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Abstract

In recent years, numerous research papers have explored the appli-
cation of deep learning in the field of actuarial science. This thesis aims
to provide an overview of one such application: the use of deep learn-
ing models for mortality forecasting. Starting from the Lee–Carter
model, we explore how neural networks can be employed to extrap-
olate the time index κt. We describe parameter estimation in the
Lee–Carter model and outline traditional forecasting methods, where
κt is typically modelled using an autoregressive integrated moving av-
erage (ARIMA) model—typically a random walk with drift. We then
present an overview of artificial neural networks, with a focus on re-
current neural networks and their most widely used variant, the long
short-term memory network (LSTM). These methods are applied to
Swedish mortality data. We compare feedforward neural networks,
shallow LSTMs, and deep LSTMs to traditional ARIMA-based fore-
casting. Ensemble models are used to reduce the randomness inher-
ent in neural network training. Our results show that, for the given
dataset, neural networks generally outperform traditional methods.
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Chapter 1

Introduction and Theory

Deep learning is an increasingly popular research area. It has been applied to various problems within the ac-
tuarial field, such as claims frequency and severity modelling, fraud detection, and mortality forecasting. For
example, Wüthrich and Merz [22, chs. 7–11] have written extensively about deep learning models and applica-
tions in the actuarial field; Egusquiza Castillo [6] have compared the performance of various machine learning
models, such as feed-forward neural networks and combined actuarial neural networks, on claim frequency
modelling. For a more general introduction to deep learning, see, e.g., Goodfellow et al. [7].

This thesis focusses on mortality forecasting. Mortality forecasting is an essential part of life insurance. The
Lee–Carter model [12] is a common approach to model and forecast the mortality of a single population. With
the rising popularity of deep learning and artificial neural networks, how can we implement these methods in
mortality forecasting?

We aim to provide both a theoretical and a practical understanding of the Lee–Carter model and artificial
neural networks. In Section 1.1, we describe the Lee–Carter model and outline traditional forecasting methods.
In Section 1.2, we explain what artificial neural networks are and how to train them. We provide a more detailed
explanation of some common network architectures that are especially relevant in modelling sequential data,
such as the long short-term memory network (LSTM). In Chapter 2, we end the thesis with a numerical illus-
tration, where we put all the theory to the test on Swedish mortality data. We compare traditional forecasting
methods with deep learning.

1.1 Lee–Carter Model
The Lee–Carter model was pioneered by Ronald D. Lee and Lawrence R. Carter [12] in 1992. The model models
the force of mortality.

Definition 1.1.1 (Force of mortality) Let 𝑇𝑡−𝑥 be a random variable defined on a probability space (Ω,ℱ , ℙ),
corresponding to the calendar year in which an individual born in calendar year 𝑡 − 𝑥 dies. The force of mortality
(or simply mortality) is defined as

𝜇𝑥,𝑡 ≔ lim
Δ𝑡→0+

ℙ(𝑇𝑡−𝑥 < 𝑡 + Δ𝑡 ∣ 𝑇𝑡−𝑥 > 𝑡)
Δ𝑡

. (1.1)

We can interpret (1.1) as the instantaneous death rate at calendar year 𝑡 for an 𝑥-year-old. Throughout this
thesis, we assume that we have piecewise constant forces of mortality, i.e., given any age 𝑥 and calender year 𝑡, we
have

𝜇𝑥,𝑡 = 𝜇⌊𝑥⌋,⌊𝑡⌋,

where ⌊⋅⌋ is the floor function that maps a real number to the greatest integer less than or equal to itself.
Let 𝑑𝑥,𝑡 denote the observed number of deaths of 𝑥-year-olds in calendar year 𝑡 and let 𝑟𝑥,𝑡 denote the cor-

responding observed central exposure-to-risk, i.e., 𝑟𝑥,𝑡 is the number of person years from which 𝑑𝑥,𝑡 occurred.
With the assumption of piecewise constant forces of mortality, the forces of mortality can be estimated with the
central death rate

𝑚𝑥,𝑡 ≔
𝑑𝑥,𝑡
𝑟𝑥,𝑡

.

We present the Lee–Carter model as in [12] for completeness. But in the practical part of this thesis (see
Chapter 2) we do not use this version of the Lee–Carter model. Instead, we implement the package StMoMo,
which uses the same model assumptions as in [3].

1



2 J. Zhan

1.1.1 The Model
Lee and Carter [12] proposed a simple log-bilinear form for the force of mortality 𝜇𝑥,𝑡, which means that the
log-mortality log(𝜇𝑥,𝑡) is linear in both age and calendar year effects. For 𝑚𝑥,𝑡 (or some other empirical estimate
of 𝜇𝑥,𝑡), we assume that

log(𝑚𝑥,𝑡) = 𝛼𝑥 + 𝛽𝑥𝜅𝑡 + 𝜀𝑥,𝑡, (1.2)

where the 𝜀𝑥,𝑡 are homoscedastic error terms with mean 0. We can interpret exp{𝛼𝑥} as the general shape of the
mortality for age 𝑥. The parameter 𝛽𝑥 indicates how sensitive the force of mortality of age 𝑥 is to changes in 𝜅𝑡.
Lastly, the time trend is represented by the time index 𝜅𝑡. For parameter identifiability, we impose the constraints

∑
𝑡∈𝒯

𝜅𝑡 = 0, (1.3)

∑
𝑥∈𝒳

𝛽𝑥 = 1, (1.4)

where 𝒯 is the set of all the calendar years included in our model, and 𝒳 is the set of all ages included in our
model.

Mortality forecasting using this model follows a two-step procedure. First, we estimate the parameters

𝜶 ≔ (𝛼𝑥)𝑥∈𝒳,

𝜷 ≔ (𝛽𝑥)𝑥∈𝒳,

𝜿 ≔ (𝜅𝑡)𝑡∈𝒯,

using ordinary least squares (OLS). Secondly, we model and forecast 𝜿 as an autoregressive integrated moving
average (ARIMA) process (see Appendix A).

Lee and Carter [12] originally used the Lee–Carter model on aggregate US data (sexes combined). They
found that the life tables produced using the model closely fit actual US life tables. They also trained a model on
the earlier part of the data to forecast the later part and found that the forecast performed well.

The Lee–Carter model is extrapolative, meaning that it forecasts future mortality rates based solely on past
trends. As with all extrapolative models, the Lee–Carter model assumes that the future will be similar to the
past. The model does not attempt to incorporate factors such as medical advances, behavioural changes, or social
changes that might influence mortality. However, since we lack a precise understanding of these mechanisms
and their intricate interactions, having an extrapolative approach to prediction is particularly compelling in the
case of human mortality.

Another questionable assumption of the model is the assumption of homoscedasticity of the error terms 𝜀𝑥,𝑡.
This is unrealistic since the (logarithm of the) observed force of mortality is much more variable at older ages
because of lower death counts compared to younger ages. Brouhns et al. [3] propose that because the number of
deaths is a counting process 𝐷𝑥,𝑡, the Poisson assumption seems plausible. (Further motivation for the Poisson
assumption is provided in [1].) Therefore, the authors suggest a different approach from the OLS method used
by Lee and Carter [12]. We consider

𝐷𝑥,𝑡 ∣ 𝑟𝑥,𝑡 ∼ Pois(𝑟𝑥,𝑡𝜇𝑥,𝑡), (1.5)

with
𝜇𝑥,𝑡 = exp{𝛼𝑥 + 𝛽𝑥𝜅𝑡}. (1.6)

Thus, the force of mortality is assumed to have the same log-bilinear form as the original Lee–Carter model.
The parameters are now estimated using maximum likelihood.

Remark 1 Brouhns et al. [3] did not modify how 𝜿 is forecasted.

1.1.2 Parameter Estimation
The parameter estimation is done with ordinary least squares in [12], using singular value decomposition. In
[3], the authors used maximum likelihood estimation instead. We now provide a more detailed explanation of
both estimation methods.

Ordinary Least-Squares

Lee and Carter [12] estimated the parameters of the Lee–Carter model by ordinary least squares (OLS). This
means that we want to find 𝜶̂, ̂𝜷, and ̂𝜿 such that they minimise

∑
𝑥∈𝒳

∑
𝑡∈𝒯

(log(𝑚𝑥,𝑡) − 𝛼𝑥 − 𝛽𝑥𝜅𝑡)
2
. (1.7)
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Since there are no known covariates in (1.2), we cannot use standard regression methods. Instead, (1.7) is
minimised by letting

𝛼̂𝑥 =
1
|𝒯 |

∑
𝑡∈𝒯

log(𝑚𝑥,𝑡), ∀𝑥 ∈ 𝒳. (1.8)

Define the (observed) centred force of mortality 𝑦𝑥,𝑡 by

𝑦𝑥,𝑡 = log(𝑚𝑥,𝑡) − 𝛼̂𝑥. (1.9)

To find ̂𝜷 and ̂𝜿, we use singular value decomposition (SVD) on the matrix 𝐲 ≔ (𝑦𝑥,𝑡)𝑥∈𝒳,𝑡∈𝒯. We have

𝐲 = 𝐔𝚺𝐕⊤, (1.10)

where

𝐔 = (𝐮1, … , 𝐮𝑞) ∈ ℝ𝑛×𝑞,

𝐕 = (𝐯1, … , 𝐯𝑞) ∈ ℝ𝑞×𝑞,

with 𝐔⊤𝐔 = 𝐕⊤𝐕 = 𝐈𝑞, and
𝚺 = diag(𝜆1, … , 𝜆𝑞) ∈ ℝ𝑞×𝑞

is a diagonal matrix constituted of the singular values of 𝐲 in descending order. Then, we have ̂𝜷 = 𝜆1𝐮1 and
̂𝜿 = 𝐯1. A more detailed explanation of this estimation process is given in, e.g., [22].

The model’s estimated number of deaths in year 𝑡 may not be the same as the observed number of deaths in
year 𝑡, since we model the log-mortality. To fix this, Lee and Carter [12] reestimate 𝜿 with ̂̂𝜿 such that these new
estimates, along with 𝜶̂ and ̂𝜷 gives the correct number of deaths, i.e., we choose ̂̂𝜿 such that

∑
𝑥∈𝒳

𝑑𝑥,𝑡 = ∑
𝑥∈𝒳

𝑟𝑥,𝑡 exp(𝛼̂𝑥 + ̂𝛽𝑥 ̂𝜅̂𝑡). (1.11)

Several advantages of this reparameterisation are discussed in [12].

