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Abstract

In this thesis, we present a decoder that reconstructs images from

high-dimensional abstract representations inside a neural network. As

our model of interest we use a ResNet-18 model trained on the CIFAR-

10 image data and investigate 6 checkpoints in the model, which we

use as input to the decoder. Drawing inspiration from autoencoders,

our decoder mirrors the architecture of ResNet-18, aiming to reverse

the sequence of operations that it has applied to the original images

in the dataset.

We find that the decoder works well for checkpoints placed early

in the network but that the quality of the reconstructed images de-

teriorates as one moves toward the output layer in the neural net-

work, resulting in a higher mean squared error for the reconstructions.

Moreover, we examine how the decoder reconstructs images based on

artificially generated abstract representations.

As a further assessment of the decoder’s performance, we let ResNet-

18 classify each reconstructed image. Based on its accuracy on the

reconstructions, we find that the decoder does not generally preserve

the features that are necessary for accurate classification. While this

could be due to a loss of information in each checkpoint, we hypoth-

esize that it is because of the loss function used for the decoder. We

propose introducing suitable regularization terms to the loss function

to ensure that the decoder preserves features in the representations

that are relevant for classification.
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1 Introduction

Deep neural networks have become a widespread and powerful tool in many
areas of machine learning, with applications ranging from time series analysis
to self-driving cars. Despite their widespread use and versatility, they are often
considered as “black boxes”, concealing their inner workings from the user.
Interpretation of a neural network is far from straightforward and in contrast
to statistical models such as linear or logistic regression, one cannot directly
interpret the estimated parameter values. This is problematic, as interpretation
of models is often desired and may lead to better implementation.

The topic of explainable artificial intelligence is an active field of research, and
has been investigated in numerous studies. A widespread hypothesis is that
neural networks collapse the features of the input that are unnecessary for clas-
sification, resulting in representations within the network that only preserve the
most important elements of the input. Mahendran & Vedaldi [1] examined this
by reconstructing the input images to a convolutional neural network, measur-
ing the loss between the representation of the original image within the network
and the representation of the reconstructed image. Köhler [2] opted for a dif-
ferent approach, using techniques from unsupervised learning to examine the
inner workings of a convolutional neural network.

In this thesis, we create a decoder, a model that aims to reconstruct the input
to a neural network from the abstract representations of the data at the hidden
layers. Inspired by the structure of autoencoders [3], our decoder mirrors the
architecture of the encoding network that we wish to interpret. With this in
mind, using a convolutional neural network with image data is a natural choice,
since the use of images provides a reconstruction that humans can easily un-
derstand. Due to its widespread popularity and success, we use a ResNet-18
model [4] as the model of interest. In it, we place 6 checkpoints from which
we input the abstract representations to our decoder, which reconstructs im-
ages by minimizing the mean squared error between the original image and the
reconstruction.

Aside from simply reconstructing the input images and examining how the
decoder’s performance changes depending on its input, we examine how well
the decoder preserves features that are important for classification by letting
ResNet-18 classify the reconstructions. Moreover, we investigate the decoder’s
ability to generate images artificially and examine how these generated images
change as we alter the input.

We find that the reconstructions from early checkpoints are similar to the orig-
inal images but that their quality deteriorates, as we see blurry reconstruc-
tions with a higher loss for later checkpoints. Furthermore, ResNet-18 performs
poorly when classifying the reconstructions from all but the first two check-
points, suggesting that the decoder may not be able to preserve the relevant
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features for image classification. While this could mean that the hypothesis
we mentioned is wrong, we propose that usage of a different loss function with
suitable regularization terms in the decoder could produce better results and
suggest such a function.

The rest of the thesis is structured as follows. Section 2 describes the theory and
methods necessary for understanding the study, with Subsection 2.5.2 outlining
the architecture of the decoder. Next, Section 3 presents the results, followed
by the main conclusions in Section 4. The code used to produce the results for
this study is available at https://github.com/martin-bjorklund/decoder_

thesis.

2 Theory and Methods

2.1 Neural Networks

A neural network is a type of machine learning model used for supervised, un-
supervised as well as reinforcement learning. Neural networks learn to approxi-
mate some target function f∗(x) by learning parameters θ for its approximation
y = f(x;θ), where x is the input to the network and y is the output, both of
which can be multi-dimensional.

The most basic type of neural network is a feedforward neural network, also
known as a multilayer perceptron. As explained in Goodfellow et al [5], they
are so named since information is only propagated forward through the network,
in contrast to for example recurrent neural networks, which we do not cover in
this thesis.

Every neural network consists of several chained functions. For example, we
could have a neural network with the structure f(x) = f3(f2(f1(x))). In this
case, f1 is the first layer of the model, while f2 makes up the second layer,
and so on. The depth of this model is 3, since the network consists of 3 nested
functions. Layer 2 is a hidden layer, while the final layer is known as the output
layer and layer 1 is the input layer. Typically, neural networks have a depth
much greater than 3 and thus have several hidden layers.

Each layer contains a number of neurons, the maximum number of which defines
the width of the network. In Figure 1 we see an example of a simple feedforward
neural network whose depth and width are both equal to 3. In this example,
each neuron is connected to every neuron in the subsequent layer, meaning that
each layer is fully connected.

But what does each layer consist of? Typically, in a feedforward neural network,
if we let x be a vector-valued input, the layer calculates ϕ(W Tx+b), where W
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Figure 1: Diagram of a simple neural network. The network has 2 input units, 1
hidden layer with 3 units and one output unit. Each circle represents a neuron.

and b are trainable parameters known as the weight matrix and the bias. Note
that the usage of the word bias in deep learning differs from its usage within
statistics. Here, ϕ is some non-linear activation function acting element-wise on
its input. Many such activation functions exist, one of the most popular choices
being the rectified linear unit (ReLU) [6], defined as

h(x) = max(0, x) (1)

for some scalar x.

