

Mathematical Statistics Stockholm University Master Thesis **2024:10** http://www.math.su.se

On phase transitions for the trace of squared sample correlation matrices in high dimension

Felix Seo^{*}

June 2024

Abstract

We provide limit theory for the trace of the squared sample correlation matrix \mathbf{R} , constructed from n observations of a p-dimensional random vector with iid components. If the entries have finite fourth moment and p and n grow proportionally, it is known that $tr(\mathbf{R}^2)$ satisfies a central limit theorem (CLT) and the centering and scaling sequences are universal in the sense that they do not depend on the entry distribution. Under a symmetry and a regular variation assumption with index α and any growth rate of the dimension, we prove that the universal CLT remains valid for $\alpha > 3$. Moreover, for $\alpha \leq 3$ we establish a non-universal CLT with norming sequences depending on the value of α . Our findings are illustrated in a small simulation study.

^{*}Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-mail: fese8867@student.su.se. Supervisor: Johannes Heiny.