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Abstract

The geometric random intersection graph is a network model that

connects vertices based on their geometric proximity to auxiliary ver-

tices, which act as facilitators in the connection process. Building

upon the recent work on the geometric random intersection graph, we

define a generalised version of the model that includes multiple vertex

types with differing connection functions. This added flexibility al-

lows for the modelling of mixed populations with varying connection

behaviours as well as differing types of facilitating vertices. We ex-

plore how this expanded definition affects the baseline properties of the

model, including the general edge probability and expected degree, as

well as the existence of non-trivial percolation transition parameters.
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1 Introduction

Networks are fundamental structures observable across a wide range of scientific
disciplines. By constructing network models, we create crucial tools in under-
standing the interactions between entities in complex systems. While graph
theory has existed for many centuries, the development of the theory behind
random graphs only started in the mid twentieth century. Since then, the field
has expanded with the formulation of a variety of modelling approaches. Still,
given the complexity, diversity and scale of real-world networks, there remain
many unexplored avenues within the field.

The geometric random intersection graph is a newly defined class of random
graph model that integrates geometric proximity and group clustering structures
into the connection process. The combination of these two features attempts
to capture a portion of the intricate connection patterns inherent in empirical
networks.

The specific geometric space that has been studied is the d-dimensional
Euclidean space. The most obvious application of this geometry in network
theory is geographic location. It is common for connection processes to be
driven by location as nodes in a network are more likely to interact when they are
closer together. While it seems quite natural to consider networks embedded on
a geometric space, it adds an extra layer of complication as we must determine
how to generate points on our chosen space as well as how to connect them
according to proximity. Although we could consider fixing the location of points,
a more flexible approach would be to generate points according to a random
point process. In our model, we will only be concerned with the Poisson point
process, but that does not rule out the possibility of using other point processes
in other work.

In addition to accounting for geometric aspects of a network, we also use
the intersection connection technique. This is used to improve the clustering
structures within a model. Clustering in a network refers to the presence of
subsets of nodes that have many connections to one other. There are many ways
of connecting nodes that result in a highly clustered network. The intersection
model recreates the scenario where nodes in a network connect through some
auxiliary facilitator. To understand why we might want to do this, consider
how social networks grow and evolve. Often, people tend to form connections
through mutual membership to some kind of group or organisation, whether
it be school, work, social clubs or some other structure. Therefore, to create
representative models, we may want to incorporate an approximation of this
procedure into our constructions.

The aim of this project is to build upon the theory of geometric random
intersection graphs by exploring a generalisation of this model that includes
the possibility of splitting the total population of the network, as well as these
auxiliary facilitators, into subsets, each with different connection patterns. This
introduces an element of inhomogeneity which allows for the modelling of mixed
populations or mixed auxiliary structures, all while maintaining the core frame-
work of the model.
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In this paper, we define a model that has an arbitrary number of what we
call primary vertex sets, which contain all of the nodes that will be present in
the desired network, as well as an arbitrary number of auxiliary vertex sets,
which contain vertices that will not be present in the desired network but will
facilitate the connections between primary vertices. This is done by connecting
primary and auxiliary vertices to one another using unique connection functions
based on the vertex set memberships of both vertices before connecting two
primary vertices if they both connect to the same auxiliary vertex on at least
one occasion.

We study the process behind two primary vertices connecting to the same
auxiliary vertex given that we know which vertex sets they belong to. This
leads us to the conclusion that the number of auxiliary vertices shared by two
primary vertices follows a Poisson distribution, the intensity of which is given
by the sum of the intensities of the independent sub-models containing only one
auxiliary vertex set, which were already known to be Poisson. The consequence
of this is that two vertices in our model connect with a probability equal to
the probability that this Poisson random variable is not zero. From this, we
are able to characterise the expected degree, which we find to be the sum of
the expected degrees of the sub-models including just one of the primary vertex
sets.

The second part of our results relates to the percolation properties of the
model, where we begin to investigate the component structure of the model.
Since we are generating vertices throughout Rd, we end up with a model that
has an infinite number of vertices. This leads us to the question of how chang-
ing the parameter values of the model affects the probability that the largest
connected component in the graph contains an infinite number of vertices, with
the ultimate aim of identifying a transition boundary between parameter values
that do not lead to an infinite component and those that do. This is done by fix-
ing all parameters apart from one and finding the value at which the probability
of an infinite component transitions to being strictly positive.

Results are initially given for models containing an arbitrary number of
primary vertex sets along with just one auxiliary vertex set. These results show
that the existence of a non-trivial phase transition, that is one that occurs in the
open interval (0,∞), is guaranteed when there is at least one connection function
that has unbounded support. Furthermore, for the case where all functions have
bounded support, we find a sufficient condition on the fixed model parameters
that gives an infinite critical value for the phase transition of the model. Finally,
we show that when we swap the roles of primary and auxiliary vertex sets, the
percolation properties of the model, now containing an arbitrary number of
auxiliary vertex sets, are the same.

Before arriving at these results, we will explain all of the relevant background
theory, starting with the fundamentals of random graph theory and progressing
one-by-one through the various elements that will be needed to construct our
model. We motivate the usefulness of each of these elements and illustrate how
each layer of complexity affects the properties of the model. This leads into
the definition and properties of the geometric random intersection graph with
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generalised connection probabilities before we introduce our multi-type exten-
sion to the model. To reach a fully generalised model with arbitrary numbers of
vertex types, the properties of the model are first developed for the addition of
a single extra vertex set, first as primary vertices and then as auxiliary vertices.
When looking at two types of each, the pattern becomes clear enough to expand
the properties to the fully generalised model.

Having defined the multi-type geometric random intersection graph and in-
vestigated its core properties, we proceed to the topic of percolation. The work
that has already been done on the geometric random intersection graph is intro-
duced and explained before we present the results from our network model with
multiple vertex sets. As was the case when exploring the fundamental proper-
ties of the model, we will build up to the final results by first understanding the
effects of adding just one extra vertex set and then expanding to an arbitrary
number.
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2 Background

The models that we seek to construct and explore in this project are random
networks. Random networks, or random graphs, build upon the mathematics
of graph theory by considering such objects to be random. A graph is a funda-
mental construction in mathematics consisting of a set of vertices and a set of
edges describing the connections between vertices. There are different ways of
introducing randomness into a network model, the simplest of which is to con-
sider a fixed number of vertices and assign some probability to the connection of
each pair of vertices. Naturally, the probability that two vertices are connected
becomes a central property of this construction.

2.1 Erdős-Rényi Graph

There are many ways that these probabilities can be defined, but perhaps the
most natural starting point might be to connect each pair of vertices indepen-
dently with some fixed probability, p, as introduced by Erdős and Rényi in 1960
[3]. From this construction, we can see that the event that two vertices connect
is a Bernoulli random variable with probability p.

Another central property of networks is the degree of each vertex, that is
the number of connections that each specific vertex has with other vertices in
the graph. Given that each connection is random, this means that the degree of
a vertex in a random graph is itself a random variable. If we have N vertices,
the degree of an arbitrary vertex v can be expressed as

D =

N−1∑
i=1

1{v↔vi},

where {v ↔ vi} denotes the event that the vertices v and vi are connected.
Notice here that because each pair of vertices connects independently with the
same probability, p, the degree distribution of the Erdős-Rényi graph is just the
sum of independent Bernoulli trials, which is a binomial distribution with N−1
trials and success probability p. Furthermore, this independence gives that the
degree distribution is the same for every vertex in the graph.

However, for more complex networks, this distribution can be hard to char-
acterise. In such cases, we can still investigate properties of the degree distribu-
tion in its stead. For example, we might consider the expected degree to help
us understand the behaviour of an average vertex. If we observe that

E[D] = E

[
N−1∑
i=1

1{v↔vi}

]
=

N−1∑
i=1

E
[
1{v↔vi}

]
=

N−1∑
i=1

P(v ↔ vi),

then we can see that the expected degree is a quantity that relies exclusively on
the connection probabilities between vertices, and thus is much more convenient
to calculate. In the simple example we have looked at up to this point, we defined
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the model such that these connection probabilities were a fixed constant p for
all pairs of vertices. That is to say that

P(v ↔ vi) = p

for every pair of vertices. Therefore, the expected degree of the Erdős-Rényi
graph is

E[D] = (N − 1)p,

the expectation of the aforementioned binomial distribution.
Due to the fact that the expected degree is dependent on the number of

vertices in the graph, it is typical to define the connection probability as p = c
N

for some parameter c. This means that the expected degree is approximately c
and is independent of the number of vertices. This is useful because it prevents
the degree from diverging with the number of nodes in the network. In general,
we want to construct graphs whose degree is finite, even when the number of
vertices grows to infinity. This is because graphs where the expected degree
diverges are not as interesting to study given how connected they are as well as
being not very realistic when compared to most large scale empirical networks.