In classification settings, we typically want the output of the model to sum to
1, enabling interpretation of the output as conditional probabilities. For binary
classification, one may use the sigmoid function, which for some scalar x is
defined as

σ(x) =
1

1 + e−x
(2)

and may also be used as an activation function in the hidden layers of the model.
For multi-class classification, we typically use the softmax function, whose ith
output element for a vector-valued input x is defined as

softmax(x)i =
exi∑
j e

xj
. (3)

Usage of either of these functions allows us to interpret their output as the
estimated conditional probability P (x belongs to class i|x).
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The fact that the activation functions are non-linear is important. A network
consisting only of linear layers can only model linear functions or perform linear
classification. For example, a network for binary classification with no non-linear
layers, sigmoidal output and a fixed decision threshold (such as 1/2) can only
produce linear decision boundaries, which is equivalent to logistic regression.

In a deep neural network, the dimensionality of the data is transformed in each
layer. We call these transformed representations of the data abstract represen-
tations (also known as deep representations). A common strategy is to first
increase the dimensionality of the abstract representations and then decrease
their size in subsequent layers. It is theorized that such a structure allows the
network to first find the relevant features of the data using the high-dimensional
abstract representations and then compress and discard features that are irrel-
evant for the task at hand, compressing the representations to a form that is
suitable as output of the network.

2.2 How a Neural Network Learns

When training a neural network, our goal is to find the values of the parameters θ
that minimize the loss function (also known as the cost function). This function
quantifies the difference between the actual target value and the predicted value
of the model, where higher values represent worse predictions. In classification
settings, one often uses the cross-entropy loss function. For an observation with
k classes, we have a length k dummy variable vector y containing the label and
a length k vector ŷ containing the predicted conditional probabilities. Then,
the cross-entropy loss for that observation is defined as

L(ŷ,y) = −
k∑

j=1

yj log ŷj , (4)

where the index j denotes the jth element of the vectors. This function is
bounded by 0 from below and, as we would expect from a loss function, takes
on higher values when the true class is assigned a low probability. To calculate
the loss for the whole dataset, we take the average loss per observation.

Now, let o be the vector of unnormalized conditional probabilities for an obser-
vation, i.e. the output of the final layer of a neural network. A useful feature
of the cross-entropy loss is the simplicity of its derivative when used with the
softmax function [7]. Substitution of ŷj with softmax(o)j followed by standard
mathematical operations gives us that

∂L(o,y)

∂oj
= softmax(o)j − yj , (5)

which is just the difference between the estimated conditional probability of
class j and the jth element of the dummy variable vector containing the label.
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To understand how we find the minimum of a loss function in deep learning,
one must first know the basics of the gradient descent algorithm, which works
iteratively in order to find the argument that minimizes the function. Let
l(ŷ(i),y(i);θ) be some arbitrary loss function for an observation i, where we
have explicitly expressed the loss function’s dependence on the parameters. At
each step, gradient descent updates the parameters according to the rule

θt+1 ← θt − ϵ · 1
N

N∑
i=1

∂l(ŷ(i),y(i);θt)

∂θt
, (6)

where the index t denotes the current step, N is the number of observations and
ϵ is a small positive parameter known as the learning rate. According to this
update rule, we see that if the gradient is positive we decrease the value of θ
and increase it if the gradient is negative. Intuitively, we can think of gradient
descent as letting the parameter θ roll down the surface formed by the loss
function until it reaches the bottom.

In practice, the learning rate decreases in each step. If the learning rate was
constant, the algorithm could “step over” the minimum several times, going
back and forth between different sides of it. Reducing the learning rate in each
step reduces the risk of this, allowing the algorithm to make finer adjustments
to the parameters in later epochs.

Since the dataset may consist of hundreds of thousands of observations or more
and neural networks can have millions of parameters, calculation of the loss
for the whole dataset along with the gradients ∂l(ŷ(i),y(i);θ)/∂θ can be very
computationally expensive. Therefore, one often uses randomly selected subsets
of the original data, known asmini-batches. Gradient descent using mini-batches
is known as stochastic graddient descent, variants of which are used to train
neural networks. Since the size of the mini-batch is much smaller than the size
of the entire training set, it takes several steps to go through all of the data. One
iteration over the whole training set is known as an epoch. Letting m represent
the number of observations in a mini-batch, each step in stochastic gradient
descent updates the parameters according to the rule

θt+1 ← θt − ϵ · 1
m

m∑
i=1

∂l(ŷ(i),y(i);θt)

∂θt
, (7)

which is usually done for several epochs.

One of the most widely used variants of stochastic gradient descent is Adam
[8], which we use when training the models in Section 3. While an in-depth
description of the Adam algorithm is outside the scope of this thesis, one should
be aware that it introduces several new parameters as well as methods that
counteract the risk of getting stuck in local minima.

Of course, in order to use any of these optimization algorithms, we must first cal-
culate the gradients ∂l(ŷ(i),y(i);θ)/∂θ. This is done using forward propagation
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and backpropagation.

During forward propagation, we run the data through each layer of the network,
from the input layer all the way to the final layer, making sure to store the
output from every intermediate layer. Based on this output, the value of the loss
function is calculated. Then, during backpropagation, we calculate the gradients
of the loss function with respect to the parameters. Using the chain rule of
calculus, we first get the gradient of the loss with respect to the parameters of
the final layer and then move sequentially backwards through the network until
we reach the parameters of the first layer. While this may sound complicated at
first, it is merely an application of the chain rule. For a more detailed example
of how this process works in practice, see for example Zhang et al [7].

