
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

Predicting Insurance Premium for Private
Unit-linked Product by Using Long Short-
Term Memory (LSTM) Method

Nan Karlsson

Matematiska institutionen

Masteruppsats 2024:4

Försäkringsmatematik

Juni 2024

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2024:4

http://www.math.su.se

Predicting Insurance Premium for Private
Unit-linked Product by Using Long

Short-Term Memory (LSTM) Method

Nan Karlsson
∗

June 2024

Abstract

This thesis explores the efficacy of Long Short-TermMemory (LSTM)
networks in forecasting time series data, with a particular focus on
their application to real-world datasets in private Unit-linked product
in the insurance industry. The study begins by establishing a theoret-
ical foundation for LSTM models, followed by a practical application
to simulated data, where they are benchmarked against the tradi-
tional time series prediction method, Autoregressive Moving Average
(ARMA). The research then transitions to the application of LSTM
models to real datasets. In the empirical analysis, we develop both
univariate and multivariate LSTM models. To evaluate the predic-
tive accuracy and generalizability of these models, we compare their
performance against a baseline Moving Average (MA) model. The
findings suggest that ARMA models may excel in certain scenarios,
while LSTM networks offer robust alternative for complex time series
forecasting. This is evidenced by their ability to capture the inter-
connectedness within the data, resulting in more accurate predictions
compared to the baseline MA model.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: karlsson.nan@gmail.com. Supervisor: Filip Lindskog.

Acknowledgements

I would like to express my deepest gratitude to all those who have con-
tributed to the completion of this thesis. First and foremost, I extend my
sincere appreciation to my supervisor, Filip Lindskog, whose expertise, un-
derstanding, and encouragement added considerably to my study experience.
Your guidance and support from the initial to the final level enabled me to
develop a comprehensive understanding of the subject.

My sincere thanks are extended to Swedbank Försäkring AB for pro-
viding the data and the unique opportunity to research this subject. The
insights into insurance products have been instrumental in facilitating my
research. The access to real-world data and industry knowledge has been
invaluable in shaping this thesis. I am particularly grateful for the assis-
tance offered by André Wong, Karolis Kaupas, and Mårten Marcus, whose
support and expertise have been greatly appreciated.

I am also indebted to my family for their unwavering support and en-
couragement throughout my study; this accomplishment would not have
been possible without them. Thank you to my husband, Peter Karlsson, for
believing in me and for pushing me to pursue my goals.

Finally, I would like to thank my employer Ernst & Young. The firm’s
commitment to fostering a learning culture and providing access to a wealth
of learning resources, coupled with the flexibility offered, have been crucial
in facilitating my academic endeavors. Additionally, I am immensely grate-
ful to my colleague, Claes Sadenfors. His willingness to share his expertise
and provide constructive feedback has been invaluable to the successful com-
pletion of this thesis.

Nan Karlsson
June 2024

Contents

1 Introduction 4

2 Literature Review 6

3 Theoretical Framework 8
3.1 Long short-term memory neural networks 8
3.2 Back-propagation and stochastic gradient descent 10

4 Analysis on Simulated data 13
4.1 Simulated data . 13
4.2 ARMA model . 14
4.3 LSTM model . 16
4.4 Results . 18

5 Analysis on Real world data 22
5.1 Exploratory data analysis . 22
5.2 LSTM model development and validation 26
5.3 Feature importance . 33
5.4 Illustration with one example 37

6 Results and Future work 38

3

1 Introduction

Insurance companies in Sweden offer a range of Unit-linked products de-
signed to provide financial security and growth opportunities to individuals.
A ”Unit-linked product” refers to a type of investment-linked insurance pol-
icy that combines the aspects of protection and investment. The premiums
paid by the policyholder are partly used to provide insurance coverage, while
the remaining portion is invested in various types of investment funds. These
funds are often divided into units, hence the term ”Unit-linked,” and the
value of the policy is directly linked to the performance of these investment
units. For example, a Unit-linked retirement plan, which combines life in-
surance with investments in market-linked funds, offering flexible retirement
payouts based on fund performance. The Unit-linked products can con-
tribute significantly to an individual’s retirement, supplementing the basic
state pension, and can also act as both saving instruments and life insurance
policies. The premiums paid into these products constitute the backbone
of future liabilities that the companies must meet; hence, forecasting these
premiums accurately is a critical actuarial task that ensures the insurer’s
ability to fulfill its commitments.

Unit-linked products can be funded by employers, as seen in occupational
pensions, or by individuals through private Unit-linked plans. Occupational
pensions typically have premiums based on a percentage of the pensionable
salary, leading to more predictable payment patterns. In contrast, premi-
ums for private Unit-linked plans tend to be more variable and influenced
by multiple factors. The complexity of predicting premium volumes in pri-
vate Unit-linked plans is heightened by individual preferences, policyholders’
behavior, economic fluctuations, demographic changes, and evolving regu-
latory environments. Specifically, the ability to predict these volumes accu-
rately is key to pricing products correctly. Furthermore, such predictions are
indispensable for maintaining solvency margins, determining value in force,
and ensuring the long-term sustainability and competitive edge of life and
pension insurance companies.

Against this backdrop, Long Short-Term Memory (LSTM) networks—an
advanced type of recurrent neural network—present themselves as a promis-
ing solution for forecasting tasks. LSTMs are adept at capturing intricate
patterns in sequential data, potentially offering a breakthrough in premium
prediction accuracy. They hold a particular advantage in dealing with the
inherent temporal aspects of premium payments and can learn from long-
term sequences, which may be laden with complex, influential factors.

The aim of this thesis is to dissect the LSTMmethod as a tool for predict-
ing future premiums for private Unit-linked insurance product in the Swedish
insurance market. The research contemplates the capability of LSTMs and
their application to this particular domain, which, if successful, could lead
to vast improvements in strategic financial planning for the industry.

4

The thesis is organized as follows: Section 2 provides a literature review
of the current methodologies used for insurance premium prediction, along
with an examination of existing applications of LSTM networks in financial
forecasting. Section 3 delves into the theoretical aspects of LSTM networks.
Section 4 conducts an analytical exploration using simulated data to bench-
mark the performance of ARMA model against that of LSTM network.
This comparative analysis aims to highlight the strengths and limitations
of each approach in a controlled environment. Section 5 shifts the focus to
real-world data, outlining the research methodology, including data acqui-
sition, preprocessing techniques, and the LSTM modeling process, presents
the empirical results, evaluates the predictive accuracy of the LSTM models,
and compares them with traditional forecasting method. Section 6 provides
a summary of the analyses conducted throughout the study, distilling the
conclusions and insights derived from the work. It discusses the practical
implications of the findings and identifies avenues for future research.

5

2 Literature Review

Time series prediction has traditionally relied on classical approaches such as
Moving Averages (MA) or Autoregressive Moving Average (ARMA) models,
as discussed by Brockwell and Davis (2002) [3]. These methods have pro-
vided a foundation for understanding and forecasting temporal data. How-
ever, challenges remain in accurately predicting premiums, especially for
private Unit-linked insurance products, where premium payments can be
influenced by a myriad of factors, including market volatility and policy-
holder behavior.

An RNN, or Recurrent Neural Network, first introduced by Elman (1990)
[6], is a type of neural network designed to handle sequential data, where
the output from the previous step is fed back into the model as input for
the next step. This contrasts with a standard feedforward neural network,
where the flow of information moves in only one direction, from input to
output, without looping. However, RNNs often face challenges in learning
long-term dependencies, a phenomenon attributed to the vanishing gradient
problem, as described by Hochreiter (1991) [11] and Bengio et al. (1994)
[2]. The issue emerges during backpropagation, where computed gradients
tend to shrink as they are propagated through the network’s layers. When
these gradients approach zero, they provide little to no adjustment for the
network’s weights, particularly in the earlier layers, thereby impeding the
network’s ability to learn from data points that are temporally distant from
the relevant output.

