
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

An Interpretable and Comprehensive Machine
Learning Study of ADHD Symptom Severity
from Cognitive Tasks and Chronotype

Abir Myllymäki

Matematiska institutionen

Masteruppsats 2025:15
Matematisk statistik
Juni 2025

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2025:15

http://www.math.su.se

An Interpretable and Comprehensive Machine

Learning Study of ADHD Symptom Severity from

Cognitive Tasks and Chronotype

Abir Myllymäki∗

June 2025

Abstract

This thesis investigates whether cognitive task performance, to-
gether with age and chronotype, can predict adult ADHD symptom
severity as mea- sured by the ASRS questionnaire. Data from 356 par-
ticipants was ana- lyzed using Gaussian mixture models (GMM) for
clustering, and eXtreme Gradient Boosting (XGBoost) for both regres-
sion and classification. To interpret model behavior, SHapley Additive
exPlanations (SHAP) and counterfactual analysis were applied.

Clustering showed weak separation, with significant overlap be-
tween components. The XGBoost regression model achieved a test
RMSE of 11.70 (approximately 16atic bias toward mid-range scores.
Classification performance was limited by class imbalance and feature
overlap, resulting in a balanced accuracy of 0.51 (sensitivity 0.99, speci-
ficity 0.04). Interpreting the regression model, SHAP analysis found
age, chronotype and Tower of London performance as the most influ-
ential features, though overall contributions were modest. Counterfac-
tual analysis showed that lowering predicted symptom levels typically
required changes to multiple features, especially those related to par-
ticipants’ response time.

The results show the potential of combining cognitive task features
with chronotype in ADHD prediction. However, the models faced great
limitations in both accuracy and interpretability, likely due to sample
size and data imbalance. Future work should focus on larger, more bal-
anced datasets and consider alternative ways of aggregating the cogni-
tive task data before such models can be applied in clinical screening
or intervention.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: abir.myllymaki@outlook.com. Supervisor: Chun-Biu Li.

Acknowledgments

First and foremost, I would like to thank my supervisor Chun-Biu Li, as his
guidance and expertise made this project possible. Over the past semester, I
have received more advice and encouragement from Chun than I could have
hoped for, and I’m truly grateful for his support.

I am also thankful to John Axelsson and Leonie Balter, researchers at
Karolinska Institutet and Stockholm University, for generously providing the
data and for their input on the psychological aspects of the project. Their
collaboration made this thesis meaningful.

Lastly, I am forever grateful to my husband Matias Myllymäki, whose love
and faith in me have been my strength throughout my studies. Him cheering
me on during the most challenging moments, his quiet presence when I needed
to think, and his celebration of every small victory have carried me through not
only this project but every part of my life.

2

Contents

1 Introduction 5
1.1 Thesis Structure . 6

2 Methods 6
2.1 Gaussian Mixture Models . 6

2.1.1 Model Definition . 7
2.1.1.1 Maximum Likelihood Estimation 9
2.1.1.2 Expectation-Maximization Algorithm 11

2.1.2 Validation . 12
2.1.2.1 Alternative Validation Metrics 14

2.2 Extreme Gradient Boosting (XGBoost) 17
2.2.1 Second-Order Objective and Update 19
2.2.2 Split Evaluation and Gain Function 20
2.2.3 XGBoost for Regression 22

2.2.3.1 Alternative Loss Functions 23
2.2.4 XGBoost for Classification 25

2.3 Explainable Machine Learning 26
2.3.1 Shapley Values . 26

2.3.1.1 Computation and Approximation 30
2.3.2 SHapley Additive exPlanations (SHAP) 30

2.3.2.1 Mathematical Framework 30
2.3.2.2 TreeSHAP . 35
2.3.2.3 Visualizing SHAP Explanations 38

2.3.3 Counterfactual Analysis 40
2.3.3.1 Mathematical Framework 41

3 Results 44
3.1 Data . 44
3.2 Statistical Analysis . 45

3.2.1 Exploratory Analysis and Clustering 45
3.2.2 Predictive Modeling . 50

3.2.2.1 Classification Task 55
3.2.3 Counterfactual Analysis 58

4 Discussion 62

5 Conclusion 66

6 Code Availability 66

3

A Mathematical Derivations 70
A.1 Derivation of GMM Parameters 70
A.2 Second-Order Objective Optimization 75
A.3 Algorithms . 77

A.3.1 The NSGA-II Algorithm 80

B Data Details 83
B.1 ASRS Scoring . 83
B.2 Cognitive Task Description . 84
B.3 Outlier Removal Criteria . 85

C Supplementary Figures and Tables 85

4

1 Introduction

“Wait, what was I doing again?”. This familiar question may be a minor ev-
eryday annoyance for many, but for those with Attention Deficit Hyperactivity
Disorder (ADHD), such distractions can be a constant challenge. Character-
ized by inattention, impulsivity and restlessness, ADHD affects approximately
3-5% of adults worldwide and remains a challenge not only for clinical diagno-
sis but also for computational modeling (Ayano et al., 2023; Polanczyk et al.,
2007). When left untreated, symptoms can negatively affect school and work
performance, relationships and overall quality of life (Kim et al., 2023; Spencer,
2006).

Currently, diagnosis mostly relies on questionnaires and clinical interviews,
but there is a growing interest in finding data-driven ways to quantify, predict
and better understand ADHD severity (Bzdok and Meyer-Lindenberg, 2018;
Dwyer et al., 2018).

Traditional statistical methods often struggle to model the complex and
high-dimensional relationships in psychiatric measures. On the contrary, ma-
chine learning (ML) can handle large feature sets and find nonlinear interactions
given enough data (Tai et al., 2019). Recent applications of ML to mental health
research have been increasing, with data collected from brain imaging to mea-
surements from wearable devices (Kim et al., 2023).

Motivated by these advances, this thesis investigates whether ADHD symp-
tom severity can be predicted using data from cognitive tasks assessing atten-
tion, memory and related functions, in combination with age and chronotype
(morning/evening preference). These task scores provide numeric measures of
cognitive function that we hypothesize relate to each participant’s ADHD symp-
tom level, as measured by the Adult ADHD Self-Report Scale (ASRS). Beyond
predictive accuracy, particular emphasis is placed on model interpretability:
which features influence these predictions and how small changes might shift a
participants classification.

To address these questions, the analysis implements both unsupervised and
supervised ML methods, namely Gaussian Mixture Models (GMM) for cluster-
ing and eXtreme Gradient Boosting (XGBoost) for both regression and clas-
sification. These are complemented by interpretable AI techniques, including
SHapley Additive exPlanations (SHAP) and counterfactual analysis.

The broader goal of this project is not to develop a clinical diagnostic tool,
but rather to find data-driven approaches to model behavioral data. In doing
so, it draws attention to both the potential and limitations of machine learning
methods in the context of analyzing psychiatric data. This thesis investigates
the following questions:

1. Can ADHD symptom severity (ASRS score) be accurately predicted from
cognitive task performance, age and chronotype?

2. Which features contribute most to these predictions?

5

3. How do minimal changes in feature values affect ADHD severity classifi-
cations?

Through this analysis, we hope to better understand the structure (or lack
thereof) in cognitive task performance as it relates to ADHD.

1.1 Thesis Structure

This thesis will proceed as follows: In Section 2, the methodology is detailed,
describing the models and tools used, which lay the theoretical groundwork for
the analysis. In Section 3, the results of the exploratory analysis and predic-
tive modeling are presented, demonstrating the strengths and limitations of the
approach. In Section 4, these results are discussed in relation to the research
questions, with emphasis on challenges related to data structure and feature
overlap. In Section 5, the main conclusions and implications are summarized.
Finally, the appendices support the main text with mathematical derivations,
data descriptions and supplementary figures.

2 Methods

This section presents the theoretical foundations and methods underlying the
models used in this thesis. It introduces Gaussian mixture models (GMM)
for probabilistic clustering, followed by XGBoost for supervised learning and
concludes with model interpretation techniques, including SHAP value analysis
and counterfactual explanations.

2.1 Gaussian Mixture Models

Clustering is a method in machine learning for grouping observations based on
shared patterns or features. Among the most widely used methods is k-means
clustering, which assigns each point exclusively to a single cluster, resulting in
hard boundaries between groups. However, in many real-world settings, partic-
ularly those involving noisy or overlapping data, such strict assignments may
be inappropriate.

Gaussian mixture models (GMM) provide a more flexible and probabilistic
approach for such cases. Instead of assigning each observation to a single cluster,
this method assumes that the data is being generated from a mixture of multi-
variate Gaussian distributions, each corresponding to a latent subpopulation or
component. Unlike hard clustering methods, GMM allows for soft assignments,
where each observation has a probability of belonging to multiple clusters. This
is especially useful when modeling data where boundaries between clusters may
be gradual rather than discrete.

The following subsections present the mathematical formulation of Gaus-
sian mixture models, including parameter estimation using the Expectation-
Maximization (EM) algorithm.

6

2.1.1 Model Definition

Let x ∈ RD denote an observed D-dimensional continuous random variable.
A Gaussian mixture model assumes that x is generated in two steps: first, a
“hidden” label, or component index, k ∈ {1, . . . ,K} is drawn from a categorical
distribution, determining which Gaussian component to use. The data point x
is then sampled from the Gaussian distribution associated with that component,
see Figure 1 for an illustration.

1. Choose component k ∈ {1, . . . ,K}:

1 2 . . . k . . . K

2. Generate x from the chosen component:

x

x

N (x | µk,Σk)

µk

Figure 1: A Gaussian mixture model generates a data point x by first choosing
a component k ∈ {1, . . . ,K}, then drawing x from the Gaussian distribution
with parameters (µk,Σk).

Formally, let p(k) denote the prior probability of choosing component k,
satisfying

∑
k p(k) = 1 (Bishop, 2006, p. 111). Then, the marginal distribution

over x is given by:

p(x) =

K∑
k=1

p(k)N (x | µk,Σk), (1)

where the density N (x | µk,Σk) corresponds to the k-th multivariate Gaussian
distribution with mean µk ∈ RD and covariance matrix Σk ∈ RD×D. Each
term in (1) corresponds to one component in the mixture.

The covariance matrices Σk must be positive definite to ensure a valid Gaus-
sian distribution and control the shape, size and orientation of the component.
This makes GMMs very flexible, as they can represent clusters that are spherical,
elongated, rotated, or vary in volume. By allowing a full covariance matrix for
each component, the model can find cluster structures that are not well approx-
imated by simpler methods like k-means or models with constrained covariance
assumptions.

While this flexibility can be an advantage, it introduces a complexity trade-
off. An unconstrained GMM with K components in D dimensions involves

7

estimating

K ×D︸ ︷︷ ︸
means

+K × D(D + 1)

2︸ ︷︷ ︸
covariances

+K − 1︸ ︷︷ ︸
priors

(2)

parameters. With this many free parameters, which grow rapidly withD andK,
the model is more prone to overfitting in high dimensions or with small sample
sizes. This explains why it is common to restrict covariance structures (diagonal,
spherical or ellipsoidal) to reduce the number of parameters; a constraint that
reduces flexibility but improves generalization.

To formalize the generative process, we introduce a K-dimensional latent
binary variable z with a 1-of-K (“one-hot”) encoding (Bishop, 2006, p. 430).
The element zk = 1 indicates that observation x belongs to component k, with
all other zj = 0 for j ̸= k. For N observations X = {x1, . . . ,xN}, each xn is
paired with a latent variable zn = (zn1, . . . , znK)⊤. The marginal distribution
over zn is given by:

p(znk = 1) = p(k), where

K∑
k=1

znk = 1,

which ensures that exactly one component is active per observation. The joint
distribution over zn can then be expressed as:

p(zn) = p (z1 = 1)
z1 p (z2 = 1)

z2 . . . p (zK = 1)
zK =

K∏
k=1

p(k)znk . (3)

Conditioned on zn, the observation xn follows a Gaussian distribution:

p(xn | zn) =
K∏

k=1

N (xn | µk,Σk)
znk . (4)

Due to the one-hot encoding of zn, only the term corresponding to the active
component k contributes to the product.

From the product rule of probability, the joint distribution over xn and zn
is obtained:

p(xn, zn) = p(zn)p(xn | zn) =
K∏

k=1

[p(k)N (xn | µk,Σk)]
znk . (5)

Marginalizing over zn recovers the mixture density by summing over all possible
latent states:

p(xn) =
∑
zn

p(xn, zn) =

K∑
k=1

p(k)N (xn | µk,Σk), (6)

which directly corresponds to the GMM formulation in Equation (1).