2.3 Encoders, Decoders and Autoencoders

An autoencoder is a neural network with a symmetric structure, trained to
output a representation as similar to its input as possible [3]. While a deep
understanding of autoencoders is not necessary for grasping the contents this
thesis, this section provides a brief overview of their structure in order for the
reader to understand the reasoning behind the methodology we use. For more
details on autoencoders, see for example Charte et al [3].

An autoencoder can contain an arbitrary number of hidden layers, with a general
structure that, as shown in Figure 2, includes an encoder f , which maps the
input x to an encoding y. This encoding is then run through a decoder g which
aims to create a reconstruction r of the input x [3].

If the encoding y is of lower dimension than the input x, the autoencoder is
known as undercomplete. This structure allows the encoding to capture only
the most important features of the data, enabling us to use it for tasks such
as dimensionality reduction. An overcomplete autoencoder, on the other hand,
has an encoding y that is of higher dimension than the input.

To train an autoencoder one may use the same techniques as for a feedforward
neural network, using mini-batches and stochastic gradient descent. Special care
needs to be taken using regularization when training an overcomplete autoen-
coder to make sure that it does not simply learn the identity mapping, which
would not be particularly useful. The exact form of the loss function used for
an autoencoder depends on the input. A common choice is the mean squared
error, but for binary inputs the cross-entropy loss is usually preferred [3].
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x y r
f g

Figure 2: Overview of the general structure of an autoencoder. From Chartre
et al [3].

2.4 Convolutional Neural Networks

2.4.1 The Convolution Operation

The convolution operation plays a fundamental role when processing image data,
which are usually represented as tensors or multi-dimensional arrays composed
of real values. In this representation, the x and y axes represent the pixel values,
while another axis represents the color channels, the number of which depends
on the image type. Grayscale images have only one color channel, while colored
images usually have three.

So how does one deal with this input? While flattening the image and inputting
it as a vector to a feedforward neural network may seem natural, this is highly
impractical. Consider a scenario where we aim to classify images as cats or
dogs. Connecting each pixel of even a greyscale 1 megapixel image to the nodes
of a 1000-node fully connected layer would require 106 · 103 = 109 weights to
be trained [7]. Not only would this approach be computationally infeasible; it
would also be unlikely to fully capture the important aspects of the image.

Aside from this, we also want our network to give us the same prediction no
matter where in the image the cat or dog is located. Clearly, simply flattening
the input image would not yield appropriate results.

To address these problems, we use the convolution operation. For an input
image I with two axes and a kernel K with the same number of axes as the
image, element i, j of the convolution output (also known as the feature map)
can be written as

(I ∗K)i,j =
∑
m

∑
n

Ii+m,j+nKm,n. (8)

The kernel K is a multidimensional array of trainable parameters, whose values
are found by the training algorithm. Usually being of a smaller height and width
than the input image but with the same number of channels, common choices
are 3× 3 and 5× 5 kernels [5]. An illustration of a convolution can be found in
Figure 3.

This operation solves the potential problems we introduced in the beginning of
this subsection. By letting the kernel be of a smaller size than the input, we
allow for parameter sharing between the pixels instead of letting each one be
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Figure 3: Illustration of a convolution with a 3×3 input and a 2×2 kernel with
a stride of 1 and no padding.

associated with its own parameter. This greatly reduces the number of trainable
parameters required, which in turn decreases computational costs in the form
of memory requirements and training time.

Moreover, the convolution operation’s equivariance to translation solves the is-
sue of getting the same prediction independently of the location of an object
within an image. Formally, the equivariance to translation can be expressed as
f(g(x)) = g(f(x)) for a convolution operation f and some translation g.

To control the size of the feature map, we may adjust the zero padding and
stride. Introducing a padding of p appends p zero-valued rows and columns on
each side of the input. Besides enlarging the feature map, this also allows us
to make better use of the corner values of the input, which are otherwise only
taken into account once per observation.

The stride, on the other hand, controls the step size of the kernel as it slides
over the input. A higher stride lets the kernel skip over some elements of the
input and leads to a smaller feature map that does not extract the features of
the image as finely as with a low stride.

Sometimes, we may want the feature map to have a different number of channels
compared to the input. Assume we have cin input channels and cout output
channels. We then need a 4-dimensional kernel K of dimensions cin×cout×kh×
kw, where kh and kw denote the height and width of the kernel, respectively.
Using a 3-dimensional input I, where the first dimension corresponds to the
number of input channels, and a stride of s, element i, j, k of the feature map
of such a convolution can be described by the formula

(I ∗K)i,j,k =
∑
l,m,n

Il,(j−1)s+m,(k−1)s+mKi,l,m,n. (9)

A typical convolutional neural network does not only use convolutional layers,
but also fully connected layers as well as other operations described in the
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remainder of this section.

2.4.2 Batch Normalization

Batch normalization, first introduced by Ioffe and Szegedy [9], aims to address
the problem they name “internal covariate shift”, where the inputs to activation
functions in the hidden layers of a neural network can be on widely different
scales at different points during the training process and at different points in the
network. They theorized that internal covariate shift slows down the training of
a neural network by forcing the parameters to constantly adapt to the differing
scales of the data which they act upon.