Maximum Likelihood Estimation

The Poisson approach in [3] uses maximum likelihood estimation instead of OLS. The log-likelihood function
based on (1.5) and (1.6) is, up to an additive constant, given by

ℓ(𝜶 , 𝜷, 𝜿) = ∑
𝑥∈𝒳

∑
𝑡∈𝒯

(𝑑𝑥,𝑡(𝛼𝑥 + 𝛽𝑥𝜅𝑡) − 𝑟𝑥,𝑡 exp{𝛼𝑥 + 𝛽𝑥𝜅𝑡}) . (1.12)

We aim to find 𝜶, 𝜷, 𝜿 that maximises (1.12). The authors in [3] used the Newton–Raphson method, which
finds the maximum of a log-likelihood function ℓ with parameter 𝜽 using the iterative update

̂𝜽(𝑘+1) = ̂𝜽(𝑘) −
𝜕ℓ(𝜽)
𝜕𝜽

|
𝜽= ̂𝜽 (𝑘)

⋅ (
𝜕2ℓ(𝜽)
𝜕𝜽2

|
𝜽= ̂𝜽 (𝑘)

)
−1

, (1.13)

starting from an appropriate initial value ̂𝜽(0).
In (1.12), the parameters consist of three vectors: 𝜶, 𝜷, 𝜿. For all 𝑥 ∈ 𝒳 and 𝑡 ∈ 𝒯, we initialise the Newton–

Raphson method with 𝛼̂ (0)𝑥 = 0, ̂𝛽(0)𝑥 = 0, and 𝜅̂(0)𝑥 = 1, as in [3]. The iterative updates are then given by

𝛼̂ (𝑘+1)𝑥 = 𝛼̂ (𝑘)𝑥 −
∑𝑡 (𝑑𝑥,𝑡 − 𝑑̂(𝑘)𝑥,𝑡 )

−∑𝑡 𝑑̂
(𝑘)
𝑥,𝑡

, ∀𝑥 ∈ 𝒳;

𝜅̂(𝑘+1)𝑡 = 𝜅̂(𝑘)𝑡 −
∑𝑥 (𝑑𝑥,𝑡 − 𝑑̂(𝑘)𝑥,𝑡 ) ̂𝛽(𝑘)𝑥

−∑𝑥 𝑑̂
(𝑘)
𝑥,𝑡 ( ̂𝛽(𝑘)𝑥 )

2 , ∀𝑡 ∈ 𝒯;

̂𝛽(𝑘+1)𝑥 = ̂𝛽(𝑘)𝑥 −
∑𝑡 (𝑑𝑥,𝑡 − 𝑑̂(𝑘)𝑥,𝑡 ) 𝜅̂

(𝑘+1)
𝑡

−∑𝑡 𝑑̂
(𝑘)
𝑥,𝑡 (𝜅̂

(𝑘+1)
𝑡 )

2 , ∀𝑥 ∈ 𝒳;

where 𝑑̂(𝑘)𝑥,𝑡 = 𝑟𝑥,𝑡 exp{𝛼̂
(𝑘)
𝑥 + ̂𝛽(𝑘)𝑥 𝜅̂(𝑘)𝑡 } is the estimated death count after iteration step 𝑘. The algorithm stops when

the increase in the log-likelihood becomes smaller than a predefined threshold; the authors in [3] suggest a value
of 10−10.
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Remark 2 Since we directly model the death count, we do not have to re-estimate 𝜅𝑡 as in [12].

Remark 3 Note that the updates in theNewton–Raphsonmethod for the Lee–Cartermodel, as presented above,
use the most recent estimates, rather than the estimates of the previous iteration. In particular, the equation for
̂𝛽(𝑘+1)𝑥 uses 𝜅̂(𝑘+1)𝑡 instead of 𝜅̂(𝑘)𝑡 . This implies that we do not update all parameters simultaneously. Instead, a

sequential (or block coordinate) update scheme is used, where the parameters are updated one vector at a time
in a specific order. This implementation of the Newton–Raphson method is the same as in [3, p. 379].

1.1.3 Forecasting

The time index 𝜿 is typically treated as an autoregressive integrated moving average (ARIMA) model; see, e.g.,
[12, 3]. Typically, the Box–Jenkins method [2] is used on ̂𝜿 to identify the appropriate ARIMA model, estimate
the parameters, and create forecasts for future values. An overview of the Box–Jenkins method is given in
Appendix A. Box et al. [2, pp. 177–392] give a comprehensive description of the method. In most historical
applications of the Lee–Carter model, a random walk with drift (RWD) works well, i.e., we use the model

𝜅𝑡 = 𝛿 + 𝜅𝑡−1 + 𝜀𝑡, (1.14)

with the drift parameter 𝛿, where we have i.i.d.

𝜀𝑡 ∼ 𝒩(0, 𝜎2) .

In practice, because of parsimony, unless we can find a substantially better model, we use the RWD for 𝜿.
With modern technology, computer programmes can evaluate a large set of models and choose the best one

based on, e.g., the Akaike’s information criterion (AIC). This is implemented in the auto.arima function in the
forecast package of R. The auto.arima function is one of the methods used in Chapter 2 to model 𝜿.

1.1.4 StMoMo and GAPC

In Chapter 2, we use the StMoMo1 package in R to implement the Lee–Carter model. StMoMo contains functions
to build models in the family of generalised age-period-cohort (GAPC) stochastic mortality models, introduced
in [20]. Below, we give a brief overview of GAPC models.

We assume that the number of deaths 𝐷𝑥,𝑡, conditioned on the central exposure-to-risk 𝑟𝑥,𝑡, follows a Poisson
distribution, such that

𝐷𝑥,𝑡 ∣ 𝑟𝑥,𝑡 ∼ Pois(𝑟𝑥,𝑡𝜇𝑥,𝑡), (1.15)

where 𝜇𝑥,𝑡 is the force of mortality. Moreover, given a link function 𝑔, we assume that

𝑔(𝜇𝑥,𝑡) = 𝛼𝑥 +
𝑁
∑
𝑘=1

𝛽(𝑘)𝑥 𝜅(𝑘)𝑡 + 𝛽(0)𝑥 𝛾𝑡−𝑥, (1.16)

for the force of mortality. Usually, the canonical link function is chosen. For the Poisson distribution, this is the
log link function 𝑔(𝑥) = log 𝑥.

In (1.16), we have the following interpretations of the parameters:

• The term 𝛼𝑥 is a static age function that captures the general shape of mortality by age.

• The integer 𝑁 ≥ 0 is the number of age-period terms, with each time index 𝜅(𝑘)𝑡 describing the mortality
trend and 𝛽(𝑘)𝑥 modulating its effects across ages.

• The term 𝛾𝑡−𝑥 accounts for the cohort effect with 𝛽(0)𝑥 modulating its effect across ages.

The age-modulating terms 𝛽(𝑘)𝑥 can be either pre-specified functions of age or estimated non-parametrically. A
limitation of the StMoMo package is that either all 𝛽(𝑘)𝑥 must be non-parametric or none at all.

Since most stochastic mortality models are only identifiable up to a transformation, we need to impose
parameter constraints to ensure identifiability and uniqueness.

1The acronym StMoMo stands for stochastic mortality model and is pronounced as “Saint Momo”. Momo is the king of Carnivals in
numerous Latin American festivities, see [21].



Neural Networking Beyond Lee–Carter 5

Alternatively, we may model the one-year death probability 𝑞𝑥,𝑡 instead of the force of mortality. We then
assume that the number of deaths, conditioned on the initial exposure-to-risk 𝑙𝑥,𝑡 (the number of 𝑥-year-olds
alive at the beginning of calendar year 𝑡), follows a binomial distribution, such that

𝐷𝑥,𝑡 ∣ 𝑙𝑥,𝑡 ∼ Bin(𝑙𝑥,𝑡, 𝑞𝑥,𝑡). (1.17)

We replace 𝜇𝑥,𝑡 in (1.16) with 𝑞𝑥,𝑡. The canonical link function of the binomial is the logit link function 𝑔(𝑥) =
log( 𝑥

1−𝑥).
The GAPC stochastic mortality models are similar to generalised linear models (GLMs) and generalised non-

linear models (GNMs). We assume that the response variable 𝐷𝑥,𝑡 is generated from a particular distribution.
The exposure-to-risk can be compared to weights in a GLM. The conditional mean of the mortality rate is given
by (1.16), similar to the structure of the conditional mean of a GLM.

If we use the implementation of the Lee–Carter model in [3], it is apparent that the Lee–Carter model falls
under the GAPC stochastic mortality models. The conditional distribution in (1.16) is assumed. We use the
log link function and we assume that 𝑁 = 1, 𝛽(0)𝑥 = 0 and that 𝛽𝑥 = 𝛽(1)𝑥 is non-parametric. However, whilst
Brouhns et al. [3] use Newton–Raphson for parameter estimation, StMoMo uses the gnm function of the package
gnm, which is designed to model and fit generalised non-linear models.

Other widely used GAPC stochastic mortality models include the Renshaw and Habermanmodel [18], which
extends the Lee–Carter model by incorporating a cohort effect; the age-period-cohort (APC) model, commonly
used in medicine and demography, which assumes fixed age effects with 𝛽(0)𝑥 = 𝛽(1)𝑥 = 1; and the Cairns–
Blake–Dowd (CBD) model [4], which omits 𝛼𝑥, sets 𝛽

(1)
𝑥 = 1, and uses 𝛽(2)𝑥 = 𝑥 − ̄𝑥, where ̄𝑥 is the average age

in the data set. A more comprehensive overview of these models and other GAPC stochastic mortality models
is presented in [20].

1.2 Deep Learning Models
Deep learning is a subset of machine learning that focuses on artificial neural networks (ANNs or NNs). Most deep
learning models are designed for supervised learning. This means that we want to approximate the output 𝐘
with the input 𝐗. More specifically, given a loss function (sometimes known as cost function) 𝐶(𝐘, 𝑓 (𝐗)), which
penalises the errors in prediction, we want to find a function 𝑓 ∗ such that it minimises the expected prediction
error, i.e.,

𝑓 ∗ = argmin
𝑓

𝔼[𝐶(𝐘, 𝑓 (𝐗))]. (1.18)

When we have a scalar response and a loss function of the form

𝐶(𝑦, 𝑚) = 𝜑(𝑦) − 𝜑(𝑚) − 𝜑′(𝑚)(𝑦 − 𝑚), (1.19)

where 𝜑 is a strictly convex function that is well-behaved at the endpoints of the range of 𝑦, (1.18) is minimised
by 𝑓 ∗(𝐗) = 𝔼[𝐘 ∣ 𝐗] (among all functions for which the expectation (1.18) exists finitely), cf. [15]. We show this
for the mean squared error, for which 𝜑(𝑦) = 𝑦2 and 𝐶(𝑦, 𝑚) = (𝑦 − 𝑚)2. Let 𝑓 ∗(𝐗) = 𝔼[𝐘 ∣ 𝐗]. We want to
prove that

𝔼[(𝐘 − 𝑓 (𝐗))2] ≥ 𝔼[(𝐘 − 𝑓 ∗(𝐗))2], (1.20)

for any function 𝑓 for which the expectation exists. Let Δ = 𝑓 (𝐗) − 𝑓 ∗(𝐗). We have

𝔼[(𝐘 − 𝑓 (𝐗))2] = 𝔼[(𝐘 − 𝑓 ∗(𝐗) − Δ)2]
= 𝔼[(𝐘 − 𝑓 ∗(𝐗))2] − 2𝔼[Δ(𝐘 − 𝑓 ∗(𝐗))] + 𝔼[Δ2].

Since Δ is 𝐗-measurable, we have

𝔼[Δ(𝐘 − 𝑓 ∗(𝐗))] = 𝔼[𝔼[Δ(𝐘 − 𝑓 ∗(𝐗)) ∣ 𝐗]]
= 𝔼[Δ𝔼[𝐘 − 𝑓 ∗(𝐗) ∣ 𝐗]]
= 𝔼[Δ(𝔼[𝐘 ∣ 𝐗] − 𝑓 ∗(𝐗))]
= 0.