8

To estimate the model parameters from data, maximum likelihood is imple-
mented. Consider a dataset X = {x1, . . . ,xN} of i.i.d. observations, and let
p := (p(1), . . . , p(K)) denote the vector of prior probabilities over components.
Then, the likelihood function for the GMM parameters is

p(X | p,µ,Σ) =

N∏
n=1

K∑
k=1

p(k)N (xn | µk,Σk), (7)

and the log-likelihood is

ln p(X | p,µ,Σ) =

N∑
n=1

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
. (8)

The expression in (8) is difficult to optimize directly due to the summation inside
the logarithm. As a result, closed-form solutions for parameter estimates are
not available (Bishop, 2006, p. 435). Instead, we turn to an iterative method,
the Expectation-Maximization (EM) algorithm, which is applicable to models
with latent variables.

Before presenting the EM algorithm, it is useful to derive the posterior dis-
tribution over the latent component index. This posterior, often referred to
as the responsibility that component k takes for explaining xn, is denoted by
p(k | xn). Using Bayes’ rule, it can be expressed as

p(k | xn)︸ ︷︷ ︸
Posterior responsibility

=

Prior weight︷︸︸︷
p(k) ·

Gaussian likelihood︷ ︸︸ ︷
p(xn | k)

p(xn)︸ ︷︷ ︸
Marginal likelihood

=
p(k) · N (xn | µk,Σk)∑K
j=1 p(j) · N (xn | µj ,Σj)

.

(9)
The posterior p(k | xn) can be equivalently expressed as p(znk = 1 | xn) and
represents a soft assignment of the data point xn to component k. It forms the
core of the E-step in the EM algorithm, which is described in Section 2.1.1.2.

In the remainder, the following Bayesian notation is used: p(k) for the prior
over components, and p(k | xn) denotes the posterior responsibility.

2.1.1.1 Maximum Likelihood Estimation

Given a dataset X = {x1, . . . ,xN}, the log-likelihood of a K-component Gaus-
sian mixture is

ln p(X | p,µ,Σ) =

N∑
n=1

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
. (10)

9

Maximizing (10) with respect to p,µ,Σ leads to three closed-form solutions,
respectively:

µk =
1

Nk

N∑
n=1

p(k | xn)xn, (11a)

Σk =
1

Nk

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
T , (11b)

p(k) =
Nk

N
. (11c)

where

Nk =

N∑
n=1

p(k | xn). (12)

Full algebraic derivations of equations (11a)-(12) are given in Appendix A.1.
Here, the mean of component k is a weighted average of all data points, where
the weight p(k | xn) quantifies how strongly xn belongs to component k. Points
with high membership probability for component k contribute more to its mean.
Similarly, the covariance matrix is estimated using weighted squared deviations,
(xn − µk)(xn − µk)

T , ensuring that each component adapts its shape to the
data it is most responsible for, with greater influence from points assigned more
confidently to k.

The prior p(k) represents the average responsibility of component k across

the entire dataset. Since Nk =
∑N

n=1 p(k | xn), the prior p(k) = Nk

N is the total
membership probability for component k, normalized by the dataset size. A
large Nk means component k explains a larger share of the data probabilistically.

Note that, unlike hard clustering, Nk is not an integer count but a sum of
probabilities quantifying the likelihood that all points belong to k. It represents
the total contribution of the dataset to component k in a probabilistic sense,
allowing overlapping clusters and uncertainty in assignments.

These parameter equations present a circular problem: to compute the re-
sponsibilities p(k | xn) we need the parameters p, µ and Σ, but to estimate
these we need the responsibilities. This mutual dependence calls for an iterative
approach to the solution.

Additionally, maximum likelihood estimation for GMM encounters a sig-
nificant problem due to singularities (Bishop, 2006, p. 433). If a Gaussian
“collapses” onto a specific data point (i.e., µk = xn and Σk → 0), the likeli-
hood function becomes unbounded. These singularities lead to severe overfit-
ting, making the maximization of the log-likelihood unstable. To address this,
heuristics can be used, such as resetting the mean and covariance of a collaps-
ing component (Bishop, 2006, p. 434). The singularity problem does not occur
in a single Gaussian distribution, where if the Gaussian collapses onto a data
point, the likelihood of the other data points decreases exponentially, causing
the overall likelihood to approach zero.

10

2.1.1.2 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm provides a neat solution to the
circular problem described in the previous section. Introduced in 1977, EM is
an iterative method suitable for finding maximum likelihood solutions in models
with latent variables (Dempster et al., 1977). The core focus of EM is to work
with the complete-data log-likelihood (the joint distribution of the observed data
X and the latent variables Z) rather than just the marginal distribution of
observed data (McLachlan et al., 2012, p. 143). For a single observation xn, the
joint distribution is given in (5). Extending to N i.i.d. observations and taking
the logarithm gives the complete-data log-likelihood

ln p(X,Z | p,µ,Σ) =

N∑
n=1

K∑
k=1

znk {ln p(k) + lnN (xn | µk,Σk)} . (13)

By expressing the log-likelihood as a linear sum over znk (via
∑

n,k znk(·)), we
avoid the problematic logarithm of a sum as seen in the incomplete-data log-
likelihood in Equation (8). If we knew the values of znk, maximizing this function
would be straightforward and similar to fitting separate Gaussian distributions
to disjoint subsets of the data.

However, since we do not observe the latent variables Z, the EM algorithm
alternates between estimating their expected values and maximizing the ex-
pected complete-data log-likelihood (Bishop, 2006, p. 440). This alternation
can be summarized in the following steps:

• Initialize: Choose initial values for the parameters p(k),µk and Σk.

• E-step: For each data point xn and each component k, compute the
posterior probabilities:

p(k | xn) =
p(k)N (xn | µk,Σk)∑K
j=1 p(j)N (xn | µj ,Σj)

.

• M-step: Update the parameters using the current posterior probabilities:

pnew(k) =
Nk

N

µnew
k =

1

Nk

N∑
n=1

p(k | xn)xn

Σnew
k =

1

Nk

N∑
n=1

p(k | xn)(xn − µnew
k)(xn − µnew

k)T

where

Nk =

N∑
n=1

p(k | xn).

11

• Convergence check: Evaluate the log-likelihood

ln p(X | p,µ,Σ) =

N∑
n=1

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
,

and check for convergence. If the change in log-likelihood is below a pre-
determined threshold, or if a maximum number of iterations is reached,
stop. Otherwise, return to Step 2.

Each iteration of EM is guaranteed to increase the log-likelihood function (or
leave unchanged). This ensures that the algorithm converges to a local max-
imum or saddle point of the likelihood function (Bishop, 2006, pp. 453–454).
However, this does not equal finding the global maximum, which makes the
initialization strategy important.

Several common approaches are used to initialize the parameters. One of the
simplest is random initialization, where K data points are randomly selected as
initial means, the covariance matrices are set to the sample covariance of the
entire dataset, and the priors are set uniformly as p(k) = 1

K . Another strategy
is to apply the K-means algorithm to the data and to use the resulting cluster
centroids as initial means (Bishop, 2006, p. 427). The covariance matrices are
then computed from the within-cluster scatter, and the initial priors are set
according to the relative sizes of the clusters.

One can also apply multiple restarts, where the EM algorithm is run several
times with different initializations. The solution with the highest final log-
likelihood is then chosen as the final model. This helps avoid convergence to
poor local optima and is useful in noisy or high-dimensional datasets.

2.1.2 Validation

Choosing the optimal number of components K in a Gaussian mixture model
can be a challenge. The most common model selection methods are likelihood-
based critera, such as the Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC). These criteria attempt to balance model fit against
complexity:

BIC = −2 ln p(X | p̂, µ̂, Σ̂) + κ ln(N) (14)

AIC = −2 ln p(X | p̂, µ̂, Σ̂) + 2κ, (15)

where p̂, µ̂, Σ̂ are the maximum likelihood estimates of the GMM parameters,
κ is the number of parameters and N the number of observations. While BIC
and AIC are widely used and easy to compute, their assumptions lead to great
limitations (Bishop, 2006, p. 217). The BIC, in particular, assumes both large
sample sizes and correct model specification, which are assumptions that are not
always held in practice. When working with real-world data, the true model
may not belong the specified parametric family (Gaussian in our case), resulting
in the likelihood function itself being potentially misleading. Additionally, both

12

Figure 2: Illustration of BIC’s conservative behavior under overlapping compo-
nents. Although the true number of clusters is K = 5, BIC selects K = 2 due
to its strong penalty for model complexity. This often results in merged clusters
and underfitting when cluster separation is low.

BIC and AIC assume that the data is i.i.d., an assumption often not fulfilled in
dependent or structured data such as time series, hierarchical groupings, etc.

Moreover, the strong penalty term of BIC often leads to the selection of
models with fewer components than is truly present in the data (Bishop, 2006,
p. 33; Hastie et al., 2001, p. 235). This conservative bias can lead to under-
fitting, especially in datasets where the true number of clusters is large or the
components are overlapping. See Figure 2 for an illustration of this. Note that
while the standard BIC and AIC formulations in (14) and (15) are designed
to be minimized, the mclust package in R, which is used for BIC computa-
tion throughout this thesis and in Figure 2, reports BIC using an inverted sign
(Fraley & Raftery, 2007, p. 5). Specifically, it defines

BICmclust = 2 ln p(X | p̂, µ̂, Σ̂)− κ ln(N), (16)

such that larger values indicate a better model. This explains why Figure 2
selects K = 2 at the maximum BIC value rather than the minimum.

Practical issues also arise when analyzing smaller-sized datasets, where sam-
pling variability can create overlapping confidence intervals in AIC and BIC
values across candidate models. This makes it difficult to find a clear local min-
imum (or maximum in the mclust sign convention) when plotting the BIC or
AIC values against the number of components K.

Due to these limitations, alternative validation metrics are implemented that

13

instead rely on cluster geometry, such as compactness and separation, rather
than likelihood.

2.1.2.1 Alternative Validation Metrics

The AIC and BIC criteria evaluate models based on their likelihood and com-
plexity, penalizing the number of free parameters to avoid overfitting. While
effective, they depend heavily on the likelihood function of the assumed para-
metric family (e.g., Gaussian distributions). In contrast, the indices introduced
in this subsection focus on the geometry of the fitted clusters, measuring prop-
erties like within-cluster compactness and between-cluster separation directly
from the data. These metrics are model-agnostic, meaning they can still be
applied even when the Gaussian assumption is doubtful, and they are more in-
terpretable in settings where cluster geometry matters more than probabilistic
fit.

Xie-Beni Index
The Xie-Beni index (XB) evaluates cluster quality as a ratio of within-cluster
compactness to between-cluster separation (Xie et al., 1991, p. 843). Let N
be the total number of observations, K the number of components and m ≥ 1
a fuzzification parameter controlling the influence of probabilistic assignments.
The Xie-Beni index is defined as

VXB =
1
N

∑N
n=1

∑K
k=1[p(k | xn)]

m ∥xn − µk∥
2

mini̸=j

∥∥µi − µj

∥∥2 ∈ [0,∞), (17)

where p(k | xn) is the membership probability that observation xn belongs to
component k, and µk is the mean of component k, i.e., the cluster center.

The numerator represents the total fuzzy within-cluster variance (where each
squared distance term is weighted by [p(k | xn)]

m), while the denominator is the
squared distance between the two closest cluster centers. Smaller values of VXB

indicate better clustering, with compact clusters and well-separated clusters.
The optimal number of components K corresponds to the minimum value of
the Xie-Beni index across different K values.

The fuzzifier m ∈ [1,∞) controls the degree of fuzziness in the membership
weights. Values of m closer to 1 make the clustering assignments harder (more
certain), while larger m make them softer (more fuzzy). In Gaussian mixture
modeling, soft memberships are inherently probabilistic, with p(k | xn) sum-
ming to 1 for each observation. When applying the XB index to GMMs, it
is therefore common to set m = 1 and insert those raw probabilities directly
without additional fuzzification.

With m = 1, the numerator simplifies to the expected squared distance from
points to their component means. If one were to choose m > 1 on a GMM, the
effect would be to make the index more forgiving of ambiguous points (since
p(k | xn)

m < p(k | xn) for 0 < p(k | xn) < 1 when m > 1), adding fuzziness
to already fuzzy assignments. While this aligns the XB index more closely with

14

its original fuzzy clustering intent (e.g., Fuzzy C-means that requires m > 1 to
introduce softness), GMMs do not include a fuzzifier parameter. Thus, m = 1
is a natural choice and is used throughout this thesis.