The Erdős-Rényi graph is one of the most basic models in random graph
theory, making it simultaneously easy to analyse but too simple to effectively
reflect the properties and behaviours of empirical networks.

2.2 Random Intersection Graph

When we construct new models, it is usually helpful to think about how the pro-
cess or structures we are trying to model occur in the first place. For example,
how realistic is it that individuals in a network have a uniform chance of con-
necting with any other individual in the network? When we observe networks
empirically, one feature which is commonly found is the presence of ‘clustering’
or ‘communities’. That is to say that there are often smaller subsets of vertices
within a graph that have high connectivity. One reason for this feature might
be that connections between individuals are often facilitated in an intermediate
step by way of membership to some kind of group. This form of connection pro-
cess is quite prevalent in social networks where people tend to connect through
larger structures like schools, workplaces, social clubs, etc.

Introduced in 1995 [8], random intersection graphs are designed to mimic
this connection process. For this model, we introduce a set of auxiliary vertices
for the connection phase that will not ultimately be present in the final graph.
The primary vertices, which are those that we are interested in studying, will
be connected in two stages. The idea here is that we first connect vertices
from the primary vertex set to vertices from the auxiliary vertex set randomly.
The result of this is a bipartite graph between the set of primary and auxiliary
vertices. A bipartite graph is a type of graph whose vertices can be divided
into two disjoint sets such that no two vertices within the same set connect to
one another. In the procedure that we described, we do not connect primary
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vertices to each other, nor do we connect auxiliary vertices to each other. We
only connect across the primary and auxiliary vertex set in the first stage and
not within them, hence this graph is bipartite.

In the second step, we construct the final graph between vertices in the
primary vertex set only. Each pair of primary vertices is connected in this final
graph if there is at least one auxiliary vertex in the bipartite graph from the
first step that connects to both primary vertices. In other words, two primary
vertices are connected if there exists a path of length 2 between them in the
bipartite graph, through some intermediate auxiliary vertex. The result of this is
a graph over just the primary vertex set that includes local clustering structures
in the form of fully connected subgraphs corresponding to each auxiliary vertex.

The randomness here comes exclusively from the first step, where primary
and auxiliary vertices connect to one another with some probability. In its most
basic form, we can connect each primary vertex to each auxiliary vertex inde-
pendently with a fixed probability, p. The graph that arises from this first step
alone can be thought of as a bipartite version of the simple Erdős-Rényi graph
that was given as an example earlier. Therefore, the number of auxiliary ver-
tices that a primary vertex connects to follows a binomial distribution with the
number of auxiliary vertices as the number of trials and p as the success prob-
ability. Furthermore, the probability that two arbitrary primary vertices both
connect to an arbitrary auxiliary vertex is p2 as each primary vertex connects
to an auxiliary vertex independently. Thus, we can also see that the number of
auxiliary vertices that two arbitrary primary vertices both connect to is bino-
mial with the number of auxiliary vertices as the number of trials and p2 as the
success probability.

Then, in the final graph constructed in the second step, the probability that
any pair of primary vertices are connected is the same as the probability that
there is at least one auxiliary vertex that both of them connect to in the first
step. Since the number of auxiliary vertices that two arbitrary primary vertices
both connect to is binomial, if we have M auxiliary vertices then the probability
that two primary vertices connect in the second step is the probability that a
binomial distribution with M trials and p2 success probability is non-zero. This
probability is thus

P(v ↔ vi) = 1− (1− p2)M .

As we have seen, the expected degree of a primary vertex in the final graph
follows directly from these connection probabilities. Therefore, the expected
degree for the basic random intersection graph is

E[D] = (N − 1)
(
1− (1− p2)M

)
.

As with the Erdős-Rényi graph, this expression for the expected degree de-
pends on the number of vertices in the graph. To remove these dependencies,
we could consider setting M = aN and p = b

N , introducing two new constants,
a and b. We can understand the asymptotic behaviour of the properties of the
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model by approximating the connection probability using a Taylor expansion
for a suitably small value of p, which gives

1− (1− p2)M = Mp2 +O(M2p4) =
ab2

N
+O

(
1

N2

)
.

Therefore, the probability is of order c
N , where we have a constant c = ab2.

Inserting this approximation for the connection probability into the expression
for the expected degree gives

E[D] = (N − 1)

(
ab2

N
+O

(
1

N2

))
=

ab2(N − 1)

N
+O

(
1

N

)
,

which we can see will tend to the constant c = ab2 as n → ∞. This shows
that it is also possible to control the expected degree of the random intersection
graph so that the model scales well with the number of vertices in the graph.

Overall, the important thing to note here is that when we add an intersection
step to a network model, the connection probabilities can be found by taking
the complement of the probability that two primary vertices have no mutual
connections among the auxiliary vertices in the bipartite graph.

2.3 Random Connection Model

Another aspect of empirical networks that we may be interested in is the effect
of the geometric properties of vertices. It is often the case that nodes in a
network have some kind of location. It is perhaps most intuitive to think about
this in terms of geographic location in two dimensions. For example, people
tend to be more likely to form connections with those who live nearby.

The random connection model is used for constructing a graph on a set of
points lying in Rd. In this model, vertices are taken to be the set of points
from a stationary point process. These vertices are connected by some connec-
tion function, g, which is a mapping from some distance defined on Rd to a
probability [5].

The simplest and most commonly used point process is the Poisson point
process. This process generates points uniformly and independently over a
space, with the number of points in any given subset of space adhering to a
Poisson distribution.

More formally, let N be a point process on Rd and let B(Rd) denote the
Borel σ-algebra on Rd. Then, N is a Poisson process with intensity λ if

1. For any Borel set B ∈ B(Rd), the number of points in B, N(B), follows
a Poisson distribution with parameter λ · vol(B), where vol(B) is the d-
dimensional volume of B.

2. If B1, . . . , Bn are disjoint Borel sets in B(Rd), then N (B1) , . . . , N (Bn)
are independent random variables. [7]
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Then, to define a random connection model on a point process in Rd, we
require a connection function g : Rd → [0, 1], which is non-increasing. Therefore,
in this model, the connection probabilities are defined as

P(v ↔ vi) = g(v − vi).

By defining the connection function in terms of the difference between the po-
sitions of the vertices, it is useful to assume that g is a radial function. A radial
function is a function whose value depends only on the distance of the argument
from the origin. Consequently g(v − u) = g(u− v) under this assumption.

Notice that the number of points generated by a Poisson process in Rd

is infinite and connection probabilities are no longer uniform across all pairs of
vertices. This prevents us from calculating the expected degree as we did before.
Instead, we will need to further explore the subject of Poisson point processes.
Let V denote the set of points generated by a Poisson process with intensity λ.
Furthermore, let us define Vv ⊂ V to be the subset of points that connect to
some vertex v. By definition, the number of elements in Vv is the degree of v.

First, notice that we can arrive at Vv from V by including each vi ∈ V
with probability P(v ↔ vi). This is known as thinning a Poisson process and
it is known that the result of this procedure is also a Poisson process where
the new intensity is the product of the intensity of the original process and the
probability of including a point in the thinned process [7]. Therefore, we can say
that Vv is a Poisson process with intensity λP(v ↔ x), where we can substitute
in the connection probability that we have already found to get λg(v − x).

We have here an added complication in that the intensity of this thinned
Poisson process is a function of x rather than a constant as we defined earlier.
When a Poisson process has an intensity that is not constant, it is called inho-
mogeneous, or non-homogeneous. When we define an inhomogeneous Poisson
process with intensity function λ(x), we say that for any Borel set, B ∈ B(Rd),
the number of points in B, denoted by N(B), follows a Poisson distribution
with parameter

∫
B
λ(x)dx [6]. From this, we can see that the expected num-

ber of points in an inhomogeneous Poisson process with intensity λ(x) is the
expectation of a Poisson random variable with intensity

∫
Rd λ(x)dx.

Now we can return to Vv, the set of points that connect to v. We stated
previously that the number of points in this set is the degree of our vertex v. But
since this is the point set of an inhomogeneous Poisson process with intensity
λg(v − x), the number of points in this set follows a Poisson distribution with
intensity λ

∫
Rd g(v − x)dx. Thus, the expected degree of a random connection

model on a homogeneous Poisson process for some vertex v is

E[Dv] = λ

∫
Rd

g(v − x)dx,

since the expectation of a Poisson random variable is its intensity parameter.
As we have seen with the previous models, we want to control the expected

degree to ensure that it remains finite, even when the number of vertices is not.
An easy way to enforce this in a random connection model is to require that
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∫
Rd g(x)dx < ∞. It is clear to see from the expression for the expected degree
that this condition will achieve this.

