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Chapter 1

Introduction

This thesis discusses the use of tree-based ML techniques to estimate cancellation

rates. Currently, a multitude of insurance enterprises engage in the estimation of cancel-

lation rates for non-life insurance products, including but not limited to property, home,

and automobile insurances, utilizing empirical methodologies. Traditional approaches to

estimating these rates, though widely used, often rely on a constrained set of variables,

such as the policyholder’s age and geographical location, particularly in the context of

automobile insurance. However, they often overlook additional determinants that could

influence cancellation rates, such as the duration of the insurance coverage, the pricing of

the insurance policy, and the sales channel utilized for policy acquisition.

The advent of Machine Learning (ML) techniques presents an unprecedented oppor-

tunity to refine the accuracy of cancellation rate predictions by incorporating a compre-

hensive array of factors potentially affecting these rates. Furthermore, ML algorithms

enable a detailed analysis of the relative impact of each factor on the probability of pol-

icy cancellation. Such insights can empower insurance companies to implement targeted

strategies aimed at mitigating cancellation rates. Enhanced predictions of cancellation

rates also contribute to more precise risk assessments for insurance premium calculations.

This thesis aims to illuminate the potential of Machine Learning to surpass current

empirical methods in estimating cancellation rates for non-life insurance products accu-
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rately. The first step in the study is to use the Synthetic Minority Over-sampling Tech-

nique (SMOTE) to generate a simulated dataset based on existing empirical imbalanced

datasets. By generating synthetic data points, SMOTE enables us to create a balanced

dataset, thereby facilitating more effective model training and improved prediction ac-

curacy. After having created SMOTE balanced datasets, two predictive models will be

studied: the Generalized Linear Model (GLM) and the Gradient Boosting Machine (GBM)

for cancellation rate estimation. Through comparative analysis of these models’ predic-

tive outcomes, this research endeavors to illustrate the potential improvements ML can

introduce over traditional estimation methodologies.

In this thesis, Chapter 2 provides a comprehensive review of current empirical method-

ologies employed in cancellation rate estimation. Chapter 3 discusses the application of

SMOTE for data simulation and delves into the methodology behind this approach. In

Chapter 4, we explore the theory and application of GLM, presenting the results and

comparing them with the outcomes generated using SMOTE-enhanced data. Chapter 5

shifts focus to GBM, outlining the theoretical framework and application of this method

for predicting cancellation rates. Finally, Chapter 6 provides a comparative analysis of the

predictive capabilities of the GLM and GBM models, discussing the potential advantages

and limitations of integrating machine learning techniques into the estimation process.
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Chapter 2

Traditional Cancellation Rate

Estimation

2.1 An Empirical Overview

The cancellation rate, which reflects customer retention and turnover, is a crucial measure

for insurance companies. The dynamics of customer loss and acquisition, particularly

through brand switching, constitute a significant challenge within the insurance sector, as

emphasized by Brockett et al. (2008). This phenomenon highlights the intense competition

within the insurance industry, where companies are continually striving to attract and

retain policyholders in their efforts to gain market share.

In the realm of insurance, retention rates have significant impact on financial outcomes.

Günther et al. (2014) underscore this point, demonstrating that a slight increase in cus-

tomer retention can translate into millions of dollars in additional premium revenue. This

financial implication highlights the direct correlation between effective customer retention

strategies and an insurance company’s revenue-generating capacity.

Given this background, the present study seeks to investigate the potential of ML

techniques to enhance the prediction accuracy of cancellation rates within the insurance

industry. By doing so, this research aims to provide actionable insights that could en-
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able insurance firms to devise more effective strategies for customer retention, thereby

mitigating the adverse financial impacts of high cancellation rates.

At present, the predominant approach used by many insurance companies for predict-

ing cancellation rates relies on empirical methodologies. This traditional methodological

framework is characterized by its dependence on historical data and statistical analysis to

forecast future cancellation trends.

Cancellation Rate =

(
Number of Cancellations during a specific time period

Total Number of insurances during a specific time period

)
× 100

(2.1)

Here, the ”number of cancellations” is determined by deducting the total number of

policies, where the policyholder has opted not to renew at the end of a given insurance

period from the total number of policies that were active during the same period.

The data for these calculations come from historical information collected over previous

years. Actuaries often need to determine the mean cancellation rate for a period of 3 to 5

years. This method allows actuaries to combine real data with professional judgment and

ensure well-informed and hopefully more accurate predictions. However this technique

might not be able to capture the complex, non-linear relationships present in real-world

data. Due to its simplicity, the empirical method might be less sensitive to subtle patterns

and trends in the data. It likely fails to recognize how different factors influence each other,

missing valuable insights the data could provide. This can lead to predictions that are

not as accurate as they could be. For insurance companies, it is crucial to understand the

factors that affect cancellation rates, as it directly supports the strategic goal of reducing

policy cancellations, a notably advantageous outcome for any insurer.

