
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

On phase transitions for the trace of squared
sample correlation matrices in high dimen-
sion

Felix Seo



Matematiska institutionen

Masteruppsats 2024:10

Matematisk statistik

Juni 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm
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CORRELATION MATRICES IN HIGH DIMENSION

FELIX SEO

Abstract. We provide limit theory for the trace of the squared sample correlation matrix R,

constructed from n observations of a p-dimensional random vector with iid components. If the

entries have finite fourth moment and p and n grow proportionally, it is known that tr(R2) satisfies

a central limit theorem (CLT) and the centering and scaling sequences are universal in the sense

that they do not depend on the entry distribution. Under a symmetry and a regular variation

assumption with index α and any growth rate of the dimension, we prove that the universal CLT

remains valid for α > 3. Moreover, for α ≤ 3 we establish a non-universal CLT with norming

sequences depending on the value of α. Our findings are illustrated in a small simulation study.

1. Introduction

Measuring the dependence between random variables has always been a fundamental task in

statistics. Starting with the early works of Pearson [18], Kendall [15], Hoeffding [13] and Blum

[6], several measures of dependence or association have been introduced and analyzed by numerous

authors. An outstanding role is played by Pearson’s correlation coefficient, a measure of the linear

dependency of two random variables, about which most students learn early on in their studies.

Motivated by its importance for statistical inference and estimation, many works are devoted to

its stochastic properties in different frameworks. For example, in time series analysis, the notion of

correlation plays a vital role in multivariate statistical analysis for parameter estimation, goodness-

of-fit tests, change-point detection, etc.; see for example the classical monographs [7, 19].

With the rapid advancements of data collection devices, many modern fields such as biological

engineering, telecommunications and finance require the analysis of high-dimensional data sets

where the dimension p and the sample size n are of comparable magnitude. As a result traditional

results from multivariate analysis, which rely on the assumption that the dimension remains fixed

and thus is negligible compared to the sample size, are typically not applicable in high-dimensional

regimes. Driven by such challenges, random matrix theory - as outlined in the monographs [2, 20]

- aims to provide a deeper understanding of differences that arise when p is assumed to grow with

n. A standard assumption is that the ratio p/n approaches some positive constant. It is worth

mentioning that a regime where p =
√
n might lead to completely different asymptotic theory than

(say) p = n. In practical applications, however, p/n is always some positive number and it is

therefore non-trivial to distinguish between various regimes.

1.1. Our Model. Consider a p-dimensional population x = (X1, . . . , Xp)
⊤ ∈ Rp, where the com-

ponents Xi are independent and identically distributed (iid), non-degenerated random variables

with mean zero. For a sample x1, . . . ,xn from the population we construct the data matrix
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X = Xn = (x1, . . . ,xn) = (Xij)1≤i≤p;1≤j≤n, the sample covariance matrix S = Sn = n−1XX⊤

and the sample correlation matrix R,

R = Rn = {diag(Sn)}−1/2 Sn{diag(Sn)}−1/2 = YY⊤ . (1.1)

Here the standardized matrix Y = Yn = (Yij)1≤i≤p;1≤j≤n for the sample correlation matrix has

entries

Yij = Y
(n)
ij =

Xij√
X2

i1 + · · ·+X2
in

, (1.2)

which depend on n. Throughout the paper, we often suppress the dependence on n in our notation.

Since Yij is invariant with respect to a scaling of the Xij ’s, we will assume without loss of generality

that E[X2
11] = 1 whenever E[X2

11] is finite. In this paper, we will often assume that |X11| has a

regularly varying tail with index α > 0, that is

P(|X11| > x) = x−α L(x) , x > 0 , (1.3)

for a function L that is slowly varying at infinity. Thus, regularly varying distributions possess

power-law tails and moments of |X11| of higher order than α are infinite. Typical examples include

the Pareto distribution with parameter α and the t-distribution with α degrees of freedom. In

addition, we assume that the distribution of X11 is symmetric, that is, X11
d
= −X11. We consider

the high-dimensional regime

p = pn → ∞, as n → ∞ .

1.2. Background. Many popular test statistics, such as the likelihood ratio statistic for testing

independence of a normal population, can be expressed as a function of the eigenvalues of the

sample covariance matrix S or the sample correlation matrix R. For a function f : R → R and

a random matrix A with p real eigenvalues λ1(A) ≥ · · · ≥ λp(A), we call
∑p

i=1 f(λi(A)) a linear

spectral statistic of A. In the proportional regime p/n → γ ∈ (0,∞), the spectral properties of the

sample covariance matrix S have been well studied in random matrix theory since the pioneering

work [17], where it is shown that the empirical distribution of the eigenvalues λi(S) converges

weakly to the celebrated Marčenko–Pastur law. Moreover, the paper [3] established asymptotic

normality of suitably centered and normalized linear spectral statistics of S in the proportional

regime with finite fourth moment E[X4
11].

In contrast, the study of the sample correlation matrix R is more recent and more limited. A

fundamental reason is that compared to the original data matrix X, the entries Yij of the stan-

dardized matrix Y are no longer independent within the same row (the different rows remain iid).

This makes the sample correlation matrix more challenging to study. Assuming the proportional

regime, Lemma 2 in [4] asserts that E[X4
11] < ∞ is equivalent to ∥diag(S)− I∥ a.s.→ 0 , n → ∞, where

∥ · ∥ is the spectral norm and I the identity matrix; see also [11, Theorem 1.2] for a similar result

in the dependent case. Therefore, under finite fourth moment the normalization {diag(S)}−1/2 in

(1.1) can be replaced with I and consequently maxi |λi(R) − λi(S)| ≤ ∥R − S∥ converges to zero

almost surely as n → ∞. It turns out that a modification of this trick can be used to obtain central

limit theorems (CLTs) for linear spectral statistics of R from CLTs for linear spectral statistics of

S [21, 22].
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To the best of our knowledge, the only available result under infinite fourth moment concerns

the function f = log for which
∑p

i=1 log(λi(R)) = log detR, the log-determinant of the sample

correlation matrix.

Theorem 1.1. [12, Theorem 2.1] Assume p/n → γ ∈ (0, 1) and that the distribution of X11 is

symmetric and regularly varying with index α ∈ (3, 4). Then, as n → ∞, we have

log detR− (p− n+ 1
2) log(1−

p
n) + p− p

n√
−2 log(1− p/n)− 2p/n

d→ N(0, 1) .

This work was motivated by the functions fk(x) := xk, k ≥ 2, for which

p∑
i=1

fk(λi(R)) = tr(Rk) .

(Note that the case k = 1 is degenerate since tr(R) = p is non-random.) CLTs for linear spectral

statistics of R for more general functions f can be obtained by approximating f through polynomi-

als, that is, linear combinations of fk’s. For technical reasons and for the sake of clarity, we restrict

ourselves to the case k = 2.1

1.3. Our contributions. The novel contributions of this paper are outlined below.

• We provide CLTs for tr(R2) under general growth rates of p relative to n and investigate

the influence of the tail index α. If p ≍ nδ for some δ > 0, we determine a region for (α, δ)

where tr(R2) satisfies a CLT. For any pair (α, δ) outside the closure of this region, we prove

that moment convergence fails.

• At α = 3 (corresponding to the boundary of finite and infinite third moment), we discover

a transition in the variance of tr(R2). As a consequence, if α > 3, no restriction on the

growth of p is required for the validity of the CLT.

• To the best of our knowledge, this work is the first that provides a CLT for a (non-trivial)

linear spectral statistic of R in the case of infinite third moment E|X11|3 = ∞.

1.4. Structure of this paper. This paper is structured as follows. In Section 2, we derive a

decomposition of tr(R2), the trace of the squared sample correlation matrix. Based on this decom-

position, Theorem 2.6 provides precise conditions for the convergence of the fourth moment of the

standardized tr(R2) to the fourth moment of a standard normal variable. In Section 3, we present

central limit theorems for tr(R2) (Theorem 3.1) under very general growth rates on the dimension

p and the tail index α. The results are then illustrated by means of a small simulation study.

Section 4 contains the proof of Theorem 3.1 using martingale theory, while Section 5 is devoted to

the proofs of the results of Section 2. Finally, the appendix consists of facts for sums of regularly

varying random variables.

1An extension to general k is a topic for future research.
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1.5. Notation. Convergence in distribution (resp. probability) is denoted by
d→ (resp.

P→), equality

in distribution by
d
=, and unless explicitly stated otherwise all limits are for n → ∞. For sequences

(an)n and (bn)n we write an = O(bn) if an/bn ≤ C for some constant C > 0 and every n ∈ N, and
an = o(bn) if limn→∞ an/bn = 0. Additionally, we use the notation an ∼ bn if limn→∞ an/bn = 1,

and an = ω(bn) if limn→∞ an/bn = ∞. We write an ≲ bn if there exists a positive constant C not

depending on n such that an ≤ C bn for sufficiently large n. The notation an
sl.v.
= bn means that

an = bnℓ(n) for some function ℓ that is slowly varying (at infinity). A function ℓ : (0,∞) → (0,∞)

is said to be slowly varying (at infinity) if limx→∞ ℓ(tx)/ℓ(x) = 1 for any t > 0.

2. Preliminaries

The main motivation of this work is to investigate the fluctuations of the trace of powers of the

sample correlation matrix. That is, we aim to prove limit theorems for

tr(Rk) =

p∑
i1,...,ik=1

n∑
t1,...,tk=1

Yi1t1Yi1t2Yi2t1Yi2t2 · · ·YiktkYik+1tk , k ≥ 2. (2.1)

(Here the convention ik+1 = i1 is used.) It is worth mentioning that tr(R) = p since all diagonal

elements of R are one. In this paper, we will focus on tr(R2), but our approach naturally extends

to traces of higher powers of R.

Unless explicitly stated otherwise, the (Xit) are iid and symmetric throughout this paper, which

implies that the Yit are symmetric as well. The following properties of the matrix Y = (Yit) will

be repeatedly used in this paper.

(1) By symmetry of the entry distribution we have for s ≤ n that E[Y m1
i1 · · ·Y ms

is ] = 0 if at least

one exponent mj ∈ N is odd.

(2) Y has independent rows.

(3) By definition,
∑n

t=1 Y
2
it = 1 for each row i.

The first step is to study tr(R2) for a wide range of distributions of X11 and growth rates of the

dimension p relative to the sample size n. But before we delve deeper into this we need to introduce

some important notation and results about the moments of Yij ’s that will be crucial in our analysis.