A simple example of a random connection model is the Poisson Boolean
model. In the Poisson Boolean, we generate points in Rd using a Poisson process
and then connect points if and only if they are within some distance r of each
other [4]. This means that a point connects to every other point within the
ball of radius r centered at its location. The connection function is therefore
g(x) = 1{x<r}. In addition to being an illustrative example of how we can
think about connection functions in the random connection model, the Poisson
Boolean model will be useful as a reference model when we come to the topic
of percolation later on.

Relating to the content of the current section, we have introduced the idea of
generating vertices through a Poisson process as well the challenges this presents
when finding an expression for the expected degree. This challenge can be
overcome through the technique of thinning the Poisson process according to
the connection probability.

2.4 Geometric Random Intersection Graph

By combining the random connection model with the random intersection graph,
we can construct a hybrid model that incorporates both geometric and clustering
structures. The random connection model is itself capable of producing some
level of clustering based on the distances between points in the point process,
but this can be improved upon by integrating an intersection step to create
more natural clusters.

Here we consider a vertex set V to be the set of points from a Poisson
point process on Rd with intensity λ. To make this an intersection graph, we
also require an auxiliary vertex set U , which we generate using another Poisson
point process independent of V, this time with intensity µ.

Just as with the random connection model, we connect vertices using some
non-increasing, radial connection function g : Rd → [0, 1]. For every combina-
tion of v ∈ V and u ∈ U we connect them with probability g(v − u). One final
constraint we will place on the connection function is that

∫
Rd g(x)dx < ∞,

which will help control the expected degree. In the same way as the non-
geometric random intersection graph, the result of the connection procedure is
a bipartite graph between primary and auxiliary vertex sets.

The second step is to connect primary vertices with each other. We do
this with the same rule as the non-geometric random intersection graph, which
is that two vertices v1, v2 ∈ V are connected if there exists some u ∈ U that
connects directly to both of them. With this, we arrive at our final graph with
vertex set V.

In [2], the connection probability and expected degree of the model are given.
When characterising these properties, the authors place a primary vertex at the
origin and base their results around this vertex. Adding this point to the Poisson
process generating the primary vertices creates what is known as a Palm version
of the process. Formally, the Palm version is conditioned to have a point at the
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origin and, for a Poisson process, can be shown to be equal in distribution to
the original process with this added point at the origin [1]. Including a point at
the origin allows us to view the properties of the graph from the perspective of
a vertex, which is helpful because the characteristics of the model do not rely
on the position of the vertex, only the distance between vertices. Therefore,
this choice simplifies the notation slightly without changing the results. We will
follow the same convention when generalising these properties later on.

Let 0 denote the vertex at the origin. To determine the probability that
this vertex connects to some other vertex v ∈ V, we need to find the probability
they both connect to the same auxiliary vertex at least once. For some auxiliary
vertex u ∈ U , the probability that 0 connects to u is g(u) while the probability
that v and u are connected is g(v− u). Given that they connect independently,
the probability that both 0 and v are connected to u is g(u)g(v − u).

If we can determine the number of auxiliary vertices that both 0 and v are
connected to, we can simply compute the probability that this number is not
zero to get the connection probability. Define U0,v ⊆ U to be the subset of
auxiliary vertices that both 0 and v connect to and recall that we can construct
U0,v from U by thinning the Poisson process corresponding to U according to
the probability that 0 and v both connect to some point at x. This means that
U0,v is the point set of a Poisson process with intensity µg(x)g(v−x). It follows
then that the number of auxiliary vertices that both 0 and v connect to adheres
to a Poisson distribution with intensity µ

∫
Rd g(x)g(v − x)dx.

The final step is to find the probability that the number of auxiliary vertices
shared by 0 and v is non-zero. Since this number has a Poisson distribution,
the general connection probability is thus,

P(0 ↔ v) = 1− e−µ
∫
Rd g(x)g(v−x)dx.

The process of finding the expected degree of the zero-vertex, 0, is similar
to what we saw in the random connection model, which is where we originally
introduced the concept of thinning a Poisson process. Recall that the set of
primary vertices that 0 connects to is the point set of an inhomogeneous Poisson
process with intensity λP(0 ↔ x) and therefore the number of vertices that
0 connects to follows a Poisson distribution with intensity λ

∫
Rd P(0 ↔ x)dx.

Using that the expectation of a Poisson variable is its intensity and substituting
in the expression for the connection probability, we get that the expected degree
of the geometric random intersection graph is

E[D] = λ

∫
Rd

(
1− e−µ

∫
Rd g(x)g(v−x)dx

)
dv.
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3 The Multi-Type Model

One limitation of the geometric random intersection graph might be in modelling
networks of mixed populations where different members of the network exhibit
different connection characteristics. In the following section we will generalise
the geometric random intersection graph to consider the case where the vertex
sets are generated from independent combined Poisson processes, starting with
the addition of one extra vertex set and leading up to an arbitrary number of
vertex sets.

3.1 Two Primary Vertex Sets

We will begin by replacing the primary vertex set of the geometric random
intersection graph with two primary vertex sets, V1 and V2, generated from
independent Poisson processes with intensities λ1 and λ2 respectively. Here we
maintain the single auxiliary vertex set U . This means that our primary vertices
are now split across two sets generated by different Poisson processes.

Notice that, at this point, we have not made any consequential changes to
the model. This is because if we consider the combined primary vertex set
V = V1 ∪ V2, this is still the point set of a Poisson process, now with intensity
λ1+λ2. This property of combined Poisson processes will be useful later on when
we begin deriving our results, but for now it still remains to construct a model
where different types of vertices exhibit different connection patterns. This is
done by defining two connection functions, g1 and g2, each being non-increasing
radial functions from Rd to a probability as before.

As one might expect, we will connect primary vertices in V1 to auxiliary
vertices in U using the function g1 and primary vertices in V2 to auxiliary
vertices in U using the function g2. This will mean that primary vertices will
connect to auxiliary vertices differently depending on which primary vertex set
they belong to.

The second step in constructing the geometric random intersection graph
remains unchanged. We no longer need to distinguish which vertex set each
primary vertex belongs to and we can simply connect two vertices from the
combined primary vertex set V = V1 ∪ V2 if they both connect to the same
auxiliary vertex at least once.

With this extension to the geometric random intersection graph now defined,
we can turn to extending the properties of the model relating to an arbitrary
vertex. As in [2], we will consider a point located at the origin, denoted by
0. In this new model, having two sets of primary vertices adds an extra layer
of complication to determining these properties as this will affect the functions
used to connected them to auxiliary vertices. To make things simpler, we will
assume that we know which point set each primary vertex belongs to.

First, note that V1 and V2 are independent and that vertices in V1 are
connected to auxiliary vertices in U independently of vertices in V2. Therefore,
it follows directly from the basic geometric random intersection graph that the
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auxiliary vertices shared by 0 and v form an inhomogeneous Poisson process on
Rd with intensity

µgk(x)gl(v − x)

if 0 ∈ Vk and v ∈ Vl, with k, l ∈ {1, 2}. This expression is similar to the
single primary vertex set case except we now have up to two different functions
contributing to this intensity depending on which primary vertex sets 0 and v
belong to.

Once the auxiliary vertices shared by 0 and v have been determined, the
probability that they are connected in the final graph can be found in the same
way as before because the second step of the graph’s construction is unchanged
in this new model. Therefore, we have that

P(0 ↔ v|0 ∈ Vk, v ∈ Vl) = 1− e−µ
∫
Rd gk(x)gl(v−x)dx

with, once again, k, l ∈ {1, 2}.
Finally, we can find the expected degree. We will still assume that we know

the primary vertex set which the zero vertex belongs to. Notice that a connection
between two primary vertices is still independent of all other primary vertices
in this model. Therefore, if we focus on the subgraph that contains only the
primary vertices from V1, this is exactly the geometric random intersection
graph with a single primary vertex set and connection function g1. The vertices
from V2 have no effect on how vertices from V1 connect to each other, nor does
the function g2. This property is of course mirrored for vertices from V2.

As it relates to the expected degree, let D1 be the number of vertices in V1

that connect to the zero vertex and let D2 be the equivalent quantity for vertices
in V2. The zero vertex and all primary vertices in V1 form a geometric random
intersection graph. Thus, by using the expression for the expected degree of
a geometric random intersection graph with a single primary vertex set, the
expectation of D1 is

E[D1|0 ∈ Vk] = λ1

∫
Rd

(
1− e−µ

∫
Rd gk(x)g1(v−x)dx

)
dv

Likewise, expectation of D2 is

E[D2|0 ∈ Vk] = λ2

∫
Rd

(
1− e−µ

∫
Rd gk(x)g2(v−x)dx

)
dv

Finally, notice that the degree of the zero vertex over all primary vertices is
D = D1 +D2. The linearity of expectation gives us that

E[D|0 ∈ Vk] =λ1

∫
Rd

(
1− e−µ

∫
Rd gk(x)g1(v−x)dx

)
dv

+λ2

∫
Rd

(
1− e−µ

∫
Rd gk(x)g2(v−x)dx

)
dv.