Long Short-Term Memory (LSTM) networks, a subclass of Recurrent
Neural Networks (RNNs), have gained recognition as a potent tool for time
series forecasting. Introduced by Hochreiter and Schmidhuber (1997) [12],
LSTMs are specifically designed to address the limitations of traditional
RNNs, such as the difficulty in learning long-term dependencies. The dis-
tinctive architecture of LSTMs, which includes memory cells and gating
mechanisms, enables them to retain information over prolonged periods.
This feature is particularly advantageous for modeling financial time se-
ries data, which often display long-term trends and cyclical patterns (Gers,
Schmidhuber,& Cummins, 2000) [8]. The efficacy of LSTM networks in fi-
nancial forecasting has been the subject of extensive research. Studies have
demonstrated their effectiveness in predicting stock prices (Chen, Kuo, &
Wang, 2005) [4], forecasting market indices (Bao, Yue, & Rao, 2017) [1],
and analyzing cryptocurrency trends (McNally, Roche, & Caton, 2018) [16].
These studies underscore the LSTM’s capability to capture the complex,
non-linear relationships that are characteristic of financial time series data.

The consensus in the literature suggests that although traditional mod-
els are valued for their transparency and simplicity, LSTM networks and
other advanced machine learning techniques significantly enhance predic-
tive performance for complex time series data. Comparative studies have

6

consistently shown that LSTMs outperform ARIMA models, support vec-
tor machines, and other conventional benchmarks in terms of forecasting
accuracy (Hansun, 2013 [10]; Fischer & Krauss, 2018 [7]).

Within the insurance domain, the application of LSTM networks has
been investigated for various tasks. Lindholm and Palmborg (2021) [15] con-
ducted a study on how to use data efficiently together with a LSTM neural
network extension of the Poisson Lee-Carter model. Wüthrich (2022) [19]
delved into the efficacy of LSTM networks in mortality prediction, demon-
strating their potential to enhance actuarial models with their advanced
pattern recognition capabilities. However, research on the use of LSTMs for
premium prediction, particularly for private Unit-linked products, remains
limited.

The literature indicates that LSTMs have the potential to effectively
model the dynamic interplay between various factors and premium pay-
ments. Nonetheless, the scarcity of research specifically focused on LSTM
applications for insurance premium forecasting highlights a significant op-
portunity for further investigation and validation of LSTM models in this
specialized area of the insurance industry.

7

3 Theoretical Framework

3.1 Long short-term memory neural networks

The Recurrent Neural Network (RNN) is particularly well-suited for ana-
lyzing sequential data due to its intrinsic capacity to process inputs in an
ordered sequence. This characteristic allows the outputs generated by a
RNN to be influenced by the preceding elements in the sequence. However,
traditional RNNs encounter challenges when attempting to capture depen-
dencies over longer sequences—this is known as the long-term dependency
problem. Addressing this limitation, Hochreiter and Schmidhuber [12] in-
novated the Long Short-Term Memory (LSTM) neural network in 1997 as a
potent modification designed to retain information over extended intervals.
Enhancement of the LSTM architecture continued with Gers et al. [8] in
2000, who introduced the ’forget gate’ mechanism. This gate functions as a
regulatory component, determining to what extent previous outputs should
exert influence on the network’s current calculations.

Within the hidden layer of a Long Short-Term Memory (LSTM) net-
work, the fundamental component is known as the memory block. Each
memory block is composed of one or several memory cells, which are the
core units responsible for preserving information over time. Integral to the
functionality of these memory cells are three distinct gates: the forget gate,
the input gate, and the output gate. The architecture of a memory cell is
shown in Figure 3.1 below,

Figure 3.1: Memory cell architecture in LSTM

Let xt be denoted as the features vector at time t, ht is the hidden layer
vector at time t, and ct is the cell state. Thus, a standard LSTM neural

8

network with one hidden layer can be described by the following equations:

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

gt = tanh(Wgxt + Ught−1)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

Where ⊙ denotes the Hadamard product, gt is the gate, ft is the forget
gate, it is the input gate, ot is the output gate, σ is the sigmoid function,
tanh is the hyperbolic tangent function, Wf ,Wi,Wo,Wg,Uf ,Ui,Uo,Ug

are weights vectors, bf , bi, bo and b are denoted as the biases.
By setting the forget gate ft to 0, the input gate it and the output gate

ot to 1, and replacing one of the activations tanh with the identity function,
a standard recurrent neural network layer would be realized.

The cell state ct embodies the long-term memory component within the
LSTM network, encapsulating the retained information that the network
carries through successive time steps. The evolution of the cell state from
one time step to the next is governed by a regulated process through mul-
tiplication with the forget date ft and by adding a term simultaneously as
a function of the current input features xt and the previous hidden layer
vector ht−1, multiplied by the activation of the input gate it. When the
forget gate ft is close to one, then the previous cell state ct−1 will exert a
significant influence on the next cell state ct, meaning the network preserves
long-term memory from time step t − 1 to t. Conversely, if the forget gate
ft is near zero, the network essentially discards long-term memory, meaning
the current cell state ct is influenced predominantly by the current input
features xt and the previous hidden layer output ht−1. This functionality
is particularly valuable when processing lengthy sequences, as it allows the
network to recognize the start and finish of subsequence patterns within the
sequence. Similarly, the input gate regulates the extent to which features xt
and the previous hidden layer output ht−1 modify the current cell state ct,
safeguarding the stored information in the cell state ct from being perturbed
by irrelevant new inputs. Lastly, the output gate ot dictates how much of
the current cell state ct is transferred to the current hidden layer output ht,
acting as a filter that prevents the hidden layer output from being influenced
by nonessential information stored in the cell state at time step t. In a word,
the 3 gates collectively orchestrate the flow of information into and out of
the memory cells, thereby modulating the cell’s memory. They are critical
in the LSTM’s ability to model sequential data, enabling the network to
learn and retain relevant information across long intervals while discarding
non-essential data.

9

3.2 Back-propagation and stochastic gradient descent

A loss function quantifies the performance of a neural network based on
its training data and expected outcomes. The gradient of the loss func-
tion, essential for optimizing the network, is commonly computed by using
the backpropagation algorithm. Introduced in the 1970’s, the full poten-
tial of backpropagation was not recognized until the seminal 1986 paper by
Rumelhart et al [17]. This study highlighted several neural network models
where backpropagation significantly outperformed previous learning meth-
ods, thus enabling the practical application of neural networks to previously
intractable problems. Presently, backpropagation is the cornerstone algo-
rithm underpinning the learning process in neural networks.

Let’s start with assuming a mean squared error loss function for the
LSTM network as below:

L =
n∑

i=1

(yi − ŷi)
2,

where n is the number of data points, yi is the actual value of the i-th data
point, and ŷi is the predicted value of the i-th data point by the model.