First, define for all positive integers k1, . . . , kr

β2k1,...,2kr := E[Y 2k1
11 Y 2k2

12 · · ·Y 2kr
1r ],

where we recall the definition of Yij from (1.2). Since β2k1,...,2kr = β2kπ(1),...,2kπ(r)
for any permutation

π on {1, . . . , r} we will write the indices in decreasing order, e.g., instead of β2,4 we prefer writing

β4,2. The following key lemma reveals the asymptotic behavior of β2k1,...,2kr .

Lemma 2.1. Define the Yij’s as in (1.2) and let L be a slowly varying function (at infinity). For

integers k1, . . . , kr ≥ 1, set k = k1 + · · ·+ kr and N1 = #{1 ≤ i ≤ r : ki = 1}, and let Γ(·) denote

the gamma function.

(a) If α ∈ (0, 2) and P(|X11| > x) = x−αL(x) for x > 0, then it holds

lim
n→∞

nrβ2k1,...,2kr =

(
α
2

)r−1
Γ(r)

∏r
j=1 Γ(kj − α/2)(

Γ(1− α/2)
)r

Γ(k)
.
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In particular, we have

lim
n→∞

nβ2k =
Γ(k − α/2)

Γ(1− α/2)Γ(k)
, k ≥ 1 .

(b) If α ∈ [2, 4), E[X2
11] = 1 and P(|X11| > x) = x−αL(x) for x > 0, then it holds

lim
n→∞

nN1(1−α/2)+rα/2

Lr−N1(n1/2)
β2k1,...,2kr =

(α/2)r−N1Γ(N1(1− α/2) + rα/2)
∏

i:ki≥2 Γ(ki − α/2)

Γ(k)
. (2.2)

In particular, we have

lim
n→∞

nα/2

L(n1/2)
β2k =

αΓ(α/2)Γ(k − α/2)

2Γ(k)
, k ≥ 2 .

(c) Assume P(|X11| > x) = x−αL(x). If {α = 2 and E[X2
11] = ∞} or {α = 4,E[X2

11] = 1 and

E[X4
11] = ∞}, then (2.2) remains valid if we multiply its left-hand side with some slowly

varying function (that depends on L and k1, . . . , kr).

(d) If E[X2maxi ki
11 ] < ∞ and E[X2

11] = 1, then it holds

lim
n→∞

nkβ2k1,...,2kr =
r∏

i=1

E[X2ki
11 ] .

Proof. For a proof of part (a), see [1, p. 4]. Regarding part (b), we remark that (2.2) was proved

in [12, Lemma 4.1] for α ∈ (2, 4). For our case let β = α/2 and X
d
= X11. From [1, p. 7], we have

E[Y 2k1
11 · · ·Y 2kr

1r ] =
(−1)k

nΓ(k)

∫ ∞

0

(
t
n

)k−1
φn−r

(
t
n

) r∏
i=1

φ(ki)
(

t
n

)
dt , (2.3)

where φ(s) = E[e−sX2
], s > 0, and φ(m)(s) = dm

dsmφ(s). By [1], we have

lim
n→∞

φn−r
(

t
n

)
= e−t , t > 0 , (2.4)

provided that E[X2] = 1. For regularly varying |X| with index β, [16, Lemma 2] asserts that the

asymptotic behavior of φ(m)(s), m ∈ N, at the origin is given by

(−1)mφ(m)(s) ∼


βΓ(m− β)sβ−mL(s−1/2) , if m > β,

βℓ(s−1) , if m = β and E[X2m] = ∞,

E[X2m] , if m ≤ β and E[X2m] < ∞,

s ↓ 0 , (2.5)

where ℓ(x) =
∫ x
0 L(u1/2)/udu is a slowly varying function (at infinity).
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By (2.3), Potter’s theorem and the dominated convergence theorem (for more details see [1] or

[9]), we obtain in view of (2.4) and (2.5) that, as n → ∞,

E[Y 2k1
11 · · ·Y 2kr

1r ] =
(−1)k

nΓ(k)

∫ ∞

0

(
t
n

)k−1
φn−r

(
t
n

)(
φ(1)

(
t
n

))N1 ∏
i:k1≥2

φ(ki)
(

t
n

)
dt

∼ 1

nΓ(k)

∫ ∞

0

(
t
n

)k−1
e−t
(
E[X2]

)N1 ∏
i:ki≥2

βΓ(ki − β)
(
t
n

)β−ki L
((

t
n

)−1/2
)

︸ ︷︷ ︸
∼L(n1/2)

dt

∼
( ∏

i:ki≥2

Γ(ki − β)
)βr−N1Lr−N1(n1/2)

nN1(1−β)+βrΓ(k)

∫ ∞

0
e−t tN1(1−β)+βr−1 dt

=
Lr−N1(n1/2)

nN1(1−β)+βr

βr−N1Γ(N1(1− β) + βr)
∏

i:ki≥2 Γ(ki − β)

Γ(k)
.

Rearranging yields (2.2) and completes the proof of part (b).

The proof of part (c) is very similar. To this end, note that the three lines in (2.5) only differ

by a slowly varying function. In the case {α = 2 and E[X2
11] = ∞}, one has to use the middle line

in (2.5) for φ(1) instead of the first one, combined with equation (14) in [1] instead of (2.4). In the

case {α = 4,E[X2
11] = 1 and E[X4

11] = ∞}, one needs to use the middle line in (2.5) for φ(2) instead

of the last one. For brevity we omit details.

Regarding part (d), we analogously get, as n → ∞,

E[Y 2k1
11 · · ·Y 2kr

1r ] =
(−1)k

nΓ(k)

∫ ∞

0

(
t
n

)k−1
φn−r

(
t
n

) r∏
i=1

φ(ki)
(

t
n

)
dt

∼ 1

nΓ(k)

∫ ∞

0

(
t
n

)k−1
e−t

r∏
i=1

E[X2ki ] dt =
1

nk

r∏
i=1

E[X2ki ] .

□

Now we are ready to calculate the mean and variance of tr(R2). From (2.1) it is simple to see

that

tr(R2) =

p∑
i1,i2=1

n∑
t1,t2=1

Yi1t1Yi1t2Yi2t1Yi2t2

=

p∑
i=1

n∑
t1,t2=1

Y 2
it1Y

2
it2 +

p∑
i1,i2=1
i1 ̸=i2

n∑
t1,t2=1

Yi1t1Yi1t2Yi2t1Yi2t2

= p+

p∑
i1,i2=1
i1 ̸=i2

n∑
t=1

Y 2
i1tY

2
i2t +

p∑
i1,i2=1
i1 ̸=i2

n∑
t1,t2=1
t1 ̸=t2

Yi1t1Yi1t2Yi2t1Yi2t2 , (2.6)

where the property Y 2
i1+ · · ·+Y 2

in = 1 was used for the last equality. Since E[Y 2
it ] = 1/n, we deduce

that

µn := E[tr(R2)] = p+
p(p− 1)

n
. (2.7)
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An interesting observation is that the mean does not depend on the distribution of X11. In view of

the identity
∑n

t=1

(
Y 2
i1t
Y 2
i2t
− 1

n2

)
=
∑n

t=1

(
Y 2
i1t
− 1

n

)(
Y 2
i2t
− 1

n

)
, we have derived the nice decomposition

tr(R2)− E[tr(R2)] = T1 + T2 , (2.8)

where

T1 :=

p∑
i1,i2=1
i1 ̸=i2

n∑
t=1

(
Y 2
i1t −

1

n

)(
Y 2
i2t −

1

n

)
and T2 :=

p∑
i1,i2=1
i1 ̸=i2

n∑
t1,t2=1
t1 ̸=t2

Yi1t1Yi1t2Yi2t1Yi2t2 (2.9)

are two sums of centered and uncorrelated random variables. Using (2.8), the variance of tr(R2) is

given by

Var(tr(R2)) = E[T 2
1 ] + E[T 2

2 ], (2.10)

since E[T1T2] = 0 as it only contains moments of odd powers of Yit’s. The next lemma gives E[T 2
1 ]

and E[T 2
2 ] in terms of β4 = E[Y 4

11]. Its proof as well as the proofs of the following results in this

section are presented in Section 5.

Lemma 2.2. For any symmetric distribution of X11 and p = pn → ∞, it holds

E[T 2
1 ] =

p(p− 1)n(2n− 1)

n− 1

(
β4 −

1

n2

)2
∼ 2p2n

(
β4 −

1

n2

)2
,

E[T 2
2 ] =

4p(p− 1)n

n− 1

( 1
n
− β4

)2
∼ 4p2

( 1
n
− β4

)2
, n → ∞ .

From (2.10) and Lemma 2.2 we deduce that

Var(tr(R2)) = 2np(p− 1)

(
n− 0.5

n− 1

(
β4 −

1

n2

)2

+
2

n− 1

(
1

n
− β4

)2)
. (2.11)

Remark 2.3. From a theoretical point of view, it is more interesting to discuss and interpret

the findings of this work for distributions with infinite fourth moments. To this end, we typically

impose the regular variation assumption (1.3) with index α ∈ (0, 4). We would like to mention that

the case of finite fourth moment is much simpler from a technical point of view since it only requires

part (d) of Lemma 2.1, whereas the regular variation setup with α ∈ (0, 4) contains fascinating

transitions since the orders of the β’s depend on α as showcased in parts (a) and (b) of Lemma 2.1.

Roughly speaking, the variance in (2.11) is essentially determined by E[T 2
1 ] if E|X11|3 = ∞ and

by E[T 2
2 ] otherwise. This means that the variance undergoes a transition at α = 3. To make this

point more precise, we will start by analyzing the formulas in Lemma 2.2 for α ∈ (2, 4). In this case,

Lemma 2.1 asserts that β4 ∼ n−α/2L(n1/2)C4,α, as n → ∞, where C4,α := Γ(1 + α/2)Γ(2 − α/2).

In combination with Lemma 2.2, we deduce that, as n → ∞,

Var(tr(R2)) ∼

E[T 2
1 ] ∼ 2p2nβ2

4 if α < 3,

E[T 2
2 ] ∼ 4p2n−2 if α > 3.

(2.12)

The next lemma provides more detailed information about the asymptotic behavior of Var(tr(R2)).

It shows that

σ2
n := 2p2n

(
β2
4 + 2n−3

)
(2.13)
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is asymptotically equivalent to Var(tr(R2)), and thus efficiently captures the effect of p, n and the

distribution of X11.

Lemma 2.4. For any symmetric distribution of X11 and p = pn → ∞, it holds

Var(tr(R2)) ∼ σ2
n , n → ∞ .