Batch normalization ensures that the input to each layer during training has
mean 0 and unit variance along each dimension. While it is standard practice to
normalize the input to the network, the novelty in this method lies in doing so
for each mini-batch and before each activation function. Intuitively, one might
imagine that this helps the training process by letting the inputs to the activa-
tion functions be on similar scales, thereby reducing the internal covariate shift.
However, Santurkar et al [10] suggest that the reason why batch normalization
works is not because it reduces the internal covariate shift, but because it makes
the optimization landscape smoother. For more details on this, see the original
paper [10].

Mathematically, the operation can be described as follows during training. Let
x be an element of a mini-batch B, µ̂B be the mean vector of the mini-batch and
σ̂2
B be vector containing the variance of the mini-batch along each dimension.

For some learnable parameters γ and β as well as some small constant ϵ, the
batch normalization operation is defined as

BN(x) = γ
x− µ̂B√
σ̂2
B + ϵ1

+ β, (10)

where the multiplication, division and square root is performed element-wise
and 1 is a vector with each element equal to 1. The parameters γ and β recover
the degrees of freedom lost by normalization and ensure that the operation is
able to represent the identity transform, while the constant ϵ provides numerical
stability and prevents division by 0.

Once the network has been trained, the mini-batch statistics µ̂B and σ̂2
B are

replaced with their counterparts based on the whole training set, meaning that
batch normalization behaves differently during training and evaluation.

In convolutional neural networks, batch normalization is usually placed after the
convolution operation and before the activation function [7]. With a mini-batch
of size m and a convolution with output width w and height h for each channel,
the batch normalization is done over all m×h×w elements per output channel,
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Figure 4: An illustrated example of average pooling with an input of size 4× 4,
a kernel of size 2×2 and a stride of 2. Note how the output, displayed as a gray
matrix, contains the average value of different sections of the input.

independently of the other channels. Each channel is therefore associated with
its own mini-batch statistics and elements of the learnable parameters γ and β.

2.4.3 Average Pooling

It is common practice to use pooling operations in convolutional neural net-
works. These operations replace the outputs of layers with summary statistics
of the nearby elements, which introduces approximate translational invariance,
meaning that even if the input to the pooling operation is shifted by some small
amount, most of its output remains the same. This is a useful property for
image classification tasks, since we as previously mentioned care more about
whether or not a feature is present in the data than its exact location [5].

One such pooling operation, which we use in this thesis, is average pooling.
Consider an input x of size C×H×H, a kernel K of size C×k×k and a stride
of s. Performing average pooling with these arguments yields an output of size
C ×Hout ×Hout, where

Hout =
H − k

s
+ 1,
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and element (c, h, w) of the output of such an operation is defined as [11]

AP(x)c,h,w =
1

k2

k∑
m=1

k∑
n=1

xc,s·h+m,s·w+n. (11)

Note that in contrast to convolutions, the kernel used for average pooling con-
tains no trainable parameters, as each element of the kernel is equal to 1/k2.

A visualization of an average pooling operation with a stride of 2, an input of
size 4× 4 and a kernel of size 2× 2 with 1 channel is provided in Figure 4.

2.4.4 Residual Connections

Residual connections, introduced by He et al [4], address the degradation issue,
where deep networks perform worse than their shallow counterparts. Assume
our goal is to model some target function f∗ and that our network with l layers
is able to model a class of functions Fl using different parameter settings. If f∗

is within Fl we may be able to reasonably approximate f∗, but this is often not
the case. To achieve better performance and bring Fl closer to f∗, one might be
tempted to increase model complexity by adding another layer. However, this
could backfire and actually bring us further away from f∗, since the new layer
may not be able to represent the identity function and thus Fl is not guaranteed
to be a subset of Fl+1 [7].

Residual connections solve this issue by adjusting the target function for each
layer. Instead of letting a layer approximate a function f(x) for some input x,
it is made to learn the residual mapping g(x) = f(x)−x. This allows each layer
to learn the identity mapping should it be necessary, ensuring that Fl ⊆ Fl+1

for all l ≥ 1. Thus, adding more layers with residual connections guarantees
that we are always able to more closely approximate the target function f∗. Of
course, getting better results is not always guaranteed, due to the stochastic
nature of training neural networks.

This mathematical approach may be useful for understanding why residual con-
nections work, but one can also think of residual connections as preventing the
loss of information, “reminding” the network of the original image. An illustra-
tion of a layer utilizing a residual connection is provided in Figure 5.

2.4.5 ResNet-18

The network of interest in this thesis, ResNet-18 [4], makes use of many of
the deep learning methods we have discussed so far. As is common for this
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Figure 5: Schematic of a layer utilizing a residual connection.

architecture, we use it for classification of images. The usage of ResNet models
has become widespread thanks to their high accuracy in this context.

ResNet-18 is built using a repeating block-type structure. The first layer of the
network is a convolutional layer with a 3 × 3 kernel followed by batch normal-
ization and the ReLU activation function. This is then followed by four residual
blocks, each of which contains four convolutional layers, all followed by batch
normalization and the ReLU activation function. Each residual block also con-
tains two residual connections. After these blocks follows an average pooling
operation with a 4 × 4 kernel and finally a fully connected layer. An overview
of this structure is displayed in Figure 6.

Some of the residual connections utilize a convolution operation with a 1 × 1
kernel followed by batch normalization, in order to account for the fact that
the number of channels changes during the first convolution of the blocks. This
only applies to the first residual connection of blocks 2, 3 and 4, since this is
where the number of channels change.

Most convolutions in the network utilize a padding of 1 and stride of 1. Excep-
tions are the first convolutions in blocks 2-4, which use a stride of 2, and the
1× 1 convolutions, which use a stride of 1 and no padding.