To improve robustness against outliers or unstable, overlapping clusters (e.g.,
due to random initialization), the minimum in the denominator can be replaced
with the median:

mediani ̸=j

∥∥µi − µj

∥∥ .
Silhouette Score
For hard cluster assignments, the silhouette score evaluates how similar a point
xn is to other points in the same cluster (cohesion) versus points in the nearest
different cluster (separation). (Rousseeuw, 1987). Let Ck(n) denote the cluster
assigned to xn, and let d(·, ·) be a distance function (e.g., Euclidean). Then: 1

a(n) =
1

|Ck(n)| − 1

∑
xm∈Ck(n),

m̸=n

d(xn,xm),

b(n) = min
j ̸=k(n)

1

|Cj |
∑

xm∈Cj

d(xn,xm).

(18)

Here, a(n) is the average distance from xn to other points in its own cluster,
while b(n) is the smallest average distance to any other cluster. The silhouette
value for xn is then defined as

s(n) =
b(n)− a(n)

max{a(n), b(n)}
∈ [−1, 1], (19)

where:

• s(n) ≈ 1: well assigned, far from neighboring clusters,

• s(n) ≈ 0: near a cluster boundary,

• s(n) < 0: potentially misassigned.

Unlike criteria such as AIC and BIC, that evaluate models globally, the silhou-
ette score provides validation at three levels. Because s(n) is defined for every
individual point, one can measure validation element-wise through single s(n)
values, cluster-wise by averaging s(n) over all points in cluster k, and globally
by averaging over the whole data set.
The global (hard) silhouette score is therefore:

VS =
1

N

N∑
n=1

s(n). (20)

Traditionally, silhouette scores are visualized in a silhouette plot, where each
cluster is represented by a horizontal “blade” sorted by s(n) (Rousseeuw, 1987,

1Note: If |Ck(n)| = 1, a(n) is undefined. In practice, such cases are excluded or assigned
s(n) = 0.

15

p. 11). The width of a blade corresponds to cluster size, and the height reflects
individual s(n) values. This plot aids in understanding cluster quality, where
wide and uniformly high blades indicate well-separated clusters and narrow, or
low, blades suggest overlapping clusters or misassignments. See Figure 3 for an
example.

(a) Silhouette plot for three clusters. (b) Cluster assignments projected onto first
two principal components with. Ellipses rep-
resent 95% confidence regions for each cluster.

Figure 3: Example of silhouette visualization for three clusters. (a) Silhou-
ette plot showing individual silhouette scores s(n) within each cluster. Wider
blades and higher values indicate better-defined clusters. The red dashed line
represents the average silhouette score across clusters. (b) The same clusters
displayed in two-dimensional PCA space for geometric comparison.

Fuzzy Silhouette Score
For soft clustering algorithms like GMM, the standard silhouette score needs
adaptation to account for probabilistic cluster memberships. The fuzzy silhou-
ette score weighs each s(n) by how confidently the point belongs to its most-
likely cluster versus the second-most likely one (Campello and Hruschka, 2006).
Let p(1)(n) and p(2)(n) denote the highest and second-highest posterior proba-
bilities for xn:

p(1)(n) = max
k

p(k | xn), p(2)(n) = second largest p(k | xn).

Then the fuzzy silhouette score is defined as

VFS =

∑N
n=1[p(1)(n)− p(2)(n)]

αs(n)∑N
n=1[p(1)(n)− p(2)(n)]α

, (21)

where α > 0 controls how strongly confident assignments are weighted. The
default value α = 1 is used in this thesis (Campello & Hruschka, 2006, p. 2865).

16

This score gives more importance to observations with certain cluster as-
signments. When a point lies “softly” on a boundary (p(1) ≈ p(2)), it gets a
smaller weight and therefore contributes less. Larger values of VFS indicate
better separated and more confidently assigned fuzzy clusters.

Model Selection in GMMs
Model selection for Gaussian mixture models typically involves the following
procedure:

• Fit GMMs for a range of components K.

• Compute multiple validation metrics, such as VXB(K) and VFS(K).

• Choose the value of K that minimizes VXB and/or maximizes VFS , with
preference for VXB for a direct fuzzy measure of compactness / separation.

2.2 Extreme Gradient Boosting (XGBoost)

Gradient boosting is a powerful ensemble method widely used for supervised
learning tasks. Among its various implementations, eXtreme Gradient Boost-
ing (XGBoost) has become one of the most effective and widely used tools,
consistently achieving top performance across applications ranging from regres-
sion to classification (Chen & Guestrin, 2016, p. 1). Introduced by Chen and
Guestrin (2016), XGBoost improves upon standard gradient boosting through
algorithmic enhancements such as regularization, second-order optimization and
efficient parallelized computation.

At its core, XGBoost constructs an ensemble prediction model by sequen-
tially adding regression trees. Each tree attempts to correct the prediction error
(residuals) of the previously built trees, gradually improving accuracy. The trees
predict continuous scores for all tasks, making the model adaptable to both re-
gression and classification through link functions (e.g., sigmoid or softmax).

Let {xi, yi}Ni=1 represent a dataset with N observations, where each xi ∈ RD

is a D-dimensional feature vector, and yi ∈ R is the corresponding target value.
The ensemble prediction is modeled as the sum of M additive functions

ŷi =

M∑
m=1

η tm(xi), tm ∈ T , (22)

where each tm is a regression tree mapping input xi to a scalar prediction,
and T is the space of regression trees, i.e. piece-wise-constant functions that
partition RD into a finite set of leaf regions (Chen & Guestrin, 2016, p. 2). The
learning rate η ∈ [0, 1] shrinks each tree’s contribution, allowing more trees to
be added, reducing the risk of overfitting. This shrinkage technique is standard
in boosting literature (Hastie et al., 2001, p. 364).

Each tree assigns an input xi to one of its leaves using a function

sm : RD → {1, 2, ..., Lm},

17

where Lm is the number of leaves in tree m. The function sm is the defining tree
structure that encodes the decision rules (e.g., “if x1 < 0.5, then left branch”)
2. Each leaf j is associated with an output value O

(m)
j ∈ R, which is the

prediction that tree m returns for any observation falling into that leaf. Let

O(m) = [O
(m)
1 , ..., O

(m)
L] denote the vector of all leaf outputs for tree tm. Thus,

the output of the tree is

tm(xi) = O
(m)
sm(xi)

. (23)

This process is illustrated in Figure 4.

xi = [x1, x2, . . . , xD] x1 < 2.5

x2 < 1.0 x3 < 0.3

O
(m)
1 O

(m)
2 O

(m)
3 O

(m)
4

yes no

yes no yes no

sm(xi) = 4

Figure 4: Illustration of a single decision tree in XGBoost. An input instance
xi = [x1, x2, . . . , xD] traverses the tree according to split decisions on the input
features, as defined by the structure function sm(·), reaching a leaf node with

output value O
(m)
j .

The model is trained by minimizing a regularized objective function that
combines the total loss across all training examples

Lobj =

N∑
i=1

ℓ(yi, ŷi) +

M∑
m=1

Ψ(tm), (24)

where ℓ is a twice differentiable convex loss function and Ψ(tm) is a regulariza-
tion term that penalizes overly complex trees:

Ψ(tm) = γLm +
1

2
λ||O(m)||2 = γLm +

1

2
λ

Lm∑
j=1

(
O

(m)
j

)2
. (25)

The term Ψ consists of two components: (1) a penalty on the number of leaves
Lm, controlled by the parameter γ, and (2) an L2 penalty on the size of the leaf
outputs, controlled by λ. Together, these components encourage trees to remain
shallow and their outputs to stay small unless justified by strong gradients, thus
improving generalization.

2Notation: Boldface lowercase letters such as xi ∈ RD denote column vectors; their j-th
coordinate is written xij (or xj when the instance index i is clear).

18

2.2.1 Second-Order Objective and Update

To efficiently optimize the objective, XGBoost employs a second-order Taylor
expansion of the loss around the current model predictions. This enables the
use of both first and second derivatives of the loss, leading to more accurate and
stable updates than standard first-order boosting methods.

Let ŷ
(0)
i denote the initial prediction (typically set to minimize the loss over

the entire dataset, such as the mean of the target values for squared error loss

or log-odds for logistic loss), and let ŷ
(m)
i represent the ensemble’s prediction

after m boosting rounds. The model is constructed additively by sequentially
updating predictions based on newly fitted trees

ŷ
(m)
i = ŷ

(m−1)
i + η tm(xi). (26)

At each iteration, the regularized objective is minimized

L(m)
obj =

N∑
i=1

ℓ(yi, ŷ
(m−1)
i + tm(xi)) + Ψ(tm). (27)

This is equivalent to traditional gradient descent, where tm approximates the
negative gradient of the loss, but the regularization term Ψ(tm) makes XG-
Boost unique, since most boosting algorithms only minimize the empirical loss
(Hastie et al., 2001, p. 358). In (27), each new tree is designed to correct the
residual error of the current ensemble. However, directly optimizing (27) for
arbitrary loss functions is challenging, as it would require finding the optimal
tree structure and leaf values simultaneously. To make the problem manageable,
XGBoost applies a second-order Taylor approximation of the loss around the

current predictions ŷ
(m−1)
i :

L(m) ≈
N∑
i=1

[
ℓ(yi, ŷ

(m−1)
i) + gitm(xi) +

1

2
hit

2
m(xi)

]
+Ψ(tm), (28)

where gi and hi are the first and second derivatives of the loss w.r.t. ŷ
(m−1)
i :

gi =
∂ℓ(yi, ŷ

(m−1)
i)

∂ŷ
(m−1)
i

and hi =
∂2ℓ(yi, ŷ

(m−1)
i)

∂(ŷ
(m−1)
i)2

. (29)

The gradient gi indicates the direction in which the current prediction should
be updated, while the Hessian hi provides local information on the curvature of
the loss function, and thus sets the size of the step taken. In practice, XGBoost
assumes that the Hessians of the loss are strictly positive, ensuring convexity
and the existence of a unique minimum at each boosting iteration.

Minimizing the quadratic form (28) with respect to the leaf outputs yields
the closed-form solution

O
∗(m)
j = − Gj

Hj + λ
, Gj =

∑
i∈Ij

gi, Hj =
∑
i∈Ij

hi, (30)

19

and the corresponding tree-structure score

L̃(m)(s) = −1

2

Lm∑
j=1

G2
j

Hj + λ
+ γLm. (31)

The algebraic derivations are given in Appendix A.2.
Having derived the main elements of the XGBoost framework, the full train-

ing procedure can be summarized. Algorithm 1 in Appendix A.3 outlines the
high-level steps performed during boosting, while the tree-building method is
detailed separately in Section 2.2.2.

2.2.2 Split Evaluation and Gain Function

Searching exhaustively through all possible tree structures is computationally
expensive, due to the combinatorial explosion of potential splits. Instead, XG-
Boost grows trees using a greedy split-finding strategy, evaluating one split at
a time. At each node, the algorithm selects the split that yields the greatest
reduction in the objective function. This approach is referred to as the Exact
Greedy Algorithm and is the default when the dataset is small enough to permit
evaluating all split candidates efficiently.

Consider a parent node containing a subset of training instances I. If this
node is split into two disjoint subsets IL (left child) and IR (right child), the split
gain quantifies the improvement in the regularized objective function (Chen &
Guestrin, 2016, p. 3). The gain G is defined as:

G =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

]
− γ, (32)

where G and H denote the total gradients and Hessians in the parent node, and
GL, HL and GR, HR those of the children. The gain expression compares the
loss reduction from assigning two separate output values (one for each child) to
that of using a single value for the parent node. Subtracting γ reflects the cost
of adding a new leaf, which discourages unnecessary growth and ensures each
split must yield sufficient improvement to justify the added model complexity.

The gain formula can be interpreted as a generalization of the concept of
variance reduction in classic regression tree algorithms. In the case where all
hi’s are equal to 1 (as we will see is the case with squared error loss), the gain
becomes proportional to the reduction in squared gradients after the split. In
other words, the algorithm favors splits that separate the data into regions with
more coherent gradients, leading to more confident and effective updates.

To illustrate the gain calculation, consider a node with three training in-
stances I = {1, 2, 3}, with the following gradients and Hessians:

i gi hi

1 2.0 1.0
2 1.0 0.5
3 −3.0 2.0

20

Now, consider a split after instance 2, resulting in two children (see Figure 5):

• Left child IL = {1, 2}, with GL = 3.0, HL = 1.5,

• Right child IR = {3}, with GR = −3.0, HR = 2.0,

• Parent node: G = 0, H = 3.5.