Moreover, σ2
n satisfies

σ2
n ∼


4p2n−2 if E[X4

11] < ∞ or α ∈ (3, 4),

2p2n−2(L2(n1/2)C2
4,α + 2) if α = 3,

2p2n1−αL2(n1/2)C2
4,α if α ∈ [2, 3) and E[X2

11] = 1,

2p2n−1(1− α/2)2 if α ∈ (0, 2),

where C4,α := Γ(1 + α/2) Γ(2− α/2).

In view of (2.12), it follows from Markov’s inequality that

tr(R2)− E[tr(R2)]

σn
=

T1/σn + oP(1) if α < 3,

T2/σn + oP(1) if α > 3.
(2.14)

2.1. Moments of T1 and T2. Throughout this subsection, we assume that the distribution of X11

is symmetric and regularly varying with index α ∈ (0, 4), unless explicitly stated otherwise. In

order to get a first idea for which combinations of α, p and n we might have a CLT for (tr(R2) −
E[tr(R2)])/σn

d→ N(0, 1), we compute the fourth moment of these random variables and check

when they converge to 3, the fourth moment of a standard normal variable.

In view of (2.14), it suffices to study T1 for α ≤ 3 and T2 for α ≥ 3. Careful combinatorial

considerations yield the following important technical result.

Lemma 2.5. For α ∈ (0, 4) it holds

E[T 4
1 ] ∼ 12β4

4n
2p4 + 8β2

8np
2 + 64β2

6β4np
3 , n → ∞ .

For 4 > α ≥ 3 it holds

E[T 4
2 ] ∼ 48n−4p4 , n → ∞ .

In order to capture the interplay between p, n and α, we introduce the function δ∗,

δ∗(α) :=


(5− α)/2 if α ∈ (3, 4),

(α− 1)/2 if α ∈ [2, 3],

1/2 if α ∈ (0, 2).

(2.15)

A condition of the form p = ω(nδ) for some δ > δ∗(α) will turn out to play in important role in

convergence of the fourth moment and in the CLT for tr(R2). The next theorem sheds light on the

convergence of the fourth moment.

Theorem 2.6. For α ∈ (0, 3) ∪ (3, 4) and assuming that p = ω(nδ) for some δ > δ∗(α), we have

lim
n→∞

E
[
(tr(R2)− E[tr(R2)])4

]
Var(tr(R2))2

= 3 . (2.16)
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Moreover, if p = o(nδ) for some δ < δ∗(α), then it holds

lim
n→∞

E
[
(tr(R2)− E[tr(R2)])4

]
Var(tr(R2))2

= ∞ .

Theorem 2.6 reveals a transition in the convergence of moments at p = nδ∗(α). The limit in

the case p = nδ∗(α) depends in a delicate way on certain slowly varying functions2 that can be

expressed in terms of the function L in P(|X11| > x) = x−αL(x). It should be pointed out that the

requirement δ > δ∗(α) for (2.16) is specifically tailored to the convergence of the fourth moment.

In general, for higher moments a slightly different condition will be required. The next result

shows that we can obtain a larger region for p by only considering the leading term (in the sense

of convergence in distribution) of the decomposition T1 + T2. Recall that T1/σn = oP(1) if α > 3,

and T2/σn = oP(1) if α < 3. Interestingly, in the case α ∈ (3, 4), the crucial condition δ > δ∗(α)

can be dropped if one focuses on the leading term only, as the following result shows.

Proposition 2.7. If α ∈ (0, 3] then

lim
n→∞

E[T 4
1 ]

E[T 2
1 ]

2
=

3 if p = ω(nδ) for some δ > δ∗(α) ,

∞ if p = o(nδ) for some δ < δ∗(α) ,

with δ∗(α) defined in (2.15). If α ∈ [3, 4), we have

lim
n→∞

E[T 4
2 ]

E[T 2
2 ]

2
= 3 . (2.17)

Following the lines of the proof of Proposition 2.7, one can show that (2.17) remains valid if the

regular variation assumption is replaced by E[X4
11] < ∞. The difference between the conditions on

δ in Theorem 2.6 and Proposition 2.7, respectively, is due to the fact that the oP(1)-term T1/σn

might have a diverging fourth moment for α ∈ (3, 4) which the following lemma asserts.

Lemma 2.8. For α ∈ (3, 4) we have

lim
n→∞

E[T 4
1 ]

Var(tr(R2))2
=

0 if p = ω(nδ) for some δ > δ∗(α) ,

∞ if p = o(nδ) for some δ < δ∗(α) .

For α ∈ (0, 3) it holds

lim
n→∞

E[T 4
2 ]

Var(tr(R2))2
= 0.

3. Main results

Now we are ready to present a CLT for tr(R2) as the main result of this paper. Again we assume

that the distribution of X11 is symmetric and regularly varying with index α ∈ (0, 4). From (2.7)

and (2.13) recall that

µn = p+
p(p− 1)

n
and σ2

n = 2p2n
(
β2
4 + 2n−3

)
.

2In our proofs, we often use the Potter bounds which guarantee that limn→∞ ℓ(n)/nε → 0 and limn→∞ ℓ(n)nε → ∞
for any positive slowly varying function ℓ and ε > 0 (see for instance [5]).
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Theorem 3.1. Let α ∈ (0, 4) and p = pn → ∞. If α ∈ (0, 3], additionally assume p = ω(nδ) for

some δ > δ∗(α) with δ∗(α) defined in (2.15). Then, as n → ∞, tr(R2) satisfies

tr(R2)− µn

σn

d→ N(0, 1) .

Theorem 3.1 reveals the dependence on α in the variance but also that we need a minimal growth

rate for p in the case α ∈ (0, 3). This is solely because of T1 giving rise to high order terms in

the martingale differences in Lemmas 4.5 and 4.6 that are essential in the proof of Theorem 3.1

which can be found in Section 4. What is interesting is that we acquire less strict conditions

for convergence in distribution to the standard normal distribution than for convergence of the

centralized fourth moment divided by the squared variance; see Theorem 2.6 for details. The extra

condition on p when α ∈ [3, 4) that is present in Theorem 2.6 but not in Theorem 3.1 is due to the

fact that we do not need to consider T1 when α > 3 in the martingale differences, while T1 needs

to be considered in the fourth moment calculations. More specifically, we need convergence to zero

for E[T 4
1 ]/Var(tr(R

2))2 when α ∈ [3, 4) as stated in Lemma 2.8 for (2.16) to hold.

Since σ2
n = 4p2n−2 for α ∈ (3, 4), we obtain the following corollary of Theorem 3.1.

Corollary 3.2. Let α ∈ (3, 4) and p = pn → ∞, then as n → ∞ we have

tr(R2)− µn

2pn−1

d→ N(0, 1) .

This means that for α > 3 the normalizing sequences in the CLT are universal and p may tend

to infinity at arbitrary speeds. The situation is quite different for α < 3, when both the variance

σ2
n

sl.v.
= p2n1−max{α,2} (Lemma 2.4) and the minimal growth of p depend on α.

Furthermore, a careful inspection of the proof of Theorem 3.1 in the case α ∈ (3, 4) yields the

following result.

Theorem 3.3. Let X11 follow a symmetric distribution with finite fourth moment and assume

p = pn → ∞. Then it holds

tr(R2)− µn

2pn−1

d→ N(0, 1) , n → ∞ .

With slightly more effort it is possible to remove the symmetry assumption onX11 in Theorem 3.3

at the cost of imposing the condition E[|X11|k] < ∞ for a suitably large k ≥ 4 that might depend

on the relationship between p and n. However, this result will not be pursued in this work.

3.1. Simulations. To illustrate the role of α and the need of symmetry we will perform some

simulations. In order to use Lemma 2.4 in the case α ∈ (2, 3], we need the slowly varying function

L or, more precisely, the value L(n1/2). Let Z1, Z2 be iid Pareto random variables with parameter

α > 2, that is, P(Z1 > x) = x−α, x > 1. To generate a symmetric X11 with unit variance, we let

X11
d
= (Z1 − Z2)Var(Z1 − Z2)

−0.5. Since Z1, Z2 are iid and Pareto-distributed we have

Var(Z1 − Z2) =
2α

(α− 1)2(α− 2)
=: Kα.

Using Lemma A.1, it is staightforward to show that the distribution of X11 has regularly varying

tail with index α. In the notation of Lemma A.1, we let S2 = Z1 + (−Z2) and since, for x > 0,
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P(Z1 > x) = F (x) and P(−Z2 > x) = 0 we get c+1 = 1 and c+2 = 0. We also find that c−1 = 0 and

c−2 = 1 since P(Z1 ≤ −x) = 0 and P(−Z2 ≤ −x) = F (x). This satisfies (A.7) and it is obvious that

also (A.8) holds. Now Lemma A.1 implies that P(Z1−Z2 > x) ∼ x−α and P(−Z1+Z2 > x) ∼ x−α

yielding that P(|Z1 − Z2| > x) ∼ 2x−α, as x → ∞. Finally, we get by using the latter

P(|X11| > x) = P(|Z1 − Z2| > xK0.5
α ) ∼ x−α2K−0.5α

α

meaning that L(x) ∼ 2K−0.5α
α . Thus, L(n1/2) ≈ 2K−0.5α

α and we can approximate σ2
n by using

Lemma 2.4. Figure 1 provides the simulation results and we observe a good fit of both the histogram

and kernel density to the density of the standard normal distribution for all values of α.

(a) α = 0.5 (b) α = 1.1

(c) α = 2.8 (d) α = 3.9

Figure 1. Simulations of the central limit theorem for tr(R2) for different values

of α and p = 400, n = 1000 with 1000 repetitions. Here X11
d
= (Z1 − Z2)K

−0.5
α is

symmetric with Z1, Z2 iid Pareto-distributed random variables.

To get some understanding of the behavior in the tails we present the Q-Q-plots seen in Figure 2.

In the cases with small α the tails deviate the most from the straight line, which is not unexpected

since the tails get heavier for smaller value of the shape parameter α in a Pareto distribution.

Generally the Q-Q-plots support our theoretical findings, but also indicate that the convergence

rates might be slower in more heavy-tailed scenarios.
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(a) α = 0.5 (b) α = 1.1

(c) α = 2.8 (d) α = 3.9

Figure 2. Q-Q-plots for the CLT of tr(R2) for different values of α and p = 400,

n = 1000 with 1000 repetitions. Here the input sample X11
d
= (Z1 − Z2)K

−0.5
α is

symmetric where Z1, Z2 are iid Pareto-distributed random variables.

3.2. Some comments on the non-symmetric case. The assumption that X11 is symmetric is

not only of significant technical importance in our proofs, but also indispensable for the validity of

the CLT presented in Theorem 3.1 in general. To analyze the requirement of symmetry and the role

that specific distributions may have, we simulate from two different non-symmetric distributions.