As is the case with most neural networks, the data are transformed as they pass
through the network, changing dimensionality by passing through the layers.
As input to the model, we use images of size 3 × 32 × 32, described in Section
3. The first convolutional layer of the model increases the number of channels
to 64, while the first convolutional layer of residual blocks 2-4 each double the
number of channels and halve the height and width of the abstract representa-
tions. The average pooling operation performs further downsampling, yielding
a representation of dimensions 512× 4× 4. Finally, the output of the final layer
of the model is a 10 × 1 × 1 array, where element i is the unnormalized condi-
tional class probability of class i, meaning that the output does not sum to 1.
To allow interpretation of the output as conditional probabilities, one may use
the softmax function as described in (3).

By first increasing the dimensionality, it is theorized that ResNet-18 can more
easily identify the features separating each class, as we have already mentioned
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Figure 6: Overview of the ResNet-18 architecture. Adapted from Köhler [2].
Each red X marks the location of a checkpoint (CP). Note that the 1 × 1 con-
volution in the residual connection is not used in block 1, since no change in
dimensionality occurs.
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Table 1: Dimensionality of the representation in each checkpoint, denoted as
channels× height× width.

Dimensionality
Checkpoint 1 64× 32× 32
Checkpoint 2 128× 16× 16
Checkpoint 3 256× 8× 8
Checkpoint 4 512× 4× 4
Checkpoint 5 512× 1× 1
Checkpoint 6 10× 1× 1

in Section 2.1. Then, as we decrease the dimensionality, the model may discard
irrelevant features and compress the representation to a form that is suitable as
output of the network.

In the network, we place 6 checkpoints; one after each residual block, one after
the average pooling operation and one after the fully connected layer. Using the
abstract representations of the data in these checkpoints, we aim to reconstruct
the original images using a decoder, mirroring the architecture of ResNet-18.
The dimensionality of the representation in each checkpoint is shown in Table
1.

2.5 Decoding the Abstract Representations

2.5.1 Transposed Convolution

While the convolution operation typically decreases the size of its input, we have
so far not discussed ways to increase the size of something, which is a necessary
property of the decoder we construct in this thesis. Transposed convolutions,
sometimes known as deconvolutions, meet this need. Although upsampling using
a convolution is also possible, it is not as computationally efficient due to the
amount of padding required [12].

The transposed convolution is not an exact inverse of the convolution operation.
Instead, it can take the output of a convolution operation and recover the shape
of its original input. For an understanding of how the transposed convolution
works in practice it is best to see an illustration of it, as shown in Figure 7. As
we can see, the transposed convolution also makes use of a kernel of trainable
parameters that slides across the input, performing element-wise multiplication
and then addition.

In Algorithm 1 we present the basic algorithm for a transposed convolution
using one channel.
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For multiple channels, the operation is similar to what we saw for the convolution
operation. That is, for cin input channels and cout output channels, we need
a kernel K of dimensions cout × cin × kh × kw. We perform the transposed
convolution as described in Algorithm 1 a total of cin times for a single output
channel and add the output matrices Y . We repeat this process for every output
channel and thereafter concatenate the results, which results in an output of
dimensions cout × kh × kw.

Algorithm 1 The transposed convolution algorithm with one channel and a
stride of s. Here, Yi:i+h,j:j+w denotes the elements of Y in rows i to i + h and
columns j to j + w.

Require: Kernel matrix K of dimensions kh × kw
Require: Input matrix I of dimensions h× w
Require: Stride s
1: Y ← (s(h− 1) + kh)× (s(w − 1) + kw) matrix of zeros
2: for i← 1 to h in steps of size s do
3: for j ← 1 to w in steps of size s do
4: Yi:i+h,j:j+w = Yi:i+h,j:j+w +Xi,j ·K
5: end for
6: end for
7: return Y

The transposed convolution is named due to its relationship with the convolution
operation when viewed as a matrix multiplication. Let us consider a convolution
with 2-dimensional input X and output Y . If we vectorize the input and output
of the convolution operation by unrolling them from left to right and top to
bottom, denoting them asXv and Yv, we can represent the convolution operation
as a matrix multiplication of the form

Yv = CXv, (12)

where C is a sparse matrix whose non-zero elements are taken from the kernel
of the convolution [12]. With this representation of the convolution operation,
we have also defined a transposed convolution by instead using the transpose
of the sparse matrix, CT . With this in mind, one may also think of a trans-
posed convolution where the forward propagation and backpropagation have
been swapped, since backpropagation is an application of the chain rule and

∂Yv

Xv
= CT .

Again, note that the transposed convolution is not an inverse of the regular
convolution and that there exist more than one transposed convolution able to
recover the shape of the input to a convolution operation. Suppose we wish
to reverse a convolution operation and find a representation that not only has
the same shape as its input, but also the same contents, as is the goal in the
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Figure 7: An illustration of a transposed convolution with a 2× 2 input, a 2× 2
kernel, a stride of 1 and no padding. Transposed convolutions typically result
in an output of larger size than its input.

decoder we outline in Section 2.5.2. By using trainable parameters in the kernel
of the transposed convolution, as opposed to just using CT of the corresponding
convolution operation, we are able to get a representation that resembles the
input to the convolution operation much more closely.

Just like with regular convolutions, transposed convolutions can implement
padding and stride. However, the effect they have on the output size of the
operation is reversed. While an increased stride in the convolution operation
decreases the size of the output, it increases the size of the output for trans-
posed convolutions. Just like with regular convolutions, the stride specifies the
number of “steps” the kernel takes when moving over the input.