Therefore, we have

𝔼[(𝐘 − 𝑓 (𝐗))2] = 𝔼[(𝐘 − 𝑓 ∗(𝐗))2] + 𝔼[Δ2],
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where 𝔼[Δ2] ≥ 0, showing (1.20).
In practice, we have a training set (𝐱𝑖, 𝐲𝑖)1≤𝑖≤𝑛 and we approximate 𝑓 ∗ by minimising the empirical version

of (1.18) given by
1
𝑛

𝑛
∑
𝑘=1

𝐶(𝐲𝑖, 𝑓 (𝐱𝑖)), (1.21)

for 𝑓 in a sufficiently large family of functions ℱ.
For artificial neural networks, we look at functions 𝑓 (𝐱) = 𝑓 (𝐱; 𝜽), which are compositions of multiple

functions, and we want to find the parameters 𝜽 that minimises the objective function

ℒ(𝜽; 𝐱, 𝐲) = 1
𝑛

𝑛
∑
𝑘=1

𝐶(𝐲𝑖, 𝑓 (𝐱𝑖; 𝜽)) + regularisation. (1.22)

More specifically, artificial neural networks consist of layers of interconnected nodes called neurons.2 Each
neuron receives a set of inputs, computes a weighted sum of the inputs, adds a bias term, and then applies a non-
linear activation function.3 The activation function has a similar role to the inverse link function in a generalised
linear model, in introducing non-linearity into the model. Table 1.1 shows three common activation functions
and their derivatives.

Table 1.1 Common activation functions and their derivatives.𝑎

Name Activation Function Derivative

Standard logistic (expit) 𝜙(𝑥) = (1 + 𝑒−𝑥)−1 𝜙′(𝑥) = 𝜙(𝑥)(1 − 𝜙(𝑥))
Hyperbolic tangent 𝜙(𝑥) = tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 𝜙′(𝑥) = 1 − 𝜙2(𝑥)
ReLU 𝜙(𝑥) = max(0, 𝑥) 𝜙′(𝑥) = 1{𝑥>0}
𝑎 The rectified linear unit (ReLU) does not have a derivative at 𝑥 = 0. However, the convention

is to put 𝜙′(0) = 0.

We can put the layers of neurons into three categories: input layer, hidden layers, and output layer. The first
layer is called the input layer, which receives the input 𝐱, usually pre-processed in some way. For categorical
features, we typically use one-hot encoding, which encodes every category of the feature with a unit vector.
Assume that we have a categorical feature with 𝐾 levels {𝑎1, … , 𝑎𝐾}. We have the raw feature components 𝑥̃𝑖,𝑗 ∈
{𝑎1, … , 𝑎𝐾}, with 1 ≤ 𝑖 ≤ 𝑛 denoting observation 𝑖 and the second index denoting the 𝑗th feature component.
One-hot encoding is obtained by the embedding map

𝑥̃𝑖,𝑗 ↦ 𝐱𝑖,𝑗 = (1{𝑥̃𝑖,𝑗=𝑎1}, … ,1{𝑥̃𝑖,𝑗=𝑎𝐾})
⊤
. (1.23)

Another common way to pre-process categorical variables is with embedding layers (see, e.g., [22, pp. 298–302]).
We do not delve into details.

Continuous features typically do not need to be pre-processed. However, for efficient training, we want all
feature components to live on a similar scale and be roughly uniformly spread across their domains, see [22,
p. 294]. Two common ways to achieve this are the min-max scaler and normalisation. For the min-max scaler,
let 𝑥̃−𝑗 and 𝑥̃+𝑗 be the minimal and maximal possible value for the raw continuous feature components 𝑥̃𝑖,𝑗, i.e.,
𝑥̃𝑖,𝑗 ∈ [𝑥̃−𝑗 , 𝑥̃

+
𝑗 ]. We transform each observed value 𝑥̃𝑖,𝑗 by

𝑥̃𝑖,𝑗 ↦ 𝑥𝑖,𝑗 = 2
𝑥̃𝑖,𝑗 − 𝑥̃−𝑗
𝑥̃+𝑗 − 𝑥̃−𝑗

− 1. (1.24)

The resulting feature values (𝑥𝑖,𝑗)1≤𝑖≤𝑛 take values on the interval [−1, 1]. They should also be roughly uniformly
spread across this interval, according to [22].

Normalisation means centering the data around the empirical mean ̄𝑥̃𝑗 and dividing with the empirical stan-
dard deviation 𝜎̂𝑗 of (𝑥̃𝑖,𝑗)0≤𝑖≤𝑛, i.e.,

𝑥̃𝑖,𝑗 ↦ 𝑥𝑖,𝑗 =
𝑥̃𝑖,𝑗 − ̄𝑥̃𝑖,𝑗

𝜎̂𝑗
. (1.25)

2Artificial neural networks are inspired by the structure and function of the brain, hence the name “neurons” for the nodes in the network.
3The activation function does not have to be non-linear, as the identity function is sometimes used as an activation function.
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The output layer produces 𝐲̂, the final output of the network, which is used to approximate 𝑓 ∗. The inter-
mediate layers do not have a pre-defined purpose, and it is up to the learning algorithm to find the best use of
these. Vaguely, we could say that these intermediate layers automate the process of feature engineering. Since
the output of the intermediate layers is not seen, these layers are called hidden layers.

The number of hidden layers is sometimes called the depth, as in [22]. However, in this thesis, we use the
definition of [7], i.e., the depth 𝑑 of a network is the number of layers excluding the input layer, or the number
of transformations of the input 𝐱. The number of neurons in a layer is sometimes called the width of the layer.
The depth, the widths of the hidden layers, and the activation functions, as well as how layers are connected,
are all hyperparameters of the neural network. In this thesis, we define a deep neural network as an artificial
neural network with at least two hidden layers, i.e., 𝑑 > 2.

In the rest of this section, we introduce some common neural network architectures and also how to fit the
networks.

1.2.1 Feedforward Neural Networks

Feedforward neural networks (FNNs) are the simplest type of neural networks, and they form the foundational
structure of many deep learning models. Feedforward refers to the unidirectional flow of information through
the network, starting from the input 𝐱, passing through hidden layers, and finally reaching the output 𝐲̂. In
this chapter, we describe fully connected networks (FCNs), often referred to as multilayer perceptrons (MLPs),
or “vanilla” networks. This architecture consists of only fully connected layers, sometimes referred to as dense
layers. Every neuron in a dense layer is connected to every neuron in the previous layer.

In the following, we provide a more mathematical formulation of the hidden layers of a fully connected
network. The mapping 𝑓 of the output is typically the composition of several different functions. As mentioned
before, the input 𝐱 is fed into the network through the input layer. The information then passes through several
layers 𝐡(𝑘), for 𝑘 ∈ {1, … , 𝑑}, where 𝑑 ∈ ℤ+ is the depth of the network.

A layer transforms the output of the previous layer via the mapping

𝑓 (𝑘)∶ ℝ𝑞𝑘−1 → ℝ𝑞𝑘 ,

𝐡(𝑘−1) ↦ 𝐡(𝑘),

which is defined as

𝑓 (𝑘)(𝐡(𝑘−1)) = 𝜙𝑘(𝐚(𝑘)), (1.26)

for some activation function 𝜙𝑘 (see Table 1.1), applied element-wise on the affine transformation

𝐚(𝑘) ≔ 𝐖(𝑘)𝐡(𝑘−1) + 𝐛(𝑘), (1.27)

of 𝐡(𝑘−1). Here, 𝐖(𝑘) is the the matrix of network weights and 𝐛(𝑘) is the vector of biases. The dimension 𝑞𝑘, for
𝑘 ∈ {1, … , 𝑑}, is the width of layer 𝑘. The input dimension 𝑞0, sometimes called the input size, is defined as the
dimension of 𝐱.

Instead of the layer representation of (1.26), we could define the mapping in terms of its components, the
neurons. Specifically, we have

𝑓 (𝑘)(𝐡(𝑘−1)) = ( 𝑓 (𝑘)1 (𝐡(𝑘−1)), … , 𝑓 (𝑘)𝑞𝑘 (𝐡(𝑘−1)))
⊤
,

with each element 𝑓 (𝑘)𝑖 (𝐡(𝑘−1)) representing a neuron, defined as

𝑓 (𝑘)𝑖 (𝐡(𝑘−1)) = 𝜙𝑘(⟨𝐰
(𝑘)
𝑖 , 𝐡(𝑘−1)⟩ + 𝑏(𝑘)𝑖 ) = 𝜙𝑘(

𝑞𝑘−1
∑
𝑗=0

𝑤 (𝑘)
𝑖,𝑗 ℎ(𝑘−1)𝑗 + 𝑏(𝑘)𝑖 ).

Here, the weight vector 𝐰(𝑘)
𝑖 = (𝑤 (𝑘)

𝑖,𝑗 )1≤𝑗≤𝑞𝑘−1 ∈ ℝ𝑞𝑘−1 is the 𝑖th row of 𝐖(𝑘). Figure 1.1 shows both a layer
representation and a neuron representation of a fully connected network.
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𝐱

𝐡(1)

𝐡(2)

𝐲̂

(a) Layer-level representation

𝑥1 𝑥2 𝑥3 𝑥𝑞0⋯

ℎ(1)1 ℎ(1)2 ℎ(1)𝑞1
⋯

ℎ(2)1 ℎ(2)2 ℎ(2)𝑞2
⋯

̂𝑦1 ̂𝑦𝑞3⋯

(b) Neuron-level representation

Fig. 1.1 Two different representations of a fully connected network with two hidden layers.

We can view 𝐡(𝑘) as a representation of 𝐱 after passing through 𝑘 layers. To clearly show the relation between
𝐡(𝑘) and 𝐱, we can write 𝐡(𝑘) = 𝑓 (𝑘∶1)(𝐱) ≔ (𝑓 (𝑘) ∘ … ∘ 𝑓 (1))(𝐱). Therefore, the output layer 𝐲̂ can be written as
𝐲̂ = 𝐡(𝑑) = 𝑓 (𝑑∶1)(𝐱) = 𝑓 (𝑑∶1)(𝐱; 𝜽), where the parameter 𝜽 is composed of the network’s weights and biases.

Two problems arise when we use feedforward neural networks to model sequential data (𝑥𝑡)0≤𝑡≤𝑇. Firstly,
the length of the input varies with time 𝑇. This issue is easily solved by assuming some form of the Markov
property, i.e., the value of 𝑥𝑡 only depends on 𝜏 previous values of the sequence, for a fixed number 𝜏. The second
issue is that the architecture of feedforward neural networks can not respect temporal causality, since there is
no feedback in the model.4 For these reasons, we introduce recurrent neural networks, networks with feedback,
which are designed to deal with sequential data, in Section 1.2.2.

1.2.2 Recurrent Neural Networks

Assume we have sequential input data (𝐱𝑡)0≤𝑡≤𝑇, which we use to predict 𝐲𝑇+1. We can think of (𝐱𝑡)0≤𝑡≤𝑇 as
containing the relevant information for the prediction. As mentioned above, there are some issues with using
feedforward neural networks for this type of task. First, the input data varies in size based on 𝑇. We could
assume a fixed input size by only looking 𝜏 time-steps back, i.e., to predict 𝐲𝑇+1, we look at (𝐱𝑡)𝑇−𝜏+1≤𝑡≤𝑇. This
implicitly assumes a Markov property. However, even with this assumption, feedforward neural networks can
typically not respect temporal dependencies, since the network does not recognise that the feature 𝐱𝑡−1 has been
experienced just before the feature 𝐱𝑡. Moreover, feedforward neural networks treat each input independently,
meaning that they do not consider any relationships or dependencies between consecutive inputs.