For the first case, define the entries X11
d
= Z1 − E[Z1] of the data matrix where Z1 follows a

Pareto distribution with shape parameter α which is equal to the tail index α in (1.3), and scale

xm = 1. For the second case, generate instead the entries X11
d
= T 2 − E[T 2], where T follows a

t-distribution with 2α degrees of freedom. Note that in both cases X11 is regularly varying with

index α. The simulation results are shown in Figure 3. An interesting observation is that in both

cases of different non-symmetric distributions, the same shift in the mean appears to be present.

The main consequence of symmetry violation is that the limiting distribution resembles a normal

distribution but with larger variance and some considerable shift in the mean is seen in the top left

plots where α is small. The shift in mean for small values of α can be partially explained.
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(a) α = 1.1 (b) α = 1.1

(c) α = 1.3 (d) α = 1.3

(e) α = 3.2 (f) α = 3.2

(g) α = 3.5 (h) α = 3.5

Figure 3. Simulations of the central limit theorem for tr(R2) for different values

of α and p = 400, n = 1000 with 1000 repetitions. Here the plots on the left side

have X11
d
= Z1−E[Z1], where Z1 is Pareto-distributed with scale xm = 1 and shape

α, while the plots on the right side have X11
d
= T 2 −E[T 2], where T is t-distributed

with 2α degrees of freedom.
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Some major differences arise when X11 does not have a symmetric distribution. To start with,

from (2.6) we get

E[tr(R2)] = µn +

p∑
i1,i2=1
i1 ̸=i2

n∑
t1,t2=1
t1 ̸=t2

E
[
Yi1t1Yi1t2Yi2t1Yi2t2

]
= µn + p(p− 1)n(n− 1)(E[Y11Y12])2 .

For all y, β > 0, we have

1

yβ
=

1

Γ(β)

∞∫
0

exp(−ty)tβ−1 dt ,

where Γ denotes the Gamma function. Combining this representation with Fubini’s theorem, we

deduce

E[Y11Y12] =
∞∫
0

(
E
[
X11 exp(−sX2

11)
] )2

φn−2(s)ds, (3.1)

where φ(s) = E[exp(−sX2
11)], s > 0, denotes the Laplace transform of X2

11. We conclude that

E[Y11Y12] ≥ 0 with equality if and only if the distribution of X11 is symmetric. In general, the

exact calculation of E[Y11Y12] from (3.1) is rather involved and highly dependent on the specific

non-symmetric distribution at hand. Assuming E[|X11|η] < ∞ for some η > 1, Lemma 4.2 in [8]

guarantees that E[Y11Y12] = o
(
n−η′

)
for any η′ < η. This implies that

E[tr(R2)] = µn + p2 n−2(η′−1) o(1) .

In the special case lim supn→∞ p/n < ∞, we conclude that E[tr(R2)] = µn + o(1) if E[|X11|η] < ∞
for some η > 2. This partially explains the shift in mean in our simulations for the non-symmetric

case with small values of α. Finally, we would like to point out that non-symmetry of X11 also

affects the variance Var(tr(R2)) and Lemma 2.4 no longer holds.

4. Proof of the main theorem

4.1. Preparations. We will need a few results about the entries of Y defined in (1.2). For integers

k1, . . . , kr, we recall the notation β2k1,...,2kr := E[Y 2k1
11 · · ·Y 2kr

1r ]. The following lemma is a special

case of [12, Lemma 3.2].

Lemma 4.1. For any distribution of X11, it holds that β2 = 1/n and

β4 =
1

n
− (n− 1)β2,2 , β4,2 =

1

2
β2,2 −

n− 2

2
β2,2,2 ,

β6 =
1

n
− 3(n− 1)

2
β2,2 +

(n− 1)(n− 2)

2
β2,2,2 ,

β6,2 =
1

2
β2,2 −

5(n− 2)

6
β2,2,2 +

(n− 2)(n− 3)

3
β2,2,2,2 − β4,4 ,

β4,2,2 =
1

3
β2,2,2 +

3− n

3
β2,2,2,2 ,

β8 =
1

n
+ 2(1− n)β2,2 +

(4n2

3
− 4n+

8

3

)
β2,2,2
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+
(−n3

3
+ 2n2 − 11n

3
+ 2
)
β2,2,2,2 + (n− 1)β4,4.

Throughout this paper, we will use the notation

β̃2k1,...,2kr := E[(Y 2
11 − n−1)k1 · · · (Y 2

1r − n−1)kr ] ,

where k1, . . . , kr are positive integers. It is easy to see that β̃2 = 0. The next lemma studies the

asymptotic behavior of β̃2k1,...,2kr .

Lemma 4.2. Let α ∈ (0, 4) and assume that P(|X11| > x) = x−αL(x) for x > 0, where L is a

slowly varying function. If E[X2
11] is finite, we additionally assume that E[X2

11] = 1. Define the

Ykn’s as in (1.2) and consider integers k1, . . . , kr ≥ 1. Then it holds, as n → ∞,

β̃2k1,...,2kr

{
∼ β2k1,...,2kr , if min(k1, . . . , kr) ≥ 2 ,

= O(β2k1,...,2kr) , if min(k1, . . . , kr) = 1 .

Proof. For any real numbers b1, . . . , bk we have the identity

k∏
i=1

(bi − 1
n) =

k∑
m=0

∑
S⊆{1,...,k}

|S|=m

(−1)mn−m
∏
i∈Sc

bi ,

where Sc = {1, . . . , k}\S denotes the complement of S. Applying this identity for k = k1+ · · ·+ kr

with positive integers k1, . . . , kr and

bi =


Y 2
11 , if i = 1, . . . , k1

Y 2
12 , if i = k1 + 1, . . . , k1 + k2
...

Y 2
1r , if i = k1 + · · ·+ kr−1 + 1, . . . , k1 + · · ·+ kr ,

we obtain

β̃2k1,...,2kr = E
r∏

j=1

kj∏
ℓ=1

(Y 2
1j − 1

n) = E
k∏

i=1

(bi − 1
n)

=
k∑

m=0

∑
S⊆{1,...,k}

|S|=m

(−1)mn−m E
∏
i∈Sc

bi .

Using the shorthand notation b(Sc) := E
∏

i∈Sc bi and observing that b(S) = β2k1,...,2kr , we deduce

that

β̃2k1,...,2kr = β2k1,...,2kr +

k∑
m=1

(−1)m
∑

S⊆{1,...,k}
|S|=m

n−m b(Sc) .

Without loss of generality we assume that the ki’s are ordered, that is, k1 ≥ · · · ≥ kr.

If kr ≥ 2, one can see from Lemma 2.1 that n−m b(Sc) = o(β2k1,...,2kr) for any S ⊆ {1, . . . , k}
with cardinality 1 ≤ m ≤ k. Therefore, we conclude that

β̃2k1,...,2kr ∼ β2k1,...,2kr , n → ∞ , kr ≥ 2.
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If kr = 2, it one can analogously get from Lemma 2.1 that n−m b(Sc) = O(β2k1,...,2kr) for any

S ⊆ {1, . . . , k} with cardinality 1 ≤ m ≤ k. Note that, for example, for S = {k} we have

n−1 b(Sc) = n−1 b({1, . . . , k − 1}) = n−1β2k1,...,2kr−1 , which is of the same order as β2k1,...,2kr−1,2.

We conclude that

β̃2k1,...,2kr = O(β2k1,...,2kr) , n → ∞ , kr = 1,

completing the proof of the lemma. □

4.2. Proof of Theorem 3.1. It will be convenient to write our statistics as a sum of martingale

differences. In what follows, the notation

x̃i = (Xi1, . . . , Xin) , i ∈ {1, . . . , p}

will be helpful. We consider the filtration (Fj)j≥0, where Fj is the σ-algebra generated by

{x̃1, . . . , x̃j}. For j = 1, . . . , p, define

Mj,1 := E[T1|Fj ]− E[T1|Fj−1] and Mj,2 := E[T2|Fj ]− E[T2|Fj−1]

and observe that Ti =
∑p

j=1Mj,i for i = 1, 2.

Then (Mj,1)j≥1, (Mj,2)j≥1 and (Mj,3)j≥1 := (Mj,1+Mj,2)j≥1 are martingale difference sequences

with respect to the filtration (Fj)j≥0. The following lemma provides explicit formulas for Mj,1 and

Mj,2.

Lemma 4.3. For j = 1, . . . , p it holds

Mj,1 = 2

j−1∑
i=1

n∑
t=1

(Y 2
it − n−1)(Y 2

jt − n−1) and Mj,2 = 4

j−1∑
i=1

∑
1≤t1<t2≤n

Yit1Yit2Yjt1Yjt2 .

Proof. We start by considering Mj,1. Using the definition of T1, we have for k ∈ {0, . . . , p}

E[T1|Fk] = 2
∑

1≤i1<i2≤p

n∑
t=1

E
[
(Y 2

i1t − n−1)(Y 2
i2t − n−1)

∣∣Fk

]
.

Since Y 2
it − n−1 is centered and independent of Fk for k < i, and Fk-measurable for k ≥ i we have

E
[
(Y 2

i1t
− n−1)(Y 2

i2t
− n−1)

∣∣Fk

]
= 0 if i2 > k. Therefore, we conclude that

E[T1|Fk] = 2
∑

1≤i1<i2≤k

n∑
t=1

(Y 2
i1t − n−1)(Y 2

i2t − n−1) ,

from which we easily deduce

Mj,1 = E[T1|Fj ]− E[T1|Fj−1]

= 2

( ∑
1≤i1<i2≤j

−
∑

1≤i1<i2≤j−1

) n∑
t=1

(Y 2
i1t − n−1)(Y 2

i2t − n−1)

= 2

j−1∑
i=1

n∑
t=1

(Y 2
i1t − n−1)(Y 2

i2t − n−1) .

The proof for Mj,2 is completely analogous. □

We will use the following CLT for martingale differences.
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Lemma 4.4 (e.g. Hall and Heyde [10]). Let {Sni =
∑i

j=1 Znj ,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-

mean, square integrable martingale array with differences Znj. Suppose that E[maxj=1,...,kn Z
2
nj ] is

bounded in n and that

max
j=1,...,kn

|Znj |
P→ 0 and

kn∑
j=1

Z2
nj

P→ 1 .

Then we have Snkn
d→ N(0, 1) as n → ∞.

