted that setting the parameters for
Time-varying in regards to handling gap delays can adversely affect the end
results, emphasizing the importance of parameters set by the user subjectively
and not by a set standard, and that given that the data shows the true date of
its event, it can either overstate or downplay the associated survival risk with
TV. The simulation, while not true to the actual data set, does provide some
insight into the interplay between the definitions when viewed in a vacuum and
has lent itself to some observation displaying that for some extreme conditions,
the Cox model of ITT and TV starts diverging in contrast to the stable results
displayed on the real and controlled data set.
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Figure 25: Base Data set, the following Martingale plots displays good diagnos-
tic properties. They’re for reference and posterity’s sake, and they’re presented
as is.

10 Graphical plots

51



Figure 26: Base Data set

Figure 27: Control Data set
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Figure 28: Control Data set

Figure 29: Intensity model Data set
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Figure 30: Intensity model Data set

Figure 31: Lazy model Data set
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Figure 32: Lazy model Data set

11 Appendix

11.1 Proportional hazard values

p Age Sex Hypert MACE Obes Global
ITT 0.18 0.50 0.31 0.97 0.78 0.64
Time-varying 0.23 0.61 0.23 0.94 0.73 0.65

Table 6: P-table of Control model for non-proportionality, where we see the
assumption of proportional hazards holds for the parameters and the model
itself.

p Age Sex Hypert MACE Obes Global
ITT 0.61 0.86 0.92 0.32 0.75 0.93
Time-varying 0.01 0.009 0.23 0.036 0.96 0.004

Table 7: P-table of Intensity model for non-proportionality, we note that TV
definition don’t hold for proportional hazard assumption.
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p Age Sex Hypert MACE Obes Global
ITT 0.58 0.77 0.22 0.66 0.28 0.63
Time-varying 0.55 0.74 0.36 0.26 0.38 0.64

Table 8: P-table of Lazy model for non-proportionality, where we again note
good proportional hazard properties.

11.2 Predictable variation process

Given a time-continous martingale M, the predictable variation process is de-
fined as:

< M > (t) =

n∑
k=1

V ar(∇Mk|Fk−1) (61)

In other words, it’s defined as the sum of Martingale differences in its con-
ditional variance.

11.3 Martingale central limit theorem

Let

M (n)(t) = N (n)(t)−
∫ t

0

λ(u)du; n = 1, 2, ...

where it’s a sequence of vector valued counting process martingales denoted
by k(n) for the dimension of M (n), then for each n we introduce p x kn matrix

H(n)(t) for the predictable processesH
(n)
hj (t), h = 1, .., p, j = 1, ..., kn Consider

the limiting behavior of the stochastic integral.∫ t

0

H(n)(u)dM (n)(u); n = 1, 2, ...

In focus, we prove that for the condition for this sequence to converge to p-
variate mean 0 gaussian distribution. Let’s denote a p-variate Gaussian martin-
gale as U(t), its covariance is determined by the function V (t) = E{U(t)U(t)T }.
A continous determistic pxpmatrix-valued function that’s zero at time zero, and
with positive increments V (t)− V (s); t > s

To have the sequence of vector valued counting process martingales converge,
it’s required that the predictable variation process converge in probability to the
covariance function of the limiting Gaussian martingale; this takes the form∫ t

0

H(n)(u)diag{λ(n)(u)du}H(n)(u)T
P−→ V (t); n → ∞ (62)

For all [t ∈ [0, τ ] where λ is the same intensity process offered at section 4,
additionally another requirement states that the sample paths remain continous
in the limits. Which can be stated as
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kn∑
j=1

∫ t

0

(H
(n)
hj (u))2I{|H(n)

hj (u)| > ϵ}λj(u)du
P−→ 0 (63)

For all t ∈ [0, τ ], h = 1, ..., p and ϵ > 0 as n → ∞.

11.4 Doob-Meyer Composition

LetX = {X0, X1, X2, ...} be some general process such thatX0 = 0 with respect
to history {Fn}, we define a martingale process M = {M0,M1, ...} by:

M0 = X0, Mn −Mn−1 = Xn − E(Xn|Fn−1)

It’s clear that ∆Mn = Mn −Mn−1 is a martingale difference as the expec-
tation given the past Fn−1 is zero. This, therefore, can be written as:

Xn = E(Xn|Fn−1) + ∆Mn (64)

This is the Doob decomposition, where the first term is a function of the
past only and the second term ∆Nn is termed innovations as it represents new
and unexpected information compared to the past.

11.5 Medication used

Table 9 is a clarification of the drugs used in this thesis with their ATC classi-
fication and its type.
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ATC Name Class
D05BB0 Acitretin Retinoids for treatment of psoriasis
L04AA06 Mycophenolic Acid Selective immunosuppressants
L04AA10 Sirolimus Selective immunosuppressants
L04AA13 Leflunomide Selective immunosuppressants
L04AA18 Everolimus Selective immunosuppressants
L04AA21 Efalizumab Selective immunosuppressants
L04AA23 Natalizumab Selective immunosuppressants
L04AA24 Abatacept Selective immunosuppressants
L04AA26 Belimumab Selective immunosuppressants
L04AA27 Fingolimod Selective immunosuppressants
L04AA29 Tofacitinib Selective immunosuppressants
L04AA31 Teriflunomide Selective immunosuppressants
L04AA32 Apremilast Selective immunosuppressants
L04AA33 Vedolizumab Selective immunosuppressants
L04AA37 Baricitinib Selective immunosuppressants
L04AA40 Cladribine Selective immunosuppressants
L04AA44 Upadacitinib Selective immunosuppressants
L04AA45 Filgotinib Selective immunosuppressants
L04AA50 Ponesimod Selective immunosuppressants
L04AB01 Etanercept Tumor necrosis factor alpha (TNF-α) inhibitor
L04AB02 Infliximab Tumor necrosis factor alpha (TNF-α) inhibitor
L04AB04 Adalimumab Tumor necrosis factor alpha (TNF-α) inhibitor
L04AB05 Certolizumab pegol Tumor necrosis factor alpha (TNF-α) inhibitor
L04AB06 Golimumab Tumor necrosis factor alpha (TNF-α) inhibitor
L04AC01 Daclizumab Interleukin inhibitors
L04AC03 Anakinra Interleukin inhibitors
L04AC05 Ustekinumab Interleukin inhibitors
L04AC07 Tocilizumab Interleukin inhibitors
L04AC08 Canakinumab Interleukin inhibitors
L04AC10 Secukinumab Interleukin inhibitors
L04AC12 Brodalumab Interleukin inhibitors
L04AC13 Ixekizumab Interleukin inhibitors
L04AC14 Sarilumab Interleukin inhibitors
L04AC16 Guselkumab Interleukin inhibitors
L04AC18 Rinsankizumab Interleukin inhibitors
L04AC21 Bimekizumab Interleukin inhibitors
L04AD01 Ciclosporin Calcineurin inhibitors
L04AD02 Tacrolimus Calcineurin inhibitors
L04AX01 Azathioprine Other immunosuppressants
L04AX02 Thalidomide Other immunosuppressants
L04AX03 Methotrexate Other immunosuppressants
L04AX04 Lenalidomide Other immunosuppressants
L04AX05 Pirfenidone Other immunosuppressants
L04AX06 Pomalidomide Other immunosuppressants
L04AX07 Dimethyl fumarate Other immunosuppressants

Table 9: Tabulated list of medication in this thesis
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