With λ = 1 and γ = 0, the gain is:

G =
1

2

[
32

1.5 + 1
+

(−3)2

2 + 1
− 02

3.5 + 1

]
=

1

2

[
9

2.5
+

9

3

]
= 3.3.

Since the gain is positive, the algorithm would accept this split, assigning sep-
arate leaf values to each child node. The opposing gradient signs (GL > 0 vs.
GR < 0) suggest a high potential for loss reduction, justifying the split.

I = {1, 2, 3}
G = 0, H = 3.5

IL = {1, 2}
GL = 3, HL = 1.5

IR = {3}
GR = −3, HR = 2

Figure 5: Illustration of a gain-based split. A parent node with three instances
I = {1, 2, 3} is split into two children. The gain is computed using the aggre-
gated gradients and Hessians of each node.

The above gain computation forms the core of the exact greedy algorithm,
outlined in Algorithm 2 in Appendix A.3. At each node, the algorithm searches
through all features and split points to find the one that gives the highest gain.
If the best gain exceeds zero, the split is applied; otherwise, the node is declared
a leaf.

While the exact method is effective on small datasets, it becomes compu-
tationally expensive as data size grows. The XGBoost framework therefore
includes alternative strategies for split finding:

Approximate algorithm: Proposes candidate splits using weighted percentiles
(Hessians as weights) (Chen & Guestrin, 2016, p. 3)

Sparsity-aware algorithm: Handles missing values and sparse input by learn-
ing default split directions during training. (Chen & Guestrin, 2016, p. 4)

These alternatives are especially useful when working with large-scale or
high-dimensional data. However, for this thesis we focus on the exact greedy
approach.

21

While this algorithm lays the foundation for split finding, its application
depends heavily on the choice of loss function. We now examine how these
concepts specialize to specific learning objectives, starting with regression.

2.2.3 XGBoost for Regression

For regression tasks with continuous target variables, the most common loss
function is the squared error (SE) loss:

ℓSE(yi, ŷi) =
1

2
(yi − ŷi)

2. (33)

The first and second derivatives of this loss function w.r.t. the predicted value
are

gi =
∂

∂ŷ
(m−1)
i

[
1

2
(yi − ŷ

(m−1)
i)2

]
= ŷ

(m−1)
i − yi, (34)

hi =
∂2

∂(ŷ
(m−1)
i)2

[
1

2
(yi − ŷ

(m−1)
i)2

]
= 1. (35)

The gradient gi is simply the residual error, directing the new tree to predict in
the opposite direction of the error. The constant Hessian hi = 1 implies that
the curvature of the loss function is uniform regardless of the prediction error,
meaning all residuals contribute equally in the update step.

With this constant Hessian value, the optimal leaf output simplifies to

O∗j =

∑
i∈Ij gi∑

i∈Ij hi + λ

=

∑
i∈Ij (yi − ŷ

(m−1)
i)∑

i∈Ij 1 + λ

=

∑
i∈Ij (yi − ŷ

(m−1)
i)

|Ij |+ λ
,

(36)

where λ is the L2-shrinkage parameter from the regularization term Ψ(tm) (see
(25)). This shows that the optimal leaf prediction is the average residual within
that leaf, modified by the regularization term. Here, λ shrinks predictions to-
ward zero when the number of observations |Ij | in the leaf is small (preventing
overfitting to sparse data). For larger leaves, the regularization becomes negli-
gible and the output approaches the unregularized average.

For example, consider a leaf with three instances and residuals {2,−1, 3},
for which the unregularized average is 2−1+3

3 ≈ 1.33. However, with λ = 4,
the regularized output becomes 2−1+3

3+4 ≈ 0.57, which is significantly closer to
zero. In comparison, for a leaf with 100 such residuals summing to 200, the
regularized output becomes 200

100+4 = 1.92, very close to the unregularized value
of 2.

22

The corresponding gain formula for the squared error loss simplifies to

GSE =
1

2

[
G2

L

|IL|+ λ
+

G2
R

|IR|+ λ
− G2

|I|+ λ

]
− γ, (37)

where G =
∑

i∈I(yi−ŷ
(m−1)
i) is the total residual for each node. This expression

reflects the reduction in squared residuals obtained by the split, penalized by
γ. It aligns with the traditional variance reduction principle used in regression
trees, but with added regularization.

To illustrate, consider the classic example of predicting house prices based on
features like size, location and age. Initially, the model might predict the global
average price. The first tree would then identify important factors driving price
variations, such as location, with leaves containing the average price deviation
for houses in different neighborhoods. The following trees would build on this
foundation: perhaps the second tree might focus on house size, adjusting pre-
dictions differently for small apartments versus large family homes. Each new
tree addresses the residual error left by the previous ones, allowing the model to
find complex interactions, such as how the impact of an extra bedroom varies
between urban and suburban locations.

To avoid overfitting, the parameter λ discourages the model from growing
trees that are too specific to the training data. Without such constraints, the
model might create separate leaves for homes that differ only in trivial ways,
such as the color of the front door.

2.2.3.1 Alternative Loss Functions

While the squared error loss is the most widely used in regression due to its
smooth derivatives and computational convenience, other loss functions may be
better suited to specific situations. One alternative is the Absolute Error (AE)
loss,

ℓAE(yi, ŷi) = |yi − ŷi|, (38)

which is more robust to outliers, as it penalizes large deviations linearly rather
than quadratically (Hastie et al., 2001, p. 349). However, AE comes with a
challenge: its gradient is undefined at zero and its second derivative is zero
almost everywhere (except when yi = ŷi, then it’s undefined). This makes it in-
compatible with XGBoost’s second-order optimization, which relies on nonzero
Hessians.

To handle this, recent versions of XGBoost implement a line search strategy
when using absolute error as the loss function (Developers, 2022). After building
each tree, the algorithm chooses a step size η that minimizes the loss in the
tree’s predicted direction. This avoids issues with division by zero and ensures
that the training procedure still converges, although typically more slowly than
with second-order methods (Developers, 2022). Line search strategies are used
frequently in optimization when second-order derivatives do not exist or are
unreliable (Boyd et al., 2004, Sec. 9.2; Wright & Wright, 2018, p. 280; Wright
& Nocedal, 2006, Algorithm 3.5).

23

Figure 6: Comparison of squared error loss, absolute error loss and pseudo-
Huber loss for different values of the transition parameter δ. Squared loss grows
quadratically and is highly sensitive to outliers, while the absolute loss grows
linearly and is more robust. The pseudo-Huber loss smoothly interpolates be-
tween the two, behaving quadratically near zero and linearly for large residuals.

A smoother alternative is the Pseudo-Huber loss, which behaves like a squared
error loss near zero and like AE for large residuals, while remaining fully differ-
entiable (Guo et al., 2024, p. 2):

ℓPH(yi, ŷi) = δ2

√1 +

(
yi − ŷi

δ

)2

− 1

 , (39)

where δ > 0 controls the transition from quadratic to linear behavior. This loss
is compatible with second-order boosting, as its Hessian is always positive:

∂2ℓPH

∂ŷ2i
=

δ2

(δ2 + (yi − ŷi)2)
3/2

> 0. (40)

Figure 6 compares these three loss functions.
The ideas behind gradient boosting carry over naturally from regression to

classification, with a few modifications to the loss function and its derivatives.
We now turn to the binary classification setting.

24

2.2.4 XGBoost for Classification

In binary classification, the model produces continuous predictions ŷi that are
transformed into class probabilities. This is typically achieved using the logistic
sigmoid function

πi =
1

1 + e−ŷi
, (41)

where πi is the predicted probability that instance i belongs to the positive
class (yi = 1). The standard loss function in this setting is the binary logistic
(log-loss, LL) function

ℓLL(yi, ŷi) = − [yi lnπi + (1− yi) ln(1− πi)] , (42)

where yi ∈ {0, 1} is the true class label. Substituting πi into the loss gives

ℓLL(yi, ŷi) = −
[
yi ln

(
1

1 + e−ŷi

)
+ (1− yi) ln

(
e−ŷi

1 + e−ŷi

)]
= yi ln(1 + e−ŷi) + (1− yi)

[
ŷi + ln(1 + e−ŷi)

]
= ln(1 + e−ŷi) + (1− yi)ŷi.

(43)

Alternatively, by switching signs and combining terms, the loss can also be
written as

ℓLL(yi, ŷi) = ln(1 + eŷi)− yiŷi. (44)

This equivalent form is preferred for differentiation, and it also shows the asym-
metric behavior of the loss: it penalizes false positives (yi = 0 but ŷi ≫ 0) ex-
ponentially, while penalizing false negatives (yi = 1 but ŷ ≪ 0) approximately
linearly.

To fit a new tree at boosting step m, the first and second derivatives of the

loss with respect to the current prediction ŷ
(m−1)
i are computed. Using

π
(m−1)
i =

1

1 + e−ŷ
(m−1)
i

,

we get

gi =
∂ℓLL(yi, ŷ

(m−1)
i)

∂ŷ
(m−1)
i

= π
(m−1)
i − yi, (45)

hi =
∂2ℓLL(yi, ŷ

(m−1)
i)

∂(ŷ
(m−1)
i)2

= π
(m−1)
i (1− π

(m−1)
i) (46)

The gradient is the difference between the predicted probability and the actual
class label, representing the classification error. It is positive when the model is
overestimating the probability of class 1 (e.g., predicting πi = 0.9 when yi = 0),
and negative when it is underestimating it (e.g., πi = 0.2 when yi = 1). A
gradient of zero indicates a perfect prediction. Further, the Hessian reaches
its maximum when the prediction is most uncertain (πi = 0.5), leading to

25

conservative updates, and decreases as the prediction becomes more confident
in either direction (i.e., it approaches 0 as πi → 0 or 1).

Following the same procedure as for regression, the optimal output value for
a leaf becomes

O
∗(m)
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
= −

∑
i∈Ij (π

(m−1)
i − yi)∑

i∈Ij π
(m−1)
i (1− π

(m−1)
i) + λ

, (47)

where λ is the same L2-shrinkage constant that appears in the regularization
term Ψ(tm) (see (25)). The gain formula is obtained by inserting the logistic-
loss derivatives into the generic split-gain expression derived in Section 2.2.2,
Eq. (32):

GLL =
1

2

[(∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ, (48)

where again gi = π
(m−1)
i − yi and hi = π

(m−1)
i (1− π

(m−1)
i).

As before, the gain measures how well a split aligns gradients in opposite
directions between the left and right children. A high gain often occurs when
one subset contains mostly positive examples and the other mostly negative,
indicating a clear decision boundary.

2.3 Explainable Machine Learning

What if your loan was denied, your job application filtered out, or your medical
treatment plan altered by an algorithm you couldn’t question? As algorithms
become more involved in decisions that affect our lives, it’s no longer enough for
models to be accurate. They must also be understandable (Lundberg & Lee,
2017, p. 1).

Ensemble methods like boosted trees often function as black boxes, making
it difficult to trace how specific input features influence the outcome. These
models often sacrifice transparency for performance; a trade-off that becomes
problematic in any setting where decisions need to be justified (Molnar, 2019,
p. 15). Interpretability isn’t just a convenience - it’s essential for trust, fairness
and accountability (Doshi-Velez & Kim, 2017, p. 2).

This is the main motivation behind the field of explainable machine learning
(XML), that is, to make models more transparent and trustworthy by identifying
how and why a prediction was made.

2.3.1 Shapley Values

A widely used tool in XML is the Shapley value, a concept borrowed from
cooperative game theory and introduced by Lloyd Shapley (1953). It provides a
way to assign importance to each feature in a prediction, based on their marginal
contributions across all possible feature combinations, or coalitions.

26

To illustrate, imagine a streaming service that predicts how much a user will
enjoy the new Star Wars movie. The average predicted enjoyment across all
users is 60%, but for a specific user, the model outputs 90%. The input features
for this user include:

• Age: 26 years

• Favorite genre: Sci-Fi

• Recently watched: 5 comedy movies

• Time of day: Evening

• Subscription level: Premium

The question becomes: why was this particular prediction so high? Is it because
they love Sci-Fi? Does it matter that they recently watched five movies in a
row? More generally, how can the individual contribution of each feature be
fairly and consistently measured?

The difficulty in answering that question is that in many ML models, espe-
cially nonlinear ones, features do not act independently. Their combined effect
may not equal the sum of their individual effects. For example, “Favorite genre:
Sci-Fi” might only push the prediction higher when paired with “Time of day:
Evening”, which would be an interaction that a linear model would miss unless
explicitly encoded.