To deal with the temporal issues of feedforward neural networks, recurrent neural networks, which are
specially designed to deal with sequential data, introduce feedback in the network architecture. Most often, the
output layer receives information from the past by letting previous hidden states, which are the hidden layers
at each time point, influence the current hidden states. We say that these networks have recurrent connections
between hidden layers. We could also have a network with recurrent connections between the output layer and
the hidden layers. Also, we could let the output layer receive information from both the past and the future,
such as in a bidirectional recurrent neural network. Networks with recurrent connections between the output
layer and the hidden layers or bidirectional recurrent neural networks are discussed in, e.g., [7, ch. 10].

A recurrent neural network processes each input 𝐱𝑡 step-by-step. Parameter sharing allows themodel to learn
patterns that are independent of position or length. This allows recurrent neural networks to handle varying
input sizes. If we instead had a feedforward neural network that processed sequential data of fixed length, the
network would have separate parameters for each input feature. This means the network must learn a specific
pattern at each input feature separately. As a result, themodel would requiremore training data to learn the same
behaviour across positions, and it would struggle to handle sequences of lengths it was not explicitly trained on.

4Sometimes, “feedback” refers to looping an output back to influence the same input that produced it. A network with feedback would
therefore cause an infinite loop and prevent training. However, in neural networks, feedback typically refers to the output from one input
influencing the processing of a different input (e.g., across time steps in recurrent neural networks). Feedforward neural networks do not
have this kind of cross-input influence.



Neural Networking Beyond Lee–Carter 9

We first present the “plain vanilla” recurrent neural network, with only one hidden layer that has a cycle with
itself. The network is illustrated in Figure 1.2, both in its compact form (left), where the black box represents a
time delay of one time step, and in its unrolled form (right). The hidden state 𝐡𝑡 is the value of the hidden layer
𝐡 at time 𝑡. It is a transformation of the previous hidden state 𝐡𝑡−1 and the current input 𝐱𝑡, defined by

𝑓∶ ℝ𝑞0 × ℝ𝑞1 → ℝ𝑞1 ,
(𝐱𝑡, 𝐡𝑡−1) ↦ 𝐡𝑡,

such that

𝑓 (𝐱𝑡, 𝐡𝑡−1) = 𝜙(𝐖𝐱𝑡 + 𝐔𝐡𝑡−1 + 𝐛), (1.28)

for some activation function 𝜙 applied element-wise, weight matrices𝐖 and 𝐔, and bias vector 𝐛. As mentioned
above, the parameters (𝐖,𝐔, 𝐛) are shared between time steps. We initialise the hidden state with 𝐡0 = 𝟎.

𝐱

𝐡

(a) Compact diagram

𝐱𝑡−1 𝐱𝑡 𝐱𝑡+1

𝐡𝑡−1 𝐡𝑡 𝐡𝑡+1⋯ ⋯

(b) Unrolled recurrent neural network

Fig. 1.2 Two different representations of a plain vanilla recurrent neural network. The black square represents a delay of
one time step.

There are multiple ways to construct a deep recurrent neural network. We describe the three different deep
recurrent neural networks mentioned in [22, ch. 8.2.2]. The first variant is to have a loop within each hidden
layer. This is described by

𝐡(𝑘)𝑡 = 𝑓 (𝑘)(𝐡(𝑘−1)𝑡 , 𝐡(𝑘)𝑡−1) = 𝜙𝑘(𝐖(𝑘)𝐡(𝑘−1)𝑡 + 𝐔(𝑘)𝐡(𝑘)𝑡−1 + 𝐛(𝑘)), (1.29)

with 𝐡(0)𝑡 = 𝐱𝑡.

For the second and third variants, we focus on networks with two hidden layers, but the concept can be
extended beyond this. The second variant adds feedback from one hidden layer to a previous hidden layer. For
two hidden layers, we have

𝐡(1)𝑡 = 𝑓 (1)(𝐱𝑡, 𝐡
(1)
𝑡−1, 𝐡

(2)
𝑡−1),

𝐡(2)𝑡 = 𝑓 (2)(𝐡(1)𝑡 , 𝐡(2)𝑡−1).

The third variant builds upon the second variant, adding a skip connection from the input layer to the second
hidden layer. We have

𝐡(1)𝑡 = 𝑓 (1)(𝐱𝑡, 𝐡
(1)
𝑡−1, 𝐡

(2)
𝑡−1),

𝐡(2)𝑡 = 𝑓 (2)(𝐱𝑡, 𝐡
(1)
𝑡 , 𝐡(2)𝑡−1).

The three deep recurrent neural networks are illustrated in Figure 1.3. In the remainder of this thesis, we
use the first variant of deep recurrent neural networks.
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𝐱

𝐡(1)

𝐡(2)

(a) First variant

𝐱

𝐡(1)

𝐡(2)

(b) Second variant

𝐱

𝐡(1)

𝐡(2)

(c) Third variant

Fig. 1.3 Compact diagram of three different deep recurrent neural networks with two hidden layers.

Long Short-Term Memory

To learn long-term dependencies in a recurrent neural network, the same function has to be composed with
itself many times. This can lead to the so-called vanishing gradient problem, or less commonly, the exploding
gradient problem. Goodfellow et al. [7, pp. 396–415] gives a brief description of the vanishing or exploding
gradient problem, along with several proposed solutions. One of these solutions was suggested by Hochreiter
and Schmidhuber [10], the long short-term memory network (LSTM). Since its introduction, the model has been
refined and popularised by a wide range of researchers. Today, it is the most common implementation of re-
current neural networks. Figure 1.4 shows a single LSTM cell, which can be connected to other LSTM cells or
different types of layers to form a network. The core idea of LSTMs is to have an internal cell state that has a
linear self-loop. This allows the information to flow freely from one cell state to the next, creating a path through
time that has derivatives that neither vanish nor explode. The weights of the internal cell state are controlled
by different gates, usually called the forget gate and input gate. Lastly, the output of the LSTM cell is a filtered
version of the internal cell state, regulated by the output gate.

𝜙𝑓𝜎 𝜙𝑖𝜎 𝜙tanh 𝜙𝑜𝜎

⊙ +

⊙

𝜙

⊙

𝐡(𝑘−1)𝑡

𝐡(𝑘)𝑡−1

𝐜(𝑘)𝑡−1 𝐜(𝑘)𝑡

𝐡(𝑘)𝑡

𝐡(𝑘)𝑡

Input

Previous hidden state New hidden state

Previous cell state New cell state

Output

Fig. 1.4 Schematic of an LSTM cell. Rectangular nodes represent transformations akin to (1.29), with weight and bias
parameters. Small circular nodes represent element-wise operations.

Before going into the technical details, we first define the Hadamard product operation, which is extensively
used in the description of an LSTM cell and shows up in Figure 1.4.

Definition 1.2.1 (Hadamard product) Let 𝐗, 𝐘 be two 𝑚 × 𝑛matrices. The Hadamard product 𝐗⊙𝐘 is an 𝑚 × 𝑛
matrix with the elements

(𝐗 ⊙ 𝐘)𝑖𝑗 = 𝐗𝑖𝑗 ⋅ 𝐘𝑖𝑗,

where𝐀𝑖𝑗 denotes the element on the 𝑖th row and 𝑗th column of thematrix𝐀. TheHadamard product is undefined
for matrices with different dimensions.
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The three gates all use the expit activation function, which we will denote by 𝜙𝜎, and have a similar structure
to (1.29). The forget gate 𝐟(𝑘)𝑡 controls howmuch of the previous cell state 𝐜(𝑘)𝑡−1 to keep. The forget gate is defined
by

𝐟(𝑘)𝑡 = 𝜙𝜎(𝐖
(𝑘)
𝑓 𝐡(𝑘−1)𝑡 + 𝐔(𝑘)

𝑓 𝐡(𝑘)𝑡−1 + 𝐛(𝑘)𝑓 ),

where 𝜙𝜎 is applied element-wise and 𝐡(0)𝑡 ≔ 𝐱𝑡.
The input gate 𝐢(𝑚)𝑡 controls how much new information the cell state should be updated with. Similarly to

the forget gate, we have

𝐢(𝑘)𝑡 = 𝜙𝜎(𝐖
(𝑘)
𝑖 𝐡(𝑘−1)𝑡 + 𝐔(𝑘)

𝑖 𝐡(𝑘)𝑡−1 + 𝐛(𝑘)𝑖 ).

The cell state is thus updated as follows:

𝐜(𝑘)𝑡 = 𝐟(𝑘)𝑡 ⊙ 𝐜(𝑘)𝑡−1 + 𝐢(𝑘)𝑡 ⊙ 𝜙tanh(𝐖(𝑘)𝐡(𝑘−1)𝑡 + 𝐔(𝑘)𝐡(𝑘)𝑡−1 + 𝐛(𝑘)), (1.30)

where the activation function 𝜙tanh is applied element-wise.
Lastly, the output gate 𝐨(𝑚)𝑡 controls how much of the current cell state should be outputted from the LSTM

cell. Similarly to the other gates, the output gate is given by

𝐨(𝑘)𝑡 = 𝜙𝜎(𝐖
(𝑘)
𝑜 𝐡(𝑘−1)𝑡 + 𝐔(𝑘)

𝑜 𝐡(𝑘)𝑡−1 + 𝐛(𝑘)𝑜 ).

The output gate, together with the current cell state 𝐜(𝑘)𝑡 , produce the output of the LSTM-cell 𝐡(𝑘)𝑡 , through

𝐡(𝑘)𝑡 = 𝐨(𝑘)𝑡 ⊙ 𝜙(𝐜(𝑘)𝑡 ), (1.31)

for some activation function 𝜙 applied element-wise.

Remark 4 The expit activation function is the default for the gates in an LSTM cell in keras3. However, this
can be modified by setting the recurrent_activation argument. Note that changing the activation function
alters the behaviour and interpretations of the gates, as their outputs are no longer restricted to the interval
[0, 1], the image of the expit function.

Remark 5 Both activation functions 𝜙 in (1.30) and 𝜙tanh in (1.31) are specified in keras3::layer_lstm with
the argument activation, which has the default value activation="tanh". This means that 𝜙 = and 𝜙tanh
have to be the same function when using keras3.

Output of a Recurrent Neural Network

So far, we have discussed some different RNN structures up to the output. Suppose we want to predict some
random variable 𝐘𝑇+1 based on all information up to 𝑇 (this includes previous values of the random variable 𝐘𝑇).
Specifically, we define a filtration, i.e., a sequence of 𝜎-algebras (ℱ𝑡)𝑡≥0, such that ℱ𝑠 ⊆ ℱ𝑡, when 𝑠 ≤ 𝑡, and we
want to predict 𝐘𝑇+1 conditioned on ℱ𝑇. In a regression setting, the best predictor is usually the conditional
expectation 𝑓 ∗ = 𝔼[𝐘𝑇+1 ∣ ℱ𝑇]. With a recurrent neural network, we can approximate 𝑓 ∗ by putting 𝐡(𝑑−1)𝑇
through an output layer, i.e.,

𝐲̂𝑇+1 = 𝑓 (𝑑)(𝐡(𝑑−1)𝑇 ) = 𝜙(𝐖(𝑑)𝐡(𝑑−1)𝑇 + 𝐛(𝑑)). (1.32)

This is illustrated in Figure 1.5.

