
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

Boosting Regression Models With
Neural Networks, Because We CANN
Luciano Egusquiza Castillo

Matematiska institutionen

Masteruppsats 2025:13
Försäkringsmatematik
Juni 2025

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2025:13

http://www.math.su.se

Boosting Regression Models With Neural

Networks, Because We CANN

Luciano Egusquiza Castillo∗

June 2025

Abstract

The purpose of this thesis is to gain an understanding of neural
networks and how they can be used to boost regression models. A
theoretical foundation is presented, covering both generalized linear
models (GLMs) and feed-forward neural networks (FNNs). This is
followed by application in a non-life actuarial environment using the
well–studied dataset freMTPL2freq, which contains French insurance
data. GLMs are used as cornerstone models and are compared with
feed-forward neural networks FNNs. Subsequently, the two are com-
bined into a combined actuarial neural network (CANN) model in an
attempt to boost the initial GLM model via skip connection, with
successful results.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: Luciano.EC90@gmail.com. Supervisor: Filip Lindskog.

Sammanfattning

Syftet med denna uppsats är att skapa en förståelse för neuronnät och hur de kan an-
vändas för att förbättra regressionsmodeller. En teoretisk grund presenteras, som täcker
både generaliserade linjära modeller (GLM:er) och neuronnät (FNN:er). Därefter följer en
tillämpning inom aktuariell sakförsäkring på det välstuderade datasetet freMTPL2freq, som
innehåller fransk försäkringsdata. GLM:er används som grundmodeller och jämförs med
FNN:er i termer av prediktiv förmåga. Därefter kombineras de två till ett sammansatt ak-
tuariellt neuronnät (CANN) i ett försök att förbättra den ursprungliga GLM-modellen via
genvägskoppling med lyckosamma resultat.

iii

Preface

This thesis ought to satisfy the degree project corresponding to 30 ECTS credits for a
degree of Master of Science (filosofie master) in actuarial mathematics at the Department
of Mathematics at Stockholm University.

I want to extend my deepest gratitude to my supervisor, Professor Filip Lindskog, for
his support, insightful guidance, and exceptional mentorship throughout the writing of this
thesis. For always being humble, yet giving the necessary push when needed. Thank you,
Filip.

Amanuensis Leo G. Levenius, for your grammatical and mathematical support — and
for persistently reminding me that patience is, indeed, a virtue I am yet to master. Med all
vördnad och tacksamhet, tillägnas detta dig, min käre vän.

Amanuensis Jack Zhan, for your deep mathematical intuition, your patience when dis-
cussing topics, having to explain them once or twice too many times without ever complaining
when I turned to you with a confused look on my face. 谢谢你，我的兄弟。

iv

Contents

Abstract i

Sammanfattning (Abstract in Swedish) iii

Preface iv

1 Introduction 1
1.1 History of Insurance and Regression Modeling 1
1.2 Background . 1
1.3 Models and Methods . 2
1.4 Pure Premium, Claim Frequency, and Claim Severity 2
1.5 Key Ratios and Tariffs . 4

2 Generalized Linear Models 6
2.1 Exponential Dispersion Models . 6
2.2 Probability Distribution of Claim Frequency 7
2.3 Probability Distribution of Claim Severity 7
2.4 Tabular Form and List Form . 8
2.5 Link Function . 9
2.6 Estimating the Parameters . 10
2.7 Optimization Problem . 10

3 Neural Networks 12
3.1 Different Names, Different Periods . 12
3.2 Deep Feed-forward Networks . 12
3.3 Activation Functions . 14
3.4 Comparing GLMs with FNNs . 15
3.5 An Intuitive Point of View . 15
3.6 CANN . 16

4 Training the Network 18
4.1 Challenges When Compared With GLMs . 18
4.2 Gradient Descent Methods . 18
4.3 Back-Propagation . 19
4.4 Early Stopping . 20
4.5 Stochastic Gradient Descent . 22

v

4.6 Momentum-Based Gradient Descent Methods 23

5 Data, Coding, and Pre-Processing 24
5.1 Coding . 24
5.2 Data . 24
5.3 Loss Functions . 27
5.4 GLM Feature Pre-Processing . 27
5.5 The GLMs . 28
5.6 FNN Feature Pre-Processing . 29
5.7 FNN Coding . 30

6 Application 34
6.1 FNN Models . 34
6.2 GLM-CANNs . 36
6.3 GBM-CANNs . 38
6.4 Results . 40

7 Conclusion 41

Bibliography 43

A Code Listings 46

B Figures 48

Chapter 1

Introduction

1.1 History of Insurance and Regression Modeling

What sparked the foundations of insurance as we know it today was the need to protect
merchants from financial losses during risky trade expeditions. In a more general sense, in-
surance met the need to protect individuals or companies financially if certain unpredictable
events were to occur. For instance, if one’s house were to burn down, the financial reper-
cussions of such an event would be devastating to a single individual, resulting in financial
ruin.

However, having one’s house burn down is a highly unlikely event. Therefore, if the risk
of such an event is shared amongst a large group of individuals, the loss for each of the
individuals will be tolerable. In fact, the need for such protection gave birth to one of the
first fire insurance companies [5], dating back to 1705.

In terms of regression modeling as we know it today, the Gaussian linear regression was
developed by Gauss and Legendre and published in Nouvelles méthodes pour la détermination
des orbites des comètes raditional in 1805 [16].1 Gaussian linear regression became a staple
in the actuarial science until generalized linear models (GLMs) were developed, in the 1970s.
They were introduced by Nedler and Wedderburn into the actuarial world [24] and were
further explored upon by McCullagh and Nedler in their published book [20] Till this day,
GLMs continue to be a staple tool for actuaries and statisticians in general.

1.2 Background

An insurance policy is a contract agreed upon between an insurance company, the insurer,
and a policyholder, the customer. The insurance policy could be considered as a commitment
from the insurer’s behalf to offer the policyholder economic compensation in the case of
certain unpredictable events occurring during a specific time period, usually one year. In
compensation for this, the insurance company charges a fee, this fee is what is referred to as
the premium.

The essential basis of non-life insurance pricing lies in the ability to determine the price
1For the historically curious reader, this is covered in more detail in The history of statistics [34].

1

1.4 Pure Premium, Claim Frequency, and Claim Severity 2

of an insurance policy. This is done by taking into consideration various properties of the
object in question in need of insurance, but also the policyholder. These properties are
referred to as covariates or features, in a modeling context.

This is where an actuary comes in. An actuary’s main task within non-life pricing is
to assess data and apply the appropriate methods and models in order to achieve the best
results. That is, to determine the premium of an insurance policy as accurately as possible
in a market-competitive and risk-assessed manner.

1.3 Models and Methods

As mentioned, an actuary’s main task within insurance pricing is to determine the premium
of an insurance policy. This is done by regression, which essentially means modeling a
relationship between an outcome, or response, and some independent variables, the features.
An actuary is more often interested in using regression for predictive purposes, i.e. to model
future, unknown premiums for insurance contracts not yet to be signed. In other words,
given some features x = (x1, x2, ..., xn), predict the unobserved response y by the estimation
ŷ using regression models.

The GLMs are nowadays considered a backbone within the actuarial field, mainly because
they are well-studied, easy to use, and highly interpretable. There are, of course, downsides
to these models. GLMs are bound by their linear limitations, and when working with GLMs,
the treatment of interactive terms is often a tedious and time-consuming task. Interactivity
and non-linear patterns may be important to capture in order to increase one’s predictive
power, which is why more modern methods may be suitable alternatives.

The generalized additive models (GAMs) are also commonly used. These models replace
the features of the GLM with smooth functions [9], allowing for more non-linear patterns to
be caught in data, which alleviates some of the concerns of the GLM.

The increased abundance and complexity of data have made models requiring less actu-
arial manual intervention popular, in particular machine learning. Methods such as gradient
boosting machines (GBMs) [28] and neural networks (NNs) have risen in popularity. M.
V. Wüthrich and M. Merz write about an array of methods in Statistical Foundations of
Actuarial Learning and its Applications [37]. In this thesis, NNs, as well as, in particular
combined actuarial neural networks (CANN), are studied and evaluated. The concept of
CANN was initially proposed by Wüthrich and Merz in Yes, we CANN! [36]. The purpose
of the CANN is to use neural networks to boost traditional models such as GLMs to achieve
better predictive power while still maintaining a degree of interpretability.

1.4 Pure Premium, Claim Frequency, and Claim Severity

The following section is heavily inspired by F. Lindskog, who covers the subject in more
detail in Non-life pricing essentials [19].

In a more mathematical and formal manner, we may represent an insurance contract by
a triplet (X, Z, V), where X ∈ X is the feature vector, X the feature space, Z is the claim
cost, and V is the contract duration. The feature vector X is unknown until a contract

1.4 Pure Premium, Claim Frequency, and Claim Severity 3

is agreed upon, at which point it collapses to some non-random vector x consisting of the
observed features of the insured and the object in question. We let π(x) denote the function
mapping the observed features x to a one-year premium,

π : X → R≥0, (1.1)

x 7→ π(x). (1.2)

Furthermore, if a contract with features x is assigned the one-year premium π(x), we assume
that the earned premium is V π(x), where V is a observed contract duration.

If the expected value of the earned premium, V π(x) is equivalent to the expected value
of the claim cost, we say it is a fair actuarial premium, i.e. if

E[V π(X) | X] = E[Z | X]. (1.3)

What this states is that the expected earned premium should be equal to the expected
claim cost given available information X at the time the contract is agreed upon. We note
that, since π(X) is conditioned on X, π(X) is considered non-stochastic. Consequently,
Equation (1.3) may be re-express as

E[V π(X) | X] = E[V | X]π(X) = E[Z | X], (1.4)

meaning the one-year premium can be expressed as

π(X) =
E[Z | X]

E[V | X]
. (1.5)

Suppose Z can be expressed as a sum of individual claims, i.e., Z =
∑N

j=1Cj, where Cj

represents claim j. Also, suppose that the number of claims N is, conditioned on X and V ,
independent of the sequence of claim sizes (Cj). Lastly, suppose that (Cj) is a sequence of
independent and identically distributed random variables when conditioned on X, indepen-
dent of V . Then

E[Z | X] = E
[
E[Z | V,X] | X

]
= E

[
E[N | V,X]E[C | V,X] | X

]
= E

[
E[N | V,X]E[C | X] | X

]
= E

[
E[N | V,X] | X]E[C | X

]
= E[N | X]E[C | X] = πN(X)πC(X).

This factorization is important. It means we can estimate two expectations separately,
since otherwise, large variability in claim size would introduce noise, leading to less accurate
estimates. This is why, when modeling for pure premium, actuaries often model claim
frequency and claim severity separately. That is

Pure premium = claim frequency × claim severity.

1.5 Key Ratios and Tariffs 4

This implies that πN is the theoretical function that solves the minimization problem

f ∗ = argmin
f

E[V · L(N
V
, f(X))], (1.6)

where L is a loss function, which is a function used to measure and penalize deviances
between actual observations and approximations made by a function f . Empirically, we
estimate the right-hand side of Equation (1.6) by the mean of the loss over some sample of
data

f̂ ∗ = argmin
f∈F

1

n

n∑
i

viL(yi, f(xi;θi)), (1.7)

where θ is the parameter vector. In other words, we find a function f ∈ F that approximates
f ∗, where F is a set of sufficiently many functions.

