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Abstract

Ahlberg and de la Riva recently proved noise sensitivity of the in-

dicator of a travel time being above its median as the first evidence

of noise sensitive behavior in first-passage percolation. We extend the

BKS theorem from indicator functions from the hypercube to real-

valued functions from the hypercube, making use of the hypercontrac-

tive inequality in a Markovian framework instead of a Fourier analysis

framework. This allows us to deduce noise sensitivity of the first-

passage percolation left-right travel time in the square with restricted

vertical fluctuations in the case of a binary weight distribution, fol-

lowing the work of Ahlberg and de la Riva.
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1 Introduction

1.1 The model of first-passage percolation

First-passage percolation is a setting where edges of a graph (V,E) are assigned independent
identically distributed weights (ωe)e∈E ∈ [0,+∞)E and the object of interest is the random
metric on the vertex set, defined by the smallest total weight of a path between two vertices.
If Γ is a neighbor-to-neighbor path, the total weight of Γ is the random quantity

∑
e∈Γ ωe, and

the object of interest is the distance on the vertex set defined for all pairs of vertices (x, y) by

T (x, y) = inf{T (Γ) : Γ is a path from x to y} .

The quantity T (x, y) is commonly called geodesic length or travel time from x to y. On the
square lattice Z2, this infimum is almost surely attained and paths reaching this minimum are
called geodesics. Understanding the long-range properties of the random metric T , especially
on lattices, is a long-term goal in the study of first-passage percolation. Fundamental results
in this direction are shape theorems, establishing existence of an almost sure limit shape of the
ball of radius n around the origin. Results about the fluctuations of that limit shape remain
general and this motivates the study of noise within the context of first-passage percolation.
Note that travel times from a set of point to another set of point can also be considered, for
example the travel time from left to right in the square [0, n]2, for some positive integer n. This
is relevant because the symmetry properties of the lattice might make the study easier.

First-passage percolation has first been introduced by Hammersley and Welsh [HW65] in
the 1960s to describe the behavior of a fluid running through a porous medium. This is an
intermediate setting between discrete percolation models such as Bernoulli percolation, which
is realized as a special case of first-passage percolation where the weights are distributed in
{0,+∞}, and ferromagnetic models in random environments, of which first-passage percolation
can be interpreted as a 0-temperature version. A positive-temperature version would be to pick
a path Γ between two points with probability proportional to e−βT (π), where β denotes the
inverse temperature parameter. This is referred to as polymer model by Chatterjee [Cha08;
Cha14], although polymer models can design a more general class of models consisting in a
space of lattice subsets endowed with an energy function and a so-called Gibbs probability
measure.

1.2 Noise sensitivity, superconcentration and chaos

The year 1999 marked the beginning of the study of reaction to noise in percolation models, due
to the publication by Benjamini, Kalai and Schramm [BKS99] of a paper introducing the notion
of noise sensitivity of Boolean functions, together with a proof of noise sensitivity of indicator
functions of crossings in Bernoulli percolation. Noise sensitivity is a property of asymptotic
decorrelation under the effect of a small noise. Historically, it applies to Boolean functions, or
algorithms, or 0-1 valued functions from the hypercube {0, 1}m for some typically large integer
m, due to the study of such functions in the Computer Science literature. It makes sense to
study such functions in discrete probability theory because they correspond exactly to indicator
functions of events when the probability space is a discrete hypercube. More precisely, given a
parameter p ∈ (0, 1) and an integer m ≥ 1, we endow the hypercube {0, 1}m with the product
probability measure

Pp :=

m∏
i=1

(
pδ1 + (1− p)δ0

)
.
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The word ”noise” generally refers to a small, random, perturbation of an object, here these
probability measures. Letting ω0 be a random variable on {0, 1}m of law Pp and a noise
parameter t > 0, which we later understand as time, we let ωt be a random variable obtained
from ω0 by resampling each coordinate independently with probability 1 − e−t. According to
this definition,

(
(ωe, ω

t
e)
)
e∈E

are independent random variables and for all e ∈ E and(
P(ω0

e , ω
t
e = 1, 1) P(ω0

e , ω
t
e = 1, 0)

P(ω0
e , ω

t
e = 0, 1) P(ω0

e , ω
t
e = 0, 0)

)
=

(
p
(
e−t + p(1− e−t)

)
p(1− p)(1− e−t)

p(1− p)(1− e−t) (1− p)
(
e−t + (1− p)e−t

)) .

Note that this matrix goes to

(
p 0
0 1− p

)
when t goes to 0 and to

(
p2 p(1− p)

p(1− p) (1− p)2

)
when

t goes to infinity, which is a way to see that ωt interpolates from ω0 to an independent variable
with the same law. Benjamini, Kalai and Schramm [BKS99] defined noise sensitivity of a
sequence of Boolean function (fn) as the following property:

∀t > 0, Covp

(
fn(ω

0), fn(ω
t)
)

−→
n→+∞

0 . (1)

Note that, when t is close to infinity, the coordinates are resampled with high probability and
ωt is nearly independent of ω0, so f(ωt) has very good reasons to be nearly independent of
f(ω0). This justifies that noise sensitivity has to be thought of as a property taking place for
small values of t. Later, Chatterjee [Cha08; Cha09; Cha14] introduced the related notions of
superconcentration and chaos and proved that superconcentration and chaos hold in certain
Gaussian disordered systems. The notion of superconcentration is suited to a setting where
a random variable is defined as the maximum (or minimum) of a large number of correlated
random variables having similar distribution. Such a random extremum is called superconcen-
trated when the variance of the extremum is way smaller than the variance of a single one of
the underlying random variables. As travel times in first-passage percolation are minimums of
random lengths on a set of paths, it is reasonable to study superconcentration properties of
travel times. It has been shown by Benjamini, Kalai and Schramm [BKS03] that the variance
of the travel time between points at distance n is less than n

logn
, which is a superconcentration

result. On the other hand, chaos is, broadly, the property that the random variables realizing
the extremum before and after noising are weakly correlated. In first-passage percolation, the
random variables are lengths indexed on paths. Denoting by πs(x, y) the intersection of all
geodesic paths from x to y in ωs, for all s ≥ 0, chaos in first-passage percolation would then
be expressed as

E
[
π0(0, ne1) ∩ πt(0, ne1)

]
= o(n)

(
n → +∞

)
,

which states that, in expectation, the geodesic at time 0 and the geodesic at time t share a
significantly low number of edges. Common edges are indeed the source of correlation between
two path lengths as they are defined as sums of independent random variables. In the initial
definition given by Chatterjee in the context of the maximum of a Gaussian vector (X0

i )i∈E

of covariance matrix R (where E and R depend on an integer n going to infinity) and a noise
version of it (Xt

i ) obtained from X0 by running an Ornstein-Uhlenbeck dynamic for a time t,
chaos is defined as

E
[
R
(
argmax{X0

i , i ∈ E}, argmax{Xt
i , i ∈ E}

)]
= o

(
max{R(i, j), (i, j) ∈ E2}

)
.