Padding, on the other hand, works quite differently. Using a padding of p in a
transposed convolution amounts to removing the p outermost rows and columns
on each side of the output [7], thereby decreasing the output size.

2.5.2 Decoder Architecture

Drawing inspiration from autoencoders, we design a decoder that mirrors the
architecture of the encoder, ResNet-18. Using this approach, we construct a
decoder that aims to reverse the operations made by ResNet-18, thereby re-
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constructing the original images from their abstract representations in each
checkpoint shown in Figure 6.

To reverse the convolution operation, it is natural to use a transposed convolu-
tion with the same kernel size, stride and padding, as this results in a tensor of
the appropriate size. However, reversing the average pooling operation is not
as straightforward. We therefore introduce an unpooling operation. We unpool
the elements of each channel independently, expanding the 512 × 1 × 1 repre-
sentation to a tensor of size 512× 4× 4 by replicating the values in the smaller
representation four times. After this, we perform an element-wise multiplication
of the 512 × 4 × 4 representation with a tensor of learnable parameters of the
same size. While this is not an exact inverse of average pooling, the hope is
that the multiplication by learnable parameters allows us to more accurately
reconstruct the representation by adding degrees of freedom.

Just like ResNet-18, our decoder is built in a block-like structure. Since we
for each checkpoint only need to reverse the transformations that ResNet-18
has applied to the data so far, we train a separate decoder for each checkpoint.
Each one only applies the transformations necessary to decode the corresponding
checkpoint, meaning that the last decoder is far deeper than the first.

This is best understood by looking at Figure 8. As shown there, the full decoder
used for the final checkpoint contains a fully connected layer, an unpooling layer,
four decoder blocks and finally a transposed convolution. The decoder for the
fifth checkpoint removes the fully connected layer, and the decoder for the fourth
checkpoint also removes the unpooling layer. In each subsequent decoder for
the remaining checkpoints, we remove one block. Thus the decoder for the first
checkpoint only contains one decoder block and a transposed convolution layer.

Each block of the decoder mirrors the corresponding residual block of ResNet-
18, replacing each convolution with a transposed convolution as shown in Figure
9. The majority of the transposed convolutions use a stride and padding of
1. In order to fully mirror the residual blocks, the exceptions here are in the
final transposed convolutions of blocks 1-3 instead of the first. Thus, the final
transposed convolution in blocks 1-3 use a padding of 1 but a stride of 2. Also
note how the 1× 1 transposed convolution, using no padding and a stride of 1,
occurs in the second residual connection of blocks 1-3 instead of the first.

Since we need to estimate the value of each pixel in every channel based on an
abstract image representation, reconstruction of an image amounts to a mul-
tivariate regression problem. For this reason, we use the mean squared error
(MSE) as our loss function. For an image size of C ×H ×W , the MSE for the
ith image Y (i) and its reconstruction Ŷ (i) is defined as

MSE(i) =
1

C ·H ·W
∑
c

∑
h

∑
w

(Y
(i)
c,h,w − Ŷ

(i)
c,h,w)

2, (13)
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Figure 8: Overview of how data flows from ResNet-18 (top) to the decoders
(bottom). Each decoder mirrors the part of ResNet-18 that it aims to reverse.
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Figure 9: Overview of the full decoder architecture. Note that the 1× 1 trans-
posed convolution in the residual connection is not present in decoder block
4.
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Figure 10: One example image per class from the training set of CIFAR-10.
Due to the low resolution of the images, some may even be difficult for humans
to recognize.

where the subscript c, h, w denotes pixel h,w in channel c. The MSE for one
mini-batch is then the average MSE of its elements.

3 Results

3.1 Data

As our dataset, we use CIFAR-10 [13]. Widely used in machine learning, it
consists of 60000 32 × 32 pixel color images of different objects and animals,
with each image represented as a 3×32×32 tensor. Every image belongs to one
of 10 classes, with there being 6000 observations per class. The dataset is split
into a training set of 50000 observations and a testing set of 10000 observations,
with an equal number of elements from each class.

In Figure 10, we see one example per class from the training set. The im-
ages may seem small and blurry, but the data are useful in part due to this
very property, since the small size of each image reduces computational require-
ments. Moreover, the widespread use of the dataset facilitates reproducibility
and recognition.
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3.2 Training Process

Prior to training, each image is normalized by subtracting the mean of each
channel and dividing by the standard deviation, based on the training set. These
normalized images are used as input to our pre-trained ResNet-18, which is
trained using Adam and the cross-entropy loss function.

The decoders are trained sequentially, starting from decoder 1 moving up to
decoder 6. For decoders 2-6, we use the corresponding parameter values from
the previous decoder as initial values, while the remaining parameters are ini-
tialized randomly. This saves training time and allows us to use information
from the previous decoder. Since all parameters are still kept trainable, the risk
that a decoder copies the mistakes of the previous one is low. The randomly
initialized parameters are drawn from a U(−

√
t,
√
t) distribution, where for the

fully connected layer t = 10 and for the transposed convolutions t = 1/(coutk
2)

where cout is the number of output channels of the operation and k is the kernel
size.

In Figure 11, we see the training and validation loss curves for each decoder.
All are trained using Adam until the training loss starts to saturate. This
takes more epochs for later checkpoints, presumably since those representations
contain less information about the original image. To prevent overfitting, we use
the weights that gave the lowest validation loss for each decoder. All training
and implementation is done using PyTorch [14].