In Lindholm et al. [18] this is explored upon further, as well as an alternative, weight-
adjusted probability measure, Pv, albeit it will not be covered in this thesis.

1.5 Key Ratios and Tariffs

The pure premium is called a key ratio [27, p. 6]. A key ratio, Ỹ , is a ratio between the
outcome of a random variable, Y , and a volume measure, V , commonly referred to as an
exposure such that Ỹ = Y

V
. In the case of pure premium, the duration is the exposure. In

the case of claim frequency, Y denotes the number of claims, V the duration, and in the case
of claim severity, Y is the total claim cost and V is the number of claims.

When modeling, as previously mentioned, an actuary observes several relevant properties
of the policyholder as well as the insured object, which are referred to as features. Using
these features, an actuary computes relevant key ratios and presents them in a table, the
tariff. Features may be categorical by nature, or they may be formed by dividing variables
into classes, e.g., age into age intervals. The main goal of tariff analysis is to gain an
understanding of how a key ratio, Ỹ , behaves under variations of the different features.

Table 1.1: An example of a simple tariff using two features.

Class Age Duration No.
Claims

Claim
Frequency

Claim
Severity

Pure
Premium

Actual
Premium

1 1 62.9 17 270 18,256 4,936 2,049
1 2 112.9 14 124 13,632 845 1,230
1 3 133.1 9 68 20,877 1,411 762
1 4 376.6 7 19 13,045 242 396
2 1 4.4 1 228 8,018 1,829 396
2 2 352.1 52 148 8,232 1,216 1,229
2 3 840.1 69 82 7,418 609 738
2 4 1378.3 75 54 7,318 398 457

1.5 Key Ratios and Tariffs 5

An example of how a tariff could look is shown in Table 1.1. This tariff is a simplified,
non-accurate tariff inspired by one based on real data [27, p. 5]. The feature Class has two
different groups, 1 or 2. Age is divided into 4 sub-intervals, each represented by a group.

Chapter 2

Generalized Linear Models

While Gaussian linear regression has long served as a foundational tool in statistical mod-
eling, its applicability is often limited due to a set of restrictive assumptions. Generalized
Linear Models (GLMs) were introduced as a more flexible alternative that relaxes many of
these constraints. Specifically, Gaussian linear regression relies on the following assumptions:

• Linear regression models assume homoscedasticity, i.e., the residuals ϵi, have constant
variance and for all i.

• Normality and zero mean of residuals is also assumed for all i

ϵi ∼ N(0, σ2).

• The expected value is a linear function of the features x. This means the identity link
is assumed to be the appropriate link-function, see Section 2.5 for details.

2.1 Exponential Dispersion Models

GLMs relax the assumption of a normal distribution; rather, GLMs work with a general class
of distributions depending on what the presumed response distribution is. These are called
the exponential dispersion models (EDMs) [27, pp. 16–25]. The term exponential dispersion
model was introduced by Jørgensen [14] but stems from a much older idea [38]. Some of
the common distributions amongst the EDMs are normal, Poisson, gamma, and negative
binomial. The probability distribution of an EDM is given by

fYi
(yi; θi, ϕ) = exp

{yiθi − b(θi)

ϕ/vi
+ c(yi, ϕ, vi)

}
. (2.1)

Where yi is the observed outcome of Yi, θi is the canonical parameter, ϕ is the dispersion
parameter, and b is the cumulant function. The function c is of little interest in GLM theory
[27, p. 17]. The EDMs also have the convenient property that

E[Y] = µ = b′(θ), (2.2)

Var(Y) = V (µ)ϕ/v. (2.3)

6

2.3 Probability Distribution of Claim Severity 7

The function V (·) is known as the variance function [27, p. 23] and expresses the relationship
between the mean and the variance of a response, Y , following an EDM distribution.

V : R → R≥0, (2.4)

µ 7→ V (µ) = b′′(b
′−1(µ)). (2.5)

2.2 Probability Distribution of Claim Frequency

The following presentation coincides with that of Ohlsson and Johansson [27, pp. 18–20].
Let N(t) be the number of claims for an individual policy within the time interval [0, t],
with N(0) = 0. The counting process {N(t); t ≥ 0} is called the claims process. Cramér [4,
pp. 9–11] showed that under certain assumptions, the claims process is a Poisson process.
The theoretical details of the Poisson process is covered by Levenius [17, p. 19]. Thus, it is
reasonable to assume a Poisson distribution for the number of claims of an individual policy
during any given period of time. What remains of desire is to express the frequency function
in the form of Equation (2.1). If this is possible, it validates that it is an EDM and thus
can be modeled using GLMs. Letting Yi be the number of claims for observation i, with
the duration Vi as exposure, the claim frequency is Ỹi = Yi/Vi. As a result, the frequency
function for Ỹi is

fỸi
(ỹi;µi) = P(Ỹi = ỹi) = P(Yi = viỹi) = eviµi

(viµ
viỹi
i)

(viỹi)!

= exp{ ỹi log(µi)− µi

1/vi
+ viỹi log(vi)− log(viỹi!)}, (2.6)

parameterizing with θi = log(µi) yields

fỸi
(ỹi; θi, ϕ) = exp{ ỹiθi − eθi

1/vi
+ viỹi log(vi)− log(viỹi!)}. (2.7)

This is an EDM with c(ỹi, vi) = viỹi log(vi)− log(viỹi!), θi = log(µi) and b(θi) = eθi . Here, i
denotes tariff cell i having data organized in list form1.

2.3 Probability Distribution of Claim Severity

By Ohlsson and Johansson [27, pp. 20–21], we drop the index i for simplicity. Here, Y is the
total claim cost for a cell, and the exposure, V , is the number of claims. One relevant detail
that is not always obvious is that we condition on the number of claims when modeling for
claim severity; given this conditioning, V is non-random2.

The argument for which distribution to assume for claim severity is not as straightfor-
ward as in the case of claim frequency. Data tends to be positive and skewed to the right,

1List form is explained in Section 2.4
2This holds for the remainder of this thesis. Unless stated otherwise, we condition on the exposure, V = v.

2.4 Tabular Form and List Form 8

but several distributions fulfill this behavior. That being said, nowadays it is more or less
standard to assume that claim severity follows a gamma distribution [23, p. 10].

Assuming that the cost of an individual claim is gamma distributed, i.e., letting v = 1,
and using index parameter α > 0, scale parameter β > 0 the frequency function for an
individual claim is

f(y) =
βα

Γ(α)
yα−1e−βy; y > 0, (2.8)

where Γ is the gamma function [27, p. 135]. This distribution is denoted Gamma(α, β),
having expectation α/β and variance α/β2. In general, for v ≥ 1, Y ∼ Gamma(vα, β). This
is because the sum of independent gamma-distributed random variables with the same scale
parameter is itself gamma-distributed with the same scale parameter and the sum of the
index parameters as its index parameter, which in this case is vα. This means that, given
claim severity Ỹ = Y/v (so that Y = Ỹ v), the frequency function is

fỸ (ỹ) = vfY (vỹ) =
(vβ)vα

Γ(vα)
ỹvα−1e−vβỹ; ỹ > 0,

yielding the resulting distribution Ỹ ∼ Gamma(vα, vβ), with expectation α/β. Re-parameterizing
with µ = α/β and ϕ = 1/α we can express the frequency function as

fỸ (ỹ) = fỸ (ỹ;µ, ϕ) =
(vβ)vα

Γ(vα)
ỹvα−1e−vβỹ

= exp
{−ỹ/µ− log(µ)

ϕ/v
+ c(ỹ, ϕ, v)

}
; ỹ, µ, ϕ > 0, (2.9)

where c(ỹ, ϕ, v) = log(vỹπ)v/ϕ − log(ỹ) − log Γ(v/ϕ). As a final parameter adjustment, we
set θ = −1/µ in Equation (2.9), where θ < 0 since µ > 0. Re-introducing the indexation, i,
the frequency function of the claim severity Ỹi is

fỸi
(ỹi, θi, ϕ) = exp

{ ỹiθi + log(−θi)

ϕ/v
+ c(ỹi, ϕ, vi)

}
. (2.10)

This aligns with Equation (2.1), indicating that the distribution is an exponential disper-
sion model (EDM) with b(θi) = − log(−θi). Therefore, claim severity can be appropriately
modeled using GLMs.

2.4 Tabular Form and List Form

Getting back to Table 1.1, in tabular form we denote the expected value of key ratio i, j
as µij where i denotes the group of the first feature, Class, and j denotes the group of the
second feature, Age. We assume a multiplicative model structure for the mean:

µi,j = γ0γ1iγ2j, (2.11)

where γ1i and γ2j correspond to the different parameters for the respective features. Taking
the logarithm of this yields

log(µi,j) = log(γ0) + log(γ1i) + log(γ2j). (2.12)

2.5 Link Function 9

By sorting the cells of Table 1.1 in order; (1, 1), (1, 2), (1, 3), . . . , (2, 4), followed by setting
some base cell,3 say (1, 1) and letting β1 = log(γ0), β2 = log(γ12), . . . , β5 = log(γ24) we may
express Equation 2.12 in list form [27, p. 26]

log(µi) =
5∑

j=1

xijβj; i = 1, 2, . . . , 8. (2.13)

The above equation uses xij as a dummy variable, i.e., xij = 1{βj included inµi}. We can express
this in matrix form, log(µ) = Xβ, where X is the design matrix

log(µ) =



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


, X =



x11 x12 x13 x14 x15

x21 x22 x23 x24 x25

x31 x32 x33 x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

x61 x62 x63 x64 x65

x71 x72 x73 x74 x75

x81 x82 x83 x84 x85


, β =


β1

β2

β3

β4

β5

 .

2.5 Link Function

Besides allowing the response, Y , to follow a distribution belonging to the EDMs, the mean is
not restricted to being a linear function of the features, x. Rather, we introduce a monotone
and differentiable function, g(·), known as the link function that maps the mean to a linear
structure.4 In other words, by using a linear predictor ηi, such that

ηi =
r∑

j=1

xijβj; i = 1, 2, . . . , n.

The link function links the mean to this linear predictor

g(E[Yi]) = g(µi) = ηi =
r∑

j=1

xijβj. (2.14)

Since we are working with multiplicative models, i.e., E[Yi] = exp{
∑r

j=1 xijβj}, g(·) is a
logarithmic link function, often simply referred to as a log link

g(µi) = log(µi). (2.15)
3By setting (1, 1) as base cell, γ11 = γ2,1 = 1, which is why there are only 5 β-parameters in this case.
4Technically, having a linear structure in this context is still considered a link-function, but specifically

the identity link.