𝐡(𝑑−1)𝑇−2 𝐡(𝑑−1)𝑇−1 𝐡(𝑑−1)𝑇
⋯

𝐲̂𝑇+1

⋯ ⋯ ⋯

Fig. 1.5 Output of a recurrent neural network.
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Note that (1.32) only focuses on the output of the last time step 𝑇. Sometimes, wewant the output of each time
step. This can be done using a time-distributed layer, which calculates the output at each time step simultaneously
with

𝐲̂𝑡 = 𝑓 (𝑑)(𝐡(𝑑−1)𝑡−1 ) = 𝜙(𝐖(𝑑)𝐡(𝑑)𝑡−1 + 𝐛(𝑑)), (1.33)

for 0 ≤ 𝑡 ≤ 𝑇. The time-distributed layer is illustrated in Figure 1.6.

𝐡(𝑑−1)𝑡−1 𝐡(𝑑−1)𝑡 𝐡(𝑑−1)𝑡+1⋯ ⋯

𝐲̂𝑡 𝐲̂𝑡+1 𝐲̂𝑡+2

⋯ ⋯ ⋯

Fig. 1.6 Output of a recurrent neural network using a time-distributed layer.

1.2.3 Fitting the Model
Fitting a neural network involves choosing a loss function and optimising the parameters to minimise (1.22)
based on the learning data. Often, the model defines a probability distribution, and a natural choice for a cost
function is the deviance, which is proportional to the negative log-likelihood of the learning data under the
model. (Minimising the deviance is equivalent to maximising the likelihood.)

In (1.22), a regularisation term is included to punish certain models—for example, L2 regularisation (ridge
regression) penalises large weights. More generally, regularisation refers to any modification of the learning
algorithm aimed at reducing the generalisation error, even if it increases the training error.

In neural networks, the most common form of regularisation is early stopping. Early stopping involves
stopping the learning algorithm before the model minimises the cost function of the learning data, to prevent
overfitting. In practice, the learning data is split into training data (used to train the parameters) and valida-
tion data (used to perform out-of-sample evaluations, to measure generalisation error). The validation error is
measured and monitored during model fitting. Increases in validation error indicate overfitting, prompting the
learning algorithm to stop.

Most learning algorithms for neural networks are gradient-based, i.e., first-order optimisation algorithms.
We use the notation ∇𝜽ℒ (or sometimes ∇𝜽ℒ(𝜽)) for the list of the partial derivatives of the loss function ℒ,
with respect to all the parameters in 𝜽. For a fully connected network, we have

∇𝜽ℒ = { 𝜕ℒ
𝜕𝐖(1)

, 𝜕ℒ
𝜕𝐛(1)

, … , 𝜕ℒ
𝜕𝐖(𝑑)

, 𝜕ℒ
𝜕𝐛(𝑑)

} . (1.34)

With ∇𝜽ℒ( ̂𝜽(𝑖)), we mean ∇𝜽ℒ evaluated on the training data, with the parameters ̂𝜽(𝑖).
To minimiseℒ, we would like to find the direction in whichℒ decreases the fastest. The directional deriva-

tive in direction 𝐮, for some unit vector 𝐮, tells us the slope of the functionℒ in the direction of 𝐮. We can define
it as

∇𝐮ℒ(𝜽) ≔ lim
ℎ→0

ℒ(𝜽 + ℎ𝐮) − ℒ(𝜽)
ℎ

. (1.35)

If the function ℒ is differentiable, this simplifies to

∇𝐮ℒ(𝜽) = 𝐮⊤∇𝜽ℒ(𝜽). (1.36)

We can now use the directional derivative (1.36) to find the direction in which ℒ decreases the fastest. We
want to find

argmin
𝐮∶ ‖𝐮‖=1

𝐮⊤∇𝜽ℒ(𝜽). (1.37)

Using the rules of dot products, we can rewrite (1.37) as

argmin
𝐮∶ ‖𝐮‖=1

‖𝐮‖ ‖∇𝜽ℒ(𝜽)‖ cos 𝜈, (1.38)
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where ‖ ⋅ ‖ denotes the 𝐿2 norm and 𝜈 ∈ [0, 2𝜋) is the angle between 𝐮 and ∇𝜽ℒ(𝜽). Using ‖𝐮‖ = 1 and ignoring
factors that do not depend on 𝐮, (1.38) becomes

argmin
𝐮∶ ‖𝐮‖=1

cos 𝑣,

which minimises when 𝜈 = 𝜋, i.e., when 𝐮 points in the opposite direction of ∇𝜽ℒ(𝜽). This means that we should
move in the opposite direction of the gradient to decrease ℒ the most, i.e.,

̂𝜽(𝑘+1) = ̂𝜽(𝑘) − 𝛿𝑘+1 ⋅ ∇𝜽ℒ( ̂𝜽(𝑘)), (1.39)

where 𝛿𝑘+1 > 0 is the learning rate, controlling how much we move in each iteration 𝑘 + 1. This is called the
method of steepest descent, or gradient descent, see, e.g., [7, ch. 4.3].

The standard gradient descent can be extended tomomentum-based gradient descent methods. These methods
keep the “momentum” of gradients of previous iterations in different ways and apply it to a modified iteration
step. Three commonmomentum-based gradient descent methods are rmsprop (root mean squared propagation),
adam (adaptive moment), and nadam (Nesterov-accelerated adaptive moment). We show how these methods
work, but we do not delve into details on why they work. For further explanation, we refer the interested reader
to, e.g., [22, pp. 285–288].

rmsprop Originally presented in a lecture slide by Hinton et al. [8], this optimiser keeps a moving average of
the squared gradients, which is used to adjust the learning rate. The exponentially weighted moving
average of the squared gradients (second moment estimate) is

𝐯(𝑘) = 𝛽𝐯(𝑘−1) + (1 − 𝛽) (∇𝜽ℒ( ̂𝜽(𝑘)) ⊙ ∇𝜽ℒ( ̂𝜽(𝑘))) , (1.40)

with initial value 𝐯(0) = 𝟎 and exponential decay rate 𝛽 ∈ (0, 1). Let 𝜂 > 0 be the learning rate and
𝜖 > 0 a small constant for numerical stability. We update the parameters with

̂𝜽(𝑘+1) = ̂𝜽(𝑘) −
𝜂

√𝜖 + 𝐯(𝑘)
⊙ ∇𝜽ℒ( ̂𝜽(𝑘)), (1.41)

where the operations are applied element-wise.

adam First proposed by Kingma and Ba [11], this optimiser combines rmsprop with the exponentially
weighted moving average of the gradients (first moment estimate) defined by

𝐫(𝑘) = 𝛼𝐫(𝑘−1) + (1 − 𝛼)∇𝜽ℒ( ̂𝜽(𝑘)), (1.42)

with initial value 𝐫(0) = 𝟎 and exponential decay rate 𝛼 ∈ (0, 1). Let 𝜂 > 0 be the learning rate and
𝜖 > 0 a small constant for numerical stability. The gradient descent update is

̂𝜽(𝑘+1) = ̂𝜽(𝑘) −
𝜂

𝜖 +
√

𝐯(𝑘)
1−𝛽𝑘

⊙ 𝐫(𝑘)

1 − 𝛼𝑘
, (1.43)

where the operations are applied element-wise and 𝐯(𝑘) is defined as in (1.40).

nadam This optimiser is the so-called Nestorov-accelerated version of adam, introduced by Dozat [5]. Intro-
duce the decay factor 𝛾 = 0.96 (this is the default value used in keras3). Let the first moment estimate
and the second moment estimate be defined as in (1.42) and (1.40), respectively. Define

𝑢𝑘 ≔ 𝛼(1 −
𝛾 𝑘

2
) .

Let 𝜂 > 0 be the learning rate and 𝜖 > 0 a small constant for numerical stability. The gradient descent
update is

̂𝜽(𝑘+1) = ̂𝜽(𝑘) −
𝜂

𝜖 +
√

𝐯(𝑘)
1−𝛽𝑘

⊙ (
𝑢𝑘+1𝐫(𝑘)

1 −∏𝑘+1
𝑖=1 𝑢𝑖

+
(1 − 𝑢𝑘)∇𝜽ℒ( ̂𝜽(𝑘))

1 −∏𝑘
𝑖=1 𝑢𝑖

) , (1.44)

where the operations are applied element-wise.
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Backpropagation

In all gradient-based learning algorithms, we have to calculate the gradient. We now describe backpropagation,
an efficient method to calculate the gradients.

The goal is to calculate the gradient of the loss function with respect to each parameter in the network. First,
we have to evaluate the current model. Forward propagation is the process by which input data 𝐱 passes through
the network to generate an output 𝐲̂. We can then assess 𝐶(𝐲, 𝐲̂). This is usually done over the whole training
data, and we calculate (1.22). Once we have evaluated (1.22), we backtrack through the network and calculate
the gradient at each hidden layer, recursively using the chain rule of calculus to find the desired gradients. This
step is called backpropagation. We show backpropagation for a fully connected network in Algorithm 1, which
is taken from [7] with slight modifications. The function returns the gradients with respect to each parameter
evaluated in the current model.

Algorithm 1 Backpropagation

Require: 𝐱, 𝐲, 𝜽, 𝑑
1: 𝐠 ← ∇𝐲̂𝐿(𝐲, 𝐲̂)
2: for 𝑘 = 𝑑, 𝑑 − 1, … , 1 do
3: 𝐠 ← 𝐠 ⊙ 𝜙′(𝐚(𝑘)) ▷ Calculate ∇𝐚(𝑘)𝐿(𝐲̂, 𝐲)
4: ▷ Using 𝐠, we can calculate the gradients with respect to 𝐛(𝑘) and 𝐖(𝑘). ◁
5: ∇𝐛(𝑘)𝐿(𝐲̂, 𝐲) ← 𝐠
6: ∇𝐖(𝑘)𝐿(𝐲̂, 𝐲) ← 𝐡(𝑘−1)𝐠⊤

7: 𝐠 ← 𝐖(𝑘)⊤𝐠 ▷ Calculate ∇𝐡(𝑘−1)𝐿(𝐲̂, 𝐲)
8: end for
9: return ∇𝜽𝐿(𝐲, 𝐲̂)

For a recurrent neural network, we use backpropagation through time (BPTT). BPTT is similar to standard
backpropagation. We first forward propagate the inputs through the unfolded recurrent neural network (see,
e.g., Figure 1.2b), then we backpropagate the error across the unfolded network. For long sequences, unfolding
the whole network is memory-intensive, and in practice, we mostly use a truncated version of BPTT, called
truncated BPTT, or TBPTT. For the TBPTT, we choose a lookback period 𝜏. Then, we unfold the network so
that each output is produced using 𝜏 inputs. With the default options in the keras3 package, the hidden states
are reset to 𝟎 for each output. However, this can be changed by setting stateful=TRUE. The TBPTT for both
options is outlined in Algorithm 2.