The goal of the backpropagation algorithm is to compute the partial
derivative ∂L

∂W , ∂L
∂U ,

∂L
∂b of the loss function L with respect to any weight

W,U or bias b within the network. We know that for the time step t, where
1 ≤ t ≤ T :

∂L

∂Wi
=

T∑
t=1

∂L

∂it
it(1− it)xt

∂L

∂Wf
=

T∑
t=1

∂L

∂ft
ft(1− ft)xt

∂L

∂Wo
=

T∑
t=1

∂L

∂ot
ot(1− ot)xt

∂L

∂Wg
=

T∑
t=1

∂L

∂gt
(1− g2t)xt

10

Similarly, we have:

∂L

∂Ui
=

T∑
t=1

∂L

∂it
it(1− it)ht−1

∂L

∂Uf
=

T∑
t=1

∂L

∂ft
ft(1− ft)ht−1

∂L

∂Uo
=

T∑
t=1

∂L

∂ot
ot(1− ot)ht−1

∂L

∂Ug
=

T∑
t=1

∂L

∂gt
(1− g2t)ht−1

and

∂L

∂bi
=

T∑
t=1

∂L

∂it
it(1− it)

∂L

∂bf
=

T∑
t=1

∂L

∂ft
ft(1− ft)

∂L

∂bo
=

T∑
t=1

∂L

∂ot
ot(1− ot)

∂L

∂bg
=

T∑
t=1

∂L

∂gt
(1− g2t)

By applying back propagation through time, we can calculate all the
derivatives of the cell and hidden states with following equations iteratively:

∂L

∂it
=

∂L

∂ct
gt

∂L

∂ft
=

∂L

∂ct
ct−1

∂L

∂ot
=

∂L

∂ht
ot tanh(ct)

∂L

∂Wy
=

∂L

∂ŷ
hT

and

∂L

∂ht−1
=

1

4

[
∂L

∂gt
(1− g2t)Ug +

∂L

∂it
it(1− it)Ui +

∂L

∂ft
(1− ft)Uf +

∂L

∂ot
(1− ot)Uo

]

11

When we have all the derivatives of the loss functions, we can then use
stochastic gradient decent (SGD) to find the optimal weights. SGD is an
iterative method employed to minimize the loss function L. It uses the
gradient of the loss to make small adjustments to the weights, which, over
time, lead to a reduction in the loss and an improvement in the model’s
predictions. The iteration can be expressed in formula as follows:

W := W − η
1

N

N∑
n=1

∂L

∂W

Where W are the weights and η is the learning rate. We also provide the
pseudocode of iteration process:

Initialize weights W randomly
Choose a learning rate η
Set the number of iterations or a convergence threshold
for each iteration or until convergence do

Randomly shuffle the dataset
for each batch in the dataset do

Calculate the gradient ∂L
∂W for the current batch

Update the weights: W := W − η ∂L
∂W

end for
end for
Return the optimized weights W .

During SGD implementation, the process begins with the random ini-
tialization of the network’s weights. A subset of the training data is ran-
domly selected. Then the selected data is fed through the network to obtain
predictions. The loss function is computed using the predictions and the
true values from the training data. Subsequently, the gradient of the loss
function with respect to each weight is calculated through backpropagation.
The weights are updated in the opposite direction of the gradient by a small
step, proportional to a learning rate. This step is intended to reduce the
loss. Steps above are repeated with new batches of data until the loss func-
tion converges to a minimum or until a predefined number of iterations or
epochs is reached, indicating that the model has been sufficiently trained.

In this thesis, we implement the Adam Optimizer for weight training,
aligning with the technique of weight updates similar to SGD. The primary
distinction lies in the adaptive learning rate used in the Adam Optimizer,
which varies throughout the training process. For an in-depth understanding
of the iterative weight adjustments facilitated by the Adam Optimizer, can
be found at the work by Kingma and Ba (2014) [14].

12

4 Analysis on Simulated data

4.1 Simulated data

To investigate the performance of Long Short-Term Memory (LSTM) net-
works in time series forecasting, we initiated our study by simulating a
stationary time series dataset. A stationary time series is one whose sta-
tistical properties such as mean, variance, and autocorrelation are constant
over time, making it a suitable candidate for modeling and forecasting. We
employed the tsa.arma generate sample function from the statsmodels
library in Python to simulate a weakly stationary time series with 1000 ob-
servations, which is from an ARMA(3, 3) model. With weak stationarity it
means that the mean and autocovariance of the time series do not change
over time, although individual values in the series can fluctuate. The code
snipped shows as below:

As we can see from the arrays for ar coefficients and ma coefficients,
the first element is typically 1 and correspond to AR(0) and MA(0) respec-
tively, which are not part of the AR and MA order. The other three elements
in each of the ar coefficients and ma coefficients arrays represent the
coefficients for the lagged terms in the autoregressive AR and moving average
MA parts of the ARMA model, respectively. Each coefficient corresponds
to the influence of a past value or past shock (error term) on the current
value of the time series.

The simulated data were not constrained to a specific range; thus, to
prepare the data for the LSTM model, which is sensitive to the scale of the
input data, we performed a min-max scaling to transform the time series val-
ues to fall within the (0, 1) interval. The formula for Min-Max normalization
of a value x is:

xnorm =
x−min(x)

max(x)−min(x)

This normalization process is crucial for the efficient training of neural net-
works and helps in accelerating the convergence of the optimization algo-
rithms used during the learning process.

We adopted a common approach to split our time series data, allocat-
ing 70% of the observations to the training set and the remaining 30% to

13

the test set. This split was chosen to ensure that the models have a suf-
ficiently large amount of historical data to learn from, while still retaining
a substantial portion of the data for an unbiased evaluation of the models’
predictive capabilities. The training set consists of the first 70% of the time
series data, which is used to fit the models. The LSTM network learns to
recognize patterns and dependencies in the data during this phase, adjust-
ing its weights through backpropagation and gradient descent optimization
techniques. Similarly, the ARMA model parameters are estimated using
the same subset of data to capture the underlying process generating the
observations. The test set comprises the latter 30% of the time series data
and serves as a new dataset for the models to forecast. This set is not used
during the training phase and is strictly reserved for evaluating the models’
performance. By comparing the models’ forecasts against the actual values
in the test set, we can assess their out-of-sample predictive accuracy.

4.2 ARMA model

The ARMA model is a cornerstone in time series analysis, and its ability to
capture the dynamics of stationary time series makes it an ideal reference
model for our study. As a benchmark for our LSTM model, we utilized an
ARMA model fitted to the simulated data.

The ARMA model combines two fundamental components: autoregres-
sive AR and moving average MA. The ARMAmodel is denoted asARMA(p, q),
where p represents the order of the autoregressive part and q the order of
the moving average part. The autoregressive component AR of the ARMA
model captures the relationship between a time series observation and a
specified number of lagged observations. The moving average component
MA models the relationship between the time series observation and a lin-
ear combination of the error terms from previous time steps. Formally,
ARMA(p, q) process can be written as:

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + θ1Zt−1 + · · ·+ θqZt−q

WhereXt is the time series at time t, φ1, . . . , φp are the coefficients of the
AR part, and θ1, . . . , θq are the coefficients for the MA part. Zt represents
the white noise error terms and {Zt} ∼ WN(0, σ2).

Ensuring stationarity is important in ARMA modelling because the pres-
ence of a unit root can lead to unreliable and spurious results in time series
analysis. To confirm the stationarity of the simulated time series, we con-
ducted the Augmented Dickey-Fuller (ADF) test [5]. The ADF test is a
formal statistical test for stationarity based on estimating the following re-
gression model:

∆yt = α+ βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp∆yt−p + εt

14

Where ∆ is the difference operator, yt is the time series at time t, α is a
constant term, βt represents a deterministic time trend, γ is the coefficient
on the lagged level of the time series, δ1, . . . , δp are coefficients on the lagged
differences of the time series, εt is the error term. The ADF test examines
the null hypothesis that a unit root is present in the time series sample. A
rejection of the null hypothesis implies that the time series is stationary.
The results of the ADF test confirmed that our simulated time series and
train dataset and test dataset are stationary.

A critical step in the application of the ARMA model to time series
forecasting is the identification of the optimal order of the autoregressive
AR and moving average MA components, denoted by p and q, respectively.
The selection of these parameters is pivotal as it determines the model’s
ability to capture the underlying dynamics of the time series data. We
employed an iterative approach, systematically varying p and q within the
range of 1 to 6. This range was chosen based on the assumption that the
underlying process would not require a higher order to capture the essential
dynamics, while also keeping the model complexity manageable. For each
combination of p and q, we fitted an ARMA(p, q) model to the training
data and evaluated its performance using the Akaike Information Criterion
(AIC). The AIC is a widely used metric for model selection that balances
the model’s goodness of fit with its complexity. A lower AIC value suggests
a better model, as it indicates a more parsimonious fit to the data. Through
this iterative process, we identified that the ARMA model with p = 3 and
q = 1 yielded the lowest AIC value among the considered range of model
orders. This result suggests that an ARMA(3,1) model provides the best
balance between model complexity and fit to the historical data within the
specified search space. The ARMA(3,1) model implies that the current
value of the time series is influenced by the three immediately preceding
values AR component and the most recent prediction error MA component.
The selection of this model is consistent with the observed autocorrelation
and partial autocorrelation functions of the time series, which indicated a
significant correlation at lag 3 and a significant spike at lag 1, respectively.