2.7 Optimization Problem 10

2.6 Estimating the Parameters

Typically, for a given set of observed data, estimating the β is done by finding their maximum
likelihood estimates (MLEs). Assuming list form and independence between observations,
the log-likelihood based on n observations with respect to the parameter vector θ is

ℓ(θ;ϕ,y) =
1

ϕ

n∑
i

vi(yiθi − b(θi)) +
n∑
i

c(yi, ϕ, vi). (2.16)

We want to express ℓ with respect to β rather than θ, this can be done by using the relations
µi = b′(θi) as well as the link function g(µi) = ηi =

∑r
j=1 xijβj. Differentiating ℓ with respect

to βj yields

∂ℓ

∂βj

=
n∑
i

∂ℓ

∂θi

∂θi
∂βj

=
1

ϕ

n∑
i

(
viyi − vib

′(θi)
) ∂θi
∂βj

=
1

ϕ

n∑
i

(
viyi − vib

′(θi)
) ∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

. (2.17)

Recalling Equation (2.2), it was stated that µi = b′(θi), as well as b′′(θi) = V (µi). By using
this, we observe that ∂µi/∂θi = ∂b′(θi)/∂θi = b′′(θi). This is used in combination with the

inverse relation ∂θi
∂µi

=
(

∂µi

∂θi

)−1

, consequently, we arrive at ∂θi/∂µi = 1/V (θi). As a result of
using the same inverse relation, as well as Equation (2.14) which states ηi = g(µi), the second
partial derivative yields 1/g′(µi). As for the final partial derivative, using ηi =

∑r
j xijβj, we

end up with ∂ηi/∂βj = xij. Adding this all up, the concluding form of the differentiation is
what is commonly known as the score function [27, p. 32]

∂ℓ

∂βj

=
1

ϕ

n∑
i

vi
yi − µi

V (µi)g′(µi)
xij. (2.18)

When maximizing ℓ with respect to β, ϕ is redundant and can therefore be ignored. Fur-
thermore, setting Equation 2.18 equal to zero for j = 1, ..., r yields the desired ML equations

n∑
i

vi
yi − µi

V (µi)g′(µi)
xij = 0, j = 1, . . . , r. (2.19)

which when solved with respect to β corresponds to obtaining the maximum likelihood
estimate, β̂.

2.7 Optimization Problem

So what do we want to achieve by estimating β by maximum likelihood? We return to the
empirical estimation of Equation (1.7), where the goal was to find

f̂ ∗ = argmin
f∈F

1

n

n∑
i

viL(yi, f(xi;θi)). (2.20)

2.7 Optimization Problem 11

Both maximum likelihood estimation and empirical loss minimization address the same fun-
damental objective, assuming a deviance loss [27, pp. 39–41] is chosen as a loss function,
which is conventional when modeling with GLMs. This is because the deviance loss functions
use the negative log likelihood of a given model. In other words, assuming F is a family of
GLM functions satisfying f(x;β) = g(⟨x,β⟩), and by using parameter vector θ = β, the
two following problems are the same [37, p. 81]:

β̂
MLE

= argmax
β

ℓ(β;ϕ,y) = argmin
f∈F

1

n

n∑
i

viL(yi, f(xi;θi)). (2.21)

Chapter 3

Neural Networks

The following chapter introduces neural networks. We present the mathematics and attempt
to explain the mechanics intuitively. Neural networks are solely applied in a non-life envi-
ronment in this thesis. For neural networks applied to mortality forecasting, we recommend
[39] by J. Zhan.

3.1 Different Names, Different Periods

At first glance, neural networks may seem like a cutting-edge innovation of the modern era.
However, it might come as a surprise that the foundations of deep learning stretch back as
far as the 1940s, albeit under different names and conceptual frameworks. Over the decades,
what we now call deep learning has evolved through several distinct phases of development,
each marked by unique breakthroughs and influential contributors [8, pp. 13–14]. These
major waves in the history of neural networks are:

• Cybernetics, starting in the 1940s–1960s by McCulloch & Pitts [21] and Hebb [10].

• Connectionism in 1980–1995 with back-propagation by Rumelhart et al. [31].

• Deep learning, the third and current wave, which began around 2006 by Hinton et al.
[11], Benigo et al. [2], and Ranzato et al. [30].

3.2 Deep Feed-forward Networks

Deep feed-forward networks (FFNs), often called feed-forward neural networks (FNNs) or
multilayer perceptions (MLPs), are the quintessential deep learning models [8, p. 168]. The
term feed-forward stems from the fact that information only flows forward, meaning informa-
tion flows in a strict forward-structure through the neural network, finalizing in the output,
y. In other words, there is no feedback connection, meaning that information is not allowed
to flow backwards in the neural network. FNNs are used for both regression and classifica-
tion tasks, but will only be used for regression in this thesis. An FFN extended to include
feedback connections is called a recurrent neural network [8, p. 378] but is out of the scope
of this thesis.

12

3.2 Deep Feed-forward Networks 13

The idea of FFNs is to, through an automated process, take some input x and apply a
series of interconnected layers. Each layer is represented by a function z(m) where m denotes
the mth layer, ranging from 1 to d, assuming the neural network has d layers in total. Using
these layer-notations, 1 denotes the input layer x and d denotes the output layer, y. Each
layer, i.e. each function z(m) consists of qm nodes, or neurons. These are typically referred
to as the dimension of layer m, or the number of neurons. The layers in between the first
and the last layer are what are known as the hidden layers. If a neural network only has one
hidden layer, it is called a shallow neural network. If, on the other hand, it has two or more
hidden layers, it is a deep neural network.

More formally, we say deep learning uses a finite sequence of functions (z(m))1≤m≤d such
that

z(m) : Rqm−1 → Rqm ,

meaning z(m) = (z
(m)
1 , ..., z

(m)
qm)T maps vectors of dimension qm−1 to vectors of dimension

qm ∈ N. The layers are interconnected, meaning they are a composite function of each of the
preceding layers. With this composite structure in mind, we define the mth representation
of the features x as

z(m:1)(x) =
(
z(m) ◦ · · · ◦ z(1)

)
(x) ∈ Rqm . (3.1)

Each node in a layer, excluding the input layer, is connected to nodes in the previous layer
through weights W (m) ∈ Rqm×qm−1 and a bias term b(m) ∈ Rqm .1 The activation in neural
networks is done by an activation function, ϕ : R → R. Using the weights, bias, and
activation function, each layer z(m) may be expressed as a function of the previous layer

z(m) = ϕ(m)
(
W (m) · z(m−1) + b(m)

)
. (3.2)

The application of the activation function may also be presented on a neuron level, where
neuron j of layer m is computed by

z
(m)
j = ϕ(⟨w(m)

j , z(m−1)⟩+ b
(m)
j) = ϕ

(qm−1∑
l=1

w
(m)
l,j z

(m−1)
l + b

(m)
j

)
, 1 ≤ j ≤ qm, (3.3)

here w
(m)
j = (w

(m)
l,j)1≤l≤qm−1 ∈ Rqm−1+1, i.e. the weights in vector form and ⟨·, ·⟩ denotes the

inner product [7].
We may, out of simplicity include a constant term z

(m)
0 = 1 in the z-vectors. Proceeding

by including the bias terms in the weights, the expression for the neuron calculations may
be simplified to

z
(m)
j = ϕ⟨w(m)

j , z(m−1)⟩, (3.4)

which will be the choice of presentation for the rest of the thesis.
Two illustrations are presented in Figure 3.1, showing what a shallow neural network and

a deep neural network may look like. The illustrations contain a single-valued output layer,
1This architecture of training and sending inputs between layers is where neural networks get their name

from, as it mimics that of the human brain. In the human brain, neurons are the information transmitters,
connected to one another via synapses, which allow signals to travel between them. When a neuron receives
enough of an electrical impulse, it activates and transmits information [22].

3.3 Activation Functions 14

i.e. ŷ ∈ R, as neural networks are only used for regression modeling in this thesis, but may
also be used for classification.

(a) Shallow neural network. (b) Deep neural network, three hidden layers.

Figure 3.1: Illustrative example of neural networks.

The shallow neural network has a single layer-dimension of q1, and maps to the output
by ŷ = z(1)(x). Whereas in the deep neural network, consisting of three hidden layers, each
layer has dimension q1, q2, and q3, respectively. This neural network maps to the output by
ŷ = (z(3) ◦ z(2) ◦ z(1))(x).2

3.3 Activation Functions

When working with neural networks, the architecture needs to be pre-determined, i.e. the
number of layers as well as how many neurons these layers the neural network is to consist of.
An equally important choice to be made is that of the activation function. There are many
different activation functions, and the choice of an activation function is in itself something
one can delve deep into. We will not be discussing activation functions in depth, we simply
note that the activation function is a non-linear and differentiable function that calculates
the output of the different neurons based on their individual inputs and weights. Some of
the more common activation functions are presented in Table 3.1.

2All of the neural network illustrations are made using Tik Z-code inspired by the open-source code
provided at Tik Z.

https://tikz.net/neural_networks/

3.5 An Intuitive Point of View 15

Table 3.1: Common activation functions and their derivatives.

Name Activation
Function

Derivative

Sigmoid (logistic) ϕ(x) = 1
1+e−x ϕ′ = ϕ(1− ϕ)

Hyperbolic tangent ϕ(x) = tanh(x) ϕ′ = 1− ϕ2

Exponential ϕ(x) = ex ϕ′ = ϕ
Rectified linear unit
(ReLU)1

ϕ(x) = x1{x≥0} ϕ′ = 1{x>0}

1 Mathematically speaking, the ReLU function does not have a derivative as the function is not differentiable
at 0. However, the convention within machine learning is that its derivative is 0 at this point, making it
differentiable.

The need for an activation function to be differentiable will become apparent in later
chapters, as we discuss methods of training one’s network (Section 4.3). For more intricate
details of activation functions, we refer to [8, pp. 191–197].

3.4 Comparing GLMs with FNNs

In terms of traditional GLMs, we saw that the mean is modeled according to Equation (2.14).
Expanding on this equation slightly, we use inner products to express the GLM structure

x 7→ g(µ(x)) = ⟨β,x⟩. (3.5)

This is, in fact, rather similar to what we do with FNNs. When we apply an activation
function to the final hidden layer leading to the response, ŷ, we are effectively applying a
GLM. However, rather than having input x, we feed this GLM what is sometimes referred
to as the feature extractor, z(d:1)(x) [35, p. 78]. With this in mind, we modify Equation (3.5)
by using this feature extractor

x 7→ g(µ(x)) = ⟨w(d+1), z(d:1)(x)⟩, (3.6)

where w(d+1) consists of the weights and biases of the final layer. This small, yet crucial
detail is what extends FNNs beyond GLMs. By using the feature extractor, we apply a
series of activation functions to the features in the hidden layers, allowing for the input to
flow through the network and extracting interactive as well as non-linear structures that are
difficult to capture with a GLM.

3.5 An Intuitive Point of View

The activation function is at times referred to as a ridge function [26, p. 32]. Applying
Equation (3.3) to features x, an inner product is first applied, ⟨w(m)

j , z(m−1)(x)⟩ ∈ R. This
is a projection and compresses the data, reducing dimensions from qm−1 to 1. That is, the
qm−1-dimensional feature z(m−1) is in each neuron reduced, or compressed to a real number.
Subsequently, a non-linear activation function, ϕ, is applied to the projection.