12



Thus, we have shown that splitting our primary vertex set into two disjoint
subsets generated by independent Poisson processes and connected to auxiliary
vertices using different connection functions does not add much complexity to
the basic properties of the model.

3.2 Two Auxiliary Vertex Sets

We can now look at the ‘opposite’ case where we return to having a single
primary vertex set, V, and instead introduce two auxiliary vertex sets, U1 and
U2, generated from independent Poisson processes with intensities µ1 and µ2

respectively. Since these are independent Poisson processes, we can consider
the point set of combined process, U = U1 ∪ U2, with intensity µ1 + µ2.

We still have two connection functions, g1 and g2, with primary vertices
connecting to auxiliary vertices from U1 using the function g1 and auxiliary
vertices from U2 using the function g2. Then, in step 2, primary vertices in V
connect to each other if they both connect to the same auxiliary vertex from
U = U1∪U2 at least once, regardless of which of the two vertex sets the auxiliary
vertex comes from.

Let N0,v be the number of auxiliary vertices shared by the zero vertex and
some other vertex v. Furthermore, let N0,v

1 be the number of auxiliary vertices
from U1 shared by 0 and v and let N0,v

2 be the number of auxiliary vertices
from U2 shared by 0 and v, so that N0,v = N0,v

1 + N0,v
2 . Since U1 and U2 are

generated independently, N0,v
1 and N0,v

2 are independent random variables.
We have seen that when we have one primary vertex set and one auxiliary

vertex set, the auxiliary vertices that 0 and v share constitute an inhomogeneous
Poisson process with intensity µg(x)g(v−x) and this means that the number of
auxiliary vertices shared by 0 and v follows a Poisson distribution with intensity

µ

∫
Rd

g(x)g(v − x)dx.

Therefore, N0,v
1 , the number of auxiliary vertices from U1 shared by 0 and v,

follows a Poisson distribution with intensity

µ1

∫
Rd

g1(x)g1(v − x)dx

and likewise N0,v
2 also has a Poisson distribution with intensity

µ2

∫
Rd

g2(x)g2(v − x)dx.

And given that N0,v = N0,v
1 +N0,v

2 , the total number of auxiliary vertices shared
by 0 and v also follows a Poisson distribution with intensity

µ1

∫
Rd

g1(x)g1(v − x)dx+ µ2

∫
Rd

g2(x)g2(v − x)dx,

since the sum of Poisson random variables is also Poisson.
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Now that we know that the number of auxiliary vertices shared by 0 and v
still follows a Poisson distribution, we can deduce that the probability that 0
and v connect is

P(0 ↔ v) = 1− e−µ1

∫
Rd g1(x)g1(v−x)dx−µ2

∫
Rd g2(x)g2(v−x)dx.

With a single primary vertex set, it has already been shown that the expected
degree follows from the individual connection probabilities, and so we get

E[D] = λ

∫
Rd

(
1− e−µ1

∫
Rd g1(x)g1(v−x)dx−µ2

∫
Rd g2(x)g2(v−x)dx

)
dv.

Our final generalisation of this model will be to have an arbitrary number
of primary and auxiliary vertex sets. In order to develop this model, we should
first try to understand how the model behaves when we have just two primary
vertex sets and two auxiliary vertex sets. The properties of this model can then
inform our conclusions about the most general case.

3.3 Combining Two Primary and Auxiliary Vertex Sets

Let V1 and V2 be our primary vertex sets generated with intensities λ1 and λ2

respectively and let U1 and U2 be our auxiliary vertex sets with intensities µ1 and
µ2. To be able to connect vertices from both primary vertex sets with vertices
from both auxiliary vertex sets, we will need to introduce further connection
functions, giving us four in total. Define g11 for V1 and U1, g12 for V1 and U2,
g21 for V2 and U1 and g22 for V2 and U2.

With these definitions we can proceed to constructing the model as before,
where primary and auxiliary vertices connect according to the connection func-
tion corresponding to their respective vertex set memberships and then primary
vertices are connected if they share at least one auxiliary vertex.

To find the connection probabilities between primary vertices, we will once
again investigate the distribution of the number of auxiliary vertices shared by
those two primary vertices. Given that we have returned to a situation with
multiple primary vertex sets, we will continue with conditioning on the vertex
sets that each primary vertex belongs to. Let N0,v|0 ∈ Vk, v ∈ Vl denote the
number of auxiliary vertices shared by the zero vertex and some other vertex
given that we know which vertex sets they come from, where k and l are either
1 or 2.

Just as in the previous case, we can split this quantity into two parts,
N0,v

1 |0 ∈ Vk, v ∈ Vl and N0,v
2 |0 ∈ Vk, v ∈ Vl, corresponding to the two aux-

iliary vertex sets we have in this model. Through conditioning on the primary
vertex types and splitting the auxiliary vertex types, we can see that these two
variables follow Poisson distributions with intensities

µ1

∫
Rd

gk1(x)gl1(v − x)dx

14



and

µ2

∫
Rd

gk2(x)gl2(v − x)dx

respectively. Thus N0,v|0 ∈ Vk, v ∈ Vl also has a Poisson distribution with the
sum of these intensities as its parameter.

It follows that the conditional connection probability is

P(0 ↔ v|0 ∈ Vk, v ∈ Vl) = 1− e−µ1

∫
Rd gk1(x)gl1(v−x)dx−µ2

∫
Rd gk2(x)gl2(v−x)dx,

and subsequently, the conditional expected degree is

E[D|0 ∈ Vk] =λ1

∫
Rd

(
1− e−µ1

∫
Rd gk1(x)g11(v−x)dx−µ2

∫
Rd gk2(x)g12(v−x)dx

)
dv

+λ2

∫
Rd

(
1− e−µ1

∫
Rd gk1(x)g21(v−x)dx−µ2

∫
Rd gk2(x)g22(v−x)dx

)
dv.

The expressions for our properties are becoming lengthier as we add more
vertex sets to the model, but at this point we can start to see patterns emerging
as to how exactly they change. By conditioning on primary vertex set mem-
bership and splitting the number of auxiliary vertices shared by two primary
vertices, we can always relate these properties back to combinations of the sim-
plest version of the model with one type both primary and auxiliary vertices.

3.4 Generalised n×m Model

This leads us to the final step in characterising multi-type geometric random
intersection graphs with independent combined Poisson processes, which is to
expand to an arbitrary number of primary and auxiliary vertex sets. For this
setup, let V1, . . .Vn be n independent Poisson processes on Rd with intensities
λ1, . . . λn, and let U1, . . .Um be m additional independent Poisson processes on
Rd with intensities µ1, . . . µm. We will then define n×m non-increasing radial
connection functions, gij : Rd → [0, 1], with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, one
for each combination of primary and auxiliary vertex sets, Vi and Uj .

Once again, the graph is constructed in two steps, connecting primary and
auxiliary vertices, and then using the auxiliary vertices to connect primary ver-
tices with each other. First, for every v ∈ Vi and u ∈ Uj , connect v and u with
probability gij(v − u). Repeat this for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
The resulting graph is a bipartite graph between the combined primary vertex
set, V =

⋃n
i=1 Vi, and the combined auxiliary vertex set, U =

⋃m
j=1 Uj .

Then, for every combination v1, v2 ∈ V, v1 ̸= v2, connect v1 and v2 if there
exists some u ∈ U such that u connects to both v1 and v2. This can be done
irrespective of which Poisson processes v1, v2 and u are generated from.

When considering the properties of this model, we still condition on which
of the n vertex sets our vertices belong to. We have seen that the number of
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auxiliary vertices from a single auxiliary vertex set, Uj , that are shared by 0
and v has a Poisson distribution with intensity

µj

∫
Rd

gkj(x)glj(v − x)dx.

Using the properties of Poisson distributions, we can take the sum over all aux-
iliary vertex sets to find distribution of the total number of auxiliary vertex sets.

Result: Number of Mutual Auxiliary Vertices

The total number of auxiliary vertices connected to both 0 and v has a Poisson
distribution with intensity parameter

m∑
j=1

µj

∫
Rd

gkj(x)glj(v − x)dx.

It follows that the conditional connection probability is the probability that the
aforementioned Poisson random variable is not zero.

Result: Connection Probability

P(0 ↔ v|0 ∈ Vk, v ∈ Vl) = 1− e−
∑m

j=1 µj

∫
Rd gkj(x)glj(v−x)dx

To find the conditional expected degree, we use the idea that the degree of
a vertex over the total primary vertex set V can be split into the sum of the
degrees of that vertex with each of the n primary vertex sets. This means that
we can express the conditional expected degree as

E[D|0 ∈ Vk] =

n∑
i=1

E[Di|0 ∈ Vk].

where Di represents the degree of the zero vertex when considering only vertices
from Vi. Thus, we get the following conditional expected degree.