Chatterjee [Cha08; Cha14] proved that superconcentration is equivalent to chaos in that Gaus-
sian context using the properties of the Ornstein-Uhlenbeck semigroup and a differential equal-
ity for the covariance of a function of a Gaussian vector at two different times. Proposition 3.1
of the present document introduces analogous properties for a Markov semigroup correspond-
ing to a resampling dynamic on the hypercube. An approach inspired by that of Chatterjee
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has been used in first-passage percolation and the other spatial growth model of last-passage
percolation by Ahlberg, Deijfen and Sfragara [ADS23; ADS24] in order to exhibit chaos prop-
erties in these models. In parallel, noise sensitivity seems more challenging to define and to
study than superconcentration and chaos in first-passage percolation. A first noise sensitivity
result in first-passage percolation has been proved by Ahlberg and de la Riva [AR23]. Due
to the difficulty of studying noise sensitivity in first-passage percolation, it applies to a travel
time from left to right in the square, with vertical path fluctuation bounded by a small poly-
nomial. Assume the edge weights ωe are distributed uniformly in {a, b} for some real numbers
b > a > 0. Letting τ(n, k) be the minimum of T (Γ) over paths Γ with ends in {0} × [0, n] and
{n} × [0, n], contained in the square [0, n]2, and such that the difference between the maximal
height reached by Γ and its minimal height is less than k, their result is the following.

Theorem 1.1. Let (kn)n≥1 be a sequence of integers such that kn = o(nα) for some α < 1
22
.

Let (mn)n≥1 be a sequence of real numbers such that for all n ≥ 1, mn is a median of the
distribution of τ(n, kn). Then

P
(
τ(n, kn) ≥ mn

)
→ 1

2
,

and the sequence of Boolean functions 1{τ(n,kn)≥mn} is noise sensitive in the sense defined by
(1).

Note that the initial result of Ahlberg and de la Riva is stronger, allowing for mn to be a
sequence of β-quantiles of the distribution of τ(n, kn) for any fixed β ∈ (0, 1). In this paper,
we propose a similar result exhibiting a noise sensitivity property of τ(n, kn) in the form of the
upcoming Theorem 1.2. It states that for all t > 0, the correlation between τ(n, kn)(ω) and
τ(n, kn)(ω

t) goes to 0 as n goes to infinity.

1.3 Generalizations using a Markovian dynamic

The reason why we interpret the noise parameter as time is that noise can be seen as running a
Markovian dynamic for a small time and noise sensitivity and chaos has been studied with the
use of dynamical formulas and differential calculus instead of Fourier analysis. The dynamic is
the following: the initial configuration ω0 in the hypercube is drawn according to Pp and the
coordinates are resampled independently according to Poisson clocks of parameter 1, creating
a right-continuous Markov process (ωt)t≥0 with values in the hypercube and invariant measure
Pp. The dynamic is reversible as well, and these properties imply

Covp

(
f(ω0), f(ωt)

)
= Varp

(
Ep[f(ω

t
2 )|ω0]

)
. (2)

Studying the time derivative of t 7→ Ep[f(ω
t
2 )|ω0] has proved to lead to noise sensitivity results

such as such as Talagrand’s inequality and the Kahn-Kalai-Linial theorem. These considera-
tions first appeared in a paper of Cordero-Erausquin and Ledoux [CL12], Talagrand [Tal93]
also worked in such a setting and Ledoux [Led01] relates hypercontractive inequalities with a
dynamic defined this way to concentration results, which would correspond to noise sensitivity
results in the case of a Markovian dynamic representing a noise. Chatterjee [Cha14] also makes
use of such a setting with an Ornstein-Uhlenbeck Markov semigroup instead of a random walk
on the hypercube in his study of superconcentration and chaos for polymer models and other
models of definition relying on Gaussian fields. These concepts are also manipulated in lec-
ture by van Handel [Han16; RH20], explaining how the Markovian framework can be used to
deal with functions having values in spaces larger than just {0, 1}, for example the set of real
numbers or even a multidimensional space. In 2023, Tassion and Vanneuville [TV23] provide
a proof of quantitative noise sensitivity in Bernoulli percolation which is inspired from these
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methods in view of extending noise sensitivity to percolation models where Fourier analysis fail.

Remember that we would like to prove noise sensitivity results in first-passage percolation,
and especially we are looking for a noise sensitive property applicable to travel times. It seems
more natural to ask directly for correlation of the travel time instead of an indicator function,
which motivates finding a definition of noise sensitivity which does not only apply to 0-1 valued
functions. A first remark that could be made is that using only the covariance leads to a bit
of a restrictive notion of noise sensitivity. For real-valued functions, we cannot expect the
expectation of the function to be neither close to 0 or infinity unless we renormalize it by a
standard deviation, which amounts to studying the correlation instead of the covariance. This
motivates the following alternative definition of noise sensitivity for a sequence of real-valued
functions (fn) defined on hypercubes of increasing sizes:

∀t > 0,
Covp

(
f(ω0), f(ωt)

)
Varp(f)

−→
n→+∞

0 . (3)

The main tool known to provide a sufficient condition for a sequence of Boolean functions to
be noise sensitive is the BKS theorem and is expressed in terms of influences. In the initial
Boolean function setting, the influence of a coordinate i on the Boolean function f is the
probability that changing the value of ω0

i alone changes the output of the function, so that

Infpi (f) is defined as Pp

(
f
(
σi(ω

0)
)
̸= f(ω0)

)
, where the flipping operator σi is defined by, for

all e ∈ E and ω ∈ Ω,

σi(ω)j :=

{
1− ωj if i = j
ωj if j ̸= i

.

Behavior of influences is closely linked to noise sensitivity behavior. The BKS theorem [BKS99]
states that if a sequence of Boolean functions fn satisfies∑

i

Infpi (fn)
2 → 0 ,

then the sequence (fn) is noise sensitive in the sense prescribed by (1). However, defining
influences this way only makes sense when dealing with 0-1 valued functions. For real-valued
functions, the amount by which the output of f changes when resampling ω0 matters in view
of obtaining noise sensitivity results. This justifies the definition of influence as an L1 quantity
involving a difference obtained in changing only one coordinate. The operators of difference
under resampling of a coordinate (Di)1≤i≤m are defined as

Dif(ω) := Eξ∼p

[
f
(
σξ
i (ω)

)]
− f(ω) ,

where the expectation is taken with respect to a Bernoulli variable ξ and σξ
i (ω) stands for

the vector ω with ith coordinate replaced with ξ. We then propose the following definition of
influence for real-valued functions :

Infpi (f) := Ep

[∣∣Dif
∣∣] . (4)

Note that in the case of Boolean functions, this coincides up to constants with the usual
definition of influence.

Remark 1.1. The influence E[|Dif |] should in some way be linked to the probability that i
belongs to the geodesic path. This is emphasized in the articles by Ahlberg, Deijfen and
Sfragara [ADS23; ADS24] about chaos in first-passage percolation, where it is proven that

Infi(f) ≍ P(i ∈ π) ,
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for an even more general definition of influence called co-influence, which we do not detail here.
However, in Section 4, we prove a result upper-bounding the influence of the travel time with
restricted fluctuations by such a probability of belonging to the path of minimal weight.