3.6 CANN 16

Because of the dimension reduction, a substantial amount of information is lost. This is
why the procedure is performed qm times for layer z(m), so that each neuron represents a
different projection of the input. These neurons are then used as new features in the next
layer.

To be able to extract vital feature information from z, well-suited weights, w
(m)
j , are

chosen to ensure the best possible explanatory variables are received for the regression task
at hand. The methodology for finding w

(m)
j is typically some suitable gradient descent method

and is covered in Section 4.2.
We previously stated that the number of layers and the depth of a neural network, i.e. the

number of neurons per layer, must be predetermined. This task is often accomplished through
experimentation guided by error measurements [8, p. 198]. However, it is noteworthy that a
shallow neural network can sufficiently approximate any function, provided its dimensionality
is sufficiently high, according to the universal approximation theorem [13]. Nevertheless, the
theorem does not specify the required depth of the network, and in some cases, an exponential
number of hidden units may be necessary. Such a large number of neurons may, in turn,
render the neural network prone to overfitting.

3.6 CANN

The combined actuarial neural network (CANN) produces a combined prediction that in-
tegrates a regression model, typically a traditional GLM, with an FNN. This is done by
analyzing the residuals of the initial model and then boosting this with a second model
(FNN) in an attempt to find systematic effects in the residuals that the initial model failed
to capture. The prediction is defined as

ŷCANN = g−1
(
⟨β,x⟩+ ⟨w(d+1), z(d:1)(x)⟩

)
. (3.7)

Note we use g−1 as notation here rather than ϕ for the typical activation function. This
distinction arises because, in the final layer, the activation function corresponds to the
inverse log-link, specifically the exponential activation. The first term ⟨β,x⟩ represents η,
the linear predictor of the GLM. The second term, ⟨w(d+1), z(d:1)(x)⟩, corresponds exactly
to the final layer of the FNN, prior to applying the exponential activation function. With
these notations, we may express Equation (3.7) as

ŷCANN = exp
{
⟨β,x⟩+ ⟨w(d+1), z(d:1)(x)⟩

}
= ŷIN ŷFNN . (3.8)

The model can be seen as a fine-tuned version of a GLM. The process begins by fitting the
estimating appropriate parameters β̂ using MLE as defined in Section 2.6. Having estimated
this, it is used as part of the network parameter. However, rather than being connected to
the hidden layers, it is instead connected directly to the output node via skip connection
[12]. The FNN output, ŷFNN , serves as an adjustment to this initial prediction. This is
illustrated in Figure 3.2.

By keeping the first part, ⟨β,x⟩ frozen during the boosting step, we are effectively using

3.6 CANN 17

the GLM as an offset. This is a crucial initialization step, as it ensures we start with ŷIN 3

and any adjustments made to this initial value will improve upon the initial GLM prediction.

Figure 3.2: A CANN model, with skip connection.

3We denote the response of the boosted model as ŷIN since in general, this may be obtained using other
models than GLMs.

Chapter 4

Training the Network

4.1 Challenges When Compared With GLMs

The objective of model selection within neural networks consists of minimizing the loss
function with respect to the network parameter, θ and corresponds to obtaining the MLE
(Section 2.6), when working with GLMs. However, due to the inherent non-linearity of neural
networks, the MLE cannot typically be determined explicitly, as the model selection/fitting
problem is very high-dimensional (complex) and non-convex and usually, at best, the found
“solutions” are close to local optimums [35, p. 83]. Still, the optimization problem we wish to
solve remains the same as in Section 2.7, meaning we want to find a function that minimizes
the error in predictions

f ∗ = argmin
f

E[L(Y , f(X))]. (4.1)

Based sample data, we estimate f ∗ empirically with some function f(x;θ) ∈ F , where F is a
sufficiently large set of functions. So, whether it be a GLM or an FNN, we are fundamentally
attempting to solve the same optimization problem.

That being said, there is a fundamental distinction between neural networks and GLMs.
In the case of neural networks, even if the MLE was attainable, it would likely result in a
highly over-fitted model, i.e. one that fits the training data so well that it not only catches the
systematic effects but also noise and randomness. Such a model tends to generalize poorly
to test data and more often than not results in low in-sample loss but also poor predictive
power.

Because of this, the arguably more challenging part of the training process of neural
networks is calibrating the network parameter in such a way that one attains a balance
between minimizing in-sample loss and minimizing over-fitting, more on this in Section 4.4.

4.2 Gradient Descent Methods

The methods of choice used to minimize the loss function are the gradient descent methods
(GDMs). These methods of training use iterative, gradient-based optimizers that drive the
loss function close to local minima, rather than finding an explicit solution as one does for
traditional regression models. GDMs calculate the gradient of some pre-determined loss

18

4.3 Back-Propagation 19

function, L(D,θ), with respect to the network parameter, θ, and a partition of the total
data, D, known as the training set. The parameter is then adjusted in the opposite direction
of the gradient, hence the name gradient descent. In other words, in each step t → t+ 1 we
adjust θ in the direction in which L(D,θ) experiences the steepest descent. If these steps
are made by a sufficiently small perturbation of θ, we may approximate this by a first-order
Taylor expansion1

L(D,θ(t+1)) ≈ L(D,θ(t)) +∇θL(D,θ(t))T (θ(t+1) − θ(t)), (4.2)

assuming θ(t+1) and θ(t) are close to one another. The right-hand side of the approximation
in Equation (4.2) is minimized when the second term is as negative as possible, which is why
we update θ in the opposite direction of the gradient. This leads to the so called standard
gradient descent update [35, p. 84]

θ(t) → θ(t+1) = θ(t) − ρt+1∇θL(D,θ), (4.3)

where ρt+1 > 0 is the learning rate, or step size. The learning rate, ρt+1, can not be too small,
as this will result in too many steps in the gradient descent, making the computations very
heavy. At the same time, it needs to be small enough to ensure we stay in a neighborhood
of θ(t), to be able to perform Taylor expansion.

4.3 Back-Propagation

When using GDMs, the gradient of the loss function, ∇L(D,θ), must be computed. Because
the loss function is generally high-dimensional, this tends to be a computationally intensive
process. In theory, one could compute the gradient by standard calculus; however, it would
likely be an exceedingly tedious process.

In order to make these gradient computations more efficient, the back-propagation method
is used. This method was first introduced by Rumelhart et al. (1986) [31]. The idea of this
method is to compute all of the neuron values, propagating forward in the network. At the
output layer, the loss function is computed. From the output layer, the gradients are then
computed in the network by propagating backward, hence the name, into the network by
use of the chain rule of calculus. The method enables us to express the partial derivative
∂L/∂w of the loss function with respect to any weight, w, and ∂L/∂b with respect to any
bias, b, in the network. It then uses matrix operations for its computations, in particular,
the Hadamard product [25, p. 43].

Given two vectors w, t ∈ Rs the Hadamard product operation, denoted by ⊙, is the
element-wise product of the two vectors such that (w ⊙ t)j = wjtj. We illustrate with a
simple example

let w =

[
2
3

]
and t =

[
4
2

]
,

then the Hadamard product, w ⊙ t is[
2
3

]
⊙

[
4
2

]
=

[
2 · 4
3 · 2

]
=

[
8
6

]
. (4.4)

1Assuming L(θ,D) is differentiable with respect to θ.

4.4 Early Stopping 20

The actual method works as follows: we introduce an equation for the error [25, p. 44] in
output-layer d, which we denote by δ(d)

δ(d) = ∇z(d)L⊙ ϕ′(z̃(d)).2 (4.5)

Here, z̃(d) denotes a vector of neurons of the output layer prior to applying the activation
function, i.e. we compute the neurons according to Equation (3.4) but without applying ϕ.
The error term acts as an intermediate quantity that will allow us to relate to ∇L in a
back-propagating manner.

Next, we express the error of some layer m, δ(m) in terms of the error in the next layer,
δ(m+1) by

δ(m) = ((W (m+1))T δ(m+1))⊙ ϕ′(z̃(m)). (4.6)

The interpretation of Equation (4.6) is as follows, suppose we know δ(m+1) at the (m+ 1)th
layer. When we apply the transposed weight matrix, (W (m+1))T , we can think of this as
moving the error backward through the network giving us some sort of measure of the error
at the output of layer m. We then take the Hadamard product, ⊙z̃(m). This moves the error
backward through the activation function in layer m, giving us the error δ(m) in the weighted
input to layer m.

By combining Equation (4.5) with Equation (4.6), we are able to compute the error of
any layer in the network. We start by computing δ(d) according to Equation (4.5), this is then
used in Equation (4.6) to compute the error of layer d− 1, which in turn can be re-applied
in the same equation to obtain the error of layer d− 2, and so on.

These error terms are then used to compute the gradients with respect to the weights

∇W (m)L = z(m−1)((W (m+1))T δ(m+1))⊙ ϕ′(z̃(m)) = z(m−1)δ(m). (4.7)

4.4 Early Stopping

As mentioned in Section 4.1, over-fitting is generally of greater concern when modeling with
FFNs compared to GLMs. In light of this, we stated in Section 4.1 we are not interested in
finding explicit solutions (even if it was attainable) to our loss function, L(θ,D) as this would
likely lead to over-fitting. Be that as it may, we still want the loss to be as small as possible
in order to find a good network parameter, θ̂. Within machine learning, the methods used to
treat over-fitting are called regularization. A common regularization method is the so called
early stopping method [35, p. 88] during the gradient descent training.

Before explaining how early stopping works, we re-introduce the volume-scaled empirical
loss [35, p. 28]

L(D,θ) =
1

n

n∑
i=1

vi
ϕ
L(yi, µθ(xi)). (4.8)

Here, D = (yi,xi, vi)
n
i=1 and vi is the volume measurement, or weight as defined in Section 1.4.

The dispersion parameter, ϕ, is the same as the one in Section 2.1.
2In order to use the convenient notation with the Hadamard product, we need to express the biases and

weights separately accordingly with Equation (3.2).

4.4 Early Stopping 21

(a) Under-fitting. (b) Appropriate degree of fit. (c) Over-fitting.

Figure 4.1: Three plots depicting different degrees of fitting.

Figure 4.1 provides an illustrative take on what varying degrees of model complexity
may look like.3 Here, Figure 4.1a has intentionally been made too simplistic, avoiding noise
but also most of the systematic effects in the data. Figure 4.1b depicts what would be a
reasonable amount of fitting. A high degree of systematic effects would be caught without
a concerning amount of noise. Finally, Figure 4.1c shows clear indications of over-fitting,
which may occur by allowing too much training. Having trained a network parameter to
this extent will likely catch more than just systematic effects and will generalize poorly to
test data.