Result: Expected Degree

E[D|0 ∈ Vk] =

n∑
i=1

λi

∫
Rd

(1− e−
∑m

j=1 µj

∫
Rd gkj(x)gij(v−x)dx)dv

3.5 Removing the Vertex Set Membership Condition

All of the vertex properties we have studied in this section have relied upon
knowing which vertex set these vertices belong to. This is a fairly reasonable
to assume that we might have this information when studying a network. If
we do have this information, then we are most likely to be interested in the
properties pertaining to vertices from a specific vertex set. Nonetheless, we
could still consider the unconditional properties of the model, where the vertex
set memberships are not known.
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We can start by looking at the unconditional probability P(0 ↔ v). Since
the set of intersecting events {0 ∈ Vk} ∩ {v ∈ Vl} for all k, l = 1, . . . , n are
mutually exclusive, we can say that

P(0 ↔ v) =

n∑
k=1

n∑
l=1

P(0 ↔ v|0 ∈ Vk, v ∈ Vl)P(0 ∈ Vk, v ∈ Vl).

We have already found P(0 ↔ v|0 ∈ Vk, v ∈ Vl), so we just require an expression
for P(0 ∈ Vk, v ∈ Vl), the joint membership probability.

If we first look at a single membership probability P(v ∈ Vl), recall that by
the definition of a Poisson process with intensity λl, we expect an average of λl

points to occur in a unit volume of Rd. This is true for all n Poisson processes,
and thus we expect a total of

∑n
i=1 λi points over this unit area. Therefore,

the probability of selecting a random point from a unit area is just the ratio
of these quantities. Finally, since the numbers of points in disjoint regions are
independent in a Poisson process, this probability holds for any and all areas.
This allows us to conclude that the membership probability for a single primary
vertex is

P(v ∈ Vl) =
λl∑n

h=1 λh
.

These membership probabilities are independent, which allows us to take their
product to get the joint membership probability for two vertices

P(0 ∈ Vk, v ∈ Vl) =
λkλl

(
∑n

h=1 λh)
2 .

This expression for the joint membership probability can be used directly in the
previous expression for the unconditional probability, giving that

P(0 ↔ v) =

n∑
k=1

n∑
l=1

λkλl

(
∑n

h=1 λh)
2

(
1− e−

∑m
j=1 µj

∫
Rd gkj(x)glj(v−x)dx

)
.

From the results for the conditional expected degree, notice that if we have
a connection probability in the multi-type model, we can express the expected
degree as

E[D] =

n∑
i=1

λi

∫
Rd

P(0 ↔ v)dv.

Using this, we arrive at the follow expression for the unconditional expected
degree of the multi-type geometric random intersection graph
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E[D] =

n∑
i=1

λi

∫
Rd

n∑
k=1

n∑
l=1

λkλl

(
∑n

h=1 λh)
2

(
1− e−

∑m
j=1 µj

∫
Rd gkj(x)glj(v−x)dx

)
dv

=

n∑
i=1

n∑
k=1

n∑
l=1

λiλkλl

(
∑n

h=1 λh)
2

∫
Rd

(
1− e−

∑m
j=1 µj

∫
Rd gkj(x)glj(v−x)dx

)
dv.

18



4 Percolation

Throughout the natural sciences, the study of percolation concerns behaviour
relating to movement through some kind of structure. In graph theory, this
manifests in the form of traversing the nodes of a graph using the edges that
connect them. Traversing a graph in this way is one approach to understanding
its component structure and connectivity. For example, if there exists a path
(sequence of edges) that visits every vertex in the graph, then we can conclude
that the graph has a single connected component.

Often, when we want to investigate the component structure of a random
graph model, we consider the asymptotic component structure as the number
of vertices grows to infinity. In this setting, a graph is said to percolate if the
number of vertices in the largest component grows linearly with the number of
vertices in the whole graph. In the model that we have studied, the number of
vertices is infinite. Therefore, this model can be said to percolate if the largest
component contains an infinite number of vertices.

When studying the general percolation properties of a model, we often want
to characterise how changing the parameters within the model affects the per-
colation. Which model parameters cause the graph to percolate and which do
not? This often gives rise to a phase transition boundary between a region in the
parameter space where percolation can occur and the remaining region where it
cannot. This transition boundary is often sufficient to describe the percolation
characteristics of the model.

4.1 Geometric Random Intersection Graph

In this section we return to presenting the results from [2], before using them
to investigate the percolation of the model defined in this paper. The approach
that is used to study the percolation of the model is to choose a parameter to
vary while all others are fixed. The geometric random intersection graph has
three input parameters, the intensities of the Poisson processes generating the
primary and auxiliary vertices, λ and µ, as well as the connection function,
g. Of these three parameters, it is by far the most challenging to study how
varying the connection function affects the percolation of the model. Therefore,
the percolation properties are considered for some fixed function and only the
Poisson intensities are varied.

Before we begin, we will introduce the following notation for the integral of
g,

∥g∥ :=

∫
Rd

g(x)dx,

since this integral is just the L1-norm of g. Recall that we introduced the
condition that ∥g∥ < ∞ when defining this model earlier in order to prevent
the expected degree from being infinite. This is because the condition ensures
that all primary vertices connect to a finite number of auxiliary vertices, and
vice versa. If a function follows this condition, it is said to be integrable. As it
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relates to this section, the condition also ensures that the percolation analysis is
sensible by ruling out the possibility that one vertex could be solely responsible
for creating an infinite component.

We already mentioned that the most reasonable approach is to fix the con-
nection function g, which leaves a choice between the two Poisson intensity
parameters, λ and µ. We will start by fixing λ and trying to identify the phase
transition of µ. Let C(λ, µ, g) denote the number of vertices in the compo-
nent which the zero vertex belongs to for a model with the given parameters.
We are interested in the probability that the size of this component is infinite,
P (C(λ, µ, g) = ∞). We can then define

µc(λ, g) = sup{µ : P (C(λ, µ, g) = ∞) = 0},

the largest µ such that there is no chance of percolation. The model is known to
be ergodic, which implies that it percolates with probability 0 or 1 [5]. Therefore,
µc(λ, g) defines a critical value describing the point of transition in µ where the
model goes from not percolating to percolating almost surely. The transition is
well defined because P (C(λ, µ, g) = ∞) is increasing in µ.

An exact expression for the value of this transition point in terms of λ and
g would be hard to find, so we will instead focus on the conditions required
for the transition point to be non-trivial. By this, we mean that the transition
does not occur at zero nor infinity, but rather somewhere in-between. If it were
the case that µc(λ, g) = 0, the model with parameters λ and g would always
percolate regardless of the choice of µ whilst if µc(λ, g) = ∞, the model would
never percolate.

It turns out that this depends on whether the function g has bounded or
unbounded support. When g has unbounded support, that means that points
arbitrarily far away can still connect with some probability. The consequence
of this is that µc(λ, g) ∈ (0,∞) for all λ > 0.

However, when g has bounded support, this is not always the case. Here,
primary and auxiliary vertices can only connect if the distance between them is
within the support of g. As a result, sufficiently small values of λ will prevent
percolation despite the size of µ.

We can observe this through the Poisson Boolean model. Recall that the
Poisson Boolean model connects points from a Poisson process directly if and
only if they are within a fixed distance of one another. It has been shown
that, for some fixed radius r, the Poisson Boolean model has a non-trivial phase
transition λ̃c(r) ∈ (0,∞) [5]. That is that the model percolates when the Poisson
process has intensity λ > λ̃c(r) and does not if λ < λ̃c(r).

Now, because g has bounded support, we can define smax = sup{|x| : g(x) >
0} as the furthest distance between primary and auxiliary vertices such that
there is still positive probability that they connect. Beyond this value, we can
be certain that points have no probability of connecting. Therefore, 2smax is the
furthest distance that two primary vertices can be from each other and still be
connected in the geometric random intersection graph. To see this, consider two
primary vertices v1 and v2. If they are connected, then there exists at least one
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auxiliary vertex u that both connect to in the initial bipartite graph. Because g
is bounded, the furthest v1 could be from u is smax, by definition, and likewise
for v2. If both v1 and v2 are within smax of u, then v1 and v2 are within 2smax

of each other.
Note that the random intersection graph with bounded g is a subgraph of

the Poisson Boolean model with radius 2smax as two vertices in the intersection
graph have to be within distance 2smax of each other to have even a chance of
connecting while the Poisson Boolean model with this radius connects all such
points. Thus, if there is not an infinite component in this Poisson Boolean model,
then it is impossible to have an infinite component in the random intersection
graph with bounded g. Since λ̃c(r) ∈ (0,∞), there are some values of λ where
percolation cannot occur in the Poisson Boolean model, specifically when λ <
λ̃c(r). Therefore, when λ < λ̃c(2smax), the model never percolates irrespective
of µ, so µc(λ, g) = ∞.