Shapley values address this issue. They aim to distribute the difference
between a specific prediction and the average (or baseline) prediction across all
features (Molnar, 2019, p. 177). The idea is to evaluate every possible coalition
(i.e., subset of features) and measure how the prediction changes as each feature
joins the group. By doing so, the full prediction gap (e.g., 90% − 60% = 30%)
is fairly distributed among the input features, taking into account interactions
and avoiding arbitrary assumptions. A great advantage is that this approach
is model-agnostic, as it can be applied to any predictive model regardless of its
architecture, from simple linear regressions to complex neural networks.

Worth noting is that the baseline for comparison does not need to be the
global average prediction. Instead, Shapley values can be computed relative to
any reference point, allowing us to ask not just “why is this prediction high?”,
but also “why is it different from another specific instance?”.

Mathematical Definition
In cooperative game theory, the setup is around a game and players. A pre-
diction for an instance x ∈ RD is interpreted as a “payout” arising from a col-
laborative game played by the D input features. Each feature xj is a “player”,
and the model’s prediction f(x) is the total reward to be distributed (Molnar,
2019, p. 178). The goal is to determine how much of the excess prediction
f(x)− E[f(x)] is due to each feature xj alone.

Let D = {1, 2, ..., D} be the index set of all features. For any subset S ⊆
D\{j}, the marginal contribution of feature xj is the change in prediction when

27

feature j is added to the subset S (Hart, 1989, p. 211):

∆j(S) = v(S ∪ {j})− v(S), (49)

where v(S) denotes the expected model output when only the features in S
(written xS) are known. The Shapley value φj(x) is then defined as the average
marginal contribution of feature j over all possible subsets S ⊆ D\{j} (Shapley,
1953, pp. 311–312):

φj(x) =
∑

S⊆D\{j}

|S|!(D − |S| − 1)!

D!
[v(S ∪ {j})− v(S)]. (50)

This expression assumes that all permutations of feature orderings are equally
likely, weighting each marginal contribution accordingly (Hart, 1989, p. 211).

The combinatorial weight |S|!(D−|S|−1)!D! corresponds to the number of permuta-
tions in which the subset S appears before feature j, normalized by the total
number of permutations. In each such ordering, the marginal contribution of
j to coalition S is computed and then averaged. By averaging, the calcula-
tion ensures equal treatment for features with identical impact and fairness (no
coalition bias).

In practice, the value function v(S) is estimated by marginalizing over the
unknown features (Lundberg & Lee, 2017, p. 5):

v(S) = E[f(x) | XS = xS]. (51)

That is, the remaining features xD\S are integrated out, often under the as-
sumption of independence or using empirical data distributions (Molnar, 2019,
pp. 183–184). While the assumption of independence simplifies computation,
it can introduce bias in scenarios where features are correlated. The resulting
explanations could lead to misinterpretations when analyzing the results (Aas
et al., 2021, p. 2).

For example, say Sci-Fi preference (x1) and Evening viewing (x2) are strongly
correlated. Marginalizing over x2 as if it were independent might over- or un-
derestimate x1’s contribution, since E[f(x) | x1] would sample unrealistic com-
binations (e.g., Sci-Fi lovers who never watch movies in the evening).

The expectation in (51) can be taken under different distributions for the
remaining features; Section 2.3.2.2 makes this explicit for tree models.

Further, the Shapley value is the only solution that satisfies four axioms
that formalize what is considered a fair distribution (Shapley, 1953, pp. 309,
312; Molnar, 2019, p. 184):

• Symmetry: If two features contribute equally in every coalition, they get
the same value, i.e.,

If v(S ∪ {j}) = v(S ∪ {k}) for all S ⊆ D \ {j, k}, then φj = φk. (52)

• Efficiency: The sum of Shapley values equals the total difference:

D∑
j=1

φj(x) = f(x)− E[f(x)]. (53)

28

• Additivity: The Shapley values for a sum of models equal the sum of
the Shapley values from each model, i.e.,

For two models f and g, φ
(f+g)
j = φ

(f)
j + φ

(g)
j . (54)

• Dummy: A feature that does not affect the prediction in any subset gets
a value of zero.

If v(S ∪ {j}) = v(S) for all S ⊆ D, then φj = 0. (55)

A helpful intuition for understanding Shapley values is to imagine features en-
tering a room in random order (Molnar, 2019, p. 185). Initially, the room is
empty and the prediction equals the baseline E[f(x)] (60% in the movie stream-
ing example). As each feature xj enters the room, it contributes to shifting the
prediction from this average by an amount ∆j(S) = v(S ∪{j})− v(S), where S
is the subset of features entered previously. The Shapley value for a feature is
its average contribution across all possible entry orders. This ensures that the
assignment is fair regardless of the order in which features are considered.

Figure 7 demonstrates this for our streaming model:

• Baseline (60%): Empty room (S = ∅, no features).

• First feature (Sci-Fi genre): Enters and contributes +15% (from 60% to
75%), reflecting its marginal contribution when added to S = ∅

• Second feature (Evening time): Increases the prediction further by +10%
(to 85%), but this value accounts for its interaction with Sci-Fi.

• Third feature (Age 26): Adds a final +5%, which shows how later features
may have diminishing marginal contributions.

Order of Entry

Prediction

60%

90%

Baseline

Genre: Sci-Fi

Time: Evening

Age: 26

+0.15

+0.10

+0.05

0 1 2 3

Figure 7: Shapley value intuition: features enter one by one and shift the pre-
diction from the baseline. Contributions are averaged over all orderings.

29

The dashed lines in Figure 7 emphasize that the total prediction shift (30%)

equals the sum of all Shapley values
∑D

j=1 φj = f(x)−E[f(x)] = 90%− 60% =

30%, satisfying the efficiency axiom. The weights |S|!(D−|S|−1)!D! ensure symme-
try: for example, if Sci-Fi and Evening contributed equally in all coalitions, they
would receive identical values regardless of entry order.

2.3.1.1 Computation and Approximation

Computing exact Shapley values requires evaluating all possible subsets of fea-
tures, which is exponential in the number of features. For a model with D fea-
tures, there are 2D−1 possible coalitions per feature, making exact computation
very expensive for high-dimensional datasets. In total, computing all Shapley
values requires evaluating D · 2D−1 times, once for each coalition per feature.
This exponential scaling makes the approach impractical for models with more
than a dozen features unless structure-specific optimizations are used.

To address this challenge, many methods have been proposed, with SHapley
Additive exPlanations (SHAP) being one of the more common ones. As will be
discussed in Section 2.3.2, the SHAP framework introduces optimizations that
enable efficient computation of Shapley values for certain model types, such as
decision trees.

2.3.2 SHapley Additive exPlanations (SHAP)

While Shapley values offer a theoretically plausible method for attributing fea-
ture contributions to individual predictions, they are rarely practical to com-
pute directly. As seen in Section 2.3.1, their implementation faces several chal-
lenges, including computational complexity and the handling of feature depen-
dencies. SHapley Additive exPlanations (SHAP), developed by Lundberg and
Lee (2017), solves these problems by combining multiple explanation methods
into a single framework that keeps the important benefits of Shapley values
(Lundberg and Lee, 2017).

2.3.2.1 Mathematical Framework

SHAP builds upon the game-theoretic foundation of Shapley values, but adds
practical improvements to work faster and with more types of ML models. In-
stead of interpreting the complex original model directly, SHAP constructs a
simplified surrogate explanation model – typically a linear model that approx-
imates the original model’s behavior for a specific prediction (Molnar, 2019,
p. 163) 3. This surrogate is designed to be both additive (where each fea-
ture’s contribution can be summed) and locally accurate (faithful to the orig-
inal model’s output for that particular input) (Lundberg & Lee, 2017, p. 2).
The Shapley values then become the coefficients of this interpretable surrogate

3Molnar’s ironic observation expresses this well: “Solving machine learning interpretability
by using more machine learning!” (Molnar, 2019, p. 163).

30

model, representing how much each feature contributes to the deviation from a
baseline prediction.

To formalize this, let f(x) be the original prediction model, say a trained
XGBoost regression model. The surrogate captures how the original model
behaves around a specific input, using a coalition vector z′ ∈ {0, 1}D to represent
which features are “present” (z′j = 1) or “absent” (z′j = 0) (Lundberg & Lee,
2017, p. 2; Molnar, 2022a). Since most models cannot handle “missing” features
directly, SHAP uses a mapping function hx : {0, 1}D → RD that replaces absent
features (z′j = 0) with a value from a reference distribution, usually the marginal
distribution of the dataset (e.g., mean/median) (Lundberg & Lee, 2017, p. 2).
For present features, hx simply uses the original value xj :

hx(z
′)j =

{
xj if z′j = 1 (feature present),

E[xj] or xj,ref if z′j = 0 (feature absent),
(56)

where xj is the j-th coordinate of the explained instance x. Evaluating the
original model on a coalition vector z′ defines the coalition game

gx(z
′) = f

(
hx(z

′)
)
, (57)

such that gx : {0, 1}D → R maps coalitions to model outputs. This mapping is
necessary since most models require complete input vectors, so some strategy
is needed to impute or marginalize over missing features for SHAP to compute
feature contributions (see Figure 8).

SHAP then constructs a surrogate model, constrained by the Shapley ax-
ioms, that matches the coalition game wherever the axioms allow. Constraining
the surrogate to be linear in the presence indicators yields (Lundberg & Lee,
2017, p. 2)

f̂SHAP(z
′) = φ0︸︷︷︸

baseline

+

D∑
j=1

φjz
′
j , (58)

where φj are the Shapley values and φ0 = E[f(X)] is the baseline prediction.
The Shapley axioms make the coefficients φj the unique solution satisfying

f̂SHAP(z
′) = gx(z

′) for all z′ ∈ {0, 1}D (59)

if and only if the coalition game gx is itself linear in z′ (e.g., when the original
model is additive in the input features). For nonlinear models such as XGBoost,
SHAP guarantees an exact match at z′ = 1 (as seen in the local accuracy
property introduced below) and provides the unique Shapley-consistent linear
approximation elsewhere.

31

Coalition vector
z′ = [1, 0, 1]

Mapping function
hx(z′) = [x1,E[x2], x3]

Model evaluation
f(hx(z′))

Figure 8: SHAP evaluates the model on synthetic inputs constructed from fea-
ture coalitions. The coalition vector z′ = [1, 0, 1] includes features 1 and 3 but
excludes feature 2. The mapping function hx replaces the missing x2 with its
expected value E[x2], allowing evaluation of the original model f .

The Shapley values are estimated by computing the average marginal con-
tribution of each feature j across all coalitions in Equation (50). Because exact
evaluation is exponential in D, SHAP relies on faster algorithms:

• KernelSHAP (model-agnostic): approximates Shapley values by solving
a weighted least-squares problem over sampled coalitions. It uses a kernel
that assigns higher weights to very small or very large coalitions, ensuring
the solution converges to the true Shapley values in expectation (Lundberg
& Lee, 2017, p. 6; Molnar, 2022a).

• TreeSHAP (decision-tree models): uses tree structure to compute exact
Shapley values (Lundberg et al., 2020).

SHAP extends beyond just approximating Shapley values; it reframes them
as local explanations of individual predictions. To ensure that these explana-
tions are meaningful and fair, SHAP imposes three axiomatic properties that
the explanation model f̂SHAP must satisfy. Let f(x) again denote the original
model prediction (e.g., XGBoost regression). The following properties are then
required (Lundberg & Lee, 2017, p. 4; Molnar, 2022a; Lundberg et al., 2020,
p. 64):

1. Local accuracy

f̂SHAP(z
′ = 1) = f(x) ⇒ f(x) = φ0 +

D∑
j=1

φj (60)

This property ensures that when all features are present (z′ = 1), the expla-
nation model exactly reproduces the prediction of the original model. In other
words, the SHAP values φj together explain the entire deviation of the predic-
tion from the baseline

f(x)− E[f(X)] =

D∑
j=1

φj . (61)

This mirrors the efficiency axiom (see Equation (53)) of Shapley values and
guarantees that the explanation is “complete”, i.e., no part of the prediction is
left unexplained (Molnar, 2022a).

32

2. Missingness
Missingness states that a feature which is not included in the coalition (z′j = 0)
must receive an attribution of zero:

z′j = 0⇒ φj = 0. (62)

In other words, absent features contribute nothing to the explanation. This
aligns with our intuitive expectation: if a feature was not in the surrogate
model input, then it should not be credited for the resulting prediction.

To clarify further, SHAP distinguishes between a feature being absent and
a feature having a value of zero. The coalition vector z′ ∈ {0, 1}D is used to
encode presence or absence, where z′j = 0 denotes that feature j is missing and
its value is replaced via the mapping function hx(z

′). This property ensures
that the explanation respects this absence. If a feature is not included in the
model input, its Shapley value must be zero4.