The gradient of the volume-scaled empirical loss is computed by

∇θL(D,θ) =
n∑

i=1

vi
ϕ
∇θL(yi, µθ(xi)), (4.9)

where the right-hand side is a sum of n individual gradients, computed for every i. Each
computation is a step in the gradient descent method, and in each step, the network pa-
rameter is updated in such a way as to provide the most significant update. The systematic
effects of the training data are, as the name suggests, more persistent across the data and are
a more predictable distortion as compared to noise. Therefore, prior to finding these effects,
they will dominate the steps in the gradient descent. As we continue iterating, however,
more and more of these effects will have been found, and the relative impact of the noise
(random effects) will start to increase. It is at this point that the early stopping is to be
implemented.

To ensure we perform early stopping at the correct time, we adjust the partitioned data.
Previously, we partitioned the data into two parts. The training part, D, and the test part,
T . Now, the training data is split into two parts, U and V where U is treated identically to
the previous training data and V becomes a separate set of data called the validation set.

In this way, the gradient descent steps are computed using this new training set, U ,
followed by an instantaneous validation analysis on V , which now is an out-of-sample set
(completely separate from the training set). The validation set is typically 10% or 20% of
the previous training data, D.

3These figures do not represent actual training data related to this thesis, but only serve for the illustra-
tional purpose of what could be feasible by exposing one’s model to varying amounts of training.

4.5 Stochastic Gradient Descent 22

With this in mind, we only compute the gradient descent with respect to U

∇θL(D,θ) =
∑
i∈U

vi
ϕ
∇θL(yi, µθ(xi)), (4.10)

followed by an out-of-sample computation of the loss function with respect to the validation
set, called the validation loss, L(V ,θ(t)) at each step t. As long as we are learning the
systematic effects, the validation loss decreases alongside the training loss. Once we reach
the point where we try to learn noise, however, the validation error will start to increase.
The step in the iteration when this occurs is denoted as t∗, and is the precise moment
of implementing the early stopping, and will be the choice of estimate for the network
parameter, such that θ̂ = θ(t∗). Figure 4.2 displays how the partition is made.

Figure 4.2: Data partition, inspired by [35, p. 89].

4.5 Stochastic Gradient Descent

A common gradient descent method is the stochastic gradient descent method (SGD). The
concept is rather simple. When dealing with high dimensionality and large samples of
data, computation of the loss in Equation (4.10) can get very cumbersome. A clever way
of speeding up this process is to randomly partition U into mini-batches of similar sizes,
U1,U2, . . . ,Un/s. These batches are then used cyclically for each step in the gradient descent
steps t → t+ 1

θ(t) → θ(t+1) = θ(t) − ρt+1∇θL(Uk,θ). (4.11)

The updating process of the right-hand side of Equation (4.11) uses these batches and is
what is referred to as the SGD.

4.6 Momentum-Based Gradient Descent Methods 23

4.6 Momentum-Based Gradient Descent Methods

We saw the updated schematic of the standard gradient descent in Section 4.2. In this
section, we introduce momentum-based gradient descent methods, which update the gradient
using momentum. We present three common methods and their update schematics for the
network parameters. For further details, see [37, pp. 285–288].

• rmsprop stands for root mean square propagation, and has the update schematic

θ(t) 7→ θ(t+1) = θ(t) − γ√
ε+ ν(t+1)

⊙∇θL(D,θ(t)), (4.12)

where γ > 0 is the global decay rate, ν the moving average of the squared gradients
and ε > 0 is some small constant. The moving average of the squared gradients, ν, is
updated by

ν(t) 7→ ν(t+1) = αν(t) + (1− α)
(
∇θL(D,θ(t))⊙∇θL(D,θ(t))

)
,

for a given weight α ∈ (0, 1).

• adam combines rsmprop with the moving average of the gradients, r, and has the
update schematic

θ(t) 7→ θ(t+1) = θ(t) − γ

ε+
√

ν(t+1)

1−αt

⊙ r(t+1)

1− βt
, (4.13)

for given weights α, β ∈ (0, 1). The moving average of the gradients, r, is updated by

r(t) 7→ r(t+1) = βr(t) + (1− β)∇θL(D,θ(t)).

• nadam is a Nestorov-accelerated version of adam,

θ(t+1) = θ(t) − η

ε+
√

ν(t+1)

1−αt

⊙ βr(t+1) + (1− β)∇θL(D,θ(t))

1− βt
, (4.14)

where, for each of the optimizers, the operations performed on the right-hand side prior to
the Hadamard product are done element-wise. Furthermore, ν and r are both initialized by
ν(0) = r(0) = 0, for relevant optimizers.

Chapter 5

Data, Coding, and Pre-Processing

At this point, a sufficient theoretical basis for the application of neural networks as well as
GLMs has been established. In this chapter, we examine the data, pre-process it and build
our GLMs and FNNs. Having built our GLMs, we walk through the coding of FNNs as
well as CANNs and the parameter tuning. We only model on claim frequency, assuming a
Poisson distribution in accordance with the theory in Section 2.2.

5.1 Coding

The coding for this thesis is written in R, and is influenced by the articles Case Study: French
Motor Third-Party Liability Claims [26] as well as Nesting Classical Actuarial Models into
Neural Networks [32]. The neural networks are designed using the keras31 and tensorflow
packages in R. The keras3 package works as a high-level neural network API. Essentially,
keras3 runs on top of some back-end package, such as, in our case, tensorflow, which
can be viewed as the engine that runs behind the scenes. keras3 is then used in a user-
friendly manner to design and work with the neural networks. Some figures and plots are
aesthetically enhanced using the Tik Z package in LATEX.

5.2 Data

The data we use is the French motor third-party liability data, freMTPL2freq, which is a
part of a large collection of datasets, originally from Computational Actuarial Science with R
[3]. These actuarial datasets are frequently used in academia and research and are contained
in the R package CASdatasets [6]. The data consists of claim counts observed over one
calendar year and is a widely used open-source dataset when modeling claim frequency. A
total of 678013 observations, or car insurance policies, are contained in the data, and for
each of the observations, there are 12 features, which are presented in Table 5.1.

1The keras3 package has a rather extensive range of applications as well as hyper-parameter fine tun-
ing. To navigate this, the guide [15], written by Tomasz Kalinowski et al. is a helpful and recommended
companion.

24

5.2 Data 25

Table 5.1: The 12 features of freMTPL2freq.

Feature Description

IDpol Policy number of each policy
ClaimNb Number of claims on the given policy
Exposure Total exposure in yearly units
Area Area code
VehPower Power of the car
VehAge Age of the car in years
DrivAge Age of the driver in years
BonusMalus Bonus-malus level, capped at 150.
VehBrand Car brand
VehGas Diesel or regular fuel
Density Log-density of inhabitants per km2 in the city of the living place of the

driver
Region Regions in France1

1 The regions of Region are prior to 2016.

The dataset is rather well-polished, however, some corrections need to be made. As the
data is collected over one calendar year, any Exposure value above 1 is likely caused by
some data error. The dataset contains 1224 values exceeding 1, which have been capped at
1. Furthermore, 9 observations had ClaimNb values exceeding 4. These are also likely caused
by some error and have been capped at 4.

The feature BonusMalus is commonly used in insurance and adjusts the premium paid by
a customer according to their individual claim history. Typically, a bonus discount is given
on the renewal of the policy if no claim was made the previous year. Note that Exposure is
the total amount of claims given a specific observation of a feature. We model using the 9
features Area-Region and present their distributions against Exposure in Figure 5.1.

5.2 Data 26

(a) Driver age vs exposure. (b) Vehicle age vs exposure. (c) Region vs exposure.

(d) Area vs exposure. (e) Bonus-Malus vs exposure. (f) Log-density vs exposure.

(g) Vehicle brand vs exposure. (h) Fuel type vs exposure. (i) Vehicle power vs exposure.

Figure 5.1: Exposure distribution across all features.

We refrain from analyzing the data too extensively, however, we look at the correlation
between the features. Two types of correlations are measured, the Pearson’s correlation [29]:

ρp =
Cov(xi, xj)

σxi
σxj

, (5.1)

As well as the Spearman’s rank correlation [33]:

ρs =
Cov(R(xi), R(xj))

σR(xi)σR(xj)

. (5.2)

Pearson’s correlation is a linear correlation measurement, while Spearman’s measures the
between-rank correlation; thus, measuring both of them gives a broader view of the behavior
of the features. The results are presented in Table 5.3.

5.4 GLM Feature Pre-Processing 27

Table 5.3: Bottom-left shows Spearman’s ρ, top-right shows Pearson’s ρ.

Area VehPower VehAge DrivAge BonusMalus Density

Area 1.00 0.00 -0.10 -0.05 0.12 0.59
VehPower -0.01 1.00 -0.01 0.03 -0.08 0.04
VehAge -0.10 0.00 1.00 -0.06 0.08 -0.09
DrivAge -0.05 0.04 -0.08 1.00 -0.48 0.00
BonusMalus 0.14 -0.07 0.08 -0.57 1.00 0.08
Density 0.98 -0.01 -0.10 -0.04 0.14 1.00

If no significant loss of predictiveness is made by excluding one of the features, it suggests
we may want to exclude one of them from our GLM. The Spearman’s ρ as well as the
Pearson’s ρ indicate Area and Density are highly correlated. We bear this in mind when
building and analyzing our GLMs.

5.3 Loss Functions

A loss function needs to be selected for implementation in the gradient descent method, and
there is a range of functions to choose from. Some of the common ones are the mean absolute
error (MAE):

MAE =
1

n

n∑
i=1

|ŷi − yi|, (5.3)

and the mean square error (MSE):

MSE =
1

n

n∑
i=1

(ŷi − yi)
2. (5.4)

As we are modeling for claim frequency, the Poisson deviance [27, p. 40] is a suitable loss
function and is used throughout this thesis. In particular, we use the average Poisson de-
viance:

DPoisson =
200

n

n∑
i=1

(
ŷi − yi + yi log

yi
ŷi

)
. (5.5)

The scaling factor of 100 is purely for a visually more appealing and easy-to-read result. We
call the Poisson deviance obtained on training data, D, our in-sample loss, and that of the
test data, T , our out-of-sample loss. When working with GLMs, no validation partitions are
made. See Figure 4.2.

5.4 GLM Feature Pre-Processing

Some pre-processing of the data is made before creating our GLMs, and is presented in
Table 5.4.

5.5 The GLMs 28

Table 5.4: GLM pre-processing.

Feature Feature structure for GLM Baseline
group

Area Continuous log-linear, {A, . . . , F} 7→ {1, . . . , 6} -
VehPower Categorical with 6 groups {4, . . . , 9}, values above 9

rounded down to 9.
4

VehAge Categorized into 3 groups [0, 1), [1, 10), (10,∞) 2
DrivAge Categorized into 7 groups [18, 21), [21, 26), [26, 31),

[31, 41), [41, 51), [51, 71), [71,∞)
5

BonusMalus Continuous log-linear, capped at 150 -
VehBrand Categorical with 11 groups, {B1, . . . , B14} B1
VehGas Binary, Diesel or Regular fuel 1
Density Continuous log-linear feature based on population den-

sity (log-scale)
-

Region Categorical with 22 levels representing French regions R24

5.5 The GLMs

As we want a competitive GLM to compare with the neural network models, we prefer one
with the best in-sample and out-of-sample deviance losses, as this will be our key measure-
ment of performance. Commencing with a full model, we call this GLM_Full:

ClaimNb ∼ VehPower+VehAge+BonusMalus+VehBrand+VehGas+Density+Region+Area+DrivAge.