In practice, we use the tsa.ARIMA function from statsmodels in Python
to fit our ARMA model on the training dataset in order to estimate the
coefficients of the AR and MA parts. The coefficients of the fitted model
shows in tabel below:

15

As we can see, σ2, the variance of the optimal prediction error Z(t)
is 0.0152, which is smaller than the variance of the stationary time series
X(t) 0.02754. This is a good indicator that the ARMA model effectively
captured the underlying structure of the time series. The fitting process is
about to find a set of parameters including coefficients of the AR and MA
parts and the variance of the errors that can maximize the log-likelihood
function. When fitting an ARMA model to time series data, the goal is to
capture the underlying autocorrelation structure of the time series so that
the residuals are as close to white noise (i.e., they are independently and
identically distributed with a mean of zero and constant variance) as possi-
ble. In order to check the residuals of the fitted model to ensure that they
resemble white noise, we performed model diagnostics by checking the Q-Q
plot for residuals, calculating the autocorrelation function (ACF), checking
the Ljung-Box test result, and the Jarque-Bera test result. After this, we
use our fitted model to predict one-step ahead on the test dataset.

The ARMA model serves as a reference point, allowing us to compare
the forecasting performance of the LSTM model against a well-established
traditional method in time series analysis.

4.3 LSTM model

Next, we proceed to develop a LSTM model. In the context of time series
forecasting using LSTM networks, we can conceptualize the model within
a stochastic framework. A one time-step LSTM model can be described by
the equation:

Xt = LSTM(inputt−1) + ϵt

where Xt represents the actual value at time t, and inputt−1 is the input
to the LSTM at time t − 1, which could be the observed value Xt−1 at
time t− 1 for a univariate model, or a vector that includes Xt−1 and other
relevant features at time t − 1 for a multivariate model. The dimension of
Xt is determined by the nature of the time series data and the problem
we are solving. In this study for the simulated data, Xt is a real number
since we want to predict the value in the time series at time t. The term ϵt
represents the error or noise at time t, which is assumed to be independently
and identically distributed with a mean of zero and some variance σ2. This
error term captures the random fluctuations that the LSTM model does not
account for. Unlike the linear relationship in an ARMA model, the LSTM’s
function is non-linear and has the ability to capture complex dependencies
in the data. The LSTM achieves this through its internal mechanisms, such
as gates and cell states, which allow it to learn from long sequences of data
and remember important information while forgetting the irrelevant.

For this time series, we proceed to develop a 3 timesteps LSTM model.
With a length of 3 timesteps, meaning it considers the past 3 payments to

16

forecast the next one. In this study, we employ the Keras API provided
by TensorFlow to construct and train our LSTM models. The Python code
snippet is shown as below:

The architecture of our LSTM network includes a layer with 50 neu-
rons. Neurons, or units, are the fundamental processing elements of neural
networks. In a LSTM layer, each neuron is capable of learning from the tem-
poral dependencies of the input sequence, making it particularly suitable for
time-series data. The choice of 50 neurons is an initial choice with consid-
eration of balance between model complexity and computational efficiency,
providing the network with sufficient capacity to capture the underlying pat-
terns in the data without becoming overly complex. Following the LSTM
layer, we have a dense layer with a single neuron. A dense layer is a fully
connected neural network layer where each input is connected to each out-
put by a learned weight. In our case, the dense layer serves to consolidate
the information learned by the LSTM layer and produce the final output.
The LSTM model architecture is illustrated in Figure 4.1.

Figure 4.1: LSTM model architecture

The model utilizes the mean squared error (MSE) as its loss function.
MSE computes the average of the squares of the differences between the
predicted values and the actual values, emphasizing larger errors more sig-
nificantly than smaller ones. This characteristic of MSE is particularly useful

17

when large errors are deemed more detrimental than smaller ones, as it pe-
nalizes the model more heavily for larger deviations from the actual values.
By minimizing the MSE during training, we aim to enhance the model’s
predictive accuracy and ensure that it is not disproportionately influenced
by outliers or large errors.

We use the Adam optimizer to update the model’s weights during train-
ing. Adam is an optimization algorithm that adjusts the learning rate dy-
namically for each weight in the model, combining the advantages of two
other extensions of stochastic gradient descent (SGD): AdaGrad and RM-
SProp. This adaptive learning rate helps the model to converge more quickly
and efficiently to the optimal solution. The model is trained over 10 epochs,
where an epoch represents one complete pass through the entire training
dataset. Training for multiple epochs allows the model to iteratively learn
and refine its predictions. A batch size of 32 is used, meaning that the
model weights are updated after every 32 samples are processed. The choice
of batch size can affect the speed and stability of the learning process. At
this juncture, we have established our preliminary hyperparameter settings
drawing upon empirical insights. These initial choices are informed by prior
experimentation and serve as a starting point for the model’s configuration.
In other words, we have not engaged in fine-tuning the hyperparameters to
enhance the performance of this model.

4.4 Results

Upon completing the training phase for both the ARMA and LSTM models
using the designated training dataset, we proceeded to evaluate their fore-
casting performance on the test dataset. This evaluation phase is crucial
as it provides insights into how well each model generalizes to unseen data,
which is a key indicator of their practical utility in time series forecasting.

To facilitate a direct comparison between the predictive capabilities of
the ARMA and LSTM models, we generate forecasts for the test dataset
using both models. The predicted values obtained from each model are then
plotted alongside the actual observed values from the test dataset. The
resulting figure 4.2 offers a visual representation of the models’ accuracy,
allowing us to assess the alignment between the predicted and actual values.

Based on the visual evidence presented in the graph above, it is apparent
that both the ARMA and LSTM models have successfully identified the
underlying pattern of the time series data. However, closer inspection reveals
that the ARMA model more closely mirrors the trajectory of the actual
values, suggesting a higher degree of precision in its forecasts. The graph
indicates that the ARMA model’s predictions are more consistently aligned
with the actual data points throughout the test period, which may point
to its superior ability to model the linear aspects of the time series. This

18

Figure 4.2: Actual vs Predicted ARMA and LSTM models for Simulated
data

observation is particularly noteworthy given the simplicity of the ARMA
model compared to the more complex LSTM network. While the LSTM
model also demonstrates a commendable performance in tracking the general
movements of the time series, the ARMA model’s tighter adherence to the
actual curve implies that it may be more adept at capturing the specific
nuances of this dataset. The insights gained from the comparative analysis
of the ARMA and LSTM models are further substantiated by examining
the residual plots played in the subsequent Figure 4.3:

Figure 4.3: Residuals of ARMA and LSTM models for Simulated data

The graphical analysis provides a clear initial indication that the ARMA
model has delivered a superior level of accuracy in its predictions for this
particular time series. It is important to complement this qualitative assess-
ment with quantitative metrics to confirm the visual interpretation. Metrics
such as mean absolute error (MAE) or the root mean squared error (RMSE)

19

can provide a more definitive evaluation of each model’s accuracy.