1.4 Main results

We now come back to first-passage percolation with these new definitions of noise sensitivity.
Recall the definition of τ(n, kn), letting Pk(n) be the set of paths

Pk(n) = {Γ : Γ is a path from left to right in [0, n]2 and with vertical fluctuations less than k}

Ahlberg and de la Riva made progress in the study of noise sensitivity in first-passage
percolation by studying a well-defined Boolean function: the indicator function that a travel
time is above the median of its distribution, where the weight distribution is binary (this
question was first asked to Ahlberg by Benjamini), that is

fn = 1{τ(n,kn)≥mn}

Having defined noise sensitivity in the case of real-valued functions, we may ask whether travel
times are themselves noise sensitive. We conjecture that the sequence T (0, nv) is noise sensitive
for any non-zero v ∈ R2. This result is however out of reach with our techniques, mainly by lack
of a good enough lower bound on the variance and influences of T (0, nv). In light of Theorem
1.1, Ahlberg and de la Riva [AR23] asked whether τ(n, kn) is noise sensitive in the sense of
(3), under the same assumption on kn as in Theorem 1.1. The answer is yes, this is our main
result.

Theorem 1.2. Let (kn)n≥0 be a sequence of positive integers. Assume kn = O(nα) for some
α < 1

22
. Then, the sequence (τ(n, kn))n≥0 is noise sensitive in the sense prescribed by (3).

Whether noise sensitivity of travel time or noise sensitivity of being above the median imply
the other is an interesting question. It makes sense to think that noise sensitivity of the travel
time itself is a bit stronger than noise sensitivity of it being above the median, but it seems
that we would actually need a stronger result than noise sensitivity of the travel time to obtain
an implication. We infer that what is needed is a property of asymptotic independence of the
deviation to the mean before and after resampling rather than just a decorrelation property.
The initial proof of noise sensitivity of being above the median by Ahlberg and de la Riva relies
on the BKS theorem and bounding the influences in the initial Boolean sense. In order to
prove Theorem 1.2, we generalize the BKS theorem to real-valued functions, using the notion
of influence defined by (4). It takes the form of an inequality, which is established for p = 1

2
by

van Handel [RH20] in lectures he gave in 2020. He attributes the proof to Falik-Samoroditsky
[FS07] and Rossignol [Ros06] independently. Their initial proof uses a martingale argument
and is robust to the output space being even larger than R, which we do not make use of.
We give a slightly different proof, using hypercontractivity and Hölder’s inequality in the same
way but replacing the martingale argument by manipulations using properties of the Markov
semigroup of the random walk on the hypercube in a different way, as explained to the author
by Vanneuville.

Theorem 1.3. For any p ∈ (0, 1) and t > 0 there exists Cp, θp(t) > 0 such that for all
f : {0, 1}m → R,

Covp

(
f(ω0), f(ωt)

)
Varp(f)

≤
(
Cp

∑n
i=1 Inf

p
i (f)

2

Varp(f)

)θp(t)
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As announced, this can be interpreted as a quantitative version of the BKS theorem. It is
straightforward to deduce from it that, for any sequence of real-valued functions (fn), if∑n

i=1 Inf
p
i (f)

2

Varp(f)
→

n→+∞
0 ,

then the sequence (fn) is noise sensitive in the sense of (3). This quantitative version of the
BKS theorem is similar to the one given by Keller and Kindler [KK13] in 2013, which applies
to Boolean functions and is obtained from Fourier analysis.

1.5 Comments and further works

Noise sensitivity of Bernoulli percolation is now understood way better than from the initial
work of Benjamini, Kalai and Schramm, with quantitative results on noise sensitivity, given by
Schramm and Steif [SS10]in 2010, and a precise description of the Fourier spectrum by Garban,
Pete and Schramm [GPS10]. A major tool which seems to be unfit to first-passage percolation
is Randomized Algorithms (also known as Decision Trees), a major reason for it being that
a lot of edge weights need to be revealed in first-passage percolation to provide a certificate
that the travel time is larger than a certain threshold. Details on the study of noise sensitivity
using Fourier spectrum can be found in books by O’Donnell and Garban-Steif [ODo14; GS15].
Cordero-Erausquin, Ledoux and Talagrand [CL12; Tal93] were the first to introduce calculus
in a Markovian setting to prove influence theory results and Eldan and Gross [EG22] also used
differential calculus ideas to deal with noise sensitivity. Van Handel [Han16; RH20] used this
setting in lectures in 2016 and 2020, already giving a proof the inequality in which Theorem
1.3 consists. We extend the proof to p ̸= 1

2
and shortcut a martingale argument attributed

to Falik-Samoroditsky [FS07] and Rossignol [Ros06], as suggested to the author by Vanneuville.

Theorem 1.2 could maybe be established for exponents larger than 1
22
. The reason behind

this upper-bound on the exponent is that bounding the influences relies on estimations of the
variance of travel times, which are handled by results of Chatterjee and Dey [CD13]. This is
detailed in [AR23] and the analysis of influences for τ(n, kn) which is realized in the present
paper makes heavy use of the results and methods of this article. It might be possible to im-
prove the exponent by a bit using the same methods, without having to rely on stronger results
for the variance of travel times, but even in that case we wouldn’t be able to go further than
an exponent of 1

3
, which is the maximal exponent for which Chatterjee and Dey managed to

prove Gaussian behavior of the flucutations of the travel time. In general, a Tracy-Widom limit
distribution is expected for the fluctuations of the unrestricted travel time and good enough
bounds for proving noise sensitivity are conjectured from KPZ class of universality arguments.

Further works could be to apply our results in last-passage percolation with geometric
weights, which is an exactly solvable model where large deviations concerning the distribution
of travel times are known. The main difficulty here would be to extract the probability of
belonging to the geodesic from known results in order to provide the correct bound on the
influences and use our generalized BKS theorem. Moreover, the present generalization of the
BKS theorem would only make it possible for a noise sampled on the hypercube, although
we should obtain the same result for any noise generated by a Markov process satisfying hy-
percontractivity and an exponential decorrelation property. Other problems in first-passage
percolation would be to extend the result to distributions that are not binary, in particular
[ADS24] gives bounds on quantities named co-influences for much more general distributions
and it might be possible to link them to the definition of resampling influence we give here
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and apply our generalization of the BKS theorem. Finally, another quantity of interest in first-
passage percolation is the vertical deviation of the geodesic above the middle point. It would
be interesting to study noise sensitivity of this quantity and we believe that our methods and
estimates given by Theorem 1.2 of [AR23] would be enough to obtain sensitivity results in this
direction, once again for left-right geodesics with bounded vertical fluctuations.

2 Extended definitions of noise sensitivity

The letter ω is very well suited both for elements of a discrete infinite-dimensional hypercube

{0, 1}N
∗
and a first-passage percolation process, which will later take values in {a, b}E(Z2), where

E(Z2) is the set of edges of the square lattice on Z2. When dealing with noise sensitivity and
the proof of the generalization of the BKS theorem until the end of Section 3, we will work with
(ωt

i)i≥1,t≥0 as a continuous-time simple random walk on the hypercube {0, 1}N
∗
. When dealing

with first-passage percolation in Section 4, ω will be a first sample of first-passage percolation,

thus taking values in {a, b}E(Z2), and we will not need to introduce any noise on this process
to apply the generalization of the BKS theorem.