We suspect this model can be improved upon however, we add non-linear regression to
DrivAge, in terms of polynomial regression as well as log(DrivAge), in accordance with [32,
p. 5]. We call this model GLM_Poly:

DrivAge 7→ βl + βl+1 log(DrivAge) +
4∑

j=2

βl+j(DrivAge)j.

A Drop1-test is performed on GLM_Poly, showing all features are significant as presented in
Table 5.6.

5.6 FNN Feature Pre-Processing 29

Table 5.6: Results of Drop1-test on GLM_Poly model.

Variable Df Deviance AIC LRT Pr(> χ2) Signif.

<none> – 147072 192820 – –
VehPowerGLM 5 147153 192891 81.1 4.97× 10−16 ***
VehAgeGLM 1 147226 192976 153.2 < 2× 10−16 ***
BonusMalusGLM 1 150696 196712 3894.1 < 2× 10−16 ***
VehBrand 10 147308 193035 235.6 2.2× 10−16 ***
VehGas 1 147093 192842 21.6 3.3× 10−6 ***
DensityGLM 1 147082 192828 10.0 1.39× 10−3 **
Region 21 147264 192967 192.1 2.2× 10−16 ***
AreaGLM 6 147076 192860 4.1 4.17× 10−2 *
DrivAge 1 147222 192972 149.8 < 2× 10−16 ***
log(DrivAge) 1 147194 192944 121.4 < 2× 10−16 ***
I(DrivAge^2) 1 147193 192943 118.2 < 2× 10−16 ***
I(DrivAge^3) 1 147161 192911 86.5 < 2× 10−16 ***
I(DrivAge^4) 1 147138 192888 65.7 5.33× 10−16 ***

We delve deeper, analyzing the summary of GLM_Poly. Several groups of Region as well
as VehBrand are showing highly insignificant values. We perform merging on Region, merg-
ing R23, R25, R53, R11, R21, R42, R83 and R91 into the baseline, R24. Furthermore,
we merge the groups B2 and B10 of VehBrand into B1. This merged GLM will be called
GLM_Merged and is our best performing model in terms of in-sample and out-of-sample de-
viance, meaning this is the most competitive GLM; the results are presented in Table 5.7.

Table 5.7: Our three best performing GLMs and their losses.

Model In-sample loss Out-of-sample loss

GLM_Full 24.113 24.167
GLM_Poly 24.102 24.133
GLM_Merged 24.102 24.129

Returning to the correlations we saw in Table 5.3, we point out GLMs excluding Area or
Density have been analyzed but were getting outperformed by GLM_Merged and so are not
discussed in detail in this section.

5.6 FNN Feature Pre-Processing

Before we can start building our neural networks, the features need some treatment that dif-
fers from that of the GLMs. For neural networks to work, all features need to be transformed
into numerical values in some way. For starters, we have two categorical features, Region
and VehBrand, that need to be treated. There are multiple ways of treating categorical
features, we use one-hot encoding [35, pp. 38–39].

5.7 FNN Coding 30

One-hot encoding means we map each group of a categorical feature to a basis vector
in Rk, where k is the number of groups of the feature. In doing so, we end up with a unit
matrix of size k × k. Figure 5.2 illustrates one-hot encoding for VehBrand.

Figure 5.2: One-hot encoding of VehBrand.

Several techniques exist for the treatment of categorical variables, some of which are em-
bedding [35, p. 40] and large language models (LLMs) [1]. These are, however, not discussed
in this thesis.

Next, the numerical features need pre-processing. When working with neural networks,
or rather gradient descent methods, it is important that the features are on a similar scale.
If the features have different scales, the steps in the updating of the gradient descent may
become unstable and too large in some directions or too small in others. Therefore, two
transforms are commonly used. The first one is min-max scaling :

Xi,j 7→ 2
Xi,j − min(X i)

max(X i)− min(X i)
− 1, (5.6)

where i denotes the ith feature and j the jth observation. The second is the standardization:

Xi,j 7→
Xi,j − m̂(X i)

ŝ(X i)
, (5.7)

where m̂ is the empirical mean, and ŝ the empirical standard deviation. We use standard-
ization as a transformation for our numerical features.

5.7 FNN Coding

In this section, we explain some of the codes used for our neural networks. The format and
functional construction of these networks are inspired by those of M. V. Wüthrich et al. [35].
Some of the code is included in the section, and some is found in the Appendix.

5.7 FNN Coding 31

Our first step is to perform one-hot encoding as well as standardization on our features,
as shown in Listing A.1, found in the Appendix. We proceed by transforming the data in
the training set, D, and the test set T , see Listing 5.1.

Listing 5.1: Data partitioning.
1 ## load and pre -process data
2 train <- Features.PreProcess(train_dat)
3 test <- Features.PreProcess(test_dat)

We are now ready to define the architecture of our network, as presented in Listing 5.2. The
most important components to fine-tune are:

• The activation functions

• The number of neurons of each layer

• The number of hidden layers

• Possible regularization techniques, such as dropout [8, pp. 258–268]

We start with an FNN consisting of three hidden layers. The keras3 and tensorflow
packages have their own internal randomness function, and so we need to set a separate seed
for these packages. As the weights of each layer are typically initialized randomly, this is a
crucial detail in the code.

The FNN() function in Listing 5.2 takes two arguments, one is the seed and the other
is a vector representing the dimensions of the layers, layer_dims. The vector layer_dims
defines the number of units, or neurons, of each of the hidden layers as well as the input
layer of the network. The network uses dense layers, meaning all the neurons in the current
layer receive input from all the neurons in the previous layer. We use tanh as our activation
function for all but the final layer, connecting to the response. To mimic the GLM, we apply
an exponential activation function here. The Volume matrix consists of the exposure data.
In terms of regularization, attempts at different degrees of dropout have been made, but
worsened the performance, so no results using dropout are presented.

Listing 5.2: FNN architecture, 3 hidden layers.
1 FNN <- function(seed , layer_dims){
2 tf$keras$backend$clear_session () # Clears previous Keras models
3 set.seed(seed)
4 set_random_seed(seed) # seed for Keras/TensorFlow
5 Design <- layer_input(shape = c(q0[1]), dtype = ’float32 ’)
6 Volume <- layer_input(shape = c(1), dtype = ’float32 ’)
7 #
8 Network = Design %>% # Tanh as activation in hidden layers
9 layer_dense(units=q0[2], activation=’tanh’) %>%

10 layer_dense(units=q0[3], activation=’tanh’) %>%
11 layer_dense(units=q0[4], activation=’tanh’) %>%
12 layer_dense(units=1, activation=’exponential ’)
13 # Output layer uses exponential activation function to mimic GLM
14 #
15 Response = list(Network , Volume) %>% layer_multiply ()

5.7 FNN Coding 32

16 #
17 keras_model(inputs = c(Design , Volume), outputs = c(Response))
18 }

Next, the necessary matrices are made for the networks, see Listing A.2 in the appendix. The
code is fairly straightforward. We also note there are two GLM matrices in the code, these
will be used in place of the Volume when performing the CANN. Proceeding, we construct
our FNN in Listing 5.3.

Listing 5.3: Constructing our FNN, 3 layers.
1 FNNneurons <- c(input_layer , c(20 ,15 ,10)) # The number of neurons for

input - and hidden layers
2 seed <- 100
3 FNN3_model <- FNN(seed , FNNneurons)
4 FNN3_model

If we print FNN3_model, it yields Table 5.8. This table displays the number of parameters as
well as the overall structure. For example, if we look at Dense, it densely connects the input
layer to the first hidden layer meaning we get a total of 40 · 20 + 20 = 820 parameters.2

Table 5.8: FNN_model3 layer structure.

Layer (type) Output Shape Param # Connected to

InputLayer (None, 40) 0 –
Dense (None, 20) 820 InputLayer
Dense_1 (None, 15) 315 Dense
Dense_2 (None, 10) 160 Dense_1
Dense_3 (None, 1) 11 Dense_2
InputLayer_1 (None, 1) 0 –
Multiply (None, 1) 0 Dense_3, InputLayer_1

Total params: 1,306 Trainable params: 1,306

Moving to Listing 5.4, we begin training our network. We start by creating a file path
where we store our weights.. These are used in the callback function, which dictates the
early stopping. The optimal network parameters are stored in path1, and we monitor the
validation loss, val_loss.

Next, we compile the model. We choose nadam as our optimizer, and we may adjust the
learning rate used for the optimization. However, the standard learning rate for nadam is
0.002, and we chose not to alter this. The actual training begins with the fit function.

Key parameters to tune fit() are:

• Validation set size

• Batch size
2Since each neuron of a layer has its own bias term, we add another 20 parameters on top of the already

800.

5.7 FNN Coding 33

• Number of epochs

• Callbacks (for early stopping)

We set the validation set, V , to be 10% of the training set. The batch size sets the size of
each of the mini-batches in the gradient descent method, and we set this to 5000. Attempts
at other batch sizes have been made, specifically 64, 1024, and 2048, but unsuccessfully
improved the out-of-sample losses. In general, a smaller batch size may improve generaliza-
tion but is slower and requires a larger amount of parameter network updates. The number
of epochs dictates a upper bound for the number of training iterations, and within each
epoch, the gradient descent updates our weights via back propagation. These steps can be
summarized as follows:

1. Data propagates forward in the network, resulting in a prediction in the output

2. The loss is computed

3. Backpropagation computes gradients with respect to the weights

4. The Nadam updates the weights via the backpropagation

Within each epoch, these steps are executed in batches of 5000 observations until every batch
has been trained on; this is repeated for every epoch. Finally, the losses for each epoch are
stored for visualization.

Listing 5.4: Network parameter training.
1 # Early stopping
2 if (!dir.exists("./Networks")){dir.create("./Networks")}
3 path1 <- paste0("./Networks/FNN3_",seed ,".weights.h5") # Save the weights

here
4 CBs <- callback_model_checkpoint(path1 , monitor = "val_loss", verbose = 0,

save_best_only = TRUE , save_weights_only = TRUE)
5 # Compile with Poisson deviance loss and nadam optimizer(Gradient descent

method)
6 FNN_model3 %>% compile(loss = ’poisson ’, optimizer = ’nadam ’)
7 # Begin the fitting procedure , batch size might be tweaked. Epochs seem

fine at 200 as
8 # We usually stop somewhere around 50-60 epochs due to early stopping
9 {t1 <- proc.time()

10 fit <- FNN_model3 %>% fit(list(Xtrain , Vtrain), Ytrain ,
11 validation_split =0.1, batch_size =5000, epochs =200,
12 verbose=1, callbacks=CBs)
13 (proc.time()-t1)[3]}
14

15 which.min(fit [[2]]$val_loss) # Provide the early stopping epoch
16 # Optimal network parameter obtained after 68 epochs.
17 # We store the training values in a .csv file so that we can present a

polished plot in the thesis:
18 FNNloss3_df <- as.data.frame(fit [[2]])
19 write.csv(FNNloss3_df, "FNN3_loss_data.csv", row.names = FALSE)

Chapter 6

Application

It is now time to test our models, we evaluate the FNNs as well as the CANNs with hopes
of promising results. We finalize by boosting a more complex model and present our results.
Figures illustrating the training process are presented, as well as figures comparing GLM_Poly
to our complex models. The latter are found in Appendix B. These comparison figures do
not necessarily tell us how well a model performs, but rather how the predictions relate to
the GLM.