MAE for ARMA = 0.09766

MAE for LSTM = 0.12773

RMSE for ARMA = 0.12209

RMSE for LSTM = 0.15998

Standard deviation for X(t) = 0.16484

Standard deviation for Z(t) = 0.12304

By looking at MAE and RMSE, we observe that the ARMA model ex-
hibits lower values for both MAE and RMSE. The lower MAE value for
the ARMA model suggests that, on average, its predictions are closer to
the actual observations. Furthermore, the lower RMSE indicates that the
ARMA model is less prone to large errors, which are more heavily penalized
in the RMSE calculation. Given that the standard deviation of the station-
ary time series X(t) is 0.16484 and the standard deviation of the optimal
prediction error Z(t) is 0.12304, the superior performance of the ARMA
model on both MAE and RMSE metrics implies that it is more adept at
capturing the underlying patterns in the time series data. Consequently, for
this specific dataset, the ARMA model is the more suitable choice for fore-
casting, providing a closer fit to the observed data compared to the LSTM
model.

It is worth to point out that the standard deviation of the optimal pre-
diction error Z(t) represents the theoretical minimum level of prediction
error (RMSE) that the model could achieve if the true parameters were
known and the model was correctly specified. If the model were perfect and
the parameters were exactly estimated, the RMSE would be equal to the
standard deviation of Z(t), because there would be no systematic errors in
the predictions, only random disturbances. However, here we observe that
the standard deviation of Z(t) is slightly higher than the RMSE value for
ARMA. This is because , in practice, we rarely know the true parameters
of a model. Instead, we estimate the parameters from a finite sample of
data, which introduces estimation uncertainty. The size of the sample and
other aspects of how the model is estimated (such as the choice of starting
values and optimization method) can also affect the quality of the estima-
tion and, consequently, the RMSE. Therefore, it is possible to obtain an
estimated RMSE that is smaller than the standard deviation of Z(t) in a
specific sample. In our case, we have 300 observations in our test set, which
is a relatively small sample, and it’s possible that the particular sample we
have just happens to fit our estimated model unusually well, giving us a
RMSE that’s better than expected.

While the ARMA model has demonstrated superior performance on our

20

simulated dataset, as evidenced by its lower MAE and RMSE values, real-
world time series data often exhibit more complexity, including non-linear
relationships among variables and features. These complexities can chal-
lenge traditional linear models, potentially limiting their effectiveness in
capturing the full spectrum of dynamics present in the data. In contrast,
LSTM (Long Short-Term Memory) networks, with their sophisticated ar-
chitecture designed to learn from sequences, are well-suited to model such
non-linear dependencies and long-range temporal interactions. This capa-
bility positions LSTM models as a promising alternative for handling the
intricacies of real-world time series data. In our next chapter we will delve
into the application of LSTM networks to more complex datasets in the real
world, and we will explore if LSTM models can provide reliable predictions
when faced with the multifaceted nature of actual time series data.

21

5 Analysis on Real world data

5.1 Exploratory data analysis

The real data we use in this study is from Swedbank Försäkring AB. It is a
Unit-linked Child endowment insurance product. Unit-linked insurance as
a financial product combines insurance coverage and investment exposure
in equities or bonds. The purpose of this child endowment product is for
parents or grandparents to save for the future of their children or grandchil-
dren. Policyholders pay an initial lump-sum payment when they start the
insurance, followed by monthly premium payments.

The raw dataset received for this research comprises approximately 8,5
millions premium payment transactions associated with around 120,000 poli-
cies. The transactions span from 201201 to 202404. Upon analysis of the raw
data, it was observed that over half of the policies exhibited a stationary
premium payment pattern, characterized by consistent premium amounts
throughout the policy duration. For the objectives of this study, the focus
was narrowed to policies with variable premium payments. Consequently,
the analysis was conducted on approximately 43,000 policies, accounting
for about 3,6 millions transactions, to explore the dynamics of fluctuating
premium payment behaviors. The table in Figure 5.1 illustrates the distri-
bution of premium payment transactions across different years, revealing a
relatively even spread with a discernible upward trend. This indicates an
increasing volume of data in the later years. The dataset includes all policies
with premium payments active as of the beginning of 2012, as well as any
new policies issued throughout the duration of the study period.

Figure 5.1: The distribution of premium payments per year

The study incorporates data from both internal and external sources.
The internal data comprises anonymized snapshots of individual policy trans-

22

actions, capturing a range of covariates that include premium payment
transactions, product information, policy characteristics, and policyholder
demographics. To ensure the company’s confidential information and pro-
prietary secrets are protected, the amounts for certain covariates have been
rescaled. External data is derived from macroeconomic indicators, collected
in monthly snapshots. The dataset comprises a mix of categorical and nu-
merical variables. Due to the sensitive nature of the data, specific details
regarding the dataset are confidential and cannot be disclosed publicly.

To prepare the dataset for modeling and elevate the data’s quality, thor-
ough data cleaning and feature engineering are undertaken. The data clean-
ing process encompassed tasks like handling missing data, removing dupli-
cates, converting data types, correcting data entry errors, among others.
For instance, to address the issue of missing data, various techniques are
employed, such as imputing the missing values by assigning them a reason-
able estimate based on other available data or treating the missing values as
a separate category. The choice of technique depends on the nature of the
data and the specific circumstances surrounding the missing values.

Throughout the feature engineering phase, we have crafted new features
from the existing data, such as deriving age by calculating the difference
between the birth date and transaction date. Given that our chosen model,
Long Short-Term Memory (LSTM), necessitates numerical input, we have
applied encoding techniques to transform categorical variables into a nu-
merical format. One method we have utilized is one-hot encoding, which
constructs a binary vector for each category, marked by a ’1’ for the ac-
tive category and ’0’ for all others. This approach is particularly effective
for nominal data as it avoids imposing an artificial order among categories.
However, its suitability diminishes with variables that have a large number
of categories, as it can result in a significant increase in the dimensional-
ity of the dataset. For ordinal categorical variables, where the order of the
categories carries meaning, we have opted for label encoding, assigning a
unique integer to each category in accordance with its order. For further
reading on one-hot encoding and label encoding, we refer to the books by
James G. et al. [8] and Raschka, S. et al. [9]. In addition to encoding, we
have standardized the features by using normalization to ensure a consistent
scale across all inputs, a crucial step for models sensitive to input magnitude.
Normalization adjusts the scale of the data without distorting differences in
the ranges of values or losing information. It brings all the numeric features
into a common scale, allowing the model to converge more quickly during
training and reducing the risk of getting stuck in local optima. In this study,
we use min-max scaling, which linearly transforms the features so that they
fall within a given range, typically [0,1].

By applying normalization, we ensure that each feature contributes ap-
proximately proportionately to the final prediction. This is particularly
important when combining features that are on different scales and have

23

different units of measurement.
The primary goal of this study is to forecast premium payments. There-

fore, our initial step involves examining the characteristics and distribution
of premium payment data within the dataset. The graph in Figure 5.2
illustrates that within the dataset, an overwhelming majority of policies
(99%) register more than four payment instances. On average, policies paid
approximately 90 times. Notably, the most common number of payment
occurrences stands at 147, corresponding to roughly 3,800 policies.

Figure 5.2: Histogram of Number of Payments

Additionally, upon examining the contracts with a payment count of
147, we observe sporadic fluctuations over time, with no discernible trend
emerging from the data (refer to Figure 5.3).

To further explore and gain insights into the relationship between co-
variates and premium payments, we have conducted an analysis with the
help of domain knowledge. Below are some examples of our findings.

The Figure 5.4 reveals the distribution of policyholders’ ages at the time
of insurance purchase, which spans from 0 to 95 years. This wide range is at-
tributable to the fact that policyholders can include parents, grandparents,
or even the children themselves. It is readily apparent that the majority
of policyholders are parents. There is a noticeable trend where the average
premium paid increases within the age brackets of 20 to 40 and 55 to 90,
while it decreases between the ages of 40 to 55. This pattern may suggest
that as the time approaches for children to utilize the savings, policyholders
are inclined to pay higher premiums. Additionally, the data indicates that
grandparents, who are typically of retirement age, tend to pay higher av-
erage premiums compared to parents, as evidenced by the elevated average
premium levels for individuals aged 65 and above.