Building on this understanding, we are going to use GLMs and machine learning

techniques for estimating cancellation rates. Our goal is to investigate the potential of

integrating this approach into future analytical processes. In the subsequent sections, we

will take a look at the use of the SMOTE algorithm for imbalanced dataset, followed by

applying both GLM and GBM for cancellation rate estimations.
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Chapter 3

SMOTE Introduction

3.1 Imbalanced data

SMOTE is an acronym for Synthetic Minority Oversampling Technique, introduced in

Chawla et al (2002). This method is an innovative approach to addressing the challenges

posed by imbalanced data in classification problems (Chawla et al. 2002).

Imbalanced data occurs when there is a significant discrepancy in the frequencies ob-

served across the different categories of a categorical response variable. Within the insur-

ance sectors, for instance, canceled policies usually constitute a small fraction of the total

number of policies. This situation underscores the necessity for applying techniques like

SMOTE to ensure more balanced representation and improved model performance.

In this thesis, we analyze data from a non-life insurance product over a one-year period,

encompassing a total of 24,025 insurance policies. The graphical analysis distinctly reveals

that more than 90% of policyholders opt to renew their insurance policies, while around

10% choose to cancel (see Figure 3.1).

Based on this data, we could initially conclude that the model is to predict ”renewal”

for each policyholder with a quite high accuracy. However, this perceived accuracy is

misleading due to the imbalanced nature of the data. Imbalanced datasets can mislead

the accuracy of a model because a model might only predict the majority class for all inputs

and still achieve high accuracy without truly learning to identify the minority class, often



6

Figure 3.1: Imbalanced original data

the more critical to detect. To counteract this, techniques like resampling the data, using

the Synthetic Minority Over-sampling Technique (SMOTE) to create synthetic examples,

or adjusting the decision threshold based on metrics other than accuracy are essential

strategies.

In the upcoming section, we are going to discuss the possibility of using SMOTE for

data resampling, with the goal of cultivating a more evenly distributed dataset. This effort

aims to improve our model’s effectiveness and insights, leading to stronger analysis results.

3.2 Implementing SMOTE

SMOTE is an over-sampling technique that enhances the representation of the minority

class by generating ”synthetic” examples instead of relying on traditional over-sampling

methods, which often involve duplicating existing data points. This method was inspired

by successful applications in fields like handwritten character recognition (T.M. and H.

1997). Extra training data is generated by performing certain operations to the existing

real data (Chawla et al. 2002). This method generates synthetic examples rather than
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using over-sampling with replacement. It begins by selecting observations from the mi-

nority class, and for each of these observations, it finds its k nearest neighbors. Then, it

randomly selects one of these neighbors and calculates the direction and distance to this

neighbor to generate a new, synthetic data point along this path. This synthetic point is a

combination of the feature space of the original sample and its randomly chosen neighbor,

scaled by a random factor between 0 and 1. This factor is selected uniformly at random

for each synthetic point, determining where along the line between the two points the new

example will be placed. This process enriches the dataset with more diverse, yet plausible,

minority class examples. This is pictorially presented below:

Figure 3.2: SMOTE: Numerical Example

In the above simple example, the original point xorig = (2.2, 2.66) and the nearest

neighbour point is xneig = (1.97, 2.95). If the random factor is set to 0.6, according to the

description,

new sample = original sample + factor ×(neighbour− original sample).

new sample = (2.2,2.66)+0.6*((1.97,2.95)-(2.2,2.66))
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new sample = (2.2,2.66)+0.6*(-0.23,0,29)

new sample = (2.062, 2.834)

This process is repeated for each feature to generate a complete set of feature values

for the new example, which is then added to the dataset as a synthetic example for the

minority class.

This operation is actually very much like slightly moving the data point in the direction

of its neighbor. This way, our synthetic data point is ensured that is not an exact copy of

an existing data point while making sure that it is also not too different from the known

observations in the minority class.

When dealing with categorical variables, SMOTE requires a slight modification to the

process. It handles categorical variables by selecting the most frequent category among the

k nearest neighbors of the original sample. Alternatively, for dataset with both categorical

and continuous variables, a variant called SMOTE-NC (Nominal and Continuous) can be

used, where categorical features are randomly chosen from the nearest neighbors. This

approach ensures that the synthetic examples remain realistic and consistent with the

distribution of categorical values in the minority class.

From the description of how SMOTE works we see that SMOTE has the advantage

of not producing duplicate data points, but rather artificial data points that deviate

marginally from the actual data points.

3.2.1 Data Preparation

Before using the SMOTE algorithm to re-balance the data, it is crucial to separate the

dataset into training and test datasets. This allows us to evaluate the machine learning

model’s performance on data that was not used during the training phase.