Let Ω = {0, 1}N
∗
, endowed with the cylinder topology and σ-algebra. We call L2(Ω) the

space of real-valued local functions from Ω to R where local means the functions depend on a
finite number of coordinates. In particular, local functions are bounded. We could imagine a
setting where Ω is a continuous space such as RN and the right functions to consider would be
the square-integrable functions with respect to some measure on Ω, hence the notation L2.

Remark 2.1. We work with an infinite-dimensional hypercube in order to avoid introducing a
varying dimension m, which appears in the classical definitions of noise sensitivity since this
notion is only relevant for sequence of Boolean functions defined on hypercubes of diverging
dimension. Note that functions depending on m coordinates correspond to functions on the
m-dimensional hypercube. Local functions are relevant in other contexts in statistical physics,
for example to provide a proper definition of infinite-volume measures.

For any p ∈ (0, 1), we define the p-biased continuous-time simple random walk (ωt)t≥0 on
Ω as a random variable with values in the space of right-continuous functions from R+ to Ω,
the following way. Let (X

(n)
i )i∈N∗,n∈N be iid random variables of parameter p. Let (ηt

i)i∈N∗

be independent Poisson processes of rate 1 on R+ and N t
i = ηt

i([0, t]) for all i ≥ 1. In other
words, for each i, N0

i = 0 and Ni jumps to the following integer at exponential rate 1. We let
(ωt)i∈N∗,t≥0 be defined by

ωt
i = X

(Nt
i )

i .

Thus, at any non-negative time t, the distribution of ωt is
∏

i≥1

(
pδ1 + (1 − p)δ0

)
. It is said

that ωi is ”resampled” when Nt jumps, because ωi jumps to the outcome of the next Bernoulli
random variable, independent of the previous ones. Moreover, letting (Ti)i≥1 be independent
exponential random variables of parameter 1 and (Xi)i≥1 and (Yi)i≥1 be independent vectors
of iid Bernoulli random variables of parameter p, for any t, (ω0, ωt) has the law of (X,Zt)
where (Zt

i )i≥1 is defined by

Zt
i =

{
Xi if Ti > t
Yi if Ti ≤ t

.

We call Pp the probability measure associated to parameter p for all of these notations. For
any f ∈ L2(Ω), we also write

Ep[f ] := Ep

[
f(ω0)

]
= Ep

[
f(X)

]
,
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where ω0 has distribution
∏

i≥1(pδ1 + (1− p)δ0), and

Varp(f) = Ep

[(
f(ω0)− Ep[f ]

)2]
= Ep

[(
f(X)− Ep[f ]

)2]
,

and, likewise, the covariance between two functions which can have as input the values of ω at
different times,

Covp

(
f(ωs), g(ωt)

)
= Ep

[(
f(ωs)− Ep[f ]

)(
g(ωt)− Ep[g]

)]
.

We introduce operators on the spaces Ω and L2(Ω). The operators we define on Ω are
flipping operators which act by flipping or forcing the value of a coordinate of the hypercube.
As such, for i ≥ 1, let σi, σ

0
i , σ

1
i be functions from Ω to Ω defined by

σi(ω) := (ω1, . . . , ωi−1, 1− ωi, ωi+1, . . . ) ,
σ1
i (ω) := (ω1, . . . , ωi−1, 1, ωi+1, . . . ) ,

σ0
i (ω) := (ω1, . . . , ωi−1, 0, ωi+1, . . . ) .

So σi flips bit i, σ1
i replaces the value of bit i by 1 and σ0

i replaces it by 0. Note that, as
random variables, σ1

i (X) and σ0
i (X) are both independent of Xi for all i.

We now define operators (Pt)t≥0 and (Di)i≥1 on the space L2(Ω). Formally, these operators
depend on p, which we forget in the notation to make it simpler. We define (Pt)t≥0 by, for any
t ≥ 0, ω ∈ Ω, f ∈ L2(Ω),

Ptf(ω) := Ep

[
f(ωt)

∣∣ω0 = ω
]
. (5)

The quantity Ptf can also be seen as a random variable measurable by ω0, keeping in mind
that the value of p matters in the definition of that variable, which justifies the notation

Ptf = Ep

[
f(ωt)

∣∣ω0] .
The operators (Pt)t≥0 are often called the Markov semigroup generated by the random walk
ω. It satisfies the following semigroup property:

∀s, t ≥ 0, Ps+tf = Ps(Ptf) . (6)

Then, for i ≥ 1, let
Dif(ω) := Ep

[
f(σYi

i (ω))
]
− f(ω) , (7)

where here σYi
i (X) is ω where the ith bit has been forced to take the value Yi instead of ωi.

The operator Di can be seen as an operator of partial differentiation in the direction i, which
is justified by an analogy with differential calculus which we do not detail here. Note that the
definition of Di in the case of p = 1

2
is

Dif(ω) =
f ◦ σi(ω)− f(ω)

2
.

We also provide the following expressions for Dif , which we might use later in the proofs:

Dif(ω) =
(
(1− p)ωi + p(1− ωi)

)(
f ◦ σi(ω)− f(ω)

)
(8)

and
Dif(ω) = pf(σ1

i (ω)) + (1− p)f(σ0
i (ω))− f(ω) . (9)

11



A useful identity, valid for all functions f ∈ L2(Ω) and all ω ∈ Ω, which could be used to prove
that all of these identities are equivalent, is

f(ω) = ωif(σ
1
i (ω)) + (1− ωi)f(σ

0
i (ω)) .

Note that Ep[Ptf ] always equals Ep[f ] by time-invariance of the random walk and Ep[Dif ]
always equals 0. We provide other useful properties of Pt and Di later.

In the context of Boolean functions, the influence of the coordinate i on a Boolean function
f is the probability that changing the state of bit i in ω0 changes the value of its image
by f , when ω0 is sampled according to Pp. Thus, the influence is also the probability that
|Dif(ω

0)| ̸= 0 because f is Boolean so can only take the values 0 or 1. We generalize this
definition to functions having values in R by interpreting this probability as the first moment
of |Dif |.
Definition 2.1. Let i ≥ 1, p ∈ (0, 1) and f ∈ L2(Ω). We let the influence of i on f at
parameter p be denoted by Infpi (f) and defined by

Infpi (f) = Ep

[
|Dif |

]
.

This definition coincides up to a constant factor with the usual definition of influence in
the case where f takes values in {0, 1}. Otherwise, this definition would rather fit the name of
”resampling influence”.

We now define noise sensitivity in the case of functions from the hypercube to R.
Definition 2.2. A sequence of functions (fn)n≥0, each in L2(Ω), is said to be noise sensitive
at parameter p ∈ (0, 1) if and only if for all t > 0,

Covp

(
fn(ω

0), fn(ω
t)
)

Var(fn)
−→

n→+∞
0 . (10)

Remark 2.2. Since ω0 and ωt have the same law, f(ω0) and f(ωt) have the same variance and
the left-hand side of (10) is the correlation between f(ω0) and f(ωt).

We make extensive use of the semigroup formalism later using the identity, valid for all
f ∈ L2 and all t > 0

Covp(f(ω
0), f(ωt)) = Varp(P t

2
f) .

which follows from the properties of the semigroup Pt, namely the Markov property, time-
translation invariance and time reversibility.

Remark 2.3. The original BKS theorem from [BKS99] states that if a sequence of Boolean
functions (fn) satisfies ∑

i≥1

Infpi (fn)
2 −→

n→+∞
0

then the sequence is noise sensitive in the sense of the covariance, i.e.