3. Consistency
If the marginal contribution of a feature increases (or stays the same) in a new
model, then its SHAP value should not decrease (Lundberg & Lee, 2017, p. 4).
More formally, let fx(z

′) = f(hx(z
′)) be the model output when evaluated on

the coalition z′ ∈ {0, 1}D, and let z′ \ j denote a copy of z′ where feature j has
been removed (i.e., z′j = 0). Then, for any two models f and f ′, if

f ′x(z
′)− f ′x(z

′ \ j) ≥ fx(z
′)− fx(z

′ \ j) for all z′ ∈ {0, 1}D, (63)

then the SHAP value for feature j must not decrease

φ
(f ′)
j ≥ φ

(f)
j . (64)

This formalizes the intuition that if a feature becomes more important in a
new model, its attribution (SHAP value) in the explanation should reflect that
increase (Molnar, 2022a, Section. SHAP theory). Consistency guarantees that
the feature’s SHAP value under the new model will be at least as large as under
the original model. In simpler terms:

• If a feature becomes more important, its SHAP value doesn’t shrink.

• If a feature stays equally important, its SHAP value doesn’t change (as-
suming all other marginal contributions unchanged).

A simple analogy: Imagine two chefs f and f ′, who cook using the same ingre-
dients (features). Chef f ′ relies more heavily on salt (feature j) than Chef f in
every dish, no matter the combinations of other ingredients. The consistency

4Although the original SHAP paper uses x′
j = 0 ⇒ φj = 0 to state this property (Lund-

berg & Lee, 2017, Equation 6), this is slightly misleading in notation. As clarified in the
Interpretable Machine Learning book (Molnar, 2022a, Section. SHAP theory), the value x′

j

in that context refers to a binary coalition indicator - what we denote here as z′j - not the
actual feature value xj ∈ R.

33

property ensures that salt’s SHAP value under Chef f ′ will be greater than or
equal to its SHAP value under Chef f .

Although SHAP values are mathematically equivalent to Shapley values,
their interpretation and computation are grounded in model behavior. The fol-
lowing example revisits the earlier movie recommendation scenario (see Section
2.3.1), now illustrating both SHAP computation and its axiomatic properties.

Consider a model predicting how much a user will enjoy a movie using these
two binary features:

• Genre: Sci-Fi (x1 = 1 if favorite, else 0)

• Time: Evening (x2 = 1 if watching in the evening, else 0).

For a user x = (1, 1), the model predicts f(x) = 0.90 and baseline E[f(X)] =
0.60. SHAP evaluates the model on synthetic inputs formed from all feature
coalitions as follows:

Coalition S Mapped Input hx(S) Model Output f(hx(S))
∅ [E[x1],E[x2]] 0.60
{Sci-Fi} [1,E[x2]] 0.75
{Evening} [E[x1], 1] 0.70
{Sci-Fi, Evening} [1, 1] 0.90

The four coalition payouts above are inputs to the Shapley formula (Equa-
tion (50)) for computing the exact Shapley values, and should not be confused
as four independent equations to be solved. For D = 2, the Shapley formula

uses all four coalitions with the appropriate combinatorial weights |S|!(D−|S|−1)!D! ,
avoiding the need to solve a linear system. The efficiency axiom then ensures
φ1 + φ2 = f(x) − φ0, which follows from the formula rather than acting as an
extra algebraic constraint. Hence there is no conflict between the four coalition
values and the three unknown φ’s.

Now, using Equation (50), the resulting Shapley values are:

φSci-Fi =
(0.75− 0.60) + (0.90− 0.70)

2
= 0.175,

φEvening =
(0.70− 0.60) + (0.90− 0.75)

2
= 0.125.

One might wonder why we use Eq. (50) rather than Eq. (58)? It may seem

reasonable to treat f̂SHAP(z
′) = φ0 +

∑D
j=1 φjz

′
j as a system of equations and

solve for φj directly by using coalition payouts. However, this approach fails
for two reasons. First, with D features there are D + 1 unknowns but 2D

coalitions, creating an over-determined system. Even if only D + 1 coalitions
are used (e.g., the baseline and the D single-feature coalitions), the resulting
coefficients violate the local accuracy axiom. Second, unweighted least-squares
solutions using (58) ignore the combinatorial fairness of Shapley values, leading
to violations of efficiency (

∑
φj ̸= f(x)− φ0) or symmetry.

34

The Shapley formula solves both these issues by (i) weighting every coali-
tion with the combinatorial weights, derived from the fairness axiom, and (ii)
enforcing efficiency so that the coefficients sum to the exact prediction gap. In
practice, algorithms such as KernelSHAP and TreeSHAP replicate the same re-
sult by solving a weighted linear system whose kernel reproduces these weights.
Hence, Eq. (50) is used and not Eq. (58) to compute φj in the example.

The three SHAP properties can now be verified:

Local accuracy:
The SHAP values together explain the difference between the prediction and
baseline, such that

f(x) = E[f(X)] + φSci-Fi + φEvening = 0.60 + 0.175 + 0.125 = 0.90. ✓

Missingness:
If the coalition excludes Evening (z′2 = 0), the input becomes [1,E[x2]] and the
model output is 0.75. Even though the actual input has x2 = 1, the SHAP
value for Evening is set to zero in this coalition: φEvening = 0. ✓

Consistency:
Now suppose a new model f ′ increases the contribution of Sci-Fi in all coalitions,
for example

f ′(1,E[x2])− f ′(0,E[x2]) = 0.20 > 0.15.

Then by consistency,

φ
(f ′)
Sci-Fi ≥ φ

(f)
Sci-Fi = 0.175. ✓

Still, computing exact SHAP values remains computationally expensive, espe-
cially for complex models. In the next section, we introduce TreeSHAP, an
efficient algorithm that enables exact SHAP value computation for tree-based
models such as XGBoost.

2.3.2.2 TreeSHAP

As discussed in Section 2.3.1, evaluating all 2D coalitions quickly becomes in-
tractable as the number of features grows. TreeSHAP, introduced by Lundberg
et al. (2020), addresses this bottleneck for tree-based models such as decision
trees, random forests and gradient-boosted ensembles. It is a model-specific
algorithm that uses the tree structure to compute exact SHAP values in poly-
nomial time (Lundberg et al., 2020, p. 56). This means that the computation
time grows as a polynomial function of model size, rather than exponentially
with the number of features. Here, model size refers to the number of trees M ,
the maximum tree depth Υ and the number of leaves L. As discussed below,
TreeSHAP’s complexity depends polynomially on these parameters, avoiding
the exponential dependence on the feature count D as in the case with previous

35

exact Shapley computations. Consequently, TreeSHAP can be applied to even
large datasets with many dimensions.

Notably, TreeSHAP satisfies the same three SHAP axioms (local accuracy,
missingness and consistency) while being an order of magnitude faster than
model-agnostic alternatives.

There are two main variants of TreeSHAP: interventional and tree-path de-
pendent (Lundberg & Lee, 2017, p. 65) (Molnar, 2022a, Section. TreeSHAP).
The interventional variant computes classical Shapley values by marginalizing
over a background dataset, by assuming independence between features. In
contrast, the tree-path dependent method uses conditional expectations inferred
from the tree’s split structure, which preserves dependencies found during train-
ing.

While the interventional approach aligns more closely with causal interpre-
tations, the path-dependent variant is computationally faster and more faithful
to the model’s internal logic. In this thesis, we focus exclusively on the tree-path
dependent method, which is natively implemented in the xgboost R-package

used in the analysis.
Tree-based models are made up of piecewise constant functions, where each

input x ∈ RD follows a unique path from root to leaf, and each leaf outputs a
fixed value. The idea of TreeSHAP is to compute, for each feature, the expected
change in model output when that feature is excluded from the input—that is,
when it is treated as “missing” from the coalition.

When a feature is present, TreeSHAP follows the actual path that the in-
stance x takes through the tree. On the other hand, when a feature is considered
missing (i.e., not in the coalition), TreeSHAP does not follow the actual deci-
sion path for that feature. Instead, it branches at every split node involving
that feature and computes a weighted average over both left and right subtrees.
These weights, or probabilities, assigned to each branch are determined by the
training data coverage. The coverage (also called cover) is the proportion of
training instances that followed each path during training.

For example, if a split on feature xj sent 70% of the training samples to the
left and 30% to the right, TreeSHAP uses these as probabilities when comput-
ing the expected output in the absence of xj (0.7 to left and 0.3 to the right),
see Figure 9. These coverage statistics are recorded during training of the tree
model and are used as path weights for simulating feature splits. This allows
TreeSHAP to compute the expectations analytically, without requiring sampling
or external reference data.

How TreeSHAP works
Recall the generic Shapley value function in (51). It can be rewritten as

v(S) = E
[
f(xS ,XSC) | XS = xS

]
, (65)

where SC is the complement of S, and the expectation is taken over the features
that are not in the coalition S. For the path-dependent TreeSHAP variant we
specialize this expectation to the empirical conditional distribution encoded by
the tree structure:

36

xj < 5

70 samples 30 samples

70% 30%

Training phase

xj < 5

xk < 3

Leaf A Leaf B

Leaf C

cover = 0.7 cover = 0.3

TreeSHAP inference

Figure 9: TreeSHAP explanation using training-derived coverages. Left: During
training, a split on feature xj sends 70% of samples left and 30% right. These
proportions are recorded as coverage statistics. Right: When xj is present
in a coalition, TreeSHAP follows a single path (normal execution). When xj

is missing from the coalition, TreeSHAP follows both paths simultaneously,
using the training coverage proportions (70%/30%) as weights to compute the
expected model output.

vpath(S) = E
XSC∼P

(
XSC |XS=xS , tree path

)[f(xS ,XSC)
]
. (66)

The conditional density P (XSC | XS , tree path) is approximated by the cover
statistics recorded during training. Cover thus provides an empirical estimate of
the conditional probability that a held-out instance would traverse each branch.
The goal of TreeSHAP is to approximate (66).

Now, for a single decision tree, TreeSHAP traverses the tree recursively. At
each node, it checks whether the splitting feature is in the current coalition S:

• If present, the traversal continues down the path determined by x.

• If absent, both subtrees are explored, and weighted by training data cov-
erage.

During this traversal, the algorithm saves a path object, γ, that keeps track of
current coalition features S, the weighted probability of reaching the current
node, and the partial contributions of each feature based on Shapley values
(Lundberg et al., 2020, p. 64). These intermediate objects are stored and up-
dated dynamically to avoid redundant computations.

Taking advantage of the sparsity and hierarchical structure of decision trees,
TreeSHAP avoids evaluating every possible subset and therefore computes SHAP
values in polynomial time. The overall complexity becomes

O(M · L ·Υ2),

where M is the number of trees, L is the maximum number of leaves and Υ
is the maximum tree depth. In comparison, a direct implementation of the

37

Shapley formula has complexity O(M · L · D · 2D), where D is the number of
features (Lundberg et al., 2020, p. 64).

The path-dependent TreeSHAP algorithm is summarized in Algorithm 3
(see Appendix A.3) and follows the structure of Algorithm 2 in Lundberg et al.
(2020), with notation adapted for consistency with this thesis.

With the SHAP values derived for tree-based methods, these can be com-
puted and interpreted.

2.3.2.3 Visualizing SHAP Explanations

Once SHAP values are computed, each observation in the dataset receives one
SHAP value per feature. This results in a matrix of size N ×D, which can seem
like too many to easily interpret. These values can be interpreted either locally
(to explain an individual prediction) or globally (to understand model behavior
across the dataset). However, the sheer volume of values can be difficult to
interpret directly.

A commonly used visualization tool is the beeswarm plot, which displays
the distribution of SHAP values across all instances and features. Figure 10
illustrates an example of a movie enjoyment prediction model. In a beeswarm
plot, the x-axis shows the SHAP value and the y-axis lists all features, ordered
by their mean absolute SHAP value (i.e., overall importance). The higher the
value, the more impact the feature had on the predictions. Each point in the
plot corresponds to a single observation for a given feature, and is placed hor-
izontally according to its SHAP value. The color of the point represents the
original feature value, where in Figure 10 yellow represents low values and pur-
ple indicates high values.

Points that lie to the right of the vertical zero line indicate that the feature
increased the model’s prediction for that instance; those to the left decreased it.
The color provides further information: if high feature values consistently push
predictions upward (right side), the model has learned a positive relationship
between the feature and the target.