To ensure that both training and test dataset has the same class distribution as the

original one, we use stratified sampling to generate the these subsets. Stratified sampling

randomly selects samples from each classification in proportion to that class’ representation

in the full dataset. This method could guarantee that the training and test sets reflect the
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class balance of the original data.

Figure 3.3: Imbalanced training dataset Figure 3.4: Imbalanced test dataset

By comparing the class distributions in Figure 3.3 and 3.4 with those of the original

dataset, we can confirm that training and test datasets maintain the class proportions of

original data. With this verification complete, we can proceed to implement the SMOTE

technique to the training dataset.

Following the division of the dataset into training and testing subsets, we proceeded to

define the binary response variable, yi, which is assigned a value of 1 if policy i is cancelled,

and 0 otherwise, such that

yi =

 1 if policy i is cancelled,

0 otherwise
(3.1)

3.2.2 Applying SMOTE to Insurance Data

In the prior section, we discussed how SMOTE generates synthetic examples. In this

thesis, we execute the resampling process using the statistical software R. The resampled

dataset is generated using the ”SMOTE” function from the ”DMwR” package.

After executing the code, we examine the re-balance effects of SMOTE on our class by

creating a bar graph similar to the one earlier constructed (see Figure 3.5). The purpose of

this graph is to visually confirm that SMOTE has successfully increase the representation
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of the minority class.

Figure 3.5: Balanced SMOTE data

The graph distinctly demonstrates a significant increase of the number of cancelled

insurance policies, that we did not have previously. These additional entries are synthetic

data points that have been created by SMOTE. The results indicate that, although the

dataset still include the minority class, it has become considerably more balanced com-

pared to the original dataset. Consequently, this enhanced balance allows for the use of

machine learning to estimate the cancellation rate using the data augmented by SMOTE.
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Chapter 4

Generalized Linear Model

4.1 Introduction of Generalized Linear Model

To assess the impact of SMOTE, we initially construct a Generalized Linear model using

the original dataset. This step establishes a benchmark for evaluating the performance

changed by SMOTE. Subsequently, we will compare the performance metrics pre- and

post-SMOTE application.

Generalized linear models (GLM) were developed by John Nelder and Robert Wed-

derburn to unify different types of statistical models, such as linear regression, logistic

regression and Poisson regression (J. Nelder and Wedderburn 1972).

In a GLM, each outcome Y of the explanatory variables is assumed to follow a dis-

tribution within the exponential family—a broad class of probability distributions that

encompasses the normal, binomial, Poisson, gamma, and others. The conditional mean

µ of the distribution is modeled as a function of the independent variables X, with the

relationship defined by following link function:

E(Y |X) = µ = g−1(Xβ) (4.1)

In this equation, E(Y |X) represents the expected value of Y given X; Xβ denotes the

linear predictor, a linear combination of unknown parameters β, and g is the link function
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that connects the linear predictor to the mean of the distribution. The parameters β are

typically estimated using maximum likelihood techniques (McCullagh and J. A. Nelder

1989).

As our response variable is binary (extension or cancellation), the Bernoulli distribution

is chosen to be the distribution function and the interpretation of µ is the probability, p,

of ”success” outcome Y .

g(p) = logitp = log(
p

1− p
) = Xβ = β0 + β1x1 + β2x2 + . . .+ βmxm. (4.2)

The GLM is setup as a logistic regression model, in order to determine the corresponding

log odds of the outcome which we then model as a linear combination of the explanatory

variables.

In the expression, β0 represents the intercept and β1, β2, ..., βm are the coefficients

corresponding to explanatory variables x1, x2, ..., xm .

The logit function can be written as

log(
p

1− p
) = t, (4.3)

where t is the linear function of the explanatory variables, which means that the probability

p that an insurance policyholder will not renew their policy, is modeled through the logistic

function below:

p =
1

1 + e−t
. (4.4)

and the general logistic function p : R → (0, 1) can now be written as:

p = σ(t) =
1

1 + e−(β0+β1x1+β2x2+...+βmxm)
. (4.5)
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4.2 SMOTE’s Enhancement on Model Performance

Considering the abundance of variables within our dataset, we selected those explanatory

variables believed to impact the cancellation rate. These include the age of the customer,

the sales channel through which the insurance was purchased, the amount of the premium,

and the policy duration — the latter reflecting the length of time a customer has had their

insurance policy.