3.3 Decoder Performance

In Figure 12, we show the mean squared error (MSE) of the decoder for each
checkpoint. As we can see, the MSE remains low for early checkpoints, but
rapidly increases after checkpoint 3. This pattern of increased MSE for later
checkpoints is unsurprising. Not only does the dimensionality decrease as we
move to later checkpoints, which causes a collapse of information, but the rep-
resentations likely also carry less information as features of the image that are
irrelevant to classification are discarded in layers of ResNet-18 that are closer
to the output. For the sixth checkpoint in particular, the reconstructed images
differ strongly from the original images, resulting in a large MSE.

Before visualizing any of the reconstructed images, we need to decide which
ones to examine. As we have mentioned, the final checkpoint of ResNet-18 is
a vector of length 10 containing the unnormalized probabilities for each class.
That is, a high value in element i of the vector indicates that ResNet-18 assigns
a high probability to that class.

Figure 13 visualizes the data points from the validation set projected at the final
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(a) Checkpoint 1 (b) Checkpoint 2

(c) Checkpoint 3 (d) Checkpoint 4

(e) Checkpoint 5 (f) Checkpoint 6

Figure 11: Loss per epoch when decoding each checkpoint. For the training loss
to saturate in later checkpoints, more epochs are required.
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Figure 12: Decoder mean squared error per checkpoint. The error increases
abruptly after checkpoint 3.

checkpoint. Each point in the figures represents one image from the validation
set, with the axes representing the unnormalized probability for each class.
Generally, we see a kind of arrow shape along each axis, where observations at
each arrowhead are assigned a high probability of belonging to the corresponding
class. For classes that are easily confused by ResNet-18, such as cats and dogs,
we see a more triangular shape with the observations being less clustered around
a particular axis.

Since the final checkpoint contains information about ResNet-18’s classification
of the image, it is possible that images that are correctly classified, or are as-
signed a high probability to the correct class, appear completely differently when
reconstructed, as compared to those that are incorrectly classified. Therefore,
we reconstruct images belonging to each of these groups. That is, we recon-
struct sample observations that are both close to the arrowhead and close to
the origin in Figure 13.

Figures 14 and 15 show reconstructed images for observations that ResNet-
18 originally classified correctly and incorrectly, respectively. The columns are
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Figure 13: Distribution of elements in the validation set in the final checkpoint
for some example classes. Along each axis, the datapoints form an arrow-like
shape.
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labelled by the checkpoint number, with the first column containing the original
image from the validation set. Each row is labelled by the correct class. The
correctly classified images shown are all assigned a high probability to the correct
class and are therefore located in the arrowhead corresponding to the correct
class in Figure 13.

In both figures, we see the same pattern as for the MSE. That is, the reconstruc-
tions get blurrier and less similar to the original as we move to later checkpoints.
The reconstructions based on the first two checkpoints are nearly indistinguish-
able from the original image, while the reconstructions from the sixth checkpoint
are unrecognizable. We also note a sudden change between checkpoint 4 and 5,
with the reconstructions becoming blurry after this in both figures.

Two noteworthy examples illustrating the loss of information in later check-
points are the automobile and the horse in Figure 14. The reconstructions get
blurry for late checkpoints, with a sudden shift in color occurring in checkpoint
5 for the automobile and checkpoint 6 for the horse. Despite starting with a
white horse and automobile, we end up with the reconstruction of a red object
for the automobile and a brown object for the horse. This clearly shows that
information about the specific features of the original image is not preserved by
either ResNet-18 or the decoder.

3.4 ResNet-18’s Performance on Reconstructed Images

To further evaluate the performance of each decoder, we let ResNet-18 classify
the reconstructed images from each checkpoint and examine its accuracy. This
way, we plan to determine if the decoder preserves the features necessary for
classification.

In Figure 16, we report the accuracy of ResNet-18 on the reconstructed images
from each checkpoint based on the validation set. Based on what we saw regard-
ing the MSE in Figure 12, we see an expected pattern, with a high accuracy in
the first two to three checkpoints that then drops off beyond checkpoint 3. After
this we see an accuracy of around 20%. While better than random guessing,
this is not particularly impressive. Looking back to the sample images shown
in Figures 14 and 15, we see ResNet-18’s classification of the reconstructions
underneath each image.

The results from running ResNet-18 on the reconstructed images further show
us that the features relevant for classification of the images are not preserved
in the reconstructions from checkpoint 4 and onwards. There are two main
possible reasons for this. First, as we have already mentioned, we naturally lose
more information about the original images, as the dimensionality is lower for
the later checkpoints. The second and perhaps most important reason has to do
with our choice of loss function for the decoder. Since the mean squared error
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Figure 14: Examples of decoded images from each checkpoint, along with the
corresponding original image which was correctly classified by ResNet-18. Each
row is labelled with the class of the original image. Underneath each image, the
prediction of ResNet-18 is displayed.
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Figure 15: Examples of decoded images from each checkpoint, along with the
corresponding original image which was incorrectly classified by ResNet-18.
Each row is labelled with the class of the original image. Underneath each
image, the prediction of ResNet-18 is displayed.
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Figure 16: ResNet-18 accuracy on the images reconstructed from each check-
point, based on the validation set. The reconstructed images based on early
checkpoints preserve the features necessary for classification, while reconstruc-
tions based the later checkpoints do not.

only measures the difference between the reconstruction and the original image,
we argue that the decoder itself introduces further loss of information about the
images, as the loss does not take the class into account. We elaborate further
on this in Section 4.

3.5 Decoding Artificial Data

Since the representation in the final checkpoint is low-dimensional, it is easy
to generate artificial data in this representation that could potentially allow
us to construct images showing how ResNet-18 views a “typical” element of
each class, as a sort of reference image. Recall from Table 1 that in the final
checkpoint, each data point is represented as a vector of length 10. To create
such artificial data, we set all the elements of this vector to 0 and change the
element corresponding to the class we are interested in. Formally, letting z be
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such a vector, we then have that zj = 0 for all j ̸= i, where i is the index of the
class we wish to investigate.