Covp

(
fn(ω

0), fn(ω
t)
)

−→
n→+∞

0

Then, noise sensitivity in the sense of the covariance and for Boolean functions is the same as
noise sensitivity in the sense of correlation as in Definition 2.2 as long as the variances of the
functions are uniformly bounded away from 0. Theorem 1.3 thus generalizes the BKS theorem
in the sense that influences has been generalized to functions taking values in R instead of
{0, 1} and the variance is taken into account to allow for a definition of noise sensitivity in
terms of correlation instead of covariance.
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3 Operator properties and proof of Theorem 1.3

3.1 Markovian properties

Some properties the family of operators (Pt) and (Di) are summarized in the following propo-
sition which extends Lemma 2 of [RH20] to values of p differing from 1

2
.

Proposition 3.1. Fix p ∈ (0, 1). The following properties hold:

(i) (Dynamical Margulis-Russo formula / Heat equation) For all f ∈ L2(Ω) and all ω ∈ Ω,
the function s 7→ Psf is differentiable on R+ and satisfies for all s > 0,

− d

ds
Psf =

∑
i≥1

PsDif .

(ii) (Commutativity) Pt ◦Di = Di ◦ Pt for all i ≥ 1 and all t > 0.

(iii) (Integration by parts) For all f, g ∈ L2(Ω) and all i ≥ 1,

Ep

[
fDig

]
= −Ep

[
DifDig

]
(iv) (Time-decorrelation) There exists a constant Cp such that for all f ∈ L2(Ω), i ≥ 1 and

t > 0,
|PtDif | ≤ e−tCpPt|Dif | .

(v) (Decoupling at infinity) Ptf → Ep[f ] a.s. and in L1 when t → +∞.

Remark 3.1. In that proposition, names are given to the listed operator properties. The
names of Heat equation, Commutativity and Integration by parts are linked to the parallel
with Markovian dynamics and would be valid for any operators Pt corresponding to a Markov
semigroup and operators Di satisfiying differential calculus definitions. More precisely,

∑
i Di

is analogous to a Laplacian ∆ and Di to an operator of partial differentiation in direction i,
∇i. Then, d

dt
Pt = ∆ ◦ Pt = Pt ◦ ∆ is an expected property as well as Pt ◦ Di = Di ◦ Pt

(which is only true here due to the product structure of the measure, it would not be true for
a Glauber dynamic associated to the Ising model for example), and E[f∇ig] = −E[∇if∇ig].
Time-decorrelation is a consequence of the fact that the dynamics forgets more and more
information about the initial configuration. It also can be interpreted as the property that the
dynamic interpolates between the initial configuration and an independent copy (Zt is that
interpolation from X to Y ). It would be the same with an Ornstein-Uhlenbeck process where
Zt = e−tX +

√
1− e−2tY . So, the decoupling at infinity is a consequence of that.

Proof of Proposition 3.1. Let p ∈ (0, 1) be fixed throughout the proof. We first prove (i). Let
f be in L2(Ω). Using the assumption that f is local, let m be an integer such that f only
depends on (ωi)1≤i≤m. We write, for fixed s, and ds is a positive quantity destined to tend to
0,

Ps+dsf − Psf = Ep

[
f(ωs+ds)− f(ωs)|ω0] .

On the event that no coordinate of ωs is resampled between s and s+ds, f(ωs) equals f(ωs+ds)
and events where more than 1 coordinate is resampled in {1, . . . ,m} have probability o(ds).
Hence, for any i ∈ {1, . . . ,m}, writing as Ri the event ”the set of coordinates of index smaller
than m resampled between s and s+ ds is exactly {i}”,

Ps+dsf − Psf =

m∑
i=1

Ep

[
1Ri

(
f(ωs+ds)− f(ωs)

)
|ω0]+ o(ds) .
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Given ωs and Ri, ω
s+ds is σ1

i (ω
s) with probability p and σ0

i (ω
s) with probability (1 − p), so

that
Ep

[
f(ωs+ds)|ωs, Ri

]
=

(
pf ◦ σ1

i (ω
s) + (1− p)f ◦ σ0

i (ω
s)
)
.

By independence of ωs and Ri,

Ep

[
f(ωs+ds)|Ri, ω

s] = Ep[f(ω
s+ds)1Ri |ωs]

P(Ri|ωs)
,

and substracting Ep

[
f(ωs)|Ri, ω

s
]
to both sides of that equality, multiplying by Pp(Ri|ωs) and

using (7) yields
Ep

[
1Ri

(
f(ωs+ds)− f(ωs)

)
|ωs] = Pp(Ri)Dif(ω

s) .

Taking the conditional expectation with respect to ω0, it follows that

Ep

[
1Ri

(
f(ωs+ds)− f(ωs)

)
|ω0] = Pp(Ri)Ep

[
Dif(ω

s)|ω0] .
By definition of the Poisson point process, the probability that ωi is the only resampled coor-
dinate among (ωj)1≤j≤m between s and s+ds is (1−e−ds)e−(m−1)ds = ds(1+o(1)). Summing
over i yields

Ps+dsf − Psf =

m∑
i=1

(ds)E
[
Dif(ω

s)|ω0]+ o(ds) .

As a consequence, s 7→ Psf is right-differentiable with the announced expression for the right
derivative, and the same method of proof can be used for dealing with the left-derivative.

For the proofs of items (ii) to (iv), let i be a fixed positive integer, t > 0 a real number and
f, g ∈ L2(Ω). Let also (Xj)j≥1, (Yj)j≥1, (Y

′
j )j≥1 denote three sequences of Bernoulli random

variables of parameter p.
For item (ii), we use the definitions of Pt and Di (expressions (5) and (7)) to write on the one

hand

DiPtf(ω) = Ep

[
Ptf

(
σYi
i (ω)

)]
− Ptf(ω)

= Ep

[
Ep

[
f(ωt)

∣∣ω0 = σYi
i (ω)

]]
− Ptf(ω) ,

and on the other hand

PtDif(ω) = Ep

[
Dif(ω

t)
∣∣ω0 = ω

]
= Ep

[
Ep

[
f
(
σYi
i (ωt)

)∣∣ωt]∣∣ω0 = ω
]
− Ptf(ω)

= Ep

[
f(σYi

i (ωt)|ω0 = ω
]
− Ptf(ω) .

The law of ωt started from ω0 = σYi
i (ω) is the same as the law of σYi

i (ωt) started from ω0 = ω.
Indeed, ωt started from ω0 = σYi

i (ω) and σYi
i (ωt) started from ω0 = ω are equal at coordinates

other than i and Yi is a Bernoulli random variable of parameter p, which has time-invariant
distribution, so that Yi has the same distribution as ωt

i started from ω0 = Yi. From this we
deduce

Ep

[
Ep

[
f(ωt)

∣∣ω0 = σYi
i (ω)

]]
= Ep

[
f(σYi

i (ωt)|ω0 = ω
]

and therefore item (ii).