Prior to estimation, it is beneficial to analyze the relationship between the cancellation

rate and each explanatory variable.This analysis helps in understanding how individual

variables influence the probability of insurance cancellation. For this purpose, we utilize a

global method: Partial Dependence Plots (PDPs). PDPs evaluate the influence of specific

features across all observations in the dataset, illustrating how these features affect the

predicted outcome of a machine learning model (Friedman 1999a). The partial dependence

function f̂S based on the predictor f̂ for the set of covariates S is estimated by calculating

averages in the training data according to

f̂S(xS) =
1

n

n∑
i=1

f̂(xS , x
(i)
C ) (4.6)

The partial dependence function shows the average marginal effect of given value(s) of

features S on the prediction. In this formula, the xS represents the features for which the

partial dependence function is beinge plotted, while X
(i)
C denotes the actual feature values

from the dataset for the features not currently of interest. The parameter n is the number

of observations in the dataset. It is important to note that the Partial Dependence Plot

(PDP) assumes no correlation between the features in sets C and S. If this condition is not

hold, the computed averages for the PDP may include data points that are either highly

improbable or completely infeasible (Molnar 2022).

A partial dependence plot is particularly effective in revealing how individual features

impact the model’s predictions. It can illustrate whether the relationship between the

target variable and a feature is linear, monotonic, or more complex. By providing these
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insights, PDPs help to identify the nature of the dependency between features and the

target, thereby aiding in the interpretation of the model’s behavior and in understanding

the influence of each feature on the predicted outcomes (Molnar 2022).

In our logistic regression model, we consider several variables: the customer’s age, the

sales channel, the premium cost, and the duration for which the customer has held the

policy. It is worth to mention that we do not employ the age variable directly. Instead,

we apply a natural spline transformation of age with 10 degrees of freedom. Below, we

present the PDP graphs for the explanatory variables (see Figure 3.6).

The first plot for age reveals a general trend where the probability of policy cancellation

increases with age. However, there are slight decreases in the probability of cancellation

around the ages of 50 and 70, indicating an increased loyalty for policyholders to keep

the insurance during this age range. Beyond the age of 70, we observe a marked sharp

increase in cancellation probability. A possible explanation for this pattern can be the

cancellation of insurance policies due to the policyholder’s death.

The analysis of the second plot, focusing on the length of time a customer has had

their insurance policy, indicates that the longer a policyholder retains their insurance, the

less likely they are to cancel the policy, suggesting a decreased propensity for cancellation

among long-term policyholders.

The third plot explains that the probability of policy cancellation escalates with an

increase in premium amount. There exists a specific premium threshold, beyond which the

probability of policy non-renewal approaches almost 100%. This observation highlights a

critical premium level, above which policyholders demonstrate a pronounced tendency to

terminate their insurance coverage.

The last plot reveals a progressive increase in the predicted probability of insurance

policy cancellation as the sales channel index, ranging from 0 to 7, rises. This suggests that

the sales channel has influence on the probability of an insurance policy being canceled.

After having established the theoretical framework, we now turn to practical appli-

cation by deploying the ”cv.glmnet” function from the ”glmnet” package, setting a
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(a) Partial Dependence for Age (b) Partial Dependence for Duration

(c) Partial Dependence for Premium (d) Partial Dependence for Sales Channel

Figure 4.1: Partial Dependence Plots for GLM model

binomial distribution and applying a lasso penalty to train our model. The Least Abso-

lute Shrinkage and Selection Operator (lasso) penalty is used to prevent over-fitting by

adding a penalty equal to the sum of absolute value of the coefficients, all multiplied by a

value λ. We use a example to explain it.
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Let us assume we are aiming to predict a variable Y from three predictors, X1, X2

and X3 and Y = β0 + β1X1 + β2X2 + β3X3, where ”β0” is our intercept and ”β1”, ”β2”,

”β3” are the coefficients. In a typical linear regression, we are simply aiming to find the

values of β0, β1, β2 and β3 where the sum of squared residuals (SSR) as small as possible.

With lasso penalty, we minimize instead

SSR+ λ · (|β1|+ |β2|+ |β3|) (4.7)

This can result in some coefficients reducing to zero. Consequently, lasso facilitates

feature selection, which is useful when dealing with datasets that have a large number of

features, some of which may be irrelevant or collinear. This not only enhances the model’s

interpretability but also its overall performance.

As SMOTE helps in balancing class distribution by generating synthetic observations,

the amount of cancellations increases, and the overall class distribution in the training

dataset no longer reflects the true distribution, which can affect the probability predicted

by GLM. To correct this, we perform a calibration of the model’s intercept β0 to ensure that

the predicted cancellation probabilities align more closely with the observed cancellation

rate in the training data.

The calibration process involves adjusting the model’s intercept β0 to β∗
0 such that the

sum of the predicted probabilities matches the sum of the observed outcomes. Specifically,

we calculate the calibrated intercept β∗
0 as follows:

n∑
i=1

yi =
n∑

i=1

p̂i
∗ =

n∑
i=1

1

1 + e−(β∗
0+x′

iβ̂)
(4.8)

where, yi represents the observed outcome for observation i, with
∑n

i=1 yi denoting the

sum of the observed outcomes (where yi = 1 if cancellation, and yi = 0 otherwise). p̂i
∗

represents the adjusted probability that insurance policyholder will cancel their policy for

observation i, and
∑n

i=1 p̂i
∗ represents the sum of the observed outcomes. The variable

n indicates the total number of observations in the dataset and x′iβ̂ represents the linear
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predictors (without the intercept) for the same observation.