An additional noteworthy finding is the correlation between the duration
of the policy and the amount of the premium payments, refer to Figure 5.5.
There appears to be a positive association, where longer-standing policies are

24

Figure 5.3: Premium Payments for Number of Payments=147

Figure 5.4: Average Premium Per Age at Incept year

25

linked with higher premium payments. A particularly high average premium
payment is observed for policies in their first year. This could be rationalized
by the tendency of customers to make substantial lump-sum payments at
the inception of their contracts.

Figure 5.5: Average Premium Per Policy Duration

Finally, an intriguing trend emerges from the data: while female cus-
tomers are more likely to purchase this insurance product, their male coun-
terparts tend to pay higher premiums, refer to Figure 5.6.

5.2 LSTM model development and validation

To prepare the dataset for LSTM modeling, it is necessary to transform
the data into a format suitable for sequential learning. Given the variable
length of observation sequences for each policyholder, we must standardize
the input sequence length for the LSTM model. To achieve this, we de-
fine a fixed timestep, which represents the number of past observations the
model should consider when making predictions. For instance, if we set the
timestep to 3, the model will utilize the past three payment instances to
inform its predictions. Consider a policyholder with a payment sequence
represented as {t1, t2, t3, t4, t5}. Under our framework, the LSTM model
will interpret {t1, t2, t3}, {t2, t3, t4}, and {t3, t4, t5} as distinct input
sequences. This approach enables the model to make predictions based on
a series of events over time, rather than relying on a single payment in-
stance. By incorporating temporal dependencies between events, the LSTM
can capture patterns and trends that are essential for accurate forecasting
in the context of policyholder behavior.

26

Figure 5.6: Average Premium Per Gender

To ensure the robustness and generalizability of our LSTM model, we
partitioned our dataset into three distinct subsets: training, validation, and
testing. These subsets represent 60%, 20%, and 20% of the policyholder
data, respectively. The training dataset is the primary resource for the
model’s learning process. It is used to adjust the model’s weights and biases
to minimize the prediction error. The model iteratively learns from this sub-
set, capturing the underlying patterns and temporal dependencies present
in the policyholder payment sequences. The validation dataset serves a dual
purpose. Firstly, it acts as a checkpoint during the training phase, allow-
ing for the monitoring of the model’s performance on data that it has not
been trained on. This helps in detecting issues such as overfitting, where the
model performs well on the training data but fails to generalize to new data.
Secondly, the validation set is instrumental in fine-tuning the model’s hyper-
parameters. By evaluating various hyperparameter configurations against
the validation set, we can select the combination that yields the best per-
formance, thereby optimizing the model’s predictive capabilities. The test
dataset is the final arbiter of the model’s performance. It is used exclusively
to assess the model’s predictive accuracy after the training and validation
phases are complete. The test set provides an unbiased evaluation of the
model, as it consists of policyholder data that has remained unseen by the
model throughout the training and validation processes. This ensures that
the performance metrics obtained from the test set reflect the model’s true
generalization ability to new, real-world data. It is imperative that each
policyholder’s data is assigned to only one of these subsets to maintain the
integrity of the model’s evaluation. This exclusivity prevents data leakage

27

and ensures that the model’s performance metrics are not artificially in-
flated by having overlapping data between the training, validation, and test
datasets. The careful segregation of data into these partitions is a corner-
stone of our methodology, enabling us to develop a reliable and effective
LSTM model for predicting policyholder behavior.

We start with the construction of a univariate LSTMmodel, which means
we focus on a single feature, the ”premium payment amount,” to predict fu-
ture values based on historical data. The model is designed to process input
sequences with a length of 24 timesteps, meaning it considers the past 24
payments to forecast the next one. In the construction of our LSTM uni-
variate model, we employed the same foundational techniques as those used
in the simulation phase. However, when applying these models to real-world
data, we adapted our approach by varying the selection of hyperparameters.
This adjustment was crucial to account for the complexities and unique char-
acteristics of the real dataset, which differed from the controlled conditions
of the simulated environment.

As default, we choose no shuffling. Shuffling is a technique used during
training to randomize the order of the training data before each epoch. It
helps prevent the model from learning spurious patterns that may arise from
the order of the data rather than the underlying data distribution. However,
for time-series data where the sequence order is significant, we opt not to
shuffle the data to preserve the temporal relationships within the sequences.

The figure presented Figure 5.7 illustrates the progression of training
loss versus validation loss over the course of the model’s training epochs.
Observing the training loss curve, we notice a trend where the model ex-
hibits continuous learning up to the 20th epoch, as indicated by a consistent
decrease in loss. Beyond this point, the curve begins to plateau, suggesting
that the model is reaching a point of convergence where additional epochs do
not yield substantial improvements in learning on the training dataset. In
contrast, the validation loss curve displays fluctuations around the training
loss curve. This behavior is indicative of the model’s performance on the
validation dataset, which consists of data not seen during the training phase.
The oscillations in validation loss suggest that the model’s ability to gen-
eralize to new data is not improving consistently with each epoch and may
be subject to variability. The flattening of the training loss curve combined
with fluctuations in the validation loss could be a sign of overfitting. This
occurs when the model learns the training data too well, including noise and
idiosyncrasies, to the detriment of its performance on unseen data.

Building upon the foundation laid by the univariate LSTM model, our
subsequent endeavor involves the development of a multivariate LSTMmodel.
This advanced model integrates a total of 39 distinct features, encapsulat-
ing a richer and more complex representation of the underlying data. The
model is structured to process sequences with a timestep of 3, thereby con-
sidering a trio of consecutive data points to predict subsequent outcomes.

28

Figure 5.7: Univariate LSTM Model Train and Validation loss curves

In the construction of the multivariate LSTM model, we have elected to re-
tain the hyperparameters that were previously established in the univariate
model. This decision allows for a direct comparison between the two mod-
els, isolating the impact of incorporating multiple features on the model’s
performance.

In contrast to the univariate model, the loss curve of the multivariate
LSTM model in Figure 5.8 exhibits markedly less fluctuation, suggesting
a more stable learning process. Notably, the validation loss consistently
remains below the training loss for the majority of the training epochs.
This pattern is indicative of a model that generalizes well to unseen data.
The reduced fluctuation in the loss curve of the multivariate model may
be attributed to the richer feature set, which provides the model with a
more comprehensive understanding of the underlying data patterns. With
a greater number of features, the model has the potential to capture more
complex relationships and dependencies, which can lead to improved per-
formance and stability during training. The consistent positioning of the
validation loss beneath the training loss is a positive sign of the model’s
generalization ability. It suggests that the model is not merely memorizing
the training data but is effectively learning the salient characteristics that
are applicable to the validation data as well. This behavior is desirable in
a predictive model, as it implies that the model is likely to perform well on
real-world data that it has not encountered during the training phase. Over-
all, the performance of the multivariate LSTM model, as reflected by the
loss curves, demonstrates the advantages of incorporating multiple features

29

Figure 5.8: Multivariate LSTM Model Train and Validation loss curves

into the model. It underscores the potential for achieving a robust model
that not only learns effectively from the training data but also possesses
strong predictive capabilities when applied to new datasets.

To fit the multivariate LSTM model and prevent overfitting, early stop-
ping as a regularization technique is adopted in training process. By early
stopping, it means monitoring the model’s performance on a validation
dataset during the training process and if the model’s performance on the
validation set ceases to improve or starts to degrade for a specified number
of epochs, then the training is halted. By implementing early stopping, we
can ensure that the LSTM model retains its generalization ability and does
not learn the noise or random fluctuations present in the training data. This
technique not only helps in obtaining a more robust model but also can save
computational resources by reducing unnecessary training time.