A further interesting property of this model with regards to percolation is
the symmetry that exists between the parameters λ and µ, meaning that if we
know whether λ = a and µ = b percolates, then the model with λ = b and µ = a
exhibits the same percolation characteristics.

To see this, consider the bipartite graph constructed between primary ver-
tices in V and auxiliary vertices in U . Usually, we construct the random inter-
section graph by connecting vertices from V if they both connect to at least one
mutual vertex from U in the bipartite graph. If, instead, we were to reverse
the roles of V and U and connect vertices from U to each other if they have a
mutual connection with at least one vertex from V and show that this model
also percolates, then we would arrive at this symmetry property.

First, if we have an infinite component in the geometric random intersection
graph of vertices from V, then we also have an infinite component in the bipartite
graph. This is because all of the vertices from V that are connected to each other
in this infinite component are connected by paths of length two in the bipartite
graph through vertices from U . Furthermore, when ∥g∥ < ∞, vertices from V
and U have finite degree in the bipartite graph, which means that an infinite
component in the bipartite graph must contain infinite numbers of vertices from
both V and U . This means that if we were to construct the intersection graph
with vertices from U , there would be an infinite component in this graph as
well.

To define the corresponding percolation transition parameter for the inter-
section graph of vertices from U , we would fix µ and have

λc(µ, g) = sup{λ : P (C(µ, λ, g) = ∞) = 0},

The symmetry of the percolation parameters implies that, for any a, we have
that λc(a, g) = µc(a, g). This gives us an understanding of the transition bound-
ary in terms of both parameters.
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4.2 The Multi-Type Model

In this section, we will attempt to characterise the percolation of the geometric
random intersection graph with multiple vertex sets, which was defined earlier.

4.2.1 Two Primary Vertex Sets

We will begin, as we did when exploring the core properties of the model, with
the simplest case where there are two primary vertex sets, V1 and V2 along with
only one auxiliary vertex set, U and two integrable connection functions, g1 and
g2. In this model, we have three intensity parameters to investigate, λ1, λ2 and
µ. The obvious choice is to fix λ1 and λ2 and observe the percolation properties
when varying µ.

As such, we can define

µc(λ1, λ2, g1, g2) = sup{µ : P (C(λ1, λ2, µ, g1, g2) = ∞) = 0}

in an analogous way to baseline model. We saw that in that case, whether or not
the connection function was bounded had an effect on when µc(λ1, λ2, g1, g2)
was non-trivial. Here, this is potentially complicated by the presence of two
connection functions. Therefore, we have four cases to think about:

1. g1 and g2 have unbounded support,

2. g1 has unbounded support while g2 has bounded support,

3. g1 has bounded support while g2 has unbounded support,

4. g1 and g2 have bounded support.

First, let us consider the case where at least one of the connection func-
tions has unbounded support. Let us assume that it is g1 that has unbounded
support. Consider the subgraph containing only vertices from V1 and the con-
nections between them. Since this is a random intersection graph with only one
primary vertex set, we know that µc(λ1, g1) ∈ (0,∞). In other words, the phase
transition is non-trivial.

Next, note that

µc(λ1, λ2, g1, g2) ≤ µc(λ1, g1).

This is because adding vertices through the second vertex set V2 would only in-
crease the probability of an infinite component and therefore reduce the number
of auxiliary vertices needed to achieve percolation. Since µc(λ1, g1) ∈ (0,∞) and
bounds µc(λ1, λ2, g1, g2) from above, we can conclude that µc(λ1, λ2, g1, g2) < ∞
for all values of λ1 and λ2.

As an aside, an interesting follow-up question which we will not attempt to
answer here is whether the inequality between the transition parameters of the
subgraph and the whole model is a strict inequality or not. In other words,
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are there values of λ2 small enough that the vertices from V2 do not affect the
probability of percolation in the wider model?

Returning to the investigation of the effects of defining one of the connec-
tion functions to have unbounded support, it remains to determine whether
µc(λ1, λ2, g1, g2) is non-zero. Define a geometric random intersection graph with
a single primary vertex set V = V1 ∪ V2 with intensity λ1 + λ2 and connection
function g̃ = max{g1, g2}. Defining g̃ in this way gives a valid connection func-
tion since we still have that ∥g̃∥ < ∞. To see this, note that given ∥g1∥ < ∞
and ∥g2∥ < ∞, which we require by definition, then ∥g1∥+ ∥g2∥ < ∞. We can
quickly see that

∥g1∥+ ∥g2∥ =

∫
Rd

g1(x)dx+

∫
Rd

g2(x)dx

=

∫
Rd

(g1(x) + g2(x)) dx

≥
∫
Rd

max{g1(x), g2(x)}dx,

and so ∥g̃∥ < ∞.
This graph has the same vertex set, but each pair of vertices has a higher

or equal probability of being connected since g̃ ≥ g1 and g̃ ≥ g2 everywhere.
Because this graph is more connected than our model with two vertex types, it
is more likely to have an infinite component. Therefore,

µc(λ1, λ2, g1, g2) ≥ µc(λ1 + λ2, g̃).

Since the model with connection function g̃ is a geometric random intersec-
tion graph with only one primary vertex set, we know that µc(λ1+λ2, g̃) ∈ (0,∞)
and so it follows that µc(λ1, λ2, g1, g2) > 0. Thus we have shown that the graph
with two vertex sets also has a non-trivial phase transition. Note that this rea-
soning required no restrictions on g2 so it could have had bounded or unbounded
support. Therefore it is sufficient for one connection function to be unbounded
to have a non-trivial transition value. This addresses the first 3 out of 4 cases
that we set out to explore.

The final case is when both g1 and g2 have bounded support. With just a sin-
gle primary vertex set, we saw that a connection function with bounded support
combined with a suitably small λ ruled out percolation for all values of µ by com-
paring with the Poisson Boolean model. Now with two functions with bounded
support, we will make a similar argument. Let s1,max = sup{|x| : g1(x) > 0}
and s2,max = sup{|x| : g2(x) > 0}. Then, define smax = max{s1,max, s2,max},
being the furthest distance from either function between primary and auxiliary
vertices such that there is still positive probability that they connect. Then,
this model is contained within the Poisson Boolean model with radius 2smax.
Given that the vertex set V = V1 ∪ V2 has intensity λ1 + λ2, we can say that
µc(λ1, λ2, g1, g2) = ∞ for λ1 + λ2 < λ̃c(2smax).
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Furthermore, there will exist sufficiently large values of λ1 and λ2 such that
µc(λ1, λ2, g1, g2) ∈ (0,∞). In fact, it should only be necessary for one of λ1 or
λ2 to be large. For example, if at least one of λ1 or λ2 in combination with its
connection function gives a non-trivial value of µc(λ, g) in the single vertex set
case, then µc(λ1, λ2, g1, g2) ∈ (0,∞) will also be true.

We have shown that the condition λ1 + λ2 < λ̃c(2smax) is sufficient to make
the conclusion that the model will not percolate for any value of µ. However,
we did not show whether λ1 + λ2 = λ̃c(2smax) is the point at which the critical
value goes from being infinite to being finite. We will not attempt to answer
this but it is still an interesting open problem relating to this particular model.

4.2.2 Multiple Primary Vertex Sets

Before we move on to the next simplest version of the model where there are two
auxiliary vertex sets, let us first note that the properties we have just found for
the two primary vertex set model actually extend for any number of primary
vertex sets, as long as there is only one auxiliary vertex set. We will now
demonstrate this by extending the same arguments that were just presented.

Let n be the number of primary vertex sets. Therefore, there are n pri-
mary intensity parameters, one auxiliary intensity parameter and n connection
functions. Define λ = [λ1, . . . , λn], and g = [g1, . . . , gn] to tidy up some of the
notation. Furthermore, define µc(λ, g) to be the largest value of µ such that
the probability of an infinite component is zero.

Now, assume that one of the connection functions, for example g1, has un-
bounded support. Using the same logic as before, the subgraph containing only
vertices from V1 has a phase transition that is known to be non-trivial and
greater that the phase transition of the model with n vertex sets. This allows
us to conclude that µc(λ, g) < ∞.

We can also say that the phase transition is non-zero since we can define
a model with primary vertex set V =

⋃n
i=1 Vi with intensity

∑n
i=1 λi and con-

nection function max{g1, . . . , gn}. Since this model has a non-trivial phase
transition that is less than the one for the multiple primary vertex set model,
we can say that µc(λ, g) > 0.