To solve for β∗
0 , we need to calculate the sum of observed outcomes:

Sy =
n∑

i=1

yi (4.9)

and find β∗
0 such that

Sy =
n∑

i=1

1

1 + e−(β∗
0+x′

iβ̂)
(4.10)

As this equation can not be solved analytically, so we used a numerical method to

find the value of β∗
0 that satisfies this equation. This method ensures that the model’s

predictions remain well-calibrated and aligned with real-world conditions. We use the

”uniroot” function in R to executive the calculation. This calibration ensures that the

predicted probability of cancellation matches the observed cancellation rate in the training

data, leading to a more accurate and reliable model.

Following the calibration, the cancellation rate predicted by the model becomes more

aligned with the actual observed rate. The cancellation rate with the original dataset is

10.07%. After balanced the dataset with SMOTE method, the cancellation rate becomes

9.79% after calibration.

Building on the previous discussion, we now turn our attention to the performance

measures as precision, recall and F1-score to understand the model’s performance in iden-

tifying customers who are likely to cancel their policies. Precision and recall values can be

derived from the confusion matrix, which compares the model’s predictions to the actual

outcomes.

The confusion matrix provides the following numbers:

• True Positives (TP) - Correctly identified instances of the target class.

• True Negative (TN) - Correctly identified instances that not of the target class.

• False Positive (FP) - Incorrectly identified instances as the target class.

• False Negative (FN) - Incorrectly identified instances as not being of the target class.
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Figure 4.2: Confusion Matrix

Precision, which ranges from 0 to 1, refers to the model’s ability of identifying positive

predictions that are correct. A higher precision value suggests that the model is more

accurate in its positive predictions (Powers 2011).

Precision = TP/(TP + FP) (4.11)

Recall, also ranging from 0 to 1, measures the model’s ability to correctly identify

actual positive cases. A higher recall indicates that the model successfully captures more

of the true positive observations, over all the positive cases in the data (Powers 2011).

Recall =
TP

TP + FN
(4.12)

F1-score is a measure that combines both precision and recall into a single measure. It

is especially valuable in scenarios where the class distribution is imbalanced. The F1-score

is calculated as the harmonic mean of precision and recall, offering a balanced assessment of

a model’s performance across these two important metrics (Powers 2011). Like precision
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and recall, the F1 ranges ranges from 0 to 1, with a higher F1-score reflecting a good

balance between precision and recall, and a lower score indicating a disparity between

them. The calculating formula is as follows:

F1 = 2 · Precision · Recall
Precision + Recall

(4.13)

With original data, we achieved a precision of approximately 0.742, a recall of 0.742

and F1-score of 0.742.

Next, we apply logistic regression to the dataset augmented by SMOTE, using preci-

sion, recall, and F1-score as benchmarks to evaluate the model’s performance. In contrast

to the previous analysis using the original training data, this phase utilizes the enhanced

dataset. The outputs obtained from this adjusted model are:

The precision decreases to 0.418, suggesting a reduction in the model’s overall accuracy.

Meanwhile recall increases to 0.802, highlighting an improvement in correctly identifying

cases of cancellations. F1-score decreases to 0.550 indicates that the balance between

precision and recall has worsened.

The changes suggest that utilizing SMOTE has enhanced the model’s ability to cap-

turing positive cases - as evidenced by the increase of recall. However, it has also made

the model more susceptible to misclassifying negative cases as positive, which is indicated

by the reduction of precision.

To further evaluate our model’s performance, we turn to the ROC (Receiver Operat-

ing Characteristic) curve. The ROC curve visually represents the trade-off between the

true positive rate (sensitivity) and the false positive rate (specificity) at various threshold

settings, providing a clear indication of the model’s discriminatory power (Fawcett 2006).

The 45-degree diagonal line in the ROC plot serves as a baseline for assessing the per-

formance of the model. If the ROC curve of a model is above this red line, the model is

performing better than random guessing. As illustrated in the following example, this vi-

sualization is instrumental in assessing the model’s ability to distinguish between positive

and negative classes. Accompanying the ROC curve is the AUC (Area Under the Curve),
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a measure that quantifies the overall effectiveness of the model’s predictions (Hanley and

McNeil 1982). The AUC value ranges from 0 to 1, where an AUC of 1 indicates perfect

classification, and an AUC of 0.5 suggests performance no better than random guessing.

The closer the AUC value is to 1, the better the model fits the data, effectively balancing

sensitivity and specificity. We explore both aspects in Figure 3.8 and Figure 3.9.