Algorithm 2 Truncated backpropagation through time

Require: 𝜏 , 𝜽, 𝐱, 𝐲
1: for 𝑡 = 1, … , 𝑇 − 𝜏 + 1 do
2: Unfold the network to contain 𝜏 time-steps
3: input ← 𝐱𝑡, … , 𝐱𝑡+𝜏−1
4: 𝐲̂𝑡+𝜏 ← forward propagate input
5: Calculate 𝐿(𝐲𝑡+𝜏, 𝐲̂𝑡+𝜏)
6: Backpropagate 𝐿(𝐲𝑡+𝜏, 𝐲̂𝑡+𝜏) across whole unfolded network
7: Update the parameters
8: if !stateful then
9: ▷ By default, stateful=FALSE and we reset all hidden states. Otherwise, we let the hidden states

remain to the next 𝑡 ◁
10: Set all hidden states to 𝟎
11: end if
12: end for

Stochastic Gradient Descent

If our training data has a large sample size 𝑛, it is unrealistic to evaluate the cost function and calculate all the
gradients based on the whole training data, since this would be too slow. Therefore, we typically use stochastic
gradient descent (SGD), which does not use the entire training data simultaneously. Instead, we partition the
data intomini batches of fixed batch size 𝑏 ∈ ℤ+. For each gradient descent update, we only use one mini-batch.
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Typically, we sequentially use all mini-batches. Screening each mini batch once is called an epoch. Therefore,
running the SGD algorithm for 𝐾 epochs means performing 𝐾⌊𝑛/𝑏⌋ gradient descent updates.

We want to choose the batch size 𝑏 so that it is small enough for quick gradient descent calculations, but not
too small. A too small value of 𝑏 causes erratic gradient descent steps, i.e., the randomness in a small sample can
cause us to take a step in a completely different direction than what is optimal. Another thing to consider is that
some hardware runs better with specific batch sizes, typically powers of 2.

One last remark is that small batch sizes also have a regularising effect, perhaps due to the noise they add
to the training. Sometimes, the learning algorithm could get stuck at saddle points or flat areas of the objective
function. An erratic step could be beneficial because it can perturb the algorithm out of the bottleneck. To
compensate for the smaller batch size, we may need a smaller learning rate to stabilise the training. This could
result in longer runtimes since we would have to take more gradient descent steps due to both the erratic nature
of the small batches and the small learning rate.





Chapter 2

Numerical Application

In this chapter, we apply the theory of the previous sections to real data. We used Swedishmortality data sourced
from the Human Mortality Database (HMD) [9].

We first fit the Lee–Carter model to the data. After estimating the parameters in the Lee–Carter model,
we explore the use of neural networks and deep learning models to extrapolate the time index 𝜅𝑡. The neural
networks are compared to traditional methods using ARIMA models. In particular, we use a random walk with
drift as our baseline model, but we also compare the performance of letting the function auto.arima choose an
appropriate ARIMA model. The goal of this section is to illustrate how we can incorporate deep learning into
the Lee–Carter model and to compare the different methods of extrapolation. All the code is written in R. We
use the StMoMo package to fit the Lee–Carter models and forecast using the traditional methods. For the neural
networks, we use the package keras3 with tensorflow as the back end.

Similar studies have been conducted in [22, 19, 14, 13]. Wütrich and Merz [22, ch. 8.4] applied an LSTM
on 𝑒𝑡 ≔ 𝜅𝑡 − 𝜅𝑡−1 of the Lee–Carter model across multiple countries simultaneously and also explored mod-
elling mortality directly using an LSTM. Richman and Wütrich [19] compared gated recurrent units (GRUs) and
LSTMs applied directly to death rates. The neural networks were also compared to standard Lee–Carter models.
Lindholm and Palmborg [14] explored different strategies for partitioning and efficiently using the learning data
in mortality forecasting. Levenius [13, ch. 2.2] used the same Swedish mortality data to study Cramér–Wold’s
method for parameter estimation in the Gompertz–Makeham model.

2.1 Swedish Population Data
We have data on central death rates 𝑚𝑥,𝑡 and exposures to risk 𝑟𝑥,𝑡 for the years 1751–2023 and the ages 0–110+.
Listing 2.1 provides code for reading and converting data from HMD to StMoMoData, the data format used by
most functions of the package StMoMo.

Listing 2.1 Creating StMoMoData.

1 sweden <- read.demogdata(
2 "Mx_1x1.txt",
3 "Exposures_1x1.txt",
4 type = "mortality",
5 label = "Sweden"
6 )
7 sweF <- StMoMoData(sweden , series = "female")
8 sweM <- StMoMoData(sweden , series = "male")

We limit ourselves to studying the years 1931–2023 and ages 0–98 (we choose 98 as our upper limit because
of data scarcity, but also because at higher ages, the mortality behaves strangely). Figure 2.1 illustrates the log-
central death rates log(𝑚𝑥,𝑡) of the Swedish population, separated by gender. More red colours indicate higher
mortality, whereas bluer colours indicate lower mortality. We can generally see a slight diagonal structure in the
data, indicating the typical mortality improvements that we have seen throughout the years. We also see that
females typically have lower mortality than males. The black vertical dashed lines in Figure 2.1 indicates where
we have split the data into learning data 𝒯♦ (calendar years 𝑡 ∈ {1931, … , 2000}) and test data 𝒯⋆ (calendar years
𝑡 ∈ {2001, … , 2023}).1

1We use a diamond (♦) to represent the data used for polishing the models, and a star (⋆) to denote the data on which the trained models
shine (hopefully). Thanks to Leo Levenius for this suggestion.
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Fig. 2.1 Log-central death rates log(𝑚𝑥,𝑡). Grey colours represent NA values.

2.2 Lee–Carter

We fit the Lee–Carter model on each gender separately. For ease of notation, we do not write hats above the
fitted parameters of the Lee–Carter model. Listing 2.2 provides the code to fit a model for Swedish female data
sweF and plot the residuals in a heatmap. The resulting residual plots for both genders are shown in Figure 2.2.
We can see that the residuals have clear patterns, indicating that the Lee–Carter model may not be sufficient for
the data. We could consider more complex models, such as the Renshaw–Haberman extension of the Lee–Carter
model, proposed by Renshaw and Haberman [18], which adds a cohort term to (1.2). However, it is not our intent
to find the best model for the Swedish population, but rather to illustrate how we can implement deep learning
models on mortality studies.

Listing 2.2 Fitting the Lee–Carter model in StMoMo and plotting residuals.

1 library(StMoMo)
2 LC <- lc(link = "log")
3 fitYrs <- 1931:2000
4 fitAges <- 0:98
5 LCfitsweF <- StMoMo ::fit(LC, data = sweF , ages.fit = fitAges , years.fit = fitYrs)
6 LCressweF <- residuals(LCfitsweF)
7 plot(LCressweF , type = "colourmap")

0

25

50

75

1940 1960 1980 2000

Calendar year 𝑡

A
ge

𝑥

-6

-3

0

3

6

(a) Females

0

25

50

75

1940 1960 1980 2000

Calendar year 𝑡

A
ge

𝑥

-6

-3

0

3

6

(b) Males

Fig. 2.2 Heatmap of the residuals of the fitted Lee–Carter model.
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2.3 Forecasting
We model the time index 𝜅𝑡 of the Lee–Carter model using both ARIMA models and three different neural
networks: a feedforward neural network, a shallow LSTM, and a deep LSTM.2 In Appendix B.1, we provide
code and summaries for the three neural network models.

Due to the potential drift in the 𝜅𝑡-process, it is often easier to model the increments 𝑒𝑡 ≔ 𝜅𝑡 − 𝜅𝑡−1 instead
of 𝜅𝑡 in the neural networks—see, e.g., [22, p. 397]. Let 𝜏 be the lookback period. The sequential input used to
predict 𝑦𝑡+1 = 𝑒𝑡+1 is

𝐱𝑡−𝜏+1∶𝑡 = (𝑒𝑡−𝜏+1, … , 𝑒𝑡)⊤. (2.1)

For the rest of the thesis, we use the shorter notation 𝐱𝑡 = 𝐱𝑡−𝜏+1∶𝑡, i.e., 𝐱𝑡 has the target 𝑦𝑡+1.
For the recurrent neural networks, we use the truncated back propagation through time, so each element of 𝐱𝑡

is input one by one. In keras3, the input dimension is c(𝜏, 1), meaning that each time-step is one-dimensional.
In the feed-forward neural network, we feed the network the flattened version of 𝐱𝑡, which in the case of (2.1),
is just itself. Therefore, the input dimension for the feed-forward neural network in keras3 is c(𝜏 ⋅ 1).

We choose to model both genders simultaneously in the neural networks. Therefore, we must add an index
for each gender 𝑔 as a covariate. We have 1 for females (f) and 0 for males (m). Our learning data, therefore, is

((𝐱(𝑔)𝑡+𝜏,1{𝑔=f}) , 𝑦
(𝑔)
𝑡+𝜏+1)𝑔∈{f,m},𝑡0≤𝑡≤𝑡1−𝜏−1

, (2.2)

where 𝑡0 and 𝑡1 is the first and last calendar year of 𝒯♦, respectively.
We use the first 85 % (rounded down) of the learning data as training data and the rest as validation data.

Lindholm and Palmborg [14] call this “Calibration LO”. We use a batch size of 2 for the stochastic gradient
descent. Since the training process of a neural network has several factors of randomness, such as the random
initialisation of the parameters and stochastic gradient descent, we use network aggregating (or nagging). We
use the method described in [14, pp. 760–761]. We perform 𝑚 = 20 different calibrations of the parameters 𝜽
using random initialisation and early stopping. Denote each calibration with ̂𝜽(𝑖). The ensemble model output
is

̄𝑓 (𝐱, ̂𝜽(1∶𝑚)) ≔ 1
𝑚

𝑚
∑
𝑖=1

𝑓 (𝐱, ̂𝜽(𝑖)). (2.3)

For a more detailed explanation of ensemble learning, see, e.g., [22, ch. 7.4.4].
The in-sample results of the neural networks are shown in Figure 2.3. Firstly, we observe a zig-zag pattern

in the actual data, implying negative correlation. This pattern seems to be captured best by the FNN. Secondly,
we observe that all three models are less volatile than the actual values, especially the LSTMs.
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Fig. 2.3 In-sample increments 𝑒𝑡 of the different neural networks compared to actual values.

To evaluate the neural networks out-of-sample, we follow a similar procedure as in [14, pp. 761–763]. First,
we estimate the in-sample variance with

𝑠2 = 1
|𝒯♦| − 𝜏

𝑡1−1
∑

𝑡=𝑡0+𝜏
(𝑒𝑡+1 − ̄𝑓 (𝐱𝑡; ̂𝜽(1∶𝑚)))

2
. (2.4)

2We use shallow and deep to refer to the number of LSTM cells in each network, where the shallow LSTM has one LSTM cell and the
deep LSTM has three.
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Next, we recursively predict one time step ahead with

̃𝑒(𝑘)𝑡 = {
̄𝑓 (𝐱̃(𝑘)𝑡−1; ̂𝜽(1∶𝑚)) + 𝜀(𝑘)𝑡 , if 𝑡 ∈ {2001, … , 2023}

𝑒𝑡, if 𝑡 ∈ {1932, … , 2000}
(2.5)

where 𝜀(𝑘)𝑡 is simulated using rnorm(1, 0, 𝑠2), and

𝐱̃(𝑘)𝑡 = ( ̃𝑒(𝑘)𝑡−𝜏+1, … , ̃𝑒(𝑘)𝑡 )⊤.

We create 20 trajectories of (2.5) and take the median at each time step to get our final predictions ̃𝑒𝑡. The
trajectories and final predictions for each model are shown in Appendix B.2. Note that we have used the same
random seed for each model (but different seeds for each gender) to make them more comparable.