For item (iii), note that the couple (X,σYi
i (X)) has the same distribution as the couple

(σ
Y ′
i

i (X), σYi
i (X)). As a consequence,

Ep

[
f(σYi

i (X))g(X)
]
= Ep

[
f(σYi

i (X))g(σ
Y ′
i

i (X))
]
.
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It follows that
Ep

[
f(σYi

i (X))
(
g(σ

Y ′
i

i (X))− g(X)
)]

= 0 ,

which rewrites as Ep[(f +Dif)Dig] = 0, hence (iii).

For the proof of (iv), let (ωt) be a p-biased continuous-time simple random walk started from
ω0 = ω and let Ti be the first resampling time of coordinate i. In particular, it is independent
of ω0 and |f(σi(ω

t))− f(ωt)|. First write PtDif(ω) = Ep

[
(1{Ti<t} +1{Ti≥t})Dif(ω

t)|ω0 = ω
]

and note that, given Ti < t, ωt and σYi
i (ωt) have the same distribution, so that

Ep

[
1{Ti<t}Dif(ω

t)
∣∣ω0 = ω

]
= Ep

[
1{Ti<t}

]
Ep

[
Dif(ω

t)
∣∣Ti < t, ω0 = ω

]
= 0 .

Then,
|PtDif(ω)| = |Ep

[
1{Ti≥t}Dif(ω

t)
∣∣ω0 = ω

]
.

By the triangle inequality and writing Dif(ω
t) =

(
(1− p)ωt

i + p(1− ωt
i)
)(
f(σi(ω

t))− f(ωt)
)
,

it follows that

|PtDif(ω)| ≤ Ep

[
1{Ti≥t} max(p, 1− p)|f(σi(ω

t))− f(ωt)|
∣∣ω0 = ω

]
,

and |f(σi(ω
t)− f(ωt)| is independent of (ωt

i), especially it is independent of Ti, so that

|PtDif(ω)| ≤ e−t max(p, 1− p)Ep

[
|f(σi(ω

t))− f(ωt)|
∣∣ω0 = ω

]
.

Finally, getting back (1−p)ωt
i +p(1−ωt

i) inside the expectation up to dividing by min(p, 1−p),
we obtain the desired inequality.

Finally, we prove (v). By properties of the Poisson point process, the probability that at
least one coordinate is never resampled among the finite set of coordinates determining f is 0,
which implies that Ptf converges to E[f ] almost surely. For the L1 convergence, use that f is
bounded and that Ptf equals E[f ] as soon as all the coordinates have been resampled at least
once, and that the probability that this has not happened at time t decays to 0 as t goes to
infinity.

3.2 Hypercontractivity

The remaining properties we need for generalizing the BKS theorem exclusively involve the
operators (Pt)t>0. This operator satisfies an inequality of hypercontractivity, which is a
”smoothing” property. To explain this further, the larger a real α ≥ 1 is, the ”rougher” is

the α-norm (defined here by ∥f∥α = Ep[|f |α]
1
α ), in particular, controlling the L2-norm of

a function is a stronger result than controlling the Lα norm of the same function for some
α < 2. Hypercontractivity states that the operator Pt has a smoothing effect on functions,
which means that a function that might not be that regular, which means that we might only
know a bound of its Lα norm for a α < 2, can indeed be controlled in L2 norm using the same
estimates after applying Pt for large enough t. We use notations similar to van Handel [RH20],
with θp standing for the hyperbolic tangent function with a proper scaling depending on p, i.e.
let

ρ(p) := 2
2p− 1

log(p)− log(1− p)

when p ̸= 1
2
and ρ( 1

2
) := 1, and

θp(t) := tanh(2ρ(p)t) =
1− e−2ρ(p)t

1 + e−2ρ(p)t
. (11)
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Note that ρ(p) > 0 for all p ∈ (0, 1), so that θp(t) > 0 for all t > 0 and p ∈ (0, 1).

Lemma 3.1. For all p ∈ (0, 1), t > 0 and f ∈ L2(Ω),

Ep

[
(Ptf)

2] ≤ Ep

[
|f |1+e−2ρt] 2

1+e−2ρt .

Proof. This is a consequence of the logarithmic Sobolev inequalities for product Bernoulli
measures on the hypercube, as mentioned in [CL12], page 5.

Corollary 3.1. For any p ∈ (0, 1), t > 0 and f ∈ L2(Ω),

Ep

[
(Ptf)

2] ≤ Ep

[
f2]1−θp(t)Ep

[
|f |

]2θp(t) .
Proof. Let p ∈ (0, 1), t > 0 and f ∈ L2(Ω). Let ρ denote ρ(p). By Lemma 3.1,

Ep

[
(Ptf)

2] ≤ Ep

[
|f |1+e−2ρt] 2

1+e−2ρt .

Applying Hölder’s inequality to the functions |f |2e
−2ρt

, |f |1−e−2ρt

and to the conjugate expo-
nents e2ρt, (1− e−2ρt)−1, we obtain

Ep

[
|f |1+e−2ρt]

≤ Ep

[
|f |2

]e−2ρt

Ep

[
|f |

]1−e−2ρt

.

Plugging this inequality into the right-hand side of the first one finally yields

Ep

[
(Ptf)

2] ≤ Ep

[
|f2|

] 2e−2ρt

1+e−2ρt Ep

[
|f |

]2 1−e−2ρt

1+e−2ρt

which is the desired inequality.

3.3 Proof of Theorem 1.3

The following theorem is essentially Theorem 1.3, it is stated using the additional notation
that we introduced in Sections 2 and 3. Especially, θp is defined by (11) and Cp by item (iv)
of Proposition 3.1.

Theorem 3.1. Let f ∈ L2(Ω). For all p ∈ (0, 1), for all t > 0,

Varp(Ptf) ≤
(
e−2tVarp(f)

)1−θp(t)

Cp

∑
i≥1

Infpi (f)
2

θp(t)

.

Proof. Let p ∈ (0, 1), t > 0 and f ∈ L2(Ω). Item (v) of Proposition 3.1 gives Ep[Ptf ] = Ep[f ] =
P∞f , so that we can express Varp(Ptf) as

Varp(Ptf) = Ep

[
(Ptf)

2]− Ep

[
(P∞f)2

]
.

By item (i) of Proposition 3.1, t 7→ Ptf is differentiable and its derivative expresses as a
finite sum of functions t 7→ PtDif . Using (i) again, we see that functions of the form t 7→ PtDif
are also differentiable, thus continuous. This justifies that t 7→ (Ptf) is of class C1 and so is
t 7→ (Ptf)

2. Finally, by item (v), Ep[(Ptf)
2
]
→ Ep

[
(P∞f)2

]
when t → +∞. Applying the

fundamental theorem of calculus to t 7→ (Ptf)
2, we obtain

Ep

[
(Ptf)

2 − (P∞f)2
]
= −Ep

[∫ +∞

t

d

ds
(Psf)

2ds

]
.
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By the chain rule and item (i) of Proposition 3.1, it follows that

Varp(Ptf) = −Ep

[∫ +∞

t

2

(
d

ds
Psf

)
Psf

]
ds

(i)
= −2Ep

∫ +∞

t

∑
i≥1

(PsDif)(Psf)

 ds

Since f is local, Psf and PsDif are local as well for all i ≥ 1 and s ≥ 0. In particular they
are bounded. Moreover, Dif is 0 if f doesn’t depend on i, so that the above sum is finite. By
linearity of the expectation and the integral and Fubini’s theorem,

Varp(Ptf) = −2
∑
i≥1

∫ +∞

t

Ep [(PsDif)Psf ] .