Figure 4.3: ROC Curve GLM with original
data

Figure 4.4: ROC Curve GLM with SMOTE
data

In the example, the AUC value for GLM model with original data is 0.905, shaded in

blue, indicating a strong ability to distinguish between the positive and negative classes.

After applying SMOTE, the AUC value increases marginally to 0.908. This slight increase

in AUC suggests that the SMOTE-enhanced model has a slightly better ability to discrim-

inate between policy cancellations and non-cancellations. However, the small difference

in AUC values also indicates that while SMOTE may contribute to a more balanced rep-

resentation of the classes, the original GLM model was already performing well in terms

of its predictive power. Therefore, we should consider whether it is necessary to calibrate

the cancellation rate calculated by GLM with SMOTE-enhanced data. To address this,

we introduce the Brier Score, which measures the mean squared difference between the

predicted probability assigned to the possible outcomes and the actual outcome (Brier



21

1950). The Brier score is calculated as follows:

BrierScore =
1

n

n∑
i=1

(fi − oi)
2 (4.14)

where:

• n is the number of predictions.

• fi is the predicted probability of the positive class (e.g., cancellation) for observation

i.

• oi is the actual outcome for observation i, which is 1 if the event happened (e.g.,

policy was canceled) and 0 if it did not.

The Brier score ranges from 0 to 1. A lower Brier score indicates better predictive

accuracy. The Brier score of the GLM model with original data was 0.049 and increases

to 0.052 with SMOTE-enhanced data, suggesting that, while SMOTE helps balance the

class distribution, it introduce amount of noise or variance that slightly affects the model’s

overall accuracy.

Despite the SMOTE-enhanced model shows an improvement in identifying cancella-

tions and discriminating between cancellations and non-cancellations, as evidenced by the

increase in precision, recall and AUC, the introduction of SMOTE appears to have also

introduced some noise or variance, as reflected in the increase of Brier score.

In the forthcoming section, we will explore the potential of using Gradient Boosting

Machines (GBM) as a predictive model. We will conduct a comparative analysis with

the Generalized Linear Model (GLM) and investigate whether the GBM model provides

a better fit for SMOTE enhanced data.
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Chapter 5

Gradient Boosting Machines

5.1 Introduction of Gradient Boosting Machines

Leo Breiman first introduced the concept of gradient boosting in 1997, observing that

boosting could be understood as an optimization algorithm applied to a specific cost func-

tion (Breiman 1997). Building on this foundational idea, Jerome H. Friedman developed

explicit regression gradient boosting algorithms (Friedman 1999a; Friedman 1999b), while

a more general functional gradient boosting framework was concurrently presented by Ma-

son et al. in 1999 (Mason et al. 1999a; Mason et al. 1999b). Unlike Generalized Linear

Models (GLM), which handle various types of response variables via a link function, Gra-

dient Boosting Machines (GBM) are ensemble learning models that work by sequentially

enhancing the predictive strength of multiple weak learners, typically decision trees, to

build a highly accurate and generalizable predictive model. GBM specifically utilizes the

gradient descent algorithm to minimize a loss function, progressively improving model

performance.

5.1.1 Optimizing Prediction Through Sequential Learning

Gradient Boosting builds models incrementally, in an additive and sequential fashion. The

core idea behind this algorithm is to develop new base-learners that are highly correlated

with the negative gradient of the loss function associated with the entire ensemble. The
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loss function acts as a measure that indicates how well the model’s parameters fit the

underlying data (see Natekin and Knoll 2013).

To better understand the algorithm, let us begin from the foundational assumptions:

Let y be the vector of observed responses, where yi represents the target for the ith

observation.

Let X represent the feature matrix, with each row Xi corresponding to the feature

values for the ith observation.

The dependent function is denoted as f(x) and the ensemble model after m steps is

denoted as Fm(x), which makes predictions for feature vector x.

The algorithm starts with an initial model, F0(x), often a constant value:

F0(x) = arg min
hm∈H

M∑
i=1

L(yi, f(x)) (5.1)

where L(yi, f(x)) is the loss function, measuring the difference between the actual target

values yi and the predictions. For regression, this could be mean squared error (MSE),

and for classification, it could be logistical loss. For m ≥ 1, it is given by

Fm(x) = Fm−1(x) +

(
arg min

hm∈H

[
M∑
i=1

L(yi, Fm−1(xi) + hm(xi))

])
(x), (5.2)

where hm ∈ H is a base-learner function, such as decision trees or splines.