When all connection functions have bounded support, the model can be
bounded by a Poisson Boolean model with radius equal to the largest value in
the supports of any of the connection functions g1, . . . , gn. If we define this
value to be smax and define λ̃c(smax) to be the non-trival phase transition of
the Poisson Boolean model, as before, then we can conclude that µc(λ, g) = ∞
when

∑n
i=1 λi < λ̃c(smax). These results are summarised below.

Result: Percolation for n Primary Vertex Sets

• If at least one connection function has unbounded support, then
µc(λ, g) ∈ (0,∞) for all g,λ.

• If all connection functions have bounded support, then µc(λ, g) = ∞
when

∑n
i=1 λi < λ̃c(smax).
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4.2.3 Symmetry for Two Auxiliary Vertex Sets

Now we turn to the model with one primary vertex set, V, and two auxiliary
vertex sets, U1 and U2. The natural parameter to investigate here is λ, so we
will define

λc(µ1, µ2, g1, g2) = sup{λ : P (C(λ, µ1, µ2, g1, g2) = ∞) = 0}

to be the phase transition for some fixed µ1, µ2, g1 and g2. We again want
to determine the conditions on the fixed parameters that induce a non-trivial
transition value. We could break this problem down into the four scenarios of
bounded and unbounded supports that we did with the previous case, but it
is worth looking into whether the percolation in the model with two primary
vertex sets says anything about this model with two auxiliary vertex sets. The
symmetry between parameters in the basic geometric random intersection graph
hints that we may be able to obtain the results we are looking for in a more
efficient way whilst concluding something more generally about the relationship
between the two primary vertex set model and the two auxiliary vertex set
model.

Consider a model consisting of primary vertex sets, V1 and V2, with intensi-
ties λ1 = a1 and λ2 = a2, and an auxiliary vertex set, U , with intensity µ = b.
Our hypothesis is that if we switch the roles of the vertex sets, taking U to be
the primary vertex set and V1 and V2 to be the auxiliary vertex sets, then per-
colation in this two auxiliary vertex set model with the vertex set role reversal is
equivalent to percolation in the initial two primary vertex set model, provided
that the connection functions, g1 and g2, are kept the same.

Our initial assumption is that we know whether the two primary vertex set
model percolates. In the standard random intersection model, we reasoned that
percolation in the resulting intersection graph containing only primary vertices
is equivalent to percolation in the bipartite graph between primary and auxiliary
vertices. This was because vertices that connect in the intersection graph are
connected by a path of length two in the bipartite graph. When we have two
primary vertex sets, this argument remains unchanged.

Next, recall that we construct the bipartite graph by connecting all v1 ∈ V1

and u ∈ U with probability g1(v1 − u) and connecting all v2 ∈ V2 and u ∈ U
with probability g2(v2 − u). Now, if we reverse the roles of vertex sets and
consider U to be the primary vertex set with auxiliary vertex sets V1 and V2,
we would construct the appropriate bipartite graph by connecting all u ∈ U and
v1 ∈ V1 with probability g1(u− v1) and connecting all u ∈ U and v2 ∈ V2 with
probability g2(u− v2). Since g1 and g2 are radial, g1(v1 − u) = g1(u− v1) and
g2(v2 − u) = g2(u− v2). The consequence of this is that the bipartite graph is
the same for both the two primary vertex model and the two auxiliary vertex
model, provided that the parameters are mirrored as we defined them and the
connection functions are the same.
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The final step is to argue that percolation in this bipartite graph gives per-
colation in the mirrored random intersection graph with two auxiliary vertex
sets. This argument follows the same form as the single vertex set model. If
we have that ∥g1∥ < ∞ and ∥g2∥ < ∞, then each vertex has a finite number of
connections in the bipartite graph, meaning that an infinite component in the
bipartite graph must contain an infinite amount of both primary and auxiliary
vertices. Hence, when we construct the intersection graph using the vertices
from U as primary vertices, those vertices that belong to an infinite component
in the bipartite graph will belong to the same component in the intersection
graph, and since there are infinitely many, the intersection graph percolates.
Therefore, percolation in the two primary vertex set model with parameters
λ1 = a1, λ2 = a2, µ = b is equivalent to percolation in the two auxiliary vertex
set model with parameters λ = b, µ1 = a1, λ2 = a2.

This also means that

λc(a1, a2, g1, g2) = µc(a1, a2, g1, g2)

for constants a1 and a2 and thus we can extend the properties that we proved
for µc(λ1, λ2, g1, g2). These being that when one of g1 or g2 has unbounded
support, λc(µ1, µ2, g1, g2) ∈ (0,∞) for all µ1 and µ2 while when both g1 and g2
have bounded support, λc(µ1, µ2, g1, g2) = ∞ for µ1 + µ2 < µ̃c(2smax), where
smax is the furthest distance from either function between primary and auxiliary
vertices such that there is still positive probability that they connect.

4.2.4 Symmetry for Multiple Auxiliary Vertex Sets

This property also extends to the case where we have an arbitrary number of
primary vertex sets, through the same arguments as before. To summarise, if
know whether the model with n primary vertex sets has an infinite component,
then the vertices in this component are all part of the same component in the
bipartite graph, and so the bipartite graph percolates. When we reverse the
roles of the vertex sets to have U as the primary vertex set with n auxiliary
vertex sets, the bipartite graph is the same because the all connection functions
are radial. Finally, if all connection functions are integrable, then each vertex
from U has a finite number of connections in the bipartite graph. Therefore, if
there is an infinite component in the bipartite graph, all of these vertices must
be in the same component in the intersection graph and thus the model with n
auxiliary vertex sets percolates.

Result: Percolation for n Auxiliary Vertex Sets

Percolation in the graph with n primary vertex sets and one auxiliary vertex
set implies percolation in the graph with one primary vertex set and n auxiliary
vertex sets when the roles of the parameters are swapped.
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4.2.5 Combining Multiple Primary and Auxiliary Vertex Sets

In these models where either the primary or auxiliary vertex set has no subdivi-
sion into types, we still have a clear candidate for a parameter to focus on when
studying the percolation boundary. This choice of parameter becomes less clear
once we have more than one type for both primary and auxiliary vertices. To
illustrate this, we will look at the model with two primary vertex sets and two
auxiliary vertex sets. Recall that this model included four intensity parameters,
λ1, λ2, µ1 and µ2 as well as four connection functions g11, g12, g21 and g22.

The first approach we might consider is to fix all parameters apart from one,
as we have done up to this point. For example, let us pick µ1 as our chosen
parameter and fix the other three. As we vary µ1, we will capture nothing about
the interactions between auxiliary vertices from U2 and the primary vertex sets.
Therefore, this approach does not capture the full dynamics of the model. This
was not a problem we faced with previous models as there was always at least
one parameter that could be varied while affecting the behaviour of the entire
model and ensuring that all connection functions played a role in the phase
transition. In the model with two primary vertex sets and one auxiliary vertex
set, this was the parameter µ.

We will still attempt to characterise the percolation using this approach in
order to demonstrate why it does not produce useful results. Define λ = [λ1, λ2],
µ = [µ1, µ2] and G = [g11, g12, g21, g22], once again for notational reasons. Here,
we would define our transition parameter as

µc(λ, µ2,G) = sup{µ1 : P (C(λ,µ,G) = ∞) = 0}.

With the previous models, for every combination of the fixed parameters, we
wanted to say whether the transition was non-trivial. However, since µ2 is a
fixed parameter along with λ1 and λ2, this method will no longer provide the
properties that we are interested in. For example, fix λ1, λ2 and µ2 such that
the sub-model containing the corresponding vertex sets V1, V2 and U2 perco-
lates. This means that the wider model that includes U1 must also percolate
with an equal or higher probability, regardless of the value of µ1, since adding
more auxiliary vertices can only make the model more connected. Therefore,
µc(λ, µ2,G) = 0, before we even had a chance to consider the effects of µ1.
The problem here is that any choice of individual parameter leaves a subgraph
which it does not affect, making the transition parameter highly dependent on
the connectivity of this subgraph.

In an attempt to address this, another approach we might try is to investigate
varying the sum of parameters, either from the primary or auxiliary vertex sets.
For example, we could fix both λ1 and λ2 and investigate how changing the sum
µ1 + µ2 affects the percolation of the model. In this case, we would define the
percolation transition as

µc(λ,G) = sup{µ1 + µ2 : P (C(λ,µ,G) = ∞) = 0}.

The expansion of potential number of cases to investigate involving different
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combinations of functions with bounded and unbounded support adds further
complication.

One case that is not affected too much by these new complications is the one
where we take all four connection functions to have bounded support. Here, we
can bound this model using a Poisson Boolean model with radius equal to two
times the maximum value in the combined support of the connection functions.
Therefore, for a sufficiently small sum λ1 + λ2, the model cannot percolate no
matter how large we make µ1 and µ2. This remains in-line with the results
for the previous models where all connection functions were assumed to have
bounded support.