38

Figure 10: Beeswarm plot for a movie preference model. Features are ranked by
impact (mean |SHAP|). Each dot corresponds to a SHAP value for one instance
and one feature, colored by its original value (yellow = low, purple = high). For
example, high SubscriptionMonths (purple dots on the right) strongly increase
predicted enjoyment.

In Figure 10, we can interpret each feature’s impact pattern in more detail. The
feature SubscriptionMonths shows a relatively uniform distribution across the
x-axis. High feature values (purple) are mostly located to the right, indicating
that users with long subscription histories tend to receive higher predicted en-
joyment scores. Conversely, lower values (yellow) tend to push the prediction
downward. This suggests a roughly linear and monotonic relationship between
the number of subscription months and predicted enjoyment.

Binary features like SciFi, Evening and Premium, form two tight clusters,
corresponding to values 0 (yellow) and 1 (purple). For all these features, in-
stances have separated on low and high feature values, which indicate a strong
connection between how the feature affects the model prediction. For example,
users with SciFi = 1 typically receive a high positive SHAP value, meaning
that Sci-Fi preference strongly increases predicted enjoyment.

For ComedyCount, low values are associated with small positive contribu-
tions, while higher ones push the prediction strongly downward. This suggests
that watching too many comedy movies tends to reduce predicted enjoyment,

39

perhaps due to content fatigue.
Lastly, Age, a continuous variable, forms a wide cloud of points centered near

zero, with both low and high values having different effects on the prediction.
This implies that Age contributes less consistently than the other features, and
can be interpreted as minimal or a context-dependent impact (e.g., interactions
with other features).

Taken together, the beeswarm plot gives both a global view of feature im-
portance (via vertical ranking) and local information about how each feature
affects predictions, including the direction and magnitude of its influence and
whether the relationship is consistent or varies across observations.

2.3.3 Counterfactual Analysis

While SHAP explains why a prediction was made, it does not answer how it
could have been different. Suppose a machine learning model is used to classify
a patient based on their risk of developing a certain condition. For a given
individual, the model predicts high risk, though the person expected a low-risk
outcome. A natural question arises: what would need to change in the input
features for the person to no longer be classified as high-risk? Counterfactual
explanations try to answer this by identifying the minimal changes in the input
that would result in a desired prediction - in this case, a low-risk classification
(Molnar, 2019, p. 191).

This way of thinking aligns with human reasoning, as we often think through
“what if” scenarios when trying to understand complicated situations and make
decisions. Counterfactual explanations formalize this intuition by asking: What
is the closest possible input to the current one, such that the model output
changes in a meaningful way? These explanations are local, instance-based and
contrastive (Molnar, 2019, p. 192). That is, they compare the original input to a
hypothetical alternative, the “counterfactual”, which leads to a different output.
This is especially useful when understanding how to achieve a different result is
more relevant than understanding why the current prediction was made.

Traditional explanation methods such as feature importance may give valu-
able information on a global level, but often fall short of providing actionable
recommendations for individual cases. Counterfactuals aim to close this gap by
producing alternative instances that are both close to the original and aligned
with a specific target outcome. This target can be a different class label in
classification problems or a target range in regression.

Mathematically, counterfactual analysis involves finding an alternative fea-
ture vector x∗ ∈ RD that is minimally different from the original instance x, yet
results in a different predicted outcome (Wachter et al., 2018, p. 9). This search
can be framed as a constrained optimization problem with multiple competing
objectives: (i) ensuring the prediction changes, (ii) remaining close to the origi-
nal input (x∗ near x), (iii) altering as few features as possible, and (iv) choosing
feature values that are likely in the feature space (Molnar, 2019, p. 193).

40

2.3.3.1 Mathematical Framework

Let f̂ : RD → R be a trained predictive model, and x ∈ RD a feature vector
with output f̂(x) ∈ R. A counterfactual instance x∗ ∈ RD is a modified input
that yields a prediction within a desired outcome set Y ∗ ⊂ R, while remaining
as similar as possible to x. The target set Y ∗ may be a specific value or a
continuous interval.

The counterfactual loss is defined as a four-dimensional objective (Dandl
et al., 2020, p. 451):

LC(x,x
∗, Y ∗,Xobs) =

(
c1, c2, c3, c4

)
, (67)

where each component c1, .., c4 correspond to the four criteria (i)-(iv) mentioned
above, and Xobs is the training data.

The first term c1 ensures that the prediction for x∗ is sufficiently close to
the desired target. This is typically defined as

c1
(
f̂(x∗), Y ∗

)
=

{
0 if f̂(x∗) ∈ Y ∗

inf
y∗∈Y ∗

|f̂(x∗)− y∗| else
, (68)

penalizing candidates that fail to reach the target region. This term can be
relaxed to allow soft thresholds in regression.

To encourage similarity, the second term c2 measures the distance between x
and x∗. Gower distance, δG, is commonly used here, as it handles mixed feature
types well (Dandl et al., 2020, p. 451):

c2(x,x
∗) =

1

D

D∑
j=1

δG(xj , x
∗
j) ∈ [0, 1], (69)

with D being the number of features. The distance calculation δG varies ac-
cording to feature type (Gower, 1971):

δG(xj , x
∗
j) =

{
1

R̂j
|xj − x∗j | for numerical features

Ixj ̸=x∗
j

for categorical features,
(70)

where R̂j is the range of values for feature j in the observed dataset (Dandl
et al., 2020, p. 451).

Since two instances could be close in terms of raw distance but differ in
many features, the third objective c3 promotes sparsity by counting how many
features change using the L0 norm:

c3(x,x
∗) = ∥x− x∗∥0 =

D∑
j=1

Ixj ̸=x∗
j
. (71)

This favors simpler and more interpretable changes.

41

Finally, c4 ensures plausibility by penalizing unrealistic counterfactuals, mean-
ing those lying in low-density regions of the training data. It computes the aver-
age Gower distance between x∗ and its k nearest neighbors x[1], . . . ,x[k] ∈ Xobs

from the training data (Dandl et al., 2020, p. 451):

c4(x
∗,Xobs) =

1

k

k∑
i=1

1

D

D∑
j=1

δG(x
∗
j , x

(i)
j), (72)

where x(i) are the nearest neighbors andXobs is the training data. This objective
acts as a soft constraint, keeping solutions in regions that are supported by the
data.

Together, these objectives sum up the goal of counterfactual analysis: to
identify alternative scenarios that are not only reaching a specific target, but
also being realistic and interpretable.

Now, the challenge lies in optimizing all four objectives in (67) simultane-
ously. This can be done using the Nondominated Sorting Genetic Algorithm
(NSGA-II), an evolutionary algorithm designed to find a set of Pareto-optimal
solutions (Dandl et al., 2020, p. 452; Deb et al., 2002). The Pareto-optimal
set refers to solutions for which no single objective can be improved without
worsening at least one of the others (Deb et al., 2002, p. 182). Put differently,
these can be interpreted as the local minima of the objectives.

In the context of counterfactual explanations, this corresponds to the al-
ternatives that each balance prediction accuracy, similarity, sparsity and plau-
sibility in different ways. The goal of the algorithm is to find multiple valid
options, rather than producing a single counterfactual. A detailed description
of the NSGA-II algorithm, including its steps and workflow, is provided in Ap-
pendix A.3.1.

While NSGA-II builds a great foundation, Dandl et al. (2020) have modified
it and developed the Multi-objective Counterfactual (MOC), that better suits
specific demands of counterfactual explanations (Dandl et al., 2020). For in-
stance, MOC gives the option to fix certain features (e.g., age, gender), which
are then held constant throughout the optimization to reflect real-world con-
straints on what changed. Additionally, among other things, different crossover
and mutation strategies are implemented for continuous, ordinal and categori-
cal features, improving the search in mixed-feature spaces (Dandl et al., 2020,
p. 452).

To conclude, we summarize this section with an example. Consider a heart
disease risk prediction model based on these features:

• Age

• Blood pressure (BP)

• Cholesterol level

• Smoking status (yes/no)

42

We are interested in finding counterfactual explanations for an individual with
feature values:

Age BP Cholesterol Smoking
50 160 240 Yes

For this instance, the model predicts a high risk with 85% probability and we
want to reduce this probability to 50%. An initial population might contain
candidate counterfactuals such as those presented in Table 1

Table 1: Initial counterfactual candidates (generation 1)

Candidate Age BP Cholesterol Smoking

1 50 140 240 Yes
2 50 160 200 Yes
3 50 160 240 No
4 45 160 240 Yes
5 50 150 220 No

Each candidate is evaluated according to the four objectives. For example,
candidate 3 who is not smoking, may result in a desired risk prediction of 50%
(good c1 value), changes a binary feature (moderate c2), changes only one feature
(good c3), and lies well within the training distribution (good c4).

NSGA-II might identify candidates 3 and 5 as Pareto-optimal (front 1), while
the rest fall into subsequent fronts. Suppose candidates 3 and 5 are selected as
parents, with a crossover resulting in a child with values:

Age BP Cholesterol Smoking
50 150 240 No

Mutation might refine this to:

Age BP Cholesterol Smoking
50 145 240 No

After several generations, the algorithm converges toward a diverse set of coun-
terfactuals along the Pareto front, presented in Table 2.

Table 2: Converged Pareto-optimal counterfactuals

Candidate Age BP Cholesterol Smoking

A 50 140 240 Yes
B 50 150 220 No
C 45 150 230 No

43

Each solution in Table 2 represents a different balance between the objectives.
Candidate A changes only BP but needs a relatively large reduction. We have
candidate B that modifies two features with moderate changes, and candidate
C who proposes more changes but may better match the distribution of realistic
instances.

This diversity of solutions enables us to choose counterfactuals that align
with real-life usefulness. For example, a doctor may prefer candidate B if
moderate adjustments across multiple features are more practical than extreme
changes to a single variable.

3 Results

3.1 Data

The initial dataset consisted of 428 participants (mean age = 45.1, SD = 14.0,
range = 18 − 70), recruited via the online platform Prolific.co. Participants
were part of a convenience sample, meaning that there were no specific inclusion
criteria regarding psychiatric diagnoses. All measures were collected via partic-
ipants’ own mobile smartphones between 11:00–17:00 to account for circadian
rhythms. The study was approved by the Swedish Ethical Review Authority
(dnr: 2020-03250 and 2021-01695).

After excluding extreme values (typically beyond 4 standard deviations) and
applying task-specific outlier removal procedures described in Appendix B.3, the
final analysis sample included 356 participants.

Self-Report Measures
Participants completed the Reduced Morningness-Eveningness Questionnaire
(rMEQ) to assess their chronotype, which is a measure of individual preference
for morning or evening activity. Theoretical scores range from 4 (strong evening
preference) to 25 (strong morning preference), with a sample range: between
4–23.

Additionally, participants completed the Adult ADHD Self-Report Scale
(ASRS v1.1), an 18-item questionnaire divided into Part A and B. Two out-
comes were derived: (1) a binary ASRS screener flag (TRUE/FALSE) based
on Part A responses, and (2) a total symptom score (theoretical range: 0− 72;
sample range: 0−64) summing responses across all 18 items. See Appendix B.1
for scoring details.

Cognitive Task Data
All participants completed the following seven cognitive tasks assessing domains
such as attention, cognitive control, memory and planning: Design fluency, Go,
Go/No-Go, Stroop, Stroop switch, Tower of London and Grid. Descriptions
of each task are provided in Appendix B.2. Tasks were completed under time
constraints, resulting in a varying number of trials per participants for each
task.

44

Raw trial-level data were aggregated into summary features based on guide-
lines from the data providers. Table 3 presents these cognitive features. For the
Go and Go/No-Go tasks, the participants’ response time variability (RTV) was
computed instead of raw response time. This was done because all participants
completed the tasks on their own smartphones, with different processing speeds.
To obtain a measure that is not too affected by those differences, the RTV is
used instead and is calculated as:

RTV =
MAD(response time)

median(response time)
× 100%,

where MAD denotes the median absolute deviation.
The final dataset included the cognitive performance features presented in Ta-
ble 3, rMEQ (chronotype) scores, age and ADHD symptom measures. These
formed the basis for the following exploratory analysis, clustering, and predictive
modeling.

Table 3: Summary features derived from cognitive task performance

Feature name Description Cognitive task

correct trials c3 Number of correct trials under condition 3 Design Fluency
gono rtv RTV in go-trials Go/No-Go
mean switch cost Average RT difference for switch vs. non-switch trials Stroop Switch
go rtv RTV in go-trials Go
congruencyeffectRT RT difference between incongruent and congruent trials Stroop
reverse max Maximum span achieved in backward condition Grid
total moves Total number of moves across all trials Tower of London

Note. RT = Response time. RTV = Response time variability.