For convenience of notation, we set T3 = T1 + T2. In view of (2.14), we will apply Lemma 4.4 to

σ−1
n Ti =

∑p
j=1 σ

−1
n Mj,i with martingale differences σ−1

n Mj,i, by considering i = 1 when α < 3, i = 2

when α ∈ (3, 4) and i = 3 when α = 3. By definition, we have σ−1
n E[Ti] = 0 and (2.12) implies that

σ−2
n E[T 2

i ] → 1, fulfilling the square integrability condition. Also note that E[maxj=1,...,p σ
−2
n M2

j,i] is

bounded since

E[ max
j=1,...,p

σ−2
n M2

j,i] ≤ σ−2
n

p∑
j=1

E[M2
j,i] =

E[T 2
i ]

σ2
n

→ 1, n → ∞.

Note that in the case α ∈ (0, 3), we have assumed in Theorem 3.1 that p = ω(nδ) for some δ > δ∗(α)

with δ∗(α) defined in (2.15). The two conditions of Lemma 4.4 left to show are

max
j=1,...,p

|σ−1
n Mj,i|

P→ 0 and σ−2
n

p∑
j=1

M2
j,i

P→ 1 , i = 1, 2, 3 , (4.1)

which is the content of Section 4.3 below. This concludes the proof of Theorem 3.1.

4.3. Proof of (4.1). We start with the first part of (4.1). To prove maxj |σ−1
n Mj,i|

P→ 0, we note

that by the union bound and Markov’s inequality

P
(

max
j=1,...,p

|σ−1
n Mj,i| > ε

)
≤

p∑
j=1

P(|σ−1
n Mj,i| > ε) ≤ ε−4

p∑
j=1

E[M4
j,i]

σ4
n

, ε > 0.

The following lemma and (4.4) assert that the right-hand side tends to zero.

Lemma 4.5. If α ∈ (0, 3] and p = ω(nδ) for some δ > δ∗(α), where δ∗(α) is defined in (2.15), we

have

1

σ4
n

p∑
j=1

E[M4
j,1] → 0 , n → ∞ , (4.2)

If α ∈ [3, 4), we have

1

σ4
n

p∑
j=1

E[M4
j,2] → 0 , n → ∞ . (4.3)

Note that in the case α = 3 (corresponding to i = 3), the convergence σ−4
n

∑p
j=1 E[(Mj,1 +

Mj,2)
4] → 0 follows directly since

1

σ4
n

p∑
j=1

E[(Mj,1 +Mj,2)
4] ≤ 16

σ4
n

p∑
j=1

E[M4
j,1] +

16

σ4
n

p∑
j=1

E[M4
j,2] (4.4)

and we deduce from Lemma 4.5 that the above tends to zero if δ > δ∗(α) for α = 3.
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Proof of Lemma 4.5. Direct calculation yields

E[M4
j,1] = E

[(
2

j−1∑
i=1

n∑
t=1

Y itY jt

)4]

= 16

j−1∑
i1,i2,i3,i4=1

n∑
t1,t2,t3,t4=1

E[Y i1t1Y i2t2Y i3t3Y i4t4 ]E[Y jt1Y jt2Y jt3Y jt4 ] .

To get nonzero summands we have two possibilities to pair the i’s. Either all are equal, i1 = i2 =

i3 = i4, or we get two pairs, e.g., i1 = i2 and i3 = i4 but i1 ̸= i3.

E[Y jt1Y jt2Y jt3Y jt4 ] E[Y i1t1Y i1t2Y i1t3Y i1t4 ] E[Y i1t1Y i1t2 ]E[Y i2t3Y i2t4 ]

Case 1 Case 1 Case 1 Case 2

β̃8 β̃8 β̃2
4

β̃6,2 β̃6,2 β̃4β̃2,2

β̃4,4 β̃4,4 β̃2
2,2 β̃2

4

β̃4,2,2 β̃4,2,2 β̃4β̃2,2 β̃2
2,2

β̃2,2,2,2 β̃2,2,2,2 β̃2
2,2

Table 1. Possible terms of β̃2k1,...,2kr that occur in E[M4
j,1]. Case 1 and Case

2 corresponds to the fact that depending on which t’s that pair up we can get

different terms. e.g. t1 = t2, t3 = t4 and t1 = t2, t3 = t4 will yield different results

in E[Y i1t1Y i1t2 ]E[Y i2t3Y i2t4 ].

Table 1 shows the possible (nonzero) terms in E[M4
j,1]. Each term is a product of certain β̃2k1,...,2kr

and - to get an upper bound on the order of its contribution to
∑p

j=1 E[M4
j,1] - should be multiplied

by a factor ph+1nd, where d denotes the number of distinct t’s. The ph+1 factor comes from the

number h of distinct i’s and then summing from j = 1 to p in (4.2). Thus, using Lemma 2.1

combined with Lemma 4.2 one can check that the highest order term for α ∈ [2, 3] is β̃2
8np

2, which

(up to a slowly varying function) behaves like n−α+1p2. Now using Lemma 2.4 for α ∈ [2, 3] we get

β̃2
8np

2

σ4
n

sl.v.
= nα−1p−2

which goes to 0 if p = ω(nδ) for some δ > δ∗(α) with δ∗(α) defined in (2.15). Similarly one

can find for the other case with i1 = i2 and i3 = i4, but i1 ̸= i3, that the dominating term is

β̃8β̃
2
4n

2p3. Combining Lemmas 2.4 and 2.1 one can find that β̃8β̃
2
4n

2p3/σ4
n → 0 if p = ω(nδ) for

some δ > α/2− 1 with α ∈ [2, 3].

Now for α ∈ (0, 2) the same terms will dominate in the case where all i’s are equal and here

β2
8np

2 ∼ n−1p2C2
8,α and σ4

n ∼ 4p4n−2(1 − α/2)4 by Lemmas 2.1 and 2.4, respectively. Thus it is

easy to see that β2
8np

2/σ4
n → 0 if p = ω(nδ) for some δ > δ∗(α). In the case i1 = i2 and i3 = i4,

but i1 ̸= i3, one of β̃8β̃
2
4np

3 and β̃4,4β̃
2
4n

2p3 is the dominating term but still σ4
n is of higher order.

This completes the proof of (4.2)
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Regarding (4.3) we proceed similarly. By direct calculation we have

E[M4
j,2] = E

[(
4

j−1∑
i=1

n∑
t1,t2=1
t1<t2

Yit1Yit2Yjt1Yjt2

)4]

= 256

j−1∑
i1,...,i4=1

n∑
t1,...,t8=1

t1<t2,...,t7<t8

E[Yi1t1Yi1t2Yi2t3Yi2t4Yi3t5Yi3t6Yi4t7Yi4t8 ]E[Yjt1Yjt2Yjt3Yjt4Yjt5Yjt6Yjt7Yjt8 ]

and as before in order to get nonzero expectation we want no odd powers; so either all the i’s are

equal or we establish four pairs between the i’s. Table 2 shows the possible terms that occur in

E[M4
j,2].

E[Yjt1 · · ·Yjt8] E[Yi1t1Yi1t2 · · ·Yi1t7Yi1t8 ] E[Yi1t1Yi1t2Yi1t3Yi1t4 ]E[Yi2t5Yi2t6Yi2t7Yi2t8 ]
Case: All i’s equal Case: Four pairs between i’s

β4,4 β4,4 β2
2,2

β4,2,2 β4,4,2 β2
2,2

β2,2,2,2 β2,2,2,2 β2
2,2

Table 2. Possible terms of β2k1,...,2kr that occur in E[M4
j,2]. Here we both include

the case where all i’s equal (i1 = i2 = i3 = i4) and the case where four pairs are

formed between the i’s (e.g. i1 = i2 and i3 = i4).

The highest order term in the case where all i’s are equal is β2
2,2,2,2n

4p2 if α ∈ (3, 4) and combining

Lemmas 2.1 and 2.4 we get

β2
2,2,2,2n

4p2

σ4
n

∼
n−4p2C̃2

2,2,2,2,α

16p4n−4
→ 0.

In the case α = 3 then all the terms will have the same order and the squared variance will instead

become σ4
n ∼ 4p4n−4(C2

α,4L
2(n1/2)+2)2, so that the same conclusion holds. Now in the case of four

pairs among the i’s and α ∈ [3, 4), the term β2,2,2,2β
2
2,2n

4p3 ∼ n−4p3 dominates. Using Lemma 2.4

we have that σ4
n ∼ 16p4n−4 for α ∈ (3, 4) and it is obvious that β2,2,2,2β

2
2,2n

4p3/σ4
n → 0 when

α ∈ [3, 4). This finishes the proof of (4.3). □

Now we turn to the second part of (4.1).

Lemma 4.6. If α ∈ (0, 3), it holds

1

σ2
n

p∑
j=1

M2
j,1

P→ 1 , n → ∞ , (4.5)

where for α ∈ [2, 3) we additionally assume p = ω(nδ) for some δ > α/2− 1. If α ∈ (3, 4), then it

holds

1

σ2
n

p∑
j=1

M2
j,2

P→ 1 , n → ∞. (4.6)
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Finally, for α = 3 it holds

1

σ2
n

p∑
j=1

M2
j,3 =

1

E[T 2
1 ] + E[T 2

2 ]

p∑
j=1

(
M2

j,1 +M2
j,2 +Mj,1Mj,2

) P→ 1 . (4.7)

Proof. We start by first proving (4.5) and (4.6) for α ∈ (0, 3) and α ∈ (3, 4) respectively. Since

σ−2
n

∑p
j=1 E[M2

j,k] → 1 for k ∈ {1, 2}, it is sufficient to show

1

σ4
n

E
[( p∑

j=1

M2
j,k

)2]
→ 1, n → ∞ .

Using Lemma 4.5 and Lemma 4.3, we have

E
[( p∑

j=1

M2
j,1

)2]
= o(σ4

n) +

p∑
j1,j2=1
j1 ̸=j2

E
[
M2

j1,1M
2
j2,1

]
(4.8)

= o(σ4
n) + 16

p∑
j1,j2=1
j1 ̸=j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

n∑
t1,t2=1

n∑
t3,t4=1

E[Y i1t1Y i2t2Y i3t3Y i4t4Y j1t1Y j1t2Y j2t3Y j2t4 ].

For the above expectation to be nonzero three cases are possible (up to a permutation of the i

indices). Either all the i’s are the same (which implies that the j indices take distinct values than

the i’s), or exactly 2 pairs are formed, e.g., i1 = i2 ̸= i3 = i4 which amounts to two cases depending

on if some i’s may coincide with a j or not. The latter two cases we will call the second and third

case respectively.

In the first case where all i’s are equal, the possible terms are summarised in Table 3 using

Lemma 2.1, Lemma 4.2 and equations (5.3), (5.4), (5.5) when α ∈ [2, 3). Each term should also be

multiplied by a factor nd where d stands for the number of distinct t indices in E[Y i1t1Y i1t2Y i1t3Y i1t4 ]

in Table 3. Note also that in the first case the order of (4.8) with respect to p is p3.