Then, using Proposition 3.1 again and the semigroup property (6),

Varp(Ptf)
(ii)
= −2

∑
i≥1

∫ +∞

t

Ep [(DiPsf)Psf ]

(iii)
= 2

∑
i≥1

∫ +∞

t

Ep

[
(DiPsf)

2]
(ii)
= 2

∑
i≥1

∫ +∞

t

Ep

[
(PsDif)

2]
(6)
= 2

∑
i≥1

∫ +∞

t

Ep

[
(PtPs−tDif)

2]
Applying Corollary 3.1 to Ps−tDif in the last line yields

Varp(Ptf) ≤
∑
i≥1

∫ +∞

t

2Ep

[
(Ps−tDif)

2]1−θp(t)Ep

[
|Ps−tDif |

]2θp(t)ds
By Hölder’s inequality for vector-valued functions, it follows that

Varp(Ptf) ≤

∑
i≥1

∫ +∞

t

2Ep

[
(Ps−tDif)

2]1−θp(t)
∑

i≥1

∫ +∞

t

2Ep

[
|Ps−tDif |

]2
ds

θp(t)

.

Now, apply (iv) of Proposition 3.1 but only to the right factor of the right-hand side, as the
other one turns out to be the variance of f by the cascade of computations presented earlier
in this proof, in the case where t = 0. We obtain

Varp(Ptf) ≤ (Varp(f))
1−θp(t)

∫ +∞

t

2e−2(s−t)Cp

∑
i≥1

Ep

[
|Dif |

]2θp(t)

ds .

Integrating e−2s over s and rearranging the factors yields the desired inequality.
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4 Noise sensitivity in first-passage percolation

Let Z2 denote the square lattice and E(Z2) its set of edges. Let a, b be two real numbers
such that 0 < a < b, fixed throughout the section. Consider (ωe)e∈E(Z2) iid random variables,
uniformly distributed in {a, b}. For any path of edges Γ, we let T (Γ) be the random variable
defined as the total weight picked up by the path, that is, the sum over the edges e belonging
to the path of ωe. First-passage percolation is the study of the random metric defined on Z2

by
T (x, y) = min

paths Γ from x to y
T (Γ) .

We let Ln be the set of horizontal lines from left to right in the square [0, n]2, so that Ln =
{[0, n] × {i}, 0 ≤ i ≤ n}. We let Pk(n) be the set of lattice paths from left to right, included
in [0, n]2 intersecting at most k horizontal lines in Ln as geometric closed subsets of R2. These
paths are paths with vertical fluctuation bounded by k, because it means that the downmost
vertex of the path and its topmost vertex differ by less than k in ordinate. Note that Ln has
n+1 elements so Pk(n+1) is the set of left-right paths in the square of side n with unbounded
fluctuation. Then, define for all positive integers n, k,

τ(n, k) = min
Γ∈Pk(n)

T (Γ) ,

Any path satisfying the minimum over Pk(n) above will be called a geodesic and the intersection
of all geodesics is denoted by π(n, k). We call these minimal total weights over a set of paths
travel times because ω can be interpreted as a time to cross an edges, so the minimum over
paths from a geometric set to an other one can be interpreted as minimal travel time between
these sets.

A natural ”observable” in first-passage percolation is the time travel from 0 to a point
at distance of order n, typically ne1 where e1 is the first vector of the canonical basis. We
did not succeed in proving noise sensitivity of the sequence of functions (T (0, ne1))n, nor of
the sequence (τ(n, n + 1))n (the travel time from left to right in the square with unbounded
fluctuations). It appears that upper-bounding the influences of quantities such as T (x, y) or
τ(n, k) can be reduced to upper-bounding the probability of edges to belong to a geodesic.
In the square, the geodesic is expected to go straight from left to right, seen from afar, and
with close to uniform vertical position, so that edges have roughly probability 1

n
to belong to

a geodesic. Moreover, the variance of the left-right travel time with unbounded fluctuation

τ(n, n+ 1) is expected to go to infinity like n
2
3 . As a consequence, it is expected that∑

e∈E(Z2) Infe(τ(n, n+ 1))2

Var(τ(n, n+ 1))
≈

n2
(
1
n

)2
n

2
3

≈ n− 2
3 .

Let us be more precise on the description of the geodesics. The geodesics may be assumed
to be self-avoiding paths because erasing a loop can only reduce the total weight of the path.
However, it can and will happen that the geodesic cross multiple times the same vertical line.
This should not happen too much and we might be able to get better bounds on the influence
if we manage to prove that a single vertical line has very low probability to be crossed more
than a constant number of times. More specifically, it is easy to show on the full torus (gluing
the left side to the right side and the top side to the bottom side) that the influences are of
order 1

n
. This bound on the number of crossing of a vertical line could be useful to bound the

influences in the initial square by the influences in the torus. So we might be able with the
available tools to prove ∑

e∈E(Z2)

Infe(τ(n, n+ 1))2 ≤ Cn2

(
1

n

)2

≤ C .
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However, even in that case, we lack a lower bound on the variance of τ(n, n + 1), the best
known lower bound is a constant and does not go to infinity with n, which makes this estimate
together with Theorem 1.3 not strong enough to prove noise sensitivity of τ(n, n+ 1).

The polynomial bound in Theorem 1.2 is the same as in [AR23] as we use the same inter-
mediate results as in this paper for bounding the influences and variance of τ(n, kn) and its
variance, in order to apply Theorem 1.3. More precisely, we derive an upper-bound on the sum
of influences squared of τ(n, kn) and a lower-bound on its variance. The upper-bound directly
stems from bounding the fluctuations by kn and using the near translation symmetry of the
square, this is the reason behind the introduction of the square-band and the square-band
geodesics in the upcoming proof of Lemma 4.1.

Lemma 4.1. Let n, k be positive integers. For all e ∈ E(Z2) ∩ [0, n]2,

Infe
(
τ(n, k)

)
≤ 4(b− a)

k

n
.

Proof. The influence of an edge being controlled by the probability that this edge belongs to
the geodesic, this is what needs to be bounded. We use symmetry between lines of the square
with respect to first-passage percolation on the so-called square band and the fact that the
geodesic with bounded fluctuations can cross at most k of these lines to bound the probability
of belonging to the square-band-geodesic, and a simple union bound trick is sufficient to come
back the actual probability of belonging to the geodesic in the regular square.

Let n, k ∈ N∗ and let e be an edge inside the square [0, n]2. Remember that τ(n, k) is the

minimum of T (Γ) over Γ ∈ Pk(n). Let ω ∈ {a, b}E(Z2) be such that ωe = a and let ω̃ be
equal to ω except at e where ω̃e = b. We have |Deτ(n, k)(ω)| = |Deτ(n, k)(ω̃)| = |τ(n, k)(ω)−
τ(n, k)(ω̃)|. If there is Γmin ∈ Pk(n) that is geodesic for τ(n, k) and such that e /∈ Γmin, then
this path is also of minimal length in Pk(n) for ω̃, so that |Deτ(n, k)(ω)| = 0. Otherwise, that
is, if e ∈ π(n, k), any geodesic path Γmin satisfies T (Γmin)(ω̃) = T (Γmin)(ω) + (b − a) because
the only edge of Γmin which changed value from ω to ω̃ is e and it went from a to b. Thus,

τ(n, k)(ω̃) ≤ τ(n, k)(ω) + (b− a). It follows that, for all ω ∈ {a, b}Z
2

,

|Deτ(n, k)(ω)| ≤ (b− a)
(
1{e∈π(n,k)}(ω) + 1{e∈π(n,k)}(σe(ω)

)
.