As we have discussed relating to the visualizations of the data in the final
checkpoint in Figure 13, a high value of zi for an observation indicates that
ResNet-18 assigns a high probability to class i. Setting zi to a high value in our
artificial data and decoding the vector should therefore, in theory, result in an
image that ResNet-18 classifies as class i, provided that our decoder preserves
the information necessary for classification.

However, this is not the case in practice. In Figure 17, we see images generated
based on artificial data. In each row, we vary the element of the vector z
that corresponds to the class labelled on the left, while the columns label the
value of this element zi. Again, underneath each image we show ResNet-18’s
classification of it. As we can see, the artificial images are not classified in the
way one might expect. In fact, ResNet-18 views all of the artificial images in
Figure 17 as either ships or frogs.

When comparing to what we saw in Figures 14 and 15, this is perhaps not so
unexpected after all. As we have already discussed, the reconstructions based on
later checkpoints do not contain the features necessary for correct classification
by ResNet-18.

Despite the unexpected classifications by ResNet-18, we are able to make some
interesting observations. First of all, we note that the artificially generated
images using high values of zi look very similar to the pictures from checkpoint
6 in Figure 14. For example, the automobile is red in both Figure 14 and 17.

Secondly, we see a sudden change in the artificially generated images in Figure
17 after zi > 7. Recall that to get the conditional probabilities, we use the
softmax function, whose ith element for a vector input z is defined as

softmax(z)i =
ezi∑
j e

zj
.

Due to the softmax’s usage of the exponential function, it is natural that such
a sudden change occurs, since a unit change in zi results in a large change
in exp(zi). However, note that with zi = 7 we get an estimated conditional
probability of softmax(z)i ≈ 0.9919, while using zi = 8 results in softmax(z)i ≈
0.9970, so the location of this change may be surprising. Nevertheless, in Figure
18, we once again visualize the data points projected at the final checkpoint,
but this time based on the training set. We find that there is a sudden change
in the density around zi = 7 for each of the sample classes. This means that
decoding artificial data where zi = 7 (and zj = 0 for j ̸= i) often amounts to
extrapolation, which may be one of the reasons for the location of the sudden
change in the images in Figure 17.
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Figure 17: Images generated based on artificial data. Each row is labelled with
the class whose corresponding element we alter in the vector z. Remaining
elements of the vector are set to 0. Columns are labelled according to the value
of the non-zero element. Underneath each image, ResNet-18’s classification of
it is displayed.
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Figure 18: Distribution of elements in the training set in the final checkpoint
for some example classes.
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4 Concluding Remarks

In this thesis, we have peeked into the black box of a neural network. We in-
vestigated the performance and limitations of a decoder mirroring the structure
of ResNet-18 using the mean squared error (MSE) loss function. We found
that while the decoder performed very well on checkpoint data from early on in
ResNet-18, it deteriorated about halfway through the network.

By letting ResNet-18 classify the reconstructed images and examining its accu-
racy, we got further validation of these results. We conclude that despite its
performance on reconstructions based on early checkpoints, the current setup
of the decoder needs to be generalized to recreate and preserve the features
necessary for correct classification of the images. Still, using ResNet-18’s per-
formance on the reconstructed images as validation of the decoder provides a
promising quantitative measure of how well the decoder is able to reconstruct
relevant features, in contrast to simple visual inspection of the reconstructed
images.

The images we generated based on artificial data further highlight the loss of
information due to both the low dimensionality of the final checkpoint and the
architecture of our decoder, additionally emphasizing the challenge of preserving
features relevant for classification. However, the artificial images still provide
us with a glimpse of how a typical member of each class might be viewed by
ResNet-18.

In comparison to the study by Mahendran & Vedaldi [1], we see a similar vi-
sual pattern, as the reconstruction they produced also get blurrier as one moves
toward the output layer of the network. As we have mentioned in the introduc-
tion, the methods used in this thesis differ from those of Mahendran & Vedaldi
[1]. In our study, each abstract representation results in only one reconstructed
image, which potentially simplifies interpretation, but could at the same time be
misleading as the reconstructions depend on the parameter values of the decoder
and are not exact inverses of the transformations applied to the images.

One of the main strengths of the study in this thesis lies in how we measure
the decoder’s performance. By using ResNet-18 on the reconstructed images to
validate the decoders, we are able to accurately judge if the checkpoints and
their reconstructions preserve relevant features in the images.

Looking ahead, future studies could incorporate various regularization methods
to our loss function for the decoders, making sure that it takes into account
ResNet-18’s classification of the reconstructions. Letting L(y(i), ŷ(i)(r)) repre-
sent the cross-entropy loss as measured between the label of observation i and
ResNet-18’s classification of the reconstructed image, one could use

MSE(Y (i), Ŷ (i)) + c · L(y(i), ŷ(i)(r)). (14)
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Here, Y (i) is the original image, Ŷ (i) is the reconstructed image and c is some
constant. Furthermore, to ensure that reconstructed images look natural to
humans we may introduce a term measuring the norm of the vectorized re-
constructed image, as done by Mahendran & Vedaldi [1]. Such a term could
prevent extrapolation during image reconstruction, resulting in more natural-
looking images.

In conclusion, the thesis further advances the methods used to understand neural
networks and provides insight into the challenges and possibilities that come
with doing so. By expanding the methods employed here, it may be possible to
further shed light into the black box of neural networks in the future.
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