E[Y i1t1Y i1t2Y i1t3Y i1t4 ]E[Y j1t1Y j1t2 ]E[Y j2t3Y j2t4 ] Order

Term α ∈ (0, 2) α ∈ [2, 3)

β̃8β̃
2
4n n−2 n−3α/2+1

β̃6,2β̃4β̃2,2n
2 n−3 −n−3α/2

β̃4,4β̃
2
4n

2 n−2 n−2α+2

β̃4,4β̃
2
2,2n

2 n−4 n−2α

β̃4,2,2β̃4β̃2,2n
3 n−3 −n−3α/2

β̃4,2,2β̃
2
2,2n

3 n−4 −n−3α/2−1

β̃2,2,2,2β̃
2
2,2n

4 n−4 O(n−3α/2)

Table 3. Terms of β̃2k1,...,2kr that occur in (4.8) when i1 = i2 = i3 = i4 and their

order with respect to n. The O(n−3α/2) is due to the fact that we only have an

upper bound for the order by (5.5).
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The highest order term when α ∈ [2, 3) is β̃8β̃
2
4np

3 ∼ n−3α/2+1p3C8,αC
2
4,αL

3(n1/2) and also

β̃4,4β̃
2
4n

2 which obtains the same order when α = 2. By Lemma 2.4, σ4
n ∼ 4p4n2−2αL4(n1/2)C4

4,α

which yields β̃8β̃
2
4np

3/σ4
n(α) → 0 assuming p = ω(nδ) with δ > α/2 − 1. If α ∈ (0, 2), then

Lemma 2.4 yields σ4
n ∼ 4p4n−2(1 − α/2)4 which has greater order than all the terms in Table 3.

Thus, we have shown that σ−4
n times the contribution of the first case to (4.8) tends to zero.

Next, we turn to the second case. In this case, since we assume that the sets of j’s and i’s are

disjoint, we can have either i1 = i2 ̸= i3 = i4, or i1 = i3 ̸= i2 = i4 that yield different terms (the

case i1 = i4 and i2 = i3 yields the same terms as in i1 = i3 and i2 = i4 because of symmetry of the

t’s). This means that the terms in the sum of (4.8) can take two forms:

E[Y i1t1Y i1t2 ]E[Y i3t3Y i3t4 ]E[Y j1t1Y j1t2 ]E[Y j2t3Y j2t4 ],

E[Y i1t1Y i1t3 ]E[Y i2t2Y i2t4 ]E[Y j1t1Y j1t2 ]E[Y j2t3Y j2t4 ].

The general form of either of these products of expectations is β̃k1
4 β̃k2

2,2 with k1 + k2 = 4. Since now

we allow two pairs of the i’s we get that in this case the contribution of such terms to (4.8) will be

β̃k1
4 β̃k2

2,2n
k3p4 where k3 stands for how many of the t’s that may vary freely, e.g. if t1 = t2 = t3 = t4

then k3 = 1. Using (5.2) we find that β̃2,2 ∼ −n−α/2−1L(n1/2)C4,α when α ∈ [2, 3) which in

conjunction with Lemma 2.4 yields

β̃k1
4 β̃k2

2,2n
k3p4

σ4
n

∼
(−1)k2n−k1α/2n−k2(α/2+1)nk3p4Ck1+k2

4,α Lk1+k2(n1/2)

4p4n2−2αL4(n1/2)C4
4,α

= (−1)k2n−k2−2+k3 1

4

where the last equality follows by k1 + k2 = 4. If k3 = 4 this means that all the t’s are pairwise

different and hence k2 = 4. If k3 = 3 then two t’s are equal but then k2 ≥ 2 and if k3 = 1 then it

is obvious that the exponent of n above is negative. Only when k3 = 2 and k1 = 4 with i1 = i2

and i3 = i4 is when we may get nonzero results. This results in the term β̃4
4 . In view of (4.8) the

asymptotic behavior of p in the second case is given by
p∑

j1,j2=1

(j1 − 1)(j2 − 1)−
p∑

j=1

(j − 1)2 =
1

4
(p− 1)2p2 − 1

6
p(2p2 − 3p+ 1) ∼ 1

4
p4 (4.9)

and now we get using (4.8) and Lemma 4.2 that

16
1
4 β̃

4
4n

2p4

σ4
n(α)

∼
n−2α+2p4L4(n1/2)C4

4,α

n−2α+2p4L4(n1/2)C4
4,α

= 1, n → ∞.

When α ∈ (0, 2) then β̃k1
4 β̃k2

2,2n
k3p4/σ4

n(α) ≲ n−2−k2+k3 which is the same expression analyzed

before. The dominating term is again β̃4
4 and similarly we get β̃4

4n
2p4/σ4

n(α) → 1 if α ∈ (0, 2) by

Lemmas 2.4 and 2.1. This concludes our analysis of the second case.

Now we turn to the third case, where we form two pairs among the i’s and have some i’s coincide

with j1 or j2. If i1 = i2 and i3 = i4, then we must have either j1 = i3 or j2 = i1. If j2 = i1, then

we get in the sum of (4.8)

E[Y i1t1Y i2t2Y j2t3Y j2t4 ]E[Y i3t3Y i3t4 ]E[Y j1t1Y j1t2 ]

which essentially yields the same cases as summarised in Table 3 but with the same or less order

in p. Now if i1 ̸= i2 then we get nonzero only if i2 = i3 = i4 and the cases can be summarised in

Table 4 by use of Lemma 2.1 and equations (5.3), (5.4) and (5.5).



22 F. SEO

E[Y i1t2Y i1t3Y i1t4 ]E[Y i3t1Y i3t3Y i3t4 ]E[Y j1t1Y j1t2 ] Order

Term α ∈ (0, 2) α ∈ [2, 3)

β̃2
6 β̃4n n−2 n−3α/2+1

β̃6β̃4,2β̃2,2n
2 n−3 −n−3α/2

β̃2
4,2β̃2,2n

3 n−3 −n−3α/2

β̃2
4,2β̃4n

2 n−3 n−3α/2

β̃2
2,2,2β̃4n

3 n−4 n−3α/2−1

β̃4,2β̃2,2,2β̃2,2n
3 n−4 −n−3α/2−1

β̃2
2,2,2β̃2,2n

4 n−4 n−3α/2−1

Table 4. Terms of β̃2k1,...,2kr that occur in (4.8) when i1 = j2 ̸= i2 but i2 = i3 = i4

and their order with respect to n.

Since now j2 = i1 ̸= i2 and i2 = i3 = i4 the order of (4.8) in p is p3. Hence it is clear that when

α ∈ (0, 2) every term in Table 4 has lower order than σ4
n ∼ 4p4n−2(1 − α/2)4. When α ∈ [2, 3)

then β̃2
6 β̃4np

3 is of highest order but β̃2
6 β̃4np

3/σ4
n(α) → 0 if p = ω(nδ) for some δ > α/2− 1. This

concludes the Third and last case and hence we have completed the proof of (4.5).

Finally, we start proving (4.6) and we obtain using Lemma 4.3 and Lemma 4.5 that

E
[( p∑

j=1

M2
j,2

)2]
= o(σ4

n)

+ 16

p∑
j1,j2=1
j1 ̸=j2

j1−1∑
i1,i2=1

j2−1∑
i3,i4=1

n∑
t1,...,t8=1

t1<t2,...,t7<t8

E[Yi1t1Yi1t2Yi2t3Yi2t4 · · ·Yj2t5Yj2t6Yj2t7Yj2t8 ] . (4.10)

We have nonzero expectation in (4.10) if either all i’s are equal (which implies that the j’s are

distinct from the i’s) or if we form two pairs among the i’s (but here some i’s may coincide with

j’s). Note that when the sets of i’s and j’s are disjoint, then we must have that t1 = t3, t2 = t4,

t5 = t7 and t6 = t8 to get nonzero. Starting with i1 = i2 = i3 = i4 the terms that occur in (4.10)

can be summarised in Table 5.

E[Y 2
i1t1

Y 2
i1t2

Y 2
i2t3

Y 2
i2t4

]E[Y 2
j1t1

Y 2
j1t2

]E[Y 2
j2t5

Y 2
j2t6

] Order

Term α ∈ (3, 4)

β4,4β
2
2,2n

2 n−α−2

β4,2,2β
2
2,2n

3 n−α/2−3

β2,2,2,2β
2
2,2n

4 n−4

Table 5. Terms of β2k1,...,2kr that occur in (4.10) when i1 = i2 = i3 = i4 and their

order with respect to n.

Since the order in p is p3 for (4.10) we easily see that the terms in Table 5 multiplied by p3σ−4
n

go to zero in view of Lemmas 2.1 and 2.4 for α ∈ (3, 4). Investigating the cases where two pairs
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are formed, we have three cases with respect to the i’s. If either i1 = i3 or i1 = i4 then we would

need to impose the extra conditions (t1 = t5 and t2 = t6) or (t1 = t5 and t2 = t6) respectively. This

leads to a lower order in n than in the pairing i1 = i2 and i3 = i4 and in this case we only get the

term β4
2,2n

4. The order in p is the same as (4.9) and we get for α ∈ (3, 4) that

16
1
4β

4
2,2n

4p4

σ4
n

∼ 4n−4p4

4n−4p4
= 1, n → ∞.

It is left to consider the overlap between some i’s and j’s in the case i1 = i2 and i3 = i4. If

i1 = i2 = j2 then we have that the expectation in (4.10) is

E[Yi1t1Yi1t2Yi1t3Yi1t4Yi1t5Yi1t6Yi1t7Yi1t8 ]E[Yi3t5Yi3t6Yi3t7Yi3t8 ]E[Yj1t1Yj1t2Yj1t3Yj1t4 ] =

E[Y 2
i1t1Y

2
i1t2Y

2
i1t5Y

2
i1t6 ]E[Y

2
i3t5Y

2
i3t6 ]E[Y

2
j1t1Y

2
j1t2 ] = E[Y 2

i1t1Y
2
i1t2Y

2
i1t5Y

2
i1t6 ]β

2
2,2.

The second equality is easiest to see by looking at the last two factors and consider the possible

pairing of the t’s that yield nonzero results. Then we get the pairing in the first factor for free as a

consequence. These are the same terms as in Table 5 so we get that this case goes to zero as well.

Lastly, we look at i1 = j2 but i1 ̸= i2. This case yields nonzero if i2 = i3 which then yields in (4.10)

E[Yi1t1Yi1t2Yi1t5Yi1t6Yi1t7Yi1t8 ]E[Yi2t3Yi2t4Yi2t5Yi2t6Yi2t7Yi2t8 ]E[Yj1t1Yj1t2Yj1t3Yj1t4 ].