To obtain predictions for 𝜅𝑡, for 𝑡 ∈ 𝒯⋆, from the neural networks we take the cumulative sum (cumsum) of
(𝜅2000 + ̃𝑒2001, ̃𝑒2002, … , ̃𝑒2023).

For the ARIMAmodels, StMoMo implements the generic function forecast. By default, the function assumes
a (multivariate) random walk with drift, as in (1.14). However, we can pre-specify an ARIMA model or let
the function auto.arima from the package forecast automatically select the “best” ARIMA model for 𝜅𝑡, by
setting the argument method='iarima'. In our data, auto.arima selects an ARIMA(0, 1, 1) model for the female
population and a random walk with drift for the male population (same as default).

We also create a baseline out-of-sample model by fixing 𝛼𝑥 and 𝛽𝑥, for 𝑥 ∈ 𝒳, and estimating 𝜅𝑡 in the test
data. This is done using Newton–Raphson, similar to the process described in Section 1.1.2. We denote this
model by “saturated”.

Figure 2.4 compares the different models. The figure also shows the 95 % confidence interval of the RWD
model. We observe that the three neural networks produce similar results. This is likely due to the same random
seed being used in (2.5). We also see that the saturated model produces significantly different 𝜅𝑡 values compared
to any other model for males. This could indicate that the learning data is not representative of the test data for
Swedish males, a common problem for extrapolative models.

Saturated RWD auto.arima FNN Shallow LSTM Deep LSTM
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Fig. 2.4 Out-of-sample predictions of 𝜅𝑡 for different methods. The grey zones are 95 % confidence intervals for the RWD
models.

We close this section by comparing three different metrics of the different models:

• The mean squared error of 𝜅𝑡, defined as

𝑀𝑆𝐸𝜅( ̂𝜿) ≔ 1
|𝒯⋆|

∑
𝑡∈𝒯⋆

(𝜅̃𝑡 − 𝜅̂𝑡)2, (2.6)

where 𝜅̃𝑡 are from the saturated model.

• The Poisson log-likelihood (cf. (1.12)), defined as

ℓPois( ̂𝜿) ≔ ∑
𝑥∈𝒳

∑
𝑡∈𝒯⋆

(𝑑𝑥,𝑡(𝛼𝑥 + 𝛽𝑥𝜅̂𝑡) − 𝑟𝑥,𝑡 exp{𝛼𝑥 + 𝛽𝑥𝜅̂𝑡}) . (2.7)



Neural Networking Beyond Lee–Carter 21

• The mean squared error of the log-central death rates, defined as

𝑀𝑆𝐸log(𝑚)( ̂𝜿) ≔ 1
|𝒳 | ⋅ |𝒯⋆|

∑
𝑥∈𝒳

∑
𝑡∈𝒯⋆

(log(𝑚𝑥,𝑡) − log(𝑚̂𝑥,𝑡))2, (2.8)

where log(𝑚̂𝑥,𝑡) ≔ 𝛼𝑥 + 𝛽𝑥𝜅̂𝑡.

The results are summarised in Table 2.1. We observe that for both genders, the best-performing model,
according to all three metrics, is a neural network. In particular, we see that the deep LSTM has the lowest value
in four of the six columns. Note that the Poisson log-likelihood accounts for the exposure-to-risk 𝑟𝑥,𝑡, meaning
that larger populations (e.g., common age-calendar year combinations) exert a greater influence on the metric.
Both mean squared errors do not take this into account, meaning that each age-calendar year combination
contributes to the metric equally. This might explain the abnormally high 𝑀𝑆𝐸log(𝑚) value of the saturated
model for men.

Table 2.1 Out-of-sample results and comparison between models and genders. The best results
are coloured (for all metrics, lower is better).𝑎

Female Male

Method 𝑀𝑆𝐸𝜅 −ℓPois 𝑀𝑆𝐸log(𝑚) 𝑀𝑆𝐸𝜅 −ℓPois 𝑀𝑆𝐸log(𝑚)
Saturated - 4177074 48.27666 - 4268134 46.37249
RWD 23.61284 4177416 48.81886 895.1521 4276868 42.08151
auto.arima 34.46983 4177574 49.04048 895.1521 4276868 42.08151
FNN 17.05528 4177325 47.91732 953.2425 4277466 41.92252
Shallow LSTM 18.18283 4177341 47.86107 892.6476 4276847 42.07866
Deep LSTM 16.01727 4177310 47.95765 859.3456 4276509 42.18155
𝑎 For the metrics 𝑀𝑆𝐸𝜅 and −ℓPois, we do not include the saturated model in the comparisons.

Since the deep LSTM seems to be the best performing model, we compare the predicted force of mortality
𝜇̂𝑥,𝑡 between the deep LSTM and the RWD method in Figure 2.5. We see that for females, the deep LSTM tends
to predict higher values than the RWD, especially for higher forces of mortality. The difference between the
two methods is barely noticeable for males in Figure 2.5b. The results in Figure 2.5 reinforce what we see in
Figure 2.4.
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Fig. 2.5 Comparing predicted force of mortality 𝜇̂𝑥,𝑡 between the deep LSTM and the RWD.

In Appendix B.3, we compare the models’ predicted log-forces of mortality with the observed log-forces
of mortality (see Figures B.2 and B.3). We also compare the models’ predicted number of deaths to the actual
number of deaths (see Figure B.4). From the latter comparison, we observe that all models perform poorly at
𝑥 = 30, tending to underestimate the actual number of deaths. All models also perform poorly for males aged
60, overshooting the actual number of deaths. In contrast, all models perform well for 𝑥 = 90.

Based on all the comparisons presented in this section and in Appendix B.3, we conclude that all models
perform similarly. This is likely due to the underlying Lee–Carter model, which restricts us to modelling the
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time index 𝜅𝑡. Furthermore, we have relatively few observations compared to the number of parameters in the
neural networks. This could be addressed by incorporating data from several countries and modelling them
simultaneously, similarly to our approach of modelling both genders together.

Alternatively, we could consider modelling the forces of mortality directly, as in [19]. Within our current
framework, we could also explore further tuning of the hyperparameters in the neural networks. Another im-
provement would be handling the NA values in the data—for example, replacing them with the average across
all countries in HMD [9].



Sammanfattning (Abstract in Swedish)

Under de senaste åren har ett flertal forskningsartiklar undersökt tillämpningen av djupinlärning inom försäkrings-
matematik. Syftet med denna uppsats är att ge en översikt av en sådan tillämpning: användningen av djupinlärn-
ingsmodeller för dödlighetsprognoser. Utgångspunkten är Lee–Carter-modellen där vi undersöker hur neuron-
nät kan användas för att extrapolera tidsindexet 𝜅𝑡. Vi beskriver parameterskattningen i Lee–Carter-modellen
och redogör för traditionella prognosmetoder, där 𝜅𝑡 typiskt modellerasmed en autoregressiv integrerad glidande
medelvärdesmodell (ARIMA-modell)—ofta en slumpvandring med drift. Därefter presenterar vi en översikt av
artificiella neuronnät, med fokus på rekurrenta neuronnät och derasmest använda variant, långa korttidsminnes-
nätverk (LSTM-nätverk). Metoderna tillämpas på svensk dödsfallsstatistik. Vi jämför framåtriktade neuronnät,
grunda LSTM-nätverk och djupa LSTM-nätverk med traditionell ARIMA-baserad prognostisering. Ensemblein-
lärning används för att minska den slumpmässighet som är förknippad med träning av neuronnät. Våra resultat
visar att neuronnät generellt sett presterar bättre än traditionella metoder för det givna datamaterialet.
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Appendix A

ARIMA models and Box–Jenkins
Method

We give a brief overview of ARIMA models and the Box–Jenkins method. Box et al. [2] provide a more detailed
explanation. Let (𝑍𝑡) ≔ (𝑍1, … , 𝑍𝑇) be a discrete time series, which we can think of as a realisation of a stochastic
process.

Definition A.0.1 (Stationary processes) If the probability distribution of 𝑍𝑡 is the same for all times 𝑡 ∈ {1, … , 𝑇 },
we have a stationary process. In particular, this implies a constant mean and variance

𝔼[𝑍𝑡] = 𝜇,

Var(𝑍𝑡) = 𝜎2𝑍 .

In a stationary process, we can estimate the mean 𝜇 with the sample mean of the time series

𝜇̂ = 1
𝑇

𝑇
∑
𝑡=1

𝑍𝑡,

and the variance 𝜎2𝑍 with the sample variance of the time series

𝜎̂2𝑍 = 1
𝑁

𝑁
∑
𝑡=1

(𝑍𝑡 − 𝜇̂)2.

The stationarity also implies that all joint probability distributions of 𝑍𝑡1 and 𝑍𝑡2 , for all times 𝑡1 and 𝑡2, are the
same. Therefore, the autocovariances and autocorrelations depend only on the lag ℎ, i.e.,

Cov(𝑍𝑡, 𝑍𝑡+ℎ) = 𝛾ℎ,

and
Corr(𝑍𝑡, 𝑍𝑡+ℎ) = 𝜌ℎ =

𝛾ℎ
𝜎2𝑍

.

The autocovariance can be estimated with the sample autocovariance of the time series

̂𝛾ℎ =
1
𝑇

𝑇−ℎ
∑
𝑡=1

(𝑍𝑡 − 𝜇̂)(𝑍𝑡+ℎ − 𝜇̂),

and the autocorrelation with the sample autocorrelation of the time series

̂𝜌ℎ =
̂𝛾ℎ
𝜎̂2𝑍

.

Definition A.0.2 (Autocorrelation function) The autocorrelation function ACF(ℎ) of a stochastic process re-
turns the autocorrelation 𝜌ℎ at lag ℎ, i.e.,

ACF(ℎ) = 𝜌ℎ.

We can estimate the ACF with
ÂCF(ℎ) = ̂𝜌ℎ,

where ̂𝜌ℎ is the sample autocorrelation of the time series.

27
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Stationary processes are easy to work with. However, the time series (𝑍𝑡) is not always stationary. We
introduce the autoregressive integrated moving average (ARIMA) model for non-stationary time series. The
ARIMA model is defined by

(1 −
𝑝
∑
𝑘=1

𝜙𝑘𝐵𝑘)∇𝑑𝑍𝑡 = 𝛿 + (1 −
𝑞
∑
𝑘=1

𝜃𝑘𝐵𝑘) 𝜀𝑡, (A.1)

where:

• 𝐵 is the backward shift operator, such that 𝐵𝑘𝑧𝑡 = 𝑧𝑡−𝑘,

• ∇𝑑 ≔ (1 − 𝐵)𝑑 represents the 𝑑th-order differencing operator,

• 𝜙𝑘, for 𝑘 ∈ {1, … , 𝑝}, are the auto-regressive (AR) coefficients,

• 𝜃𝑘, for 𝑘 ∈ {1, … , 𝑞}, are the moving average (MA) coefficients,

• 𝛿 is the drift term.

Definition A.0.3 (Stationarity and invertibility of ARIMA) The time series (∇𝑑𝑍𝑡) in the ARIMA model (A.1) is
stationary, if all the roots of the equation

1 −
𝑝
∑
𝑘=1

𝜙𝑘𝐵𝑘 = 0, (A.2)

lie outside the unit circle. Similarly, (∇𝑑𝑍𝑡) is invertible if all the roots of the equation

1 −
𝑞
∑
𝑘=1

𝜃𝑘𝐵𝑘 = 0, (A.3)

lie outside the unit circle.