6.1 FNN Models

In this section, we present the best-performing FNN. As mentioned in Section 5.7, we have
attempted a number of batch sizes, as well as adding dropout layers to our network. Nu-
merous architectural tweaks were also made with the intent of improving the predictive
performance. The code for this network is found in Section 5.7.1 This network maintains
the same architecture as that of M. V. Wüthrich and M. Merz [37, pp. 298–305].

We allow for training over a total of 200 epochs; however, by early stopping, we reach
our best performing network parameter after just 68 epochs. The training is illustrated in
Figure 6.2, where the red line depicts at what epoch early stopping halts the training. We
note after this epoch, there is a clear increase in validation loss, suggesting the decrease
in training loss is likely noise. This model achieves an in-sample loss of 23.714 and an
out-of-sample loss of 23.852. We call this model 3FNN.

1The networks presented are all drawn using draw.io.

34

6.1 FNN Models 35

Figure 6.1: Three-layer FNN with 20,15, and 10 neurons per hidden layer.

Figure 6.2: Training 3FNN over 200 epochs.

We compare 3FNN to GLM_Poly in Figure B.1. The black, dashed line represents the
line 3FNN=GLM_Poly. If predictions are stacked along this line, it suggests the models are

6.2 GLM-CANNs 36

predicting similarly. The red line represents a linear regression of 3FNN using GLM_Poly.
Having many predictions above this line suggests 3FNN overestimates in relation to GLM_Poly.
On the other hand, if many predictions fall below this line, it suggests 3FNN underestimates
in relation to GLM_Poly. The figure suggests a fairly balanced ratio, meaning there appears
to be no obvious overestimation or underestimation in relation to GLM_Poly.

A clear indication of overestimation, when compared with GLM_Poly, is illustrated in
Figure B.2. This figure compares a FNN consisting of 5 hidden layers, 5FNN, with GLM_Poly.
The model is our worst-performing stand-alone model and performed poorly in terms of
prediction. However, in Section 6.2, when boosting with this model, promising results are
achieved.

6.2 GLM-CANNs

We have now reached the CANN, which means we boost GLMs with FNNs. In terms of
coding, the CANNs are made with very similar coding when compared with the FNNs.
There is, however, one key difference: the GLMs. Getting back to Section 3.6, we initialize
the FNN with a network parameter consisting of our GLM prediction. This is then used as
an offset rather than the volume matrices and is not altered, but the FNN attempts to find
more signal in the data and acts in a complementary manner. This means, rather than using
Vtrain and Vtest, we use GLM_train and GLM_test in Listing A.2 when fitting the CANN.
The GLM we choose to boost is GLM_Poly, and we present the first CANN in Figure 6.3. The
architecture of this CANN is the same as that of the FNN in Figure 6.3, with the exception
of the skip connection of the GLM. This model is called 3CANN.

A comparison of 3CANN and GLM_Poly is provided in Figure B.3. This figure shows no
indication of clear underestimation or overestimation. Overall, less scatter can be seen,
suggesting relatively more balanced predictions.

6.2 GLM-CANNs 37

Figure 6.3: Three-layer CANN with GLM applied via skip connection.

We train using 3CANN and achieve an in-sample loss of 23.735 and an out-of-sample loss of
23.823, which is an improvement over 3FNN. The predictive performance is not only improved,
but also achieved at an earlier epoch, 52. This is expected, as we start the training process
with a well-performing GLM. At this point, a satisfactory result has been achieved. We have
outperformed a rather polished GLM, GLM_Merged, using 3FNN. We then managed to achieve
even better results by boosting GLM_Poly using 3CANN, see Figure 6.4.

Figure 6.4: Training 3CANN over 200 epochs.

6.3 GBM-CANNs 38

The question remains, can we do even better?
As mentioned, a number of architectural as well as hyperparameter tweaks have been

evaluated. We find that a five-layer FNN would allow us to improve upon GLM_Poly even
further. This is a rather large model, and has 40,60,30,20,10 nodes per respective hidden
layer. We illustrate the training of this model in Figure 6.5, and call this model 5CANN.

Figure 6.5: Training 5CANN over 200 epochs.

Early stopping is exercised earlier than that of 3FNN, this time at epoch 19. This is
because a network of this size tends to achieve better training results per epoch, but also
over-fits much faster. This is depicted in the figure, as the validation loss has a rather
steep incline shortly after epoch 19. 5CANN had an in-sample loss of 23.731 and an out-of-
sample loss of 23.810, making it the best model so far. A comparison is found in Figure B.4,
suggesting 5CANN overestimates more than 3CANN in relation to GLM_Poly.

6.3 GBM-CANNs

Having achieved promising results boosting GLMs, a curious thought would be to apply
the same boosting method to other variants of regression models. Intuitively, it is not as
straightforward what one benefits from performing boosting on more flexible models however.
The core concept of CANN is to start with a highly interpretable, but rather non-flexible
model, and boost this model in order to find more complex signal in data. Nonetheless, it is
interesting to see what one could achieve out of a predictive point of view.

We therefore attempt to boost a gradient boosting machine (GBM) [35, pp. 111–122]
to see if we can achieve similar improvements. In particular, tree-based gradient boosting
machines are used, meaning we use regression trees as learners. We refrain from an in-depth
theoretical presentation of GBMs, but point out that a series of regression trees are used
where each new tree attempts to improve upon the previous tree in terms of errors. The

6.3 GBM-CANNs 39

trees are often shallow. Similarly to neural networks, this process minimizes a loss function
by use of gradient descent. The code for our GBM is provided in Listing A.3. Setting
n.trees to 1000, we allow for training on 1000 trees, and interaction.depth is set to 1,
meaning we use shallow trees. The same loss function is used as for previous models, the
GBM achieves an in-sample loss of 23.849 and an out-of-sample loss of 23.882, which is much
better than our GLMs but not quite at par with our FNNs. We call this model GBM_Model
and a comparison with GLM_Poly is illustrated in Figure B.5.

Proceeding with the boosting, we first boost GBM_Model using 3FNN. We call this model
GBM_3CANN, and the training of this model is illustrated in Figure 6.6.

Figure 6.6: Training GBM_3CANN over 200 epochs.

Having trained GBM_3CANN, the best results out of all models was achieved, with an
in-sample loss of 23.663 and an out-of-sample loss of 23.764 after 29 epochs. We com-
pare GBM_3CANN with GLM_Poly in Figure B.6. The final model we evaluate is GBM_Model
boosted with 5FNN; we call this model GBM_5CANN. This model performed similarly to that
of GBM_3CANN but with slightly higher losses at 23.776 and 23.766, see Figure 6.7. Early
stopping was exercised at a very early epoch, 10, followed by a very steep incline in the
validation loss curve, indicating this model over-fits very rapidly.

6.4 Results 40

Figure 6.7: Training GBM_5CANN over 200 epochs.

6.4 Results

We end this chapter by summarizing all of our results, see Table 6.1. The poorest per-
formance was obtained using GLM_Merged, and the best performance was obtained using
GBM_3CANN.

Table 6.1: Deviance losses of the GLM, FNN, GBM, and CANN.

Model In-sample loss Out-of-sample loss Epochs

GLM_Merged 24.102 24.129 –
3FNN 23.714 23.852 68
3CANN 23.735 23.823 52
5CANN 23.731 23.810 19
GBM_Model 23.849 23.882 –
GBM_3CANN 23.663 23.764 29
GBM_5CANN 23.667 23.766 10

Chapter 7

Conclusion

The purpose of this thesis is to study, learn, and apply the theory of feed-forward neural
networks (FNNs). In particular, the end goal is to boost generalized linear models (GLMs)
with FNNs using a combined actuarial neural network (CANN). This is applied to real
French car insurance data, which is available as open-source content. A well-performing
GLM (GLM_Merged) is used as a benchmark model to ensure we put the CANN to the test.

We conclude that the CANN is a powerful tool, achieving positive results and successfully
boosting our GLM. The CANN models outperform both the GLMs but also the FNNs. We
also manage to boost a gradient boosting machine (GBM) in a similar fashion, also with
successful results.

Some of the difficulties of the CANN, alongside other machine learning methods, are
to interpret the results. Exactly what interactions are we finding? Further research is
recommended to gain a better understanding of this.

41

Bibliography

[1] Balona, C., ”Operationalizing LLMs - A Guide for Actuaries”, Society of Actuaries,
2025.

[2] Benigo, Y., Lamblin, P., Popovici, D., and Larochelle, H., ”Greedy Layer-Wise Train-
ing of Deep Networks”, Proceedings of the 20th International Conference on Neural
Information Processing Systems, pp. 153–160, 2006.

[3] Charpentier, A., Computational Actuarial Science with R. Chapman & Hall, 2016.

[4] Cramér, H., ”Bidrag till utjämningsförsäkringens teori”, in Försäkringsbolags fondbild-
ning och riskutjämning. Stockholm: Försäkringsinspektionen, 1919, vol. III.

[5] Dorwart, R. A., ”The Earliest Fire Insurance Company in Berlin and Brandenburg,
1705–1711”, The Business History Review, vol. 32, no. 2, pp. 192–203, 1958.

[6] Dutang, C., Charpentier, A., Gallic, E., and Siharath, J., ”CASdatasets: Insurance
Datasets”, version 1.2-0, 2024.

[7] Friedberg, S. H., Insel, A. J., and Spence, L. E., Linear Algebra, 4th ed. Pearson, 2014.

[8] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning . MIT Press, 2016.

[9] Hastie, T. and Tibshirani, R., ”Generalized Additive Models”, Statistical Science, vol. 1,
no. 3, pp. 297–310, 1986.

[10] Hebb, D. O., The Organization of Behavior . John Wiley & Sons, 1949.

[11] Hinton, G. E., Osiendero, S., and Teh, Y.-W., ”A Fast Learning Algorithm for Deep
Belief Nets”, Neural Computation, vol. 18, no. 7, 2006.

[12] Holvoet, F., Antonio, K., and Henckaerts, R., ”Neural Networks for Insurance Pricing
With Frequency And Severity Data”, arXiv, 2024.

[13] Hornik, K., Stinchcombe, M., and White, H., ”Multilayer Feedforward Netowrks are
Universal Approximators”, Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[14] Jørgensen, B., The Theory of Dispersion Models . Chapman & Hall, 1997.

[15] Kalinowski, T., Falbel, D., Allaire, J., et al., ”Package "keras"”, 2024.

[16] Legendre, A. M., Nouvelles méthodes pour la détermination des orbites des comètes .
1805.

[17] Levenius, L. G., Den Cramérska assuransmatematiken. Stockholm University, 2025.