For each iteration m = 1 to M , the algorithm performs the following steps:

a. Compute the negative gradient of the loss function with respect to the predictions

made by the current model, evaluated at each data point:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(5.3)

These rim values serve as pseudo-residuals, indicating the direction in which to adjust

the predictions to reduce the loss.
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b. Fit a new model hm(x) to these pseudo-residuals:

hm(x) = arg min
hm∈H

M∑
i=1

(rim − hm(xi))
2 (5.4)

c. Determine the optimal step size (learning rate) γm that minimizes the loss when

adding hm(x) to the ensemble:

γm = arg min
hm∈H

M∑
i=1

L(yi, Fm−1(xi) + γhm(xi)) (5.5)

d. Update the model:

Fm(x) = Fm−1(x) + γmhm(x) (5.6)

The final model Fm(x) is used to make predictions, where M is the total number of

iterations (trees).

5.2 Application and Performance analysis with SMOTE-

Enhanced Data

Consistent with the methodology applied in the preceding chapter, we initially fit the

model using the original dataset, followed by a re-estimation with data augmented by

SMOTE. We will then undertake a detailed comparative analysis of the results, examining

the impact of SMOTE both pre- and post-application.

As with our prior approach, we separated the dataset into training and testing subsets

and then fitted the GBM model to the data, using yi as the response variable along with

the covariates.

The model is given by the function:

F (x) =
M∑

m=1

γmhm(x) (5.7)

where F (x) is the final ensemble model, hm(x) represents the m-th decision tree, and γm
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is the shrinkage rate of the m-th tree to the model.

Each tree’s influence on the final model is adjusted by a factor known as the learning

rate or shrinkage rate, represented as γm. This rate controls the contribution of the m-th

tree, helping to prevent the model overfitting by moderating the model’s complexity. This

approach enhances the model’s robustness and its ability to generalize effectively from the

training data to new, unseen data (Friedman 1999a).

We selected the same relevant explanatory variables as in the previous analyses, which

include customer ages, sales channel, premier amount and duration.

The distribution argument is set to ”bernoulli” as a binary outcome and a logistic

regression framwork for the GBM. Initially, the model was trained using 1,000 trees to

enhance its predictive performance. However, by using the ”gbm.perf” function, which

estimates the optimal number of iterations, early stopping was triggered, and the optimal

model was found to have 826 trees.

As earlier, we begin by examining the PDP for the GBM model, applying the same

four variables used in the GLM. Unlike the GLM model, which uses a flexible spline

transformation for age as predictor, the GBM model handles age as a linear predictor,

and is capable of capturing complex interactions and non-linear relationships.

The first plot for age describes a trend similar to that observed in the GLM model:

younger policyholders have a slightly higher probability of cancelling their policies, while

policyholders between the ages of 50 and 70 show greater loyalty in maintaining their

insurance.

The trend observed in the second plot for duration is consistent with the trend seen

in the GLM model. It shows us that policies with shorter duration are more prone to

cancellation.

The third plot is consistent with the trend in the GLM model as well, suggesting that

higher premium amounts are associated with higher cancellation rates.

The last plot reveal that the effectiveness of sales channels varies, with some channels

contributing to higher retention and others to higher cancellations. This could be due to
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(a) Partial Dependence for Age (b) Partial Dependence for Duration

(c) Partial Dependence for Premium (d) Partial Dependence for Sales Channels

Figure 5.1: Partial Dependence Plots for GBM model

differences in customer service quality or the effectiveness of communication.

Next, we take a look at the values of precision and recall. The precision value was

0.760, while the recall was 0.741 and F1-score 0.750. The AUC value was 0.955 (see Figure

5.2) and the predicted cancellation rate was 9.82%. The Brier score was 0.040.
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Figure 5.2: ROC Curve GBM with original
data

Figure 5.3: ROC Curve GBMwith SMOTE
data

Compared to GLM, the GBM model appears to be the better choice for predicting

cancellations. It has a higher precision and F1-score, indicating better balance and per-

formance in identifying cancellations. Most importantly, the GBM model’s higher AUC

value demonstrates superior discriminative ability compared to the GLM. Despite the

GLM having a slightly higher recall, the overall performance, as reflected by the AUC,

strongly favors the GBM.

Upon using SMOTE-augmented training data instead of the original training data in

our model, we obtained the following outputs.

The precision value was 0.660, the recall was 0.796 and the F1-score was 0.722. The

predicted cancellation rate was 12.15%, and the AUC value was 0.956 (see Figure 5.3).

Notably, after applying SMOTE, the optimal number of iterations increased to 16,337,

indicating that the model’s ability to capture complex pattern is enhanced. The Brier

score of the GBM model with SMOTE-enhanced data was 0.050, suggesting that on aver-

age, the predicted probabilities are close to the actual outcomes, reflecting strong model

performance.

The SMOTE-enhanced model shows a trade-off between precision and recall. While it

achieves a higher recall and slightly better AUC, it does so at the cost of lower precision.