Hence,
Infe

(
τ(n, k)

)
≤ 2(b− a)P(e ∈ π(n, k)) . (12)

Let the square band of side n be the graph Gn with vertex set Z2 ∩ [0, n]2 and having as
edge set E(Gn) the set of regular edges of the square lattice, to which are added edges between
vertices at the top of the square to the bottom ones with respective abscissa. We sample
additional iid random variables ωe attached to the new edges, and (ωe)e∈E(Gn) is thus a family
of iid random variables, uniform on {a, b}, coupled to (ωe)e∈E(Z2) by identification of the edges

inside the square. We also let PG
k (n) be the set of left-right paths in Gn intersecting with at

most k elements of Ln, and
τG(n, k) = min

Γ∈PG
k
(n)

T (Γ) .

Any path satisfying the second minimum is called square-band-geodesic and the intersection
of all square-band-geodesics is denoted by πG(n, k).

We use the symmetry of the square using the coupling with first-passage percolation on the
square-band Gn to upper-bound P

(
e ∈ π(n, k)

)
. First, we bound it by twice the probability

that the geodesic in Gn crosses a vertical line, and then we use that the geodesics have bounded
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fluctuations to complete the proof. For 0 ≤ j ≤ n−1, let Ej be the event that π
G(n, k) intersects

[0, n]× {j} as closed subsets of R2. Note that the distribution of (ωe)e∈E(G) is invariant under
vertical translations by integers, i.e. maps from G to itself of the form (i, j) 7→ (i, (j + z)
mod n) for some z ∈ Z, so that P(Ej) is independent of j. The geodesics having fluctuations
bounded by k, there can be at most k integers j ∈ {0, 1, . . . , n− 1} satisfying Ej , so that

n−1∑
j=0

1Ej ≤ k .

Taking the expectation and using that P(Ej) doesn’t depend on j, it follows that

nP(E0) ≤ k . (13)

If e ∈ π(n, k), then any path in G that does not go through e nor through the line [0, n]× {0}
has a total weight larger than τ(n, k). As a consequence, e ∈ π(n, k) implies that any geodesic
path in G goes either through e or through the line [0, n]× {0} since its total weight has to be
at most τ(n, k). Hence, letting j be the index of a line in Ln that e intersects,

P
(
e ∈ π(n, k)

)
≤ P

(
e ∈ πG(n, k)

)
+ P(E0) ≤ P(Ej) + P(E0) = 2P(E0) . (14)

The desired inequality follows from

Infe
(
τ(n, k)

) (12)

≤ 2(b− a)P
(
e ∈ πG(n, k)

)
(14)

≤ 4(b− a)P(E0)

(13)

≤ 4(b− a)
k

n
.

Remark 4.1. Lemma 4.1 is clearly not sharp, we would expect P
(
e ∈ π(n, k)

)
≤ C

n
with C a

constant independent of n, k and e. The main part where we lose sharpness is by bounding
the probability that e belongs to the geodesic by the probability that the geodesic crosses a
horizontal line where e lies. One would need to keep treating differently edges in the same line
in order to obtain the C

n
bound.

For bounding the variance, we use the following theorem from Ahlberg and de la Riva
[AR23] relying on moderate deviations and results of first-passage percolation crossing times
by Chatterjee and Dey [CD13]. The bound on the rate of growth of vertical fluctuations
kn ≤ nα with α < 1

22
is also the upper-bound for which the authors of [AR23] obtain noise

sensitivity of being above the median for τ(n, kn). We could perhaps obtain the result for an
exponent larger than 1

22
, this would mainly require to be more careful on the influence bound.

However, a polynomial growth rate for kn of order n
2
3 would still be unattainable, the reason

being that we cannot provide a good enough lower-bound for the variance of τ(n, kn) when kn
is too large.

Theorem 4.1 (Theorem 1.2 of [AR23]). Let (kn)n≥1 be a sequence of integers such that
kn = O(nα) for some α < 1

22
. There exists c > 0 such that

sup
x≥0

P(τ(n, kn) ∈ [x, x+ c]) = o

(
1

n1/22

)
.

Proof. This is exactly Theorem 1.2 of [AR23].
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Lemma 4.2. For any sequence (kn) such that kn = O(nα) for some α < 1
22
,

Var
(
τ(n, kn)

)
n

1
11

−→
n→+∞

+∞ .

Proof. Let (kn) be a sequence of integers such that kn = O(nα) for some α < 1
22
. By Theorem

4.1, let c > 0 be such that

sup
x>0

P(τ(n, kn) ∈ [x, x+ c]) = o(n− 1
22 ) .

Setting εn =
√(

supx>0 P(τ(n, kn) ∈ [x, x+ c])
)
n− 1

22 , we have supx>0 P(τ(n, kn) ∈ [x, x+c]) =

o(εn) and εn = o(n− 1
22 ). By Chebyshev’s inequality,

Var
(
τ(n, kn)

)
≥ c2ε−2

n P
(∣∣∣∣τ(n, kn)− E

(
τ(n, kn)

]∣∣∣∣ ≥ cε−1
n

)
.

Decomposing the interval
[
E[τ(n, kn)]−cn

1
22 ,E[τ(n, kn)]+cn

1
22
]
into ⌊ 2

εn
⌋ intervals Ji, 1 ≤ i ≤

⌊2/εn⌋ of length at most c and using the upper-bound on the probability of τ(n, kn) to belong
to an interval of length c together with a union bound on the smaller intervals, we obtain

Var
(
τ(n, kn)

)
≥ c2ε−2

n

(
1− P

( ⌊2/εn⌋⋃
i=1

{τ(n, kn) ∈ Ji}
))

≥ c2ε−2
n

(
1− ⌊2/εn⌋o(εn)

)
.

Thus,
Var(τ(n, kn))

n1/11
≥ c2

n−1/11

ε2n

(
1− o(1)

)
,

and the divergence of Var(τ(n,kn))

n
1
11

to +∞ follows from εn = o(n− 1
22 ) .

The proof of Theorem 1.2 follows from Lemmas 4.1 and 4.2.

Proof of Theorem 1.2. Let (kn) be a sequence satisfying kn = O(nα) for some α ∈ [0, 1
22
). For

any n ≥ 0, summing Lemma 4.1 over all the edges with both ends in [0, n]× [0, n) yields∑
e∈[0,n]×[0,n)

Infe
(
τ(n, k)

)2 ≤ 4n2(b− a)2
k2
n

n2
= O(n

1
11 ) .

It follows from Lemma 4.2 that (τ(n, kn))n≥0 is a sequence of functions having positive variance
and satisfying ∑n

i=1 Inf
p
i

(
τ(n, kn)

)2
Varp

(
τ(n, kn)

) →
n→+∞

0 .

We deduce from Theorem 1.3 that (τ(n, kn))n≥0 is noise sensitive.
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