The main task is to consider the effects of having functions with unbounded
support. Define a single type geometric random intersection graph with intensi-
ties λ1+λ2 and µ1+µ2 and connection function g̃ = max{g11, g12, g21, g22}. This
function g̃ has unbounded support as long as at least one of the four connec-
tion functions has unbounded support. Therefore, this single type model has
a non-trivial phase transition. Moreover, since this model is more connected
than the two-by-two model we are interested in, we get that µc(λ,G) > 0 in
the two-by-two model when at least one function has unbounded support.

Next, we want to check whether we can get an infinite critical value while at
least one function has unbounded support. If it is the case that µc(λ,G) = ∞,
then we must be able to take either µ1 or µ2 to be arbitrarily large and have that
the model still does not percolate. Assume that the model does not percolate for
any value of µ1 and consider the sub-model constructed using only the vertices
from V1 and U1. If g11 has unbounded support, then we know from previous
results that the critical value of this sub-model is finite. Furthermore, since
the wider model contains this sub-model, it is more likely to contain an infinite
component. Therefore, when µ1 is greater than the phase transition of the sub-
model containing vertices from V1 and U1, the model percolates. Therefore, µ1

cannot cause the transition parameter, µc(λ,G), to be infinite when g11 has
unbounded support. This argument can be replicated when g21 has unbounded
support.

However, it could also be the case that the model does not percolate for any
value of µ2. Applying the same arguments from the previous paragraph, we can
rule this out when one of g12 or g22 has unbounded support. Therefore, if one of
g11 or g21 has unbounded support and one of g12 or g22 has unbounded support,
then the model has a non-trivial phase transition, µc(λ,G), when defined in
terms of the sum of auxiliary intensities.

Where this definition of µc(λ,G) starts to break down is when we have a
combination of functions with bounded and unbounded support and one of the
two auxiliary vertex sets only interacts with connection functions with bounded
support. This scenario might look something like the following. The functions
g11 and g21, which connect vertices from U1 to those from V1 and V2 respectively,
have unbounded support, but the functions g12 and g22, which likewise only
interact with auxiliary vertices from U2, have bounded support.

Here, the sub-model constructed from the vertex sets U2, V1 and V2 is a
two primary vertex set model where both connection functions have bounded
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support. As such, we know that for a sufficiently small sum of primary vertex
intensities, λ1 + λ2, the model does not percolate for any µ2. We showed this
earlier by comparing the model to a Poisson Boolean model. This means that
to get µc(λ,G) = ∞, we should be able to take µ2 to be arbitrarily large with
the sufficiently small values of λ1 and λ2 along with a small value of µ1 that
does not give percolation in the subgraph of vertex sets U1, V1 and V2. We
know that such a value of µ1 exists since the phase transition is non-trivial for
models with a single auxiliary vertex set and at least one connection function
with unbounded support. This means that it seems to be the case that there
are certain conditions on λ1 and λ2 in this setup that lead to a trivial phase
transition, though this has not been proven.

We are not going to look into the specifics of how these sub-models inter-
acting affects the overall percolation and the exact conditions on the sub-model
containing the functions with unbounded support needed to give an overall
model with no percolation for some infinite large sum of auxiliary vertex inten-
sities. This exploration of the two primary and two auxiliary vertex set model
is meant to demonstrate why characterising the phase transition of the model
for increasingly many vertex sets becomes less meaningful.
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5 Conclusion

In this paper, we have expanded upon the known theory within the field of ran-
dom graphs by extending the geometric random intersection graph and charac-
terising the core properties of the extended model. The addition of multiple pri-
mary and auxiliary vertex sets to the geometric random intersection graph, each
with unique general connection functions, provides a further layer of flexibility in
modelling real-world networks while still maintaining workable properties that
largely resemble those of the original model.

The connection probability and expected degree give an overview of how
the edges and vertices behave within the model. In the original geometric ran-
dom intersection graph, the connection probability decays exponentially with
an increase in distance between the vertices in question or a reduction in µ,
the intensity of the Poisson process generating auxiliary vertices. In our model,
this exponential feature of the connection probability remains. Furthermore,
we can view the probability that two vertices do not connect in the model with
m auxiliary vertex sets as the product of the probabilities that they do not
connect in each of the sub-models containing just one of the auxiliary vertex
sets. Similarly, we found that the expected degree of our model is just the sum
of the expected degrees of the sub-models including just one of the primary
vertex sets. These properties extend nicely in this way due to the independence
imposed when generating the vertex sets and connecting vertices.

Furthermore we were able to characterise certain properties relating to the
percolation of the model with an arbitrary number of primary vertex sets and
just one auxiliary vertex set. We distinguished the difference between having
connection functions with bounded and unbounded support and showed that
having at least one function with unbounded support is sufficient to guarantee
a non-trivial phase transition. For the remaining case, where all functions have
bounded support, we determined a condition on the sum of primary vertex
intensity parameters that ensures the model will not percolate for any auxil-
iary vertex intensity parameter. This turned out be when this sum of primary
intensity parameters was less than the phase transition of a Poisson Boolean
model with radius equal to the largest value in the combined support of the two
connection functions.

In our final result, we showed that the percolation properties from the model
with n primary vertex sets can be mirrored to the model with n auxiliary vertex
sets. This means that the percolation results we found for the model with n
primary vertex sets can be directly applied to the model with n auxiliary vertex
sets without any further investigation. This also means that any future results
relating to the percolation of one these models may be applied to the other.

By building upon the theory of geometric random intersection graphs, we
move ever closer to being able to model the diverse and complex structures of
real world networks.
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6 Future Work

There are still many opportunities relating to the work that has been done here
to expand upon our knowledge of random graph structures and construct new
models that follow the complex structures of real-world networks. Among these
are a number of avenues of inquiry relating to the exact model that we have
defined. We briefly mentioned two open problems relating to the percolation of
the two primary vertex set model. In the first of these open problems, we were
considering the case that one connection function has unbounded support and
we speculated whether there could be any non-zero values of the opposite pri-
mary vertex set intensity parameter that do not affect the location of the phase
transition. The other problem was set within the scenario where both connec-
tion functions had bounded support. We could ask whether we can improve
upon the specificity of the bound set on the sum of primary vertex set inten-
sities to guarantee a model that does not percolate for any auxiliary Poisson
process.

When attempting to find the percolation properties of the generalised model,
we ran into some practical problems caused by having a large number of pa-
rameters to deal with. Future work on this model might include attempting to
overcome some of these challenges with a different approach to studying perco-
lation than the one used in this paper.

It may also be useful or interesting to define new models that are similar
or build upon the one defined here. For example, while the Poisson process is
useful for its simplicity and homogeneity, it may not appropriately represent
the way in which nodes are spread across a space. One could therefore consider
constructing the same model using different point processes.

There has been some interest in the field surrounding inhomogeneous random
graphs where each vertex is assigned a weight and the connection probabilities
are a function of these weights. Applying this approach to the geometric random
intersection graph is an unexplored alternative to defining multiple vertex sets
as we have done.

One could also adapt the intersection step so that not all primary vertices
who share the same auxiliary vertex are connected to each other automatically.
Instead, it may make sense in certain situations to have some probability that
each pair of primary vertices that share an auxiliary vertex are connected. In
particular, this makes more sense when the average number of primary vertices
connected to a single auxiliary vertex is quite high.

A further construction that might improve the ability of the model to handle
complex network dynamics is to add an extra layer of intersection in a hierarchi-
cal way. This means that there would be two or more levels of auxiliary vertices,
with primary vertices first connecting to lower level auxiliary vertices and then
these lower level auxiliary vertices themselves connecting to higher level aux-
iliary vertices. This would mean that primary vertices would be connected if
they shared a higher level auxiliary vertex through their connections to lower
level auxiliary vertices. Moreover, this construction could be combined with the
addition of probabilities for connecting in the intersection step, particularly for
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primary vertices connecting to a higher level auxiliary vertex through different
lower level vertices.

One final suggestion for future work is to explore different ways of construct-
ing geometric random intersection graphs and even combining these methods
with the model defined here. Consider studying a social network where we
consider how children form connections through both school and social groups
outside of school. We could say that modelling the extra-curricular activities us-
ing a geometric random intersection graph might be quite natural but modelling
connections with schools may not fit so well. This is because we may want to
enforce the rule that children attend no more than one school and that schools
have a limit on their capacity. Therefore, we might want to connect children
to schools using a configuration model, where the degree of each vertex is de-
fined first from some distribution and then vertices are paired until each vertex
has reached its specified degree. It would be interesting to study a version of
the geometric random intersection graph where primary and auxiliary vertices
are connected in this way and whether a mixed model could be defined such
that there are multiple auxiliary vertex sets where some sets connect using the
procedure investigated in this paper and some use a configuration approach.
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