The Box–Jenkinsmethod (see, e.g., [2, pp. 177–392]) applies ARIMAmodels to find the best fit of a time series.
The method has three steps: model identification, parameter estimation, and model diagnostics and forecasting
(in some literature, the third step of model diagnostics and forecasting is divided into two steps). The first step
ismodel identification. The goal in this step is to find possible models by analysing the estimated ACF of the time
series.

We also analyse the estimated partial autocorrelation function PACF(ℎ), a function that returns the partial
autocorrelations at lag ℎ. The partial autocorrelation at lag ℎ, denoted 𝜙ℎ,ℎ, are obtained by solving the Yule–
Walker equations

⎛
⎜
⎜
⎝

1 𝜌1 𝜌2 … 𝜌ℎ−1
𝜌1 1 𝜌1 … 𝜌ℎ−2
⋮ ⋮ ⋮ ⋱ ⋮

𝜌ℎ−1 𝜌ℎ−2 𝜌ℎ−3 … 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝜙𝑘,1
𝜙𝑘,2
⋮

𝜙𝑘,𝑘

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝜌1
𝜌2
⋮
𝜌𝑘

⎞
⎟
⎟
⎠

.

We obtain an estimate ̂𝜙ℎ,ℎ of the partial autocorrelation 𝜙ℎ,ℎ by substituting the autocorrelations 𝜌ℎ with the
sample autocorrelations ̂𝜌ℎ. Thus, the estimated PACF is

P̂ACF(ℎ) = ̂𝜙ℎ,ℎ.

We first assess whether the time series (𝑍𝑡) is stationary or not by looking at the estimated ACF. The estimated
ACF should die out quickly; if it does not, we need to difference (𝑍𝑡) until it does. This determines a suitable
degree of differencing 𝑑.

Once (𝑍𝑡) is stationary, we look at the estimatedACF and PACF to find possiblemodels. Wewant to determine
the degree 𝑝 of the AR component and the degree 𝑞 of the MA component. In [2], the authors do this by
comparing the estimated ACF and PACF to the theoretical ones of known stationary processes. Table A.1, taken
from [17], summarises how we can use the estimated ACF for model identification. The behaviour of both the
ACF and PACF for the most common ARIMA models is presented in Table 6.1 in [2, p. 184], which also provides
preliminary estimates of the AR- andMA coefficients. Figure A.1 shows the theoretical behaviour corresponding
to the entries in Table A.1. In practice, the estimated ACF will inevitably contain noise, making the first step of
model identification especially challenging.

Another common method to identify the stationary process is to determine 𝑝 by looking at how many lags
of the estimated PACF “stick out”. We can determine 𝑞 analogously by looking at the estimated ACF.

The model identification step is subjective, and often we end up with several possible models. Lastly, once
we have potential models, we can make preliminary estimates of the parameters to act as starting values for
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the next step. As mentioned above, Table 6.1 in [2, p. 184] shows initial parameter estimates of some common
models.

The second step is parameter estimation for the possible models identified in the first step This is typically
done using maximum likelihood estimation or non-linear least squares estimation, the latter being less com-
mon. In this step, we can also compare the possible models in different measures, such as Akaike’s information
criterion (AIC), to choose a “final” model.

Once we have chosen a model from the previous step, we perform model diagnostics and forecasting. The
residuals should be independent of each other and have a constant mean and variance over time, i.e., we seek
to verify that the residuals are white noise. We can do this graphically or perform a statistical test such as the
Ljung–Box test (see, e.g., [16]). We can also check that our model is stationary and invertible by checking the
roots of (A.2) and (A.3), respectively. If all conditions are met, we can proceed with the forecasting. If not, we
must return to our previous steps and attempt to build a better model.

Once we have found a model that has passed the model diagnostics, we use it to forecast. Usually, we predict
𝑍𝑇+𝑙 (𝑙 time steps into the future) by taking the conditional expectation given the process up to time 𝑇. We can,
for example, isolate 𝑍𝑇+𝑙 in (A.1) and use the following substitutions where ℱ𝑇 is the filtration up to time 𝑇:

• Since 𝔼[𝑍𝑇−𝑗 ∣ ℱ𝑇] = 𝑍𝑇−𝑗, for 𝑗 = 0, 1, … , 𝑇 − 1, we leave 𝑍𝑇−𝑗 unchanged.

• We replace 𝑍𝑇+𝑗, for 𝑗 = 1, 2, … , with the forecasted values 𝑍̂𝑇+𝑗. This is done recursively.

• For 𝑗 = 0, 1, … , 𝑇 − 1, we have 𝑐𝑇−𝑗 ≔ 𝔼[𝜀𝑇−𝑗 ∣ ℱ𝑇] = 𝑍𝑇−𝑗 − 𝑍̂𝑇−𝑗. Therefore, we replace 𝜀𝑇−𝑗 with 𝑐𝑇−𝑗.

• Since 𝔼[𝜀𝑇+𝑗 ∣ ℱ𝑇] = 0, for 𝑗 = 1, 2, … , we replace 𝜀𝑇+𝑗 with 0.

Table A.1 Summary of the shape of the ACF and the indicated model.

Behaviour Indicated model Note Figure

Exponential decay to zero𝑎 ARIMA(𝑝, 0, 0) Use PACF to identify order 𝑝 A.1a

Few spikes, rest are essentially zero ARIMA(0, 0, 𝑞) Order 𝑞 determined by number of non-
zero autocorrelations

A.1b

Decay starting after a few lags ARIMA(𝑝, 0, 𝑞) PACF should also have similar behaviour A.1c

All zero or close to zero ARIMA(0, 0, 0) Random noise A.1d

No decay or slow decay to zero ARIMA(𝑝, 𝑑, 𝑞) We need to difference the time series A.1e
𝑎 Possibly alternating between positive or negative values.
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(b) ARIMA(0, 0, 2)
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(c) ARIMA(1, 0, 3)
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(d) ARIMA(0, 0, 0)
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(e) ARIMA(0, 1, 0)

Fig. A.1 Theoretical (darker) and estimated ACF (lighter) of some common ARIMA models.



Appendix B

Code Listings, Tables, and Figures

B.1 Summary of Neural Networks Used

Listing B.1 Building the neural networks for Lee–Carter forecasting in R using keras3.

1 library(keras3)
2
3 lstm_input <- layer_input(shape = c(lookback , 1), name = "Sequential")
4 fnn_input <- layer_input(shape = c(lookback), name = "Sequential")
5 gender <- layer_input(shape = c(1), name = "Gender")
6
7 lstm <- lstm_input %>%
8 layer_lstm(
9 units = 15,

10 activation = 'tanh',
11 recurrent_activation = 'sigmoid ',
12 name = 'LSTMLayer '
13 )
14
15 fnn <- fnn_input %>%
16 layer_dense(units = 15, activation = 'relu', name = "FNLayer1") %>%
17 layer_dense(units = 10, activation = 'relu', name = "FNLayer2") %>%
18 layer_dense(units = 5, activation = 'relu', name = "FNLayer3")
19
20 lstm_deep <- lstm_input %>%
21 layer_lstm(
22 units = 15,
23 activation = 'tanh',
24 recurrent_activation = 'sigmoid ',
25 name = 'LSTMLayer1 ',
26 return_sequences = TRUE
27 ) %>%
28 layer_lstm(
29 units = 10,
30 activation = 'tanh',
31 recurrent_activation = 'sigmoid ',
32 name = 'LSTMLayer2 ',
33 return_sequences = TRUE
34 ) %>%
35 layer_lstm(
36 units = 5,
37 activation = 'tanh',
38 recurrent_activation = 'sigmoid ',
39 name = 'LSTMLayer3 '
40 )
41
42 output1 <- list(lstm , gender) %>%
43 layer_concatenate () %>%
44 layer_dense(units = 10, activation = 'tanh', name = "FNLayer") %>%
45 layer_dense(units = 1, activation = 'linear ', name = "Output")
46
47 output2 <- list(fnn , gender) %>%
48 layer_concatenate () %>%
49 layer_dense(units = 10, activation = 'tanh', name = "FNLayer4") %>%

31
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50 layer_dense(units = 1, activation = 'linear ', name = "Output")
51
52 output3 <- list(lstm_deep , gender) %>%
53 layer_concatenate () %>%
54 layer_dense(units = 10, activation = 'tanh', name = "FNLayer") %>%
55 layer_dense(units = 1, activation = 'linear ', name = "Output")
56
57 # Shallow LSTM
58 model1 <- keras_model(inputs = list(lstm , gender), outputs = c(output1))
59
60 # FNN
61 model2 <- keras_model(inputs = list(fnn , gender), outputs = c(output2))
62
63 # Deep LSTM
64 model3 <- keras_model(inputs = list(lstm_deep , gender), outputs = c(output3))

Table B.1 Summary of the FNN.

Layer (type) Output Shape Param # Connected to

Sequential (InputLayer) (None, lookback) 0 –
FNLayer1 (Dense) (None, 15) 820 Sequential[0][0]
FNLayer2 (Dense) (None, 10) 315 FNLayer1[0][0]
FNLayer3 (Dense) (None, 5) 160 FNLayer2[0][0]
Gender (InputLayer) (None, 1) 0 –
concatenate (Concatenate) (None, 6) 0 FNLayer3[0][0],

Gender[0][0]
FNLayer4 (Dense) (None, 10) 70 concatenate[0][0]
Output (Dense) (None, 1) 11 FNLayer4[0][0]

Total params: 1,306
Trainable params: 1,306
Non-trainable params: 0

Table B.2 Summary of the shallow LSTM.

Layer (type) Output Shape Param # Connected to

Sequential (InputLayer) (None, lookback, 1) 0 –
LSTMLayer (LSTM) (None, 15) 1020 Sequential[0][0]
Gender (InputLayer) (None, 1) 0 –
concatenate (Concatenate) (None, 6) 0 LSTMLayer[0][0],

Gender[0][0]
FNLayer (Dense) (None, 10) 170 concatenate[0][0]
Output (Dense) (None, 1) 11 FNLayer[0][0]

Total params: 1201
Trainable params: 1201
Non-trainable params: 0
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Table B.3 Summary of the deep LSTM.

Layer (type) Output Shape Param # Connected to

Sequential (InputLayer) (None, lookback, 1) 0 –
LSTMLayer1 (LSTM) (None, 5, 15) 1020 Sequential[0][0]
LSTMLayer2 (LSTM) (None, 5, 10) 1040 LSTMLayer1[0][0]
LSTMLayer3 (LSTM) (None, 5) 320 LSTMLayer2[0][0]
Gender (InputLayer) (None, 1) 0 –
concatenate (Concatenate) (None, 6) 0 LSTMLayer3[0][0],

Gender[0][0]
FNLayer (Dense) (None, 10) 70 concatenate[0][0]
Output (Dense) (None, 1) 11 FNLayer[0][0]

Total params: 2461
Trainable params: 2461
Non-trainable params: 0
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B.2 Out-of-Sample Trajectories
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Fig. B.1 Out-of-sample simulated trajectories of the increment 𝑒𝑡.
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B.3 Out-of-Sample Results
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Fig. B.2 Observed and predicted log-mortality using different methods for females.
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Fig. B.3 Observed and predicted log-mortality using different methods for males.
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Fig. B.4 Observed and predicted number of deaths using different methods.