43

https://www.soa.org/resources/research-reports/2025/operationalizing-genai-actuaries/
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://www.routledge.com/Computational-Actuarial-Science-with-R/Charpentier/p/book/9781138033788
https://libris.kb.se/bib/2133897
http://dx.doi.org/10.2307/3111702
http://dx.doi.org/10.2307/3111702
https://cas.uqam.ca/
https://cas.uqam.ca/
http://www.deeplearningbook.org
http://dx.doi.org/10.1214/ss/1177013604
https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content
http://dx.doi.org/https://doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/https://doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/doi.org/10.48550/arXiv.2310.12671
http://dx.doi.org/doi.org/10.48550/arXiv.2310.12671
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://books.google.se/books?id=0gO7bgs_eSYC&printsec=frontcover&hl=sv#v=onepage&q&f=false
https://keras.io
https://books.google.se/books?id=FRcOAAAAQAAJ&printsec=frontcover&hl=sv#v=onepage&q&f=false

BIBLIOGRAPHY 44

[18] Lindholm, M., Lindskog, F., and Palmquist, J., ”Local Bias Adjustment, Duration-
Weighted Probabilities, and Automatic Construction of Tariff Cells”, Scandianvian
Actuarial Journal, vol. 2023, no. 10, pp. 946–973, 2023.

[19] Lindskog, F., ”Non-life Pricing Essentials”, 2024.

[20] McCullagh, P. and Nedler, J. A., Generalized Linear Models . Chapman & Hall, 1983.

[21] McCulloch, W. and Pitts, W., ”A Logical Calculus of Ideas Immmanent in Nervous
Activity”, Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133, 1943.

[22] R. Morris and M. Fillenz, Eds., Neuroscience: Science of the Brain. The British Neu-
roscience Association, 2003.

[23] Murphy, K. P., Brockman, M. J., and Lee, P. K. W., Using Generalized Linear Models
to Build Dynamic Pricing Systems for Personal Lines Insurance. Casualty Actuarial
Society Forum, 2000, pp. 107–140.

[24] Nedler, J. A. and Wedderburn, R. W. M., ”Generalized Linear Models”, Journal of the
Royal Statistical Society. Series A, vol. 135, no. 3, pp. 370–384, 1972.

[25] Nielsen, M., Neural Networks and Deep Learning . 2019.

[26] Noll, A., Salzmann, R., and Wüthrich, M. V., ”Case Study: French Motor Third-Party
Liability Claims”, Swiss Association of Actuaries SAV, 2020.

[27] Ohlsson, E. and Johansson, B., Non-Life Insurance Pricing with Generalized Linear
Models . Springer, 2015.

[28] ——, Gradient Boosting Machines and Non-Life Insurance Pricing . Stockholm Uni-
versity, 2022.

[29] Pearson, K., ”On a Mathematical Theory of Determinal Inheritance from Suggestions
and Notes of the Late W.F.R Weldon”, Biometrika, vol. 6, no. 1, pp. 80–93, 1908.

[30] Ranzato, M., Poultney, C., Chopra, S., and Cun, Y. L., ”Efficient Learning of Sparse
Representations with an Energy-Based Model”, Advances in Neural Information Pro-
cessing Systems, pp. 1137–1144, 2006.

[31] Rumelhart, D., Hinton, G., and Williams, R., ”Learning Representations by Back-
Propagating Errors”, Nature, vol. 323, pp. 533–536, 1986.

[32] Schelldorfer, J. and Wüthrich, M. V., ”Nesting Classical Actuarial Models into Neural
Networks”, Swiss Association of Actuaries SAV, 2019.

[33] Spearman, C., ”The Proof and Measurement of Association between Two Things”, The
American Journal of Psychology, vol. 15, no. 1, pp. 72–101, 1904.

[34] Stigler, S. M., The History of Statistics . Harvard University Press, 1986.

[35] Wüthrich, M. V., Lindholm, M., Richman, R., et al., ”AI Tools for Actuaries”, 2025.

[36] Wüthrich, M. V. and Merz, M., ”Editorial: Yes, We CANN!” ASTIN Bulletin, vol. 49,
no. 1, pp. 1–3, 2018.

[37] ——, Statistical Foundations of Actuarial Learning and its Applications . Springer,
2023.

http://dx.doi.org/10.1080/03461238.2023.2176251
http://dx.doi.org/10.1080/03461238.2023.2176251
https://www.utstat.toronto.edu/brunner/oldclass/2201s11/readings/glmbook.pdf
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
https://brain.mcmaster.ca/BrainBee/Neuroscience.Science.of.the.Brain.pdf
https://www.casact.org/sites/default/files/database/forum_00wforum_00wf107.pdf
https://www.casact.org/sites/default/files/database/forum_00wforum_00wf107.pdf
https://www.jstor.org/stable/2344614
http://neuralnetworksanddeeplearning.com/
https://ssrn.com/abstract=3164764
https://ssrn.com/abstract=3164764
http://dx.doi.org/10.1007/978-3-642-10791-7
http://dx.doi.org/10.1007/978-3-642-10791-7
https://ssrn.com/abstract=4294965
http://dx.doi.org/doi.org/10.1093/biomet/6.1.80
http://dx.doi.org/doi.org/10.1093/biomet/6.1.80
https://www.cs.toronto.edu/~ranzato/publications/ranzato-nips06.pdf
https://www.cs.toronto.edu/~ranzato/publications/ranzato-nips06.pdf
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://ssrn.com/abstract=3320525
https://ssrn.com/abstract=3320525
http://dx.doi.org/doi.org/10.2307/1412159
https://books.google.se/books?id=M7yvkERHIIMC&printsec=frontcover&hl=sv&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5162304
http://dx.doi.org/10.1017/asb.2018.42
http://dx.doi.org/10.1007/978-3-031-12409-9

BIBLIOGRAPHY 45

[38] Zakrisson, H., Tree-Based Machine Learning Methods With Non-life Insurance Appli-
cations . Stockholm University, 2024.

[39] Zhan, J., Neural Netwerking Beyond Lee-Carter: A Song of Mortality Forecasting and
Deep Learning. Stockholm University, 2025.

https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1838795&dswid=-7124
https://su.diva-portal.org/smash/record.jsf?pid=diva2%3A1838795&dswid=-7124

Appendix A

Code Listings

Listing A.1: Feature pre-processing code.
1 # Pre -processing function for FNN - One -hot encoding and standardization
2

3 # One -hot encoding function
4 PreProcess.OneHot <- function(var1 , name , dat2){
5 names(dat2)[names(dat2) == var1] <- "V1"
6 XX <- data.frame(to_categorical(as.integer(dat2$V1)))
7 colnames(XX) <- paste0(name , c(1: ncol(XX)))
8 names(dat2)[names(dat2) == "V1"] <- var1
9 cbind(dat2 , XX)

10 }
11 # Standardization function
12 PreProcess.Continuous <- function(var1 , dat2){
13 names(dat2)[names(dat2) == var1] <- "V1"
14 dat2$X <- as.numeric(dat2$V1)
15 dat2$X <- (dat2$X-mean(dat2$X))/sd(dat2$X)
16 names(dat2)[names(dat2) == "V1"] <- var1
17 names(dat2)[names(dat2) == "X"] <- paste0(var1 ,"X")
18 dat2
19 }
20 # Apply to data
21 Features.PreProcess <- function(dat2){
22 dat2 <- PreProcess.Continuous("Area", dat2)
23 dat2 <- PreProcess.Continuous("VehPower", dat2)
24 dat2$VehAge <- pmin(dat2$VehAge ,20)
25 dat2 <- PreProcess.Continuous("VehAge", dat2)
26 dat2$DrivAge <- pmin(dat2$DrivAge ,90)
27 dat2 <- PreProcess.Continuous("DrivAge", dat2)
28 dat2$BonusMalus <- pmin(dat2$BonusMalus ,150)
29 dat2 <- PreProcess.Continuous("BonusMalus", dat2)
30 dat2 <- PreProcess.OneHot("VehBrand", "B", dat2)
31 dat2$VehGasX <- as.integer(dat2$VehGas)-1
32 dat2$Density <- round(log(dat2$Density) ,2)
33 dat2 <- PreProcess.Continuous("Density", dat2)
34 dat2 <- PreProcess.OneHot("Region", "R", dat2)
35 dat2
36 }

46

A Code Listings 47

Listing A.2: Matrix preparation for the FNN.
1 # Constructing the needed matrices
2

3 features <- c("AreaX", "VehPowerX", "VehAgeX", "DrivAgeX", "BonusMalusX",
4 "VehGasX", "DensityX", paste0("B", c(1:11)), paste0("R", c

(1:22)))
5 (input_layer <- length(features))
6 Xtrain <- as.matrix(train[, features]) # design matrix training sample
7 Xtest <- as.matrix(test[, features]) # design matrix test sample
8

9 Vtrain <- as.matrix(train$Exposure) # This is the offset for FNN
10 Vtest <- as.matrix(test$Exposure) #
11

12 GLM_train <- as.matrix(trainGLM$GLM) # We use the GLM as offset for
CANN

13 GLM_test <- as.matrix(testGLM$GLM) # We use the GLM as offset for
CANN

14

15 Ytrain <- as.matrix(train$ClaimNb) # Response(train)
16 Ytest <- as.matrix(test$ClaimNb) # Response(test)

Listing A.3: GBM code.
1 gbm_model <- gbm(ClaimNb ~ VehPowerGLM + VehAgeGLM + BonusMalusGLM
2 + VehBrand + VehGas + DensityGLM + Region +

AreaGLM +
3 DrivAgeGLM + offset(log(Exposure)),
4 distribution = "poisson",
5 data = trainGLM ,
6 n.trees = 1000,
7 cv.folds = 5,
8 interaction.depth = 1)

Appendix B

Figures

0.0

0.2

0.4

0.6

0.0 0.3 0.6 0.9
GLM_Poly

3F
N

N

Figure B.1: GLM_Poly against 3FNN.

48

B Figures 49

0.0

0.2

0.4

0.6

0.8

0.0 0.3 0.6 0.9
GLM_Poly

5F
N

N

Figure B.2: GLM_Poly against 5FNN.

0.0

0.5

1.0

1.5

0.0 0.3 0.6 0.9
GLM_Poly

3C
A

N
N

Figure B.3: GLM_Poly against 3CANN.

B Figures 50

0.0

0.5

1.0

1.5

0.0 0.3 0.6 0.9
GLM_Poly

5C
A

N
N

Figure B.4: GLM_Poly against 5CANN.

0.0

0.3

0.6

0.9

1.2

0.0 0.3 0.6 0.9
GLM_Poly

G
B

M
_m

od
el

Figure B.5: GLM_Poly against GBM_Model.

B Figures 51

0.0

0.5

1.0

1.5

0.0 0.3 0.6 0.9
GLM_Poly

G
B

M
_3

C
A

N
N

Figure B.6: GLM_Poly against GBM_3CANN.

0.0

0.5

1.0

1.5

0.0 0.3 0.6 0.9
GLM_Poly

G
B

M
_5

C
A

N
N

Figure B.7: GLM_Poly against GBM_5CANN.