This suggests that while SMOTE helps the model capture more cancellations, it may also
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introduce some noise, leading to slightly less accurate and less well-calibrated predictions

overall.
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Chapter 6

Methodical Comparison

We implemented SMOTE on our imbalanced dataset and used two predictive models to

estimate cancellation rates. It is evident that SMOTE strengthens our models’ ability to

identify cancellations by increasing the representation of the minority class.

Nonetheless, determining the suitable model for our specific needs remains a question of

great interest to the insurance sector. Which model is more suitable to forecast cancellation

rates? Based on the analysis in the previous chapters, the GBM model with original

data exhibited a well-rounded performance, particularly in maintaining a strong balance

between precision and recall, as indicated by its higher F1-Score. On the other hand,

the GBM model with SMOTE-enhanced data demonstrated a greater ability to detect

cancellations, evidenced by its higher recall and slightly improved AUC.

Model Data Type Precision Recall F1-Score AUC Brier Score

GLM Original 0.742 0.742 0.742 0.905 0.049
GLM SMOTE 0.418 0.802 0.550 0.908 0.052

GBM Original 0.760 0.741 0.750 0.955 0.040
GBM SMOTE 0.660 0.796 0.722 0.956 0.050

Table 6.1: Comparison of GLM and GBM models with Original and SMOTE-enhanced
data

Further, we computed the Brier score from all models. The GBM model with original

data achieved a Brier score of 0.040, whereas the GBM model with SMOTE-enhanced data

resulted in a higher Brier score of 0.050. This suggests that the GBM model with original
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data provides better-calibrated probability predictions compared to the GBM model after

SMOTE enhancement.

Analyzing these results leads us to conclude that each model offers distinct advantages,

depending on the specific focus of the analysis. If the primary goal is to maximize the

identification of cancellations, the GBM model with SMOTE-enhanced data might be

preferred due to its higher recall and slightly improved AUC. However, if the focus is on

maintaining higher precision and generating well-calibrated predictions, the GBM model

with original data would be more appropriate.

The principal limitation of our empirical method is the weak correlation between the

explanatory variables and the target variable, with the exception of duration. The correla-

tion table below demonstrates that variables such as sales channel, age and premium show

only weak linear relationship with cancellation rates. However, these empirical correlations

do not fully capture the complex, non-linear relationships that can exist. In contrast, our

Variable Correlation

Sales Channel 0.0643

Age 0.0185

Premium -0.0484

Duration -0.594

Table 6.2: Correlation Between Explanatory Variables and Cancellation

application of the GLM and GBM models reveals a more substantial relationship between

these explanatory variables and the probability of cancellation. Through these models, we

have successfully accounted for the influence of each variable, including those with weak

empirical correlations, on the cancellation probability. The models’ ability to identify and

incorporate these relationships highlights their strength in providing a more accurate and

comprehensive understanding of the factors driving cancellations.

The Partial Dependence Plots (PDPs) further underscore this by providing a detailed

exploration of how changes in each variable impact cancellation probabilities, revealing

non-linear and interaction effects that may not be apparent from empirical correlations

alone.
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In our analysis we utilized SMOTE to synthesize new data, which effectively addresses

the challenge of class imbalance. The advantage of the method is that it enhances the

classifier’s performance specifically on the minority class. By increasing the representation

of the minority class, SMOTE ensures that the model has more balanced data to learn

from, which reduces the risk of the model being biased towards the majority class. This, in

turn, improves the model’s ability to correctly identify observations of the minority class.

Moreover, SMOTE contributes to better overall model generalization by providing a more

representative dataset. This method enriches the dataset without requiring additional

real-world data, which can often be challenging or costly to obtain.

As with other methods, the use of SMOTE comes with both advantages and disadvan-

tages. The disadvantage of SMOTE is that can introduce noise and potential overfitting,

particularly when synthetic samples generated from outliers or noisy data are not repre-

sentative of the underlying class distribution. Additionally, the increased computational

complexity with larger and higher-dimensional datasets raises practical challenges.

Building upon the understanding of SMOTE’s strengths and limitations, we observe

that SMOTE-enhanced models outperform traditional methods in managing imbalanced

datasets. Through the application of machine learning techniques, it becomes possible to

consider a comprehensive range of factors influencing predictions and thus enhance the

predictive accuracy. However, it is important to recognize that current datasets may lack

crucial future information necessary for refining cancellation rate forecasts. While SMOTE

effectively addresses the issue of class imbalance, it cannot account for unknown future

variables that could impact policy cancellations.

To overcome this limitation and further enhance the accuracy of our predictions, it is

advisable to integrate model outcomes with anticipatory information. This approach en-

sures that predictions take into account potential future developments, providing actuaries

with more accurate insights into fluctuations in policy amounts. Such precision is crucial

for the calculation of premium risks, highlighting the importance of adaptive, data-driven

decision-making in the actuarial field.
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