To gauge the efficacy of the LSTM model relative to conventional ap-
proaches, we established a baseline model employing a simple moving av-
erage (SMA) with a sliding window of size 3. This baseline serves as a
benchmark for comparison, providing a straightforward method to generate
predictions based on the average of the most recent three observations in the
test dataset. We then computed the Root Mean Square Error (RMSE) for
the baseline model, which quantifies the average magnitude of the prediction
errors. The RMSE is a widely-used measure of accuracy that penalizes larger
errors more severely, making it a robust indicator of model performance. By
comparing the RMSE obtained from the baseline model against the RMSE
derived from the multivariate LSTM model on the same test dataset, we

30

can assess the degree to which the LSTM model surpasses the traditional
method. A lower RMSE for the LSTM model would indicate superior pre-
dictive accuracy, highlighting the benefits of leveraging more sophisticated
machine learning techniques for time-series forecasting. The RMSE for the
multivariate LSTM model registers at 2444.36198, which is notably lower
than the RMSE of 2761.263 observed for the baseline SMA model. This
differential in RMSE values is indicative of the multivariate LSTM model’s
enhanced performance in forecasting. The reduction in RMSE suggests that
the LSTM model is more adept at capturing the intricacies and temporal
dependencies present within the dataset, leading to more precise predictions
when compared to the baseline model. The baseline model, while useful as a
point of reference, relies on a simpler heuristic that does not account for the
potential complexities and non-linear relationships between features. In con-
trast, the LSTM model’s ability to process multiple input features and learn
from sequences of data allows it to provide a more nuanced understanding
of the underlying patterns, resulting in a more accurate forecast.

To effectively illustrate the comparative performance of the LSTM model
and the baseline MA model, we can create a visualization of the residuals,
which are the differences between the actual values and the predicted values
from each model. Residual analysis is a powerful diagnostic tool that can
reveal patterns in the model’s predictions and highlight areas where the
model may be systematically underperforming or overperforming.

Figure 5.9: Residual for LSTM Multivariate Model with 39 features

The graphical representations in Figure 5.9, 5.10 and 5.11 provided above
reveal that the MA model appears to overestimate the target variable when
the actual values are on the lower end of the spectrum. This pattern of
overestimation is evidenced by a clustering of negative residuals for smaller
actual values. This can be explained by an example sequence below, where

31

Figure 5.10: Residual for LSTM Multivariate Model with 39 features (sorted
by Actual value)

Figure 5.11: Residuals for LSTM Multivariate Model with 39 features vs
MA model)

32

the MA model yields a prediction of 77,356. This inflated forecast can be
attributed to the influence of an anomalously high initial payment amount
of 231,145, which skews the moving average upwards. In stark contrast,
the LSTM model offers a prediction of 445, aligning more closely with what
would be considered a reasonable estimate given the context of the data.

However, the residual plot for the LSTM model indicates a trend where
the model exhibits diminished predictive accuracy when tasked with fore-
casting higher values of premium payment amounts. A clear correlation
emerges, indicating that as the actual premium payment amounts increase,
the residuals also tend to rise. This observation suggests that the LSTM
model’s performance is not uniform across the range of payment amounts.
While the model may predict lower values with relative precision, its abil-
ity to accurately forecast higher payment amounts is less reliable. The in-
creasing residuals associated with higher actual values point to a potential
systematic bias or limitation within the model when dealing with larger
magnitudes. It highlights the need for further investigation into the model’s
structure and training process to identify the factors contributing to this
predictive shortfall.

5.3 Feature importance

In the context of time series forecasting, understanding the relative impor-
tance of different features can provide valuable insights into the underlying
factors that drive the predictions. To this end, we employ a regression tree
as a post-hoc analysis tool to calculate and interpret the feature impor-
tance derived from the predictions of a more complex model, our LSTM
networks. After training the multivariate LSTM model with 39 features on
the training data and obtaining its predictions, we use these predictions as
the target variable for a regression tree. The input features to the regression
tree are the same as those used by the LSTM multivariate model with 39
features. We use DecisionTreeRegressor from SKLearn.tree in Python for
fit the regression tree.

The structure of a regression tree can be illustrated in Figure 5.12. The
tree is constructed from a root node and grows by splitting the data into
branches based on the input features. As shown in Figure 5.12, the entire
dataset starts at the root node where we have the whole train dataset with
2,119,835 observations. The tree then splits the data first based on the value
of “Feature 1”. The split points are chosen by examining each feature and
determining the best split that minimizes the variance within the resulting

33

Figure 5.12: Regression tree structure illustration

child nodes. The algorithm considers all possible split points for each feature
and calculates a metric, such as the mean squared error (MSE), for each
potential split. The split that results in the largest reduction in MSE is
selected. This process is repeated recursively for each child node until a
stopping criterion is met, such as reaching a maximum tree depth. Once the
tree has been grown and no further splits are made, each leaf represents a
partition of the data with similar target values. The value given to a leaf is
typically the mean of the target variable for all the samples within that leaf.
In our case, the value in the left leaf at the second depth is 0.002. When a
new sample is fed into the tree for prediction, it traverses the tree based on
its feature values until it reaches a leaf. The predicted value for that sample
is the mean value of the leaf.

In order to find the optimal maximum depth for our regression tree
model, we use grid search with cross-validation. The grid search with cross-
validation is a systematic approach to hyperparameter tuning that seeks to
find the best combination of parameters for a given model. It does this by
training and evaluating a model for each combination of hyperparameters
specified in a predefined “grid”. Cross-validation involves partitioning the
data into subsets, training the model on some subsets while validating on
others, and then averaging the results to estimate the model’s predictive
performance. For further details regarding grid search and cross-validation,
we refer to James et al. [13]. In our case, we have defined the grid parameter
to a range of (1,20) with 3-fold cross-validation. After evaluating all the

34

combinations, the best max-depth turns out to be 11, which is applied later
in the regression tree model.

After training the regression tree model, we can determine the impor-
tance score for each feature based on how much they contribute to the
model’s predictions. In regression tree, feature importance is calculated
based on the improvement in the splitting criterion, such as MSE that each
feature provides when it is used to split the data. The importance of a fea-
ture can be expressed as the sum of the reduction in error brought by that
feature across all the nodes where it is used to create a split. The reduction
in error for a single tree node split can be calculated as follows:

Let MSEparent be the MSE of the parent node before the split, and
MSEleft and MSEright be the MSE of the left and right child nodes after
the split, respectively. Let Nparent be the number of samples in the parent
node, and Nleft and Nright be the number of samples in the left and right
child nodes, respectively. The reduction in error due to the split, denoted
as ∆MSE, can be calculated as:

∆MSE = MSEparent −
(

Nleft

Nparent
×MSEleft +

Nright

Nparent
×MSEright

)
The feature importance for a given feature is then the sum of the ∆MSE

values for all splits where that feature is used, normalized by the sum of
∆MSE values for all splits in the tree. This normalization ensures that the
feature importances sum to 1 (or 100% when expressed as a percentage),
making it easier to compare the relative importance of features.

Importance(feature) =

∑
∆MSE(feature)∑

∆MSE(all features)

The computed importance scores are as follows in Figure 5.13: notably,
’feature1’, which represents the premium payment amount, exhibits a dom-
inant importance with a score of 92%. This observation aligns with our ex-
pectations, as the premium payment amount is our predictor. Beyond the
premium payment amount, additional features have also been identified as
making certain contributions to the model’s predictive capabilities. Notably,
’feature9’, ’feature11’, and ’feature8’, among others, have been recognized as
relevant factors, albeit with less dominance than ’feature1’. These features,
while secondary in their individual contributions, collectively enhance the
model’s accuracy and underscore the multifaceted nature of the prediction
task.

The calculated importance scores serve as a valuable tool for understand-
ing the relative impact of each feature within the model’s decision-making
framework. They shed light on the complex interplay of variables that the
model relies upon to forecast outcomes. The prominence of ’feature1’ reaf-
firms its central role in the prediction process, while the significance of the

35

Figure 5.13: Feature Importance scores for LSTM Multivariate Model with
39 features

other features underscores the necessity of a holistic approach to modeling
that encompasses a diverse array of predictors.