Note that we must have in the last factor above t1 = t3 and t2 = t4. For the first two factors,

they can only yield the possible term β2,2,2 to be nonzero each. But for this to happen we need

to set t1 and t2 to be equal to some other t’s than only t3 and t4 respectively. This implies that

an upper bound for the order would be β2
2,2,2n

3p4 ∼ n−5p4 by Lemma 2.1. Now Lemma 2.4 yields

that n−5p4σ−4
n → 0. By symmetry of indices we get the same results for i3 = j1 and we have thus

shown (4.6) for α ∈ (3, 4).

At this point only the case α = 3 is left. A careful inspection of the above arguments in the case

α ∈ (0, 3) ∪ (3, 4) shows that (4.5) respectively (4.6) still hold for α = 3 if σ2
n is replaced by E[T 2

1 ]

and E[T 2
2 ], respectively. That is, if α = 3 and p = ω(nδ) for some δ > α/2− 1, it holds

1

E[T 2
1 ]

p∑
j=1

M2
j,1

P→ 1 and
1

E[T 2
2 ]

p∑
j=1

M2
j,2

P→ 1. (4.11)

Now we turn to the proof of (4.7). By virtue of (4.11), we get

1

E[T 2
1 ] + E[T 2

2 ]

p∑
j=1

(
M2

j,1 +M2
j,2

)
=

E[T 2
1 ]

E[T 2
1 ] + E[T 2

2 ]

1

E[T 2
1 ]

p∑
j=1

M2
j,1 +

E[T 2
2 ]

E[T 2
1 ] + E[T 2

2 ]

1

E[T 2
2 ]

p∑
j=1

M2
j,2

=
E[T 2

1 ]

E[T 2
1 ] + E[T 2

2 ]
(1 + oP(1)) +

E[T 2
2 ]

E[T 2
1 ] + E[T 2

2 ]
(1 + oP(1))

= 1 + oP(1) ,

where oP(1) is a generic notation for a term that tends to zero in probability. In order to establish

(4.7), it remains to show that

1

σ2
n

p∑
j=1

Mj,1Mj,2
P→ 0 . (4.12)
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To this end, an application of Markov’s inequality yields for ε > 0,

P
(
σ−2
n

p∑
j=1

Mj,1Mj,2 > ε
)
≲ σ−4

n

p∑
j,k=1

E[Mk,1Mk,2Mj,1Mj,2].

By Lemma 4.3 and letting k < j we have that E[Mk,1Mk,2Mj,1Mj,2] is equal to

64
k−1∑

i1,i2=1

j−1∑
i3,i4=1

n∑
t1,t4=1

∑
1≤t2<t3≤n

∑
1≤t5<t6≤n

E[Y i1t1Y kt1Yi2t2Yi2t3Ykt2Ykt3Y i3t4Y jt4Yi4t5Yi4t6Yjt5Yjt6 ].

Since k < j the inner expectation can be broken into two factors whereof one is E[Y jt4Yjt5Yjt6 ].

The aforementioned factor is nonzero only if t5 = t6 which cannot happen. We conclude that

σ−4
n

p∑
j,k=1

E[Mk,1Mk,2Mj,1Mj,2] = σ−4
n

p∑
j=1

E[M2
j,1M

2
j,2] ≤ σ−4

n

p∑
j=1

(
E[M4

j,1] + E[M4
j,2]

)
→ 0,

as n → ∞, by Lemma 4.5 if p = ω(nδ) for some δ > δ∗(3) = 1. This establishes (4.12) and

completes the proof of the lemma.

□

5. Proofs for Section 2

In our proofs we will repeatedly use the notation Y it :=
(
Y 2
it − 1

n

)
and

C2k,α :=
αΓ(α/2)Γ(k − α/2)

2Γ(k)
,

C̃2k1,...,2kr,α :=
(α/2)r−N1Γ(N1(1− α/2) + rα/2)

∏
i:ki≥2 Γ(ki − α/2)

Γ(k1 + · · ·+ kr)
.

5.1. Proof of Lemma 2.2.

Proof of Lemma 2.2. Let T1 and T2 be defined by (2.9). We get

E[T 2
1 ] = E

(2 p∑
i1<i2

n∑
t=1

Y i1,tY i2,t

)2


= 4

p∑
i1<i2

n∑
t=1

E[Y 2
i1,t]E[Y

2
i2,t] + 4

p∑
i1<i2

n∑
t1<t2

E[Y i1,t1Y i1,t2 ]E[Y i2,t1Y i2,t2 ]

= 2p(p− 1)n

(
β4 −

1

n2

)2

+ p(p− 1)n(n− 1)

(
β2,2 −

1

n2

)2

= p(p− 1)n
2n− 1

n− 1

(
β4 −

1

n2

)2

.

For the last equality we used Lemma 4.1 to express β2,2 in terms of β4. Similarly we get for T2,

E[T 2
2 ] = E


 p∑

i1,i2=1
i1 ̸=i2

n∑
t1,t2=1
t1 ̸=t2

Yi1t1Yi1t2Yi2t1Yi2t2


2 = 16E

[
p∑

i1<i2

n∑
t1<t2

Y 2
i1t1Y

2
i1t2Y

2
i2t1Y

2
i2t2

]
(5.1)
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= 4p(p− 1)n(n− 1)β2
2,2 = 4p(p− 1)

n

n− 1

(
1

n
− β4

)2

.

□

5.2. Proof of Lemma 2.4.

Proof of Lemma 2.4. From (2.11) we obtain, as n → ∞,

Var(tr(R2)) ∼ 2np2
((

β4 −
1

n2

)2

+
2

n

(
β4 −

1

n

)2)
.

We start with the case E[X4] < ∞, where Lemma 2.1 yields β4 ∼ n−2E[X4]. It is easy to see that(
β4 −

1

n2

)2

= O(n−4),
2

n

(
β4 −

1

n

)2

∼ 2n−3,

so the asymptotic behavior of Var(tr(R2)) is the same as of σ2
n and

σ2
n ∼ 2np2 · 2n−3 ∼ 4

p2

n2
.

For the case α ∈ [2, 4) with E[X2
11] = 1, Lemma 2.1 yields

β4 ∼ n−α/2L(n1/2)
αΓ(α/2)Γ(2− α/2)

2Γ(2)
= n−α/2L(n1/2)C4,α.

In view of the Potter bounds for the slowly varying function L, we have L(n) = O(nε) for any ε > 0

so that β4 = O(n−α/2+ε). If E[X2
11] = ∞ then we get another slowly varying function by Lemma

2.1, which we bound analogously. Hence, we do not need to distinguish between E[X2
11] = ∞ and

E[X2
11] = 1 in the case α ∈ [2, 4). Use of Lemma 2.1 now yields(

β4 −
1

n2

)2

∼ β2
4 = O(n−α+2ε),

2

n

(
β4 −

1

n

)2

=
2

n

(
O(n−α/2+ε)− 1

n

)2

∼ 2n−3.

For α ∈ (3, 4), the 2n−3 term dominates and therefore, σ2
n ∼ 2np2 · 2n−3 = 4p2n−2. While for

α ∈ (2, 3) the β2
4 term dominates and therefore,

σ2
n ∼ 2np2 · β2

4 ∼ 2np2 · (n−α/2L(n1/2)C4,α)
2 = 2p2n1−αL2(n1/2)C2

4,α.

In the case α = 3 both terms in (2.11) might dominate (depending on L) and applying Lemma 2.1

one gets σ2
n ∼ 2p2n−2(C2

α,4L
2(n1/2) + 2). Finally, when α ∈ (0, 2), Lemma 2.1 yields

β4 ∼ n−1 Γ(2− α/2)

Γ(1− α/2)Γ(2)
= n−1

(
1− α

2

)
from which we conclude (

β4 −
1

n2

)2

∼
(
1− α

2

)2

n−2,

2

n

(
β4 −

1

n

)2

∼ 2

n

(
1− α/2

n
− 1

n

)2

=
α2

2
n−3,

which implies σ2
n ∼ 2p2n−1(1−α/2)2. For completeness, we note that the fact that σ2

n ∼ Var(tr(R2))

is easily deduced from the above considerations in all cases. □
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5.3. Proof of Lemma 2.5.

Proof of Lemma 2.5. We need to find the types of β′s that occur in E[T 4
i ] for i = 1, 2. Let us start

with E[T 4
1 ] which is given by

E[T 4
1 ] = 16

p∑
i1,i2=1
i1<i2

· · ·
p∑

i7,i8=1
i3<i4

n∑
t1,...,t4=1

E
[
Y i1,t1Y i2,t1Y i3,t2Y i4,t2Y i5,t3Y i6,t3Y i7,t4Y i8,t4

]
.

We proceed to the tedious task of finding all the combinations of indices that lead to non-zero

contributions in the form of products of certain β̃2k1,...,2kr , whose order can be determined using

Lemma 4.2 yielding that any β̃2k1,...,2kr with no ki equal to 1, will behave as β2k1,...,2kr asymptotically.

It is important to note that any term including β̃2 is zero. In a methodical manner one can check

from big indices (of β̃) to small, terms with 2 up to 4 factors of β, which combinations of β’s

are possible. For example, the term with largest possible index is β2
8 and this happens only if

i1 = i3 = i5 = i7 and i2 = i4 = i6 = i8 with all the t indices equal. Accounting for multiplicities,

the contribution of such terms to E[T 4
1 ] will be equal to

p(p− 1)

2
nβ2

8 ∼ 1

2
p2nβ2

8 .

Since we are only interested in the asymptotic behavior of E[T 4
1 ], the exact multiplicities are not

required. Hence, it is not necessary to know the exact number of occurring β2
8 and similarly

for all other products of β̃2k1,...,2kr . Then we look at how many of the t′s and i’s must not be

equal respectively and hence get the order of the term by setting the corresponding amount in the

exponent of n and p. Finally, we focus on the terms with highest order.

For our analysis we need the exact asymptotic behavior of terms β̃2k1,...,2kr where k1 = · · · =
kr = 1. Using Lemma 4.1 we get β2,2 =

1−nβ4

n(n−1) , which yields

β̃2,2 = β2,2 − n−2 =
1

n2(n− 1)
− β4

n− 1
. (5.2)

Since β4 ∼ n−α/2L(n1/2)C4,α for α ∈ (2, 4) by Lemma 2.1, it follows that

β̃2,2 ∼ −n−α/2−1L(n1/2)C4,α . (5.3)

Similar but more tedious calculations yield

β̃2,2,2 ∼ 2n−α/2−2L(n1/2)(C4,α + C6,α), (5.4)

β̃2,2,2,2 = O(n−α/2−2). (5.5)

The fourth moment of T2

E[T 4
2 ] = 44 E

( p∑
i1<i2

n∑
t1<t2

Yi1t1Yi1t2Yi2t1Yi2t2

)4


is analyzed in a similar way. Table 6 below includes all the products of β2k1,...,2kr that occur in

either E[T 4
1 ] or E[T 4

2 ] and gives their order respective orders (utilizing Lemma 2.1) up to some slowly

varying function for α ∈ (0, 4]. Strictly speaking, in the case α = 2 we need to distinguish between

finite or infinite second moment of X11; luckily both cases yield the same asymptotic results apart

from a slowly different function.
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E[T 4
1 ] E[T 4

2 ]

Term
Order

α ∈ (0, 2)

Order

α ∈ [2, 4)
Term

Order

α ∈ (0, 2)

Order

α ∈ [2, 4)

β2
8np

2 n−1p2 n−α+1p2 β4β
3
2,2n

3p3 n−4p3 n−α/2−3p3

β2
4,4n

2p2 n−2p2 n−2α+2p2 β2
4,4n

2p2 n−2p2 n−2α+2p2

β̃2
6,2n

2p2 n−2p2 n−αp2 β2
2,2,2,2n

4p2 n−4p2 n−4p2

β̃2
2,2,2,2n

4p2 n−4p2 O(n−α)p2 β4
2,2n

4p4 n−4p4 n−4p4

β̃6,2β4β̃2,2n
2p3 n−3p3 −n−3α/2p3 β2,2,2,2β

2
2,2n

4p3 n−4p3 n−4p3

β̃2
2,2,2β̃2,2n

4p3 n−4p3 −n−3α/2−1p3

β̃2
2,2,2β4n

3p3 n−4p3 n−3α/2−1p3

β2
6β4np

3 n−2p3 n−3α/2+1p3

β4,4β̃
2
2,2n

2p3 n−4p3 n−2αp3

β4
4n

2p4 n−2p4 n−2α+2p4

β2
4 β̃

2
2,2n

3p4 n−3p4 n−2α+1p4

β̃4
2,2n

4p4 n−4p4 n−2αp4

Table 6. The order of the terms in E[T 4
1 ] and E[T 4

2 ] for α ∈ (0, 4). The O(n−α) is

due to the fact that we only have an upper bound for the order by (5.5).

For E[T 4
1 ] the dominating terms for α ∈ [2, 4) are β4

4n
2p4, β2

8np
2 and β2

6β4np
3. Note that the growth

of p relative to n is an important detail that needs to be taken into consideration. We recall that

our results are valid for general growth rates of p. One can check that the same terms will also

dominate when α ∈ (0, 2).

Finding the exact multiplicities of β4
4 , β

2
8 and β2

6β4 in E[T 4
1 ] is not too difficult and will yield

1

16
E[T 4

1 ] ∼ 3

(
p(p− 1)

2
n

)2

β4
4 +

p(p− 1)

2
pnβ2

8 + 8
p(p− 1)

2
pnβ2

6β4

∼ 3

4
n2p4β4

4 +
1

2
β2
8np

2 + 4β2
6β4np

3.

Now we turn to E[T 4
2 ]. We find that the highest order term for α ∈ [3, 4) is β4

2,2n
4p4 by looking in

Table 6. The multiplicity of β4
2,2n

4p4 is 3 which then for α ∈ [3, 4) yields

1

256
E[T 4

2 ] ∼
3

16
β4
2,2n

4p4 ∼ 3

16
n−4p4.

□

5.4. Proof of Theorem 2.6.

Proof of Theorem 2.6. First, note that by the binomial theorem we have

E
[
(tr(R2)− E[tr(R2)])4

]
= E

[
(T1 + T2)

4
]
= E[T 4

1 ] + 4E[T 3
1 T2] + 6E[T 2

1 T
2
2 ] + 4E[T1T

3
2 ] + E[T 4

2 ].

Recalling the definitions of T1 and T2 in (2.9), we observe that T2 contains only odd powers of Yit’s

and T1 only even powers and thus, we immediately see that E[T 3
1 T2] = 0. By Lemma 2.8, we only
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need to study E[T 4
1 ] for α < 3 and E[T 4

2 ] for α > 3. Using Cauchy-Schwarz inequality we have

E[T 2
1 T

2
2 ]

Var(tr(R2))2
≤
(

E[T 4
1 ]

Var(tr(R2))2

)1/2( E[T 4
2 ]

Var(tr(R2))2

)1/2

, (5.6)

which goes to zero as n → ∞ by Proposition 2.7 and Lemma 2.8 assuming p = ω(nδ) for some

δ > δ∗(α) with α ∈ (0, 3) ∪ (3, 4). Similarly, using Hölder’s inequality, we get∣∣E[T1T
3
2 ]
∣∣

Var(tr(R2))2
≤ E[T 4

1 ]
1/4E[T 4

2 ]
3/4

Var(tr(R2))2
=

(
E[T 4

1 ]

Var(tr(R2))2

)1/4( E[T 4
2 ]

Var(tr(R2))2

)3/4

,

which goes to 0 as n → ∞ by Lemma 2.8 and Proposition 2.7 if p = ω(nδ) for some δ > δ∗(α)

when α ∈ (0, 3) ∪ (3, 4). Another application of Proposition 2.7 for E[T 4
1 ] and E[T 4

2 ] directly yields

the desired result for α ∈ (0, 3) ∪ (3, 4).

Finally, we note that, for example, (5.6) tends to infinity if p = o(nδ) for some δ < δ∗(α) by

Proposition 2.7 and Lemma 2.8, which highlights the importance of our condition δ > δ∗(α). □

5.5. Proof of Proposition 2.7.

Proof of Proposition 2.7. From Lemmas 2.5 and 2.2 we have for α ∈ (0, 4)

E[T 4
1 ] ∼ 12β4

4n
2p4 + 8β2

8np
2 + 64β2

6β4np
3, E[T 2

1 ] ∼ 4β4
4p

4n2

which yields

E[T 4
1 ]

E[T 2
1 ]

2
∼ 3 +

2β2
8

β4
4p

2n
+

16β2
6

β3
4pn

.

By Lemma 2.1, we see that β4, β6, β8 are of the same order up to some slowly varying function.

Thus, if β2
4p

2nℓ(n) → ∞ and β4pnℓ(n) → ∞ as n → ∞ for any slowly varying function ℓ, then

E[T 4
1 ]/E[T 2

1 ]
2 ∼ 3. This clearly holds if α ∈ (0, 3] and p = ω(nδ) for some δ > δ∗(α) since by

Lemma 2.1 β4 behaves like n−max(1,α/2) (up to a slowly varying function). If instead p = o(nδ) for

some δ < δ∗(α), then we have

lim
n→∞

E[T 4
1 ]

E[T 2
1 ]

2
= ∞.

Finally, if α ∈ [3, 4) then by (5.1) and Lemma 2.1 we have

E[T 2
2 ]

2 =

(
4p(p− 1)

n

n− 1

(
β4 −

1

n

)2)2

∼ 16p4n−4

and we find by combining with Lemma 2.5 that E[T 4
2 ]/E[T 2

2 ]
2 → 3 for α ∈ [3, 4). □

5.6. Proof of Lemma 2.8.

Proof of Lemma 2.8. Combining Lemmas 2.4 and 2.5 we have for α ∈ (3, 4)

E[T 4
1 ]

Var(tr(R2))2
∼ 12β4

4n
2p4 + 8β2

8np
2 + 64β2

6β4np
3

16n−4p4
, n → ∞.

By Lemma 2.1, we get

12β4
4n

2p4

16n−4p4
∼ 3

4
n−2(α−3)C4

4,αL(n
1/2)4 → 0, n → ∞.
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Moreover, assuming p = ω(nδ) for some δ > (5− α)/2, we have that

8β2
8np

2

16n−4p4
∼ 1

2
n−α+5p−2L(n1/2)2C2

8,α → 0.

Similarly we have

64β2
6β4np

3

16n−4p4
∼ 1

4
n−3α/2+5p−1L(n1/2)3C2

6,αC4,α → 0, n → ∞,

as long as δ > 5− 3α/2. We conclude that

E[T 4
1 ]

Var(tr(R2))2
→ 0, n → ∞

for α ∈ (3, 4) assuming p = ω(nδ) for some δ > (5 − α)/2. For α ∈ [2, 3) and E[X2
11] = 1, the

possible terms in E[T 4
2 ] that dominate are β4β

3
2,2n

3p3, β2
4,4n

2p2 and β4
2,2n

4p4 (see Table 6). Using

the variance in Lemma 2.4 combined with Lemma 2.1 we get

E[T 4
2 ]

Var(tr(R2))2
≲

n−α/2−3p3C4,αC̃
3
2,2,αL(n

1/2) + n−2α+2p2C̃2
4,4,αL

4(n1/2) + n−4p4C̃4
2,2,α

4p4n2−2αL4(n1/2)C4
4,α

→ 0.

If for α = 2 we instead have E[X2
11] = ∞, then the above still holds but with a different slowly

varying function in view of Lemma 2.1. Now for α ∈ (0, 2) using Lemmas 2.4, 2.5 and 2.1 we get

E[T 4
2 ]

Var(tr(R2))2
∼ 48n−4p4

4p4n−2(1− α/2)4

(
α

2

)4

→ 0, n → ∞,

which means that
E[T 4

2 ]
Var(tr(R2))2

→ 0, as n → ∞, for all α ∈ (0, 3). □

Appendix A. Sums of regularly varying random variables

Lemma A.1 (Jessen and Mikosch [14]). Assume |X1| is regularly varying with index α ≥ 0 and

distribution function F = 1− F . Assume X1, ..., Xn are random variables satisfying

lim
x→∞

P(Xi > x)

F (x)
= c+i and lim

x→∞

P(Xi ≤ −x)

F (x)
= c−i , i = 1, . . . , n, (A.7)

for some non-negative numbers c±i and

lim
x→∞

P(Xi > x,Xj > x)

F (x)
= lim

x→∞

P(Xi ≤ −x,Xj > x)

F (x)

= lim
x→∞

P(Xi ≤ −x,Xj ≤ −x)

F (x)
= 0, i ̸= j. (A.8)

Then

lim
x→∞

P(Sn > x)

F (x)
= c+1 + · · ·+ c+n and lim

x→∞

P(Sn ≤ x)

F (x)
= c−1 + · · ·+ c−n ,

with Sn = X1 + · · ·+Xn, n ≥ 1.
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