Leveraging the insights gained from the feature importance analysis,
combined with domain expertise and an examination of the correlations
among covariates, we proceeded to construct a refined model. This new
model incorporates a carefully curated subset of 16 features, selected for
their relevance and contribution to the predictive task at hand. The selec-
tion process was guided by the importance scores derived from the regression
tree, which highlighted the most influential features. Domain knowledge
played a crucial role in interpreting these results, ensuring that the selected
features are not only statistically significant but also meaningful within the
context of insurance premium forecasting. Additionally, we considered the
interrelationships between covariates, aiming to minimize multicollinearity
and retain features that provide unique and valuable information. The
streamlined model, now operating with a reduced feature set, demonstrates
a performance that is on par with the original model, which utilized all 39
features. The RMSE of the new model stands at 2427.71654, a marginal dif-
ference compared to the RMSE of 2444.36198 achieved by the full-featured
model. This negligible change in RMSE suggests that the reduced model
maintains its predictive accuracy while benefiting from increased simplicity
and interpretability. The nearly equivalent RMSE indicates that the 16 se-
lected features capture the essential patterns and relationships necessary for
accurate predictions, without the additional complexity introduced by the
full set of 39 features. This outcome underscores the effectiveness of feature
selection in enhancing model efficiency and underscores the potential for

36

a more parsimonious model to deliver robust predictions in the domain of
insurance premium forecasting.

5.4 Illustration with one example

To provide a more tangible comparison between the LSTM model and the
MA model, we selected a single insurance policy as a case study. This partic-
ular policy features 89 payment instances over several years. The majority
of these payments are consistent, hovering around the 1000 kr, with the
exception of two significant outliers exceeding 15000 kr. The graphical rep-
resentation of the models’ predictions versus the actual data below offers a
clear visual distinction between their performances. It is evident from the
graph that the LSTM model more accurately captures the shifts in payment
patterns, particularly in its ability to predict changes in payment behav-
ior. However, it is worth noting that while the LSTM model demonstrates
superior pattern recognition, it tends to underestimate the magnitude of
the two anomalous high-value payments when compared to the MA model.
This observation aligns with previous findings from residual analysis, which
indicated that the LSTM model tends to underestimate higher values. This
pattern of underestimation by the LSTM model, particularly for outlier
payments, suggests an area for model refinement to improve its accuracy in
forecasting payments of varying magnitudes. Despite this, the LSTM’s over-
all predictive accuracy and its nuanced understanding of complex patterns
underscore its potential as a valuable tool for forecasting insurance payment
behaviors.

Figure 5.14: Actual vs Predicted LSTM with 16 features vs MA models for
one example policy

37

6 Results and Future work

This study embarked on an exploration of time series forecasting by compar-
ing the performance of LSTM (Long Short-Term Memory) neural networks
against the traditional ARMA (AutoRegressive Moving Average) model.
Initially, we constructed simulations of time series data to serve as a testing
ground for these predictive models. The findings indicated that both ARMA
and LSTM models were able to identify the underlying patterns within the
data. However, the ARMA model demonstrated superior performance with
respect to metrics such as the Mean Absolute Error (MAE) and the Root
Mean Square Error (RMSE).

Advancing beyond simulations, the study applied LSTM models to real-
world datasets, specifically targeting variable premium payments associated
with unit-linked children’s savings product. A meticulous exploratory data
analysis was undertaken to gain a deep understanding of the dataset’s char-
acteristics. This phase was followed by extensive feature engineering, which
included techniques like encoding to refine the data for LSTM modeling.

The study experimented with three distinct LSTM models:
1. A univariate model that solely considered a single variable, i.e. pre-

mium payment amount.
2. A multivariate model that incorporated a comprehensive set of 39

features.
3. A refined multivariate model that utilized a curated subset of 16

features, selected based on their feature importance.
The results were encouraging, as all LSTM models surpassed the baseline

Moving Average (MA) model, achieving lower RMSE scores. Nevertheless,
the univariate LSTM model displayed potential overfitting issues, which
were apparent from the erratic behavior of the validation loss curve in prox-
imity to the training loss curve. This suggested that the model might be too
closely fitted to the training data, potentially compromising its performance
on new data. On the other hand, the multivariate LSTM models showcased
strong predictive capabilities, outshining the MA model in the benchmarks.
The behavior of the validation loss curves for these models was particularly
telling; they consistently displayed lower values in majority of epochs com-
pared to the training loss curves. This pattern is indicative of a model’s
effective generalization, as it implies that the models were not merely mem-
orizing the training data but were actually learning the underlying patterns,
thus performing well on data they had not previously encountered.

An intriguing aspect of the study was the utilization of feature impor-
tance derived from a regression tree. This analysis informed the refinement
of the multivariate LSTM model, leading to a version with a simplified
structure yet comparable predictive prowess.

In conclusion, the study presents a compelling case for the adoption of
LSTM models in the realm of time series forecasting, particularly in the

38

context of insurance unit-linked product. The LSTM models not only out-
performed traditional benchmark but also demonstrate its ability to han-
dling complexity of real-world data. Future studies could capitalize on the
knowledge obtained from the LSTM models to enrich our understanding
of customer premium payment patterns, which could lead to improvements
in product design. Moreover, the forecasting models tailored for premium
prediction could be scaled up and modified to suit an array of endowment
insurance products, enhancing their relevance and practicality within the
industry. Furthermore, LSTM models could be crafted to project additional
pivotal metrics, such as lapse rates. By broadening the scope of these mod-
els, a more holistic evaluation of the determinants affecting the insurance
sector could be achieved, yielding insightful forecasts that could guide risk
management strategies and the development of insurance policies.

39

References

[1] Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for
financial time series using stacked autoencoders and long-short term
memory. PLOS ONE, 12(7), e0180944.

[2] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term de-
pendencies with gradient descent is difficult. IEEE Transactions on
Neural Networks, 5(2), 157-166. DOI: 10.1109/72.279181.

[3] Brockwell, P. J., & Davis, R. A. (2002). Introduction to Time Series
and Forecasting. Springer.

[4] Chen, K. Y., Kuo, L., & Wang, C. H. (2005). Modeling the volatility
of futures return in rubber and electronics for hedging strategy: An
empirical study. Applied Financial Economics, 15(10), 731-743.

[5] Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for
Autoregressive Time Series with a Unit Root. Journal of the American
Statistical Association, 74(366), 427-431.

[6] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2),
179-211.

[7] Fischer, T., & Krauss, C. (2018). Deep learning with long short-term
memory networks for financial market predictions. European Journal of
Operational Research, 270(2), 654-669.

[8] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to for-
get: Continual prediction with LSTM. Neural Computation, 12(10),
2451-2471.

[9] Hamilton, J. D. (1994). Time Series Analysis (Chapter 17). Princeton
University Press.

[10] Hansun, S. (2013). A new approach of moving average method in time
series analysis. Proceedings of Conference on New Media Studies.

[11] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Net-
zen. Diploma thesis, Institut für Informatik, Technische Universität,
Munich.

[12] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural computation, 9(8), 1735-1780.

[13] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Intro-
duction to Statistical Learning: with Applications in R. (Chapter 3).
Springer.

40

[14] Kingma, Diederik P., and Jimmy Ba. (2014). Adam: A Method for
Stochastic Optimization. Proceedings of the International Conference
on Learning Representations.

[15] Lindholm, M. & Palmborg, L. (2021). Efficient Use of Data for LSTM
Mortality Forecasting. Available at SSRN 3805843.

[16] McNally, S., Roche, J., & Caton, S. (2018). Predicting the price of
Bitcoin using machine learning. Proceedings of 26th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based Pro-
cessing.

[17] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
representations by backpropagating errors. Nature, 323/6088, 533–536.

[18] Raschka, S., & Mirjalili, V. (2017). Python Machine Learning (Chapter
4). Packt Publishing.

[19] Wüthrich M.V. & Merz M. (2022). Statistical foundations of Actuarial
learning and its applications. Springer.

41