3.2 Statistical Analysis

3.2.1 Exploratory Analysis and Clustering

Prior to modeling, exploratory analyses were conducted to examine the feature
distributions and space. Histograms were generated for each feature, in which
uniform noise U(−0.5, 0.5) was added to discrete-valued features (correct tria-

ls c3, reverse max, chronotype score) to create smoother distributions for
visualization, see Figure 11. Most features showed roughly symmetric distribu-
tions, with mild right skewness observed in some variables, particularly those
related to response time measures (e.g., go rtv and gono rtv). This skewness
is expected in cognitive performance data.

45

Figure 11: Histograms of all cognitive and demographic features used in mod-
eling. Uniform noise was added to discrete variables for visualization. Distribu-
tions are approximately symmetric, with some skewness in reaction time-related
features.

The total ASRS symptom score was relatively symmetrically distributed
across the sample, while the binary ADHD screener flag showed a clear class
imbalance, with more participants screening negative (0) than positive (1). Age
and chronotype were broadly spread across their respective ranges, with some
local peaks but no extreme clustering or gaps.

Overall, no anomalies were observed that would interfere with modeling,
although the imbalance in the screener flag may pose challenges for classification
models.

Empirical cumulative distribution functions (ECDFs) were generated for
each feature to further assess the smoothness and continuity of the distributions
(Figure 26 in Appendix C). The ECDFs confirmed the overall shapes observed
in the histograms, with smooth curves and no visible discontinuities or multi-
modal behavior, indicating no clear evidence of latent clustering in individual
features.

A correlation heatmap for all features is presented in Figure 12. Although
XGBoost handles correlated features well, this analysis was done to verify that
no extreme multicollinearity or redundancy was present in the predictors.

46

Figure 12: Heatmap of pairwise Pearson correlations between the features. Mod-
erate correlations were observed, with no strong collinearity.

Feature-to-feature correlations were generally low to moderate (|r| < 0.3).
Chronotype score and age were modestly negatively correlated with total ASRS
scores (r = −0.19 and r = −0.26, respectively). As expected, the total ASRS
symptom score showed a strong positive correlation with the binary ASRS
screener flag (r = 0.64). Based on these values, no features had to be removed
due to collinearity.

To get an initial overview of the data structure, PCA was performed on all
nine standardized features. The first two principal components are plotted in
Figure 13a. No clear clustering structure was observed, with data points forming
a relatively uniform cloud around the origin. Other combinations of principal
components were examined and revealed similar results, with no distinct groups
or separation. Figure 13b shows the cumulative explained variance as a function
of the number of principal components. The increase was approximately linear,
indicating that no small subset of components captured the majority of variance.
Ideally, one might expect to see a steep initial rise followed by a plateau, but
this was not observed.

47

(a) Participant projections (PC1 vs. PC2) (b) Cumulative variance vs. components

Figure 13: PCA results. (a) Participant projection shows no clear separation.
(b) The line looks linear and gradual, requiring at least 8 components to explain
95% of the variance.

To explore potential latent structures, clustering was performed using Gaus-
sian mixture models (see Section 2.1). The choice of method was primarily
driven by the nature of psychological data, where boundaries between clusters
tend to be gradual rather than discrete. Since the initial PCA embeddings in-
dicated considerable overlap in the feature space, hard clustering methods were
deemed unsuitable.

GMMs were fitted using the VVV covariance model from the mclust -package
in R. This model allowed each component to vary in volume, shape and orien-
tation, providing maximal flexibility without imposing strong constraints on
cluster geometry. Such flexibility is justified given the unknown structure of the
latent feature space. The GMMs were fitted for K = 2, . . . , 9 components and
all features were standardized to zero mean and unit variance prior to cluster-
ing. For each K, the Xie-Beni index and fuzzy silhouette scores were computed
to evaluate cluster quality, as well as BIC for comparison (see Section 2.1.2).

The results from the GMM clustering are presented in Figure 14, showing
the validation indices plotted against the number of Gaussian components K.
The Xie-Beni index (a), displays a local minimum at K = 3, followed by an
increase at K = 4 before it decreases for larger K. Although lower Xie-Beni
values suggest more compact clustering, the behavior for K > 4 was likely due
to overfitting and not reflective of meaningful structure.

The fuzzy silhouette score in (b) reached a maximum at K = 3 but remained
low across all K values, ranging between −0.01 and 0.1. As with the standard
silhouette score, values close to 1 indicate good separation of clusters, whereas
values close to 0 or negative suggest poor clustering. Our results imply great
overlap among clusters, consistent with what we saw in the PCA visualization.

The BIC results are shown in Figure 14c, where a two-component model
(K = 2) was favored.

48

However, the results presented in Figures 14a-14c should be interpreted cau-
tiously, as the big overlap of the error bars across different K indicates instabil-
ity.

(a) Xie-Beni index (b) Fuzzy silhouette score (c) BIC

Figure 14: GMM validation results. All metrics indicate weak or unstable
clustering structure, especially beyond K = 3. Red lines represent error bars
generated via bootstrapping.

Despite the lack of strong evidence for the clustering, we proceeded with
K = 3 to inspect potential structure. The densities of the three components
were drawn and overlaid on the feature histograms to compare marginal cluster
differences, see Figure 15. In the figure, it is very clear that the clusters are
overlapping, supporting the conclusion that no meaningful clusters have been
found.

49

Figure 15: Standardized feature histograms overlaid with densities from the
K = 3 GMM solution. Colors correspond to different Gaussian components.
Strong overlap between components indicate poor separation between clusters.

3.2.2 Predictive Modeling

XGBoost (eXtreme Gradient Boosting) was used to predict total ASRS score
in a regression task (see Section 2.2). The method was chosen due to its built-
in regularization and its ability to produce accurate predictions on nonlinear
data. While alternative methods such as Support Vector Regression or Random
Forests were considered, XGBoost offered better integration with explainable
ML methods used later in the analysis.

Squared error loss was chosen as the regression objective since outlier removal
had already been done during preprocessing, making more robust alternatives
unnecessary (see Section 2.2.3). For completeness, we also experimented with
the Pseudo-Huber loss; however, it did not improve performance and only added
unnecessary computational complexity.

Given the minimal influence of remaining outliers and the dataset size, hy-
perparameter tuning was limited to three parameters: nrounds (number of
boosting iterations), max depth (maximum tree depth) and lambda (L2 regu-
larization strength). We fixed eta = 0.3 and gamma = 0 (both default values)
to reduce the search space and risk of overfitting during cross-validation.

Hyperparameters were manually tuned based on learning curve analysis and
cross-validation performance. Specifically, 5-fold cross-validation was performed
using the full data across nrounds ∈ {1, . . . , 100}, for each max depth ∈ {2, 3, 4},
with lambda initially fixed at its default value 1. Learning curves were inspected
to choose a value of nrounds that minimized the test error, and a tree depth
that achieved comparable performance with minimal model complexity (Figure

50

28 in Appendix C). A maximum depth of 2 was chosen for simplicity, as higher
depths showed similar behavior without significant performance gains.

Finally, models with lambda = 0 and lambda = 1 (default) were compared
to assess whether L2 regularization was necessary. Given the relatively small
dataset, it was possible that the underlying relationship was simple enough that
regularization would not improve the results. Cross-validation results showed a
negligible difference in test error between the models (∆RMSE ≈ 0.05), with
lambda = 1 performing slightly better. Based on cross-validation, the chosen
hyperparameters were nrounds = 10, max depth = 2 and lambda = 1. A final
model was then trained on a 70% training split and evaluated on the 30% test
set.

The final XGBoost regression model achieved a test RMSE of 11.70, rep-
resenting approximately 16.3% of the theoretical range (0 − 72) and 18.3% of
the observed data range (0 − 64) of the ASRS score target variable. To assess
whether model errors followed any systematic patterns, residuals were analyzed
by binning true ASRS scores into 8-point intervals ([0, 8], (8, 16], . . . , (56, 64]),
and computing the mean residual per bin (Figure 16a). The figure reveals a clear
trend: the model tended to overpredict ASRS scores for participants with low
true values and increasingly underpredicted for higher true values. Predictions
in the middle range (16− 32) showed minimal bias.

(a) Mean residual value by true ASRS score
bins.

(b) PCA projection of testing data.

Figure 16: Residual analysis of the XGBoost regression model. (a) The model
tends to overpredict low scores and underpredict high scores, indicating a bias
toward the middle. (b) The projections are colored by residual value. No clear
regional clustering of errors is observed in reduced feature space.

Additionally, the standardized feature space was projected onto the first two
principal components, with each point colored by its residual value (Figure 16b).
Test-set residuals in this reduced dimensionality space showed no strong regional
clustering, suggesting no systematic bias toward feature structure. Given the

51

(a) Ratios in feature space. (b) Ratios in residual space.

Figure 17: Ratios of nearest neighbor residuals in (a) feature space and (b)
residual space. In feature space, ratios are scattered around zero, indicating no
strong similarity in prediction errors among participants with similar features.
In (b), ratios cluster tightly around (1, 1, 1), reflecting coherence among nearby
residuals by construction.

small test set size (N = 107), residuals for the full dataset (training + testing)
were also examined (Figure 27 in Appendix C). The full data projection similarly
showed a diffuse residual distribution pattern without clear trends, supporting
the absence of feature-driven residual error.

To further investigate the structure of prediction errors, each residual was
compared to its three nearest neighbors. For each reference residual r0, the ra-
tios r1/r0, r2/r0, and r3/r0 were computed, where ri denotes the residual of the
ith nearest neighbor. Two approaches were used to define “nearest”: (i) iden-
tifying neighbors based on proximity in feature space and (ii) by proximity in
residual value. The first assesses whether participants with similar feature pro-
files have similar prediction errors, while the second examines whether residuals
of similar magnitude are structurally related.

When neighbors were selected in feature space (Figure 17a), the ratio coor-
dinates were centered around (0,0,0), indicating that participants with similar
cognitive features did not necessarily exhibit similar prediction errors. Train
and test sets were intermixed.

On the other hand, when neighbors were defined based on residual closeness
(Figure 17b), points clustered tightly around (1,1,1), as expected given the
construction. The shape resembled a symmetric elliptic cone, possibly reflecting
small random deviations from the theoretical ideal ratio of 1. A small number of
outliers with near-zero denominators were excluded from both plots for clarity.

These results support the view that prediction errors are not systematically
structured relative to participant features, but that residual values themselves
showed local consistency.

52

To interpret the output of the XGBoost model, SHAP (SHapley Additive ex-
Planations) values were computed using TreeSHAP (see Section 2.3.2.2). SHAP
was chosen over alternatives such as LIME due to its stronger theoretical foun-
dation and built-in support for tree-based models. Because the dataset was
relatively small, computational cost was not a barrier, allowing for exact SHAP
value computation. The analysis focused on participants with true ASRS scores
between 15 and 33, where model performance was most stable. This range was
selected based on a detailed inspection of the residuals beyond what is shown
in Figure 16a: while the binned bar plot suggests relative stability between
16−32, closer examination showed that prediction errors remained consistently
small and unbiased between approximately 15 and 33, and began increasing
sharply outside this interval.

Figure 18 shows the SHAP beeswarm plot for this subset of participants. The
most influential feature was age, where lower age values tended to increase the
predicted ASRS scores, while higher ages decreased them. Chronotype scores
showed a similar directional trend: morningness (higher values, purple) reduced
predictions, while moderate to low chronotype values increased them.

Figure 18: SHAP beeswarm plot for participants with ASRS scores between 15-
33. Each point represents a participant’s SHAP value for a feature, with color
indicating the original feature value (purple = high, yellow = low). The SHAP
values indicate the direction and magnitude of each feature’s contribution to
the model output. The features are sorted by overall importance.

53

Total moves in the Tower of London task showed a mixed distribution, but
higher values generally corresponded to increased prediction scores, aside from
a few outliers. For Go/No-go response time variability, moderate values pushed
predictions higher, while low values lowered them. Mean switch cost showed
the opposite: low values raised the predictions, and moderate values decreased
them.

Some features (e.g., congruencyeffectRT, reverse max, and correct tria-

ls c3) showed minimal global influence but contributed meaningfully in subsets
of participants, as is clear by the apparent clusters.

For correct trials c3, SHAP values formed two mirrored groupings on
either side of the vertical zero line. On the right, two distinct clusters of yellow-
orange points appear, with one larger cluster near zero and a smaller cluster
further out. On the left, two similarly structured clusters of purple points are
seen. This suggests that the model predicts differently for subgroups of partic-
ipants with similar correct trial scores, assigning slightly lower or higher ASRS
predictions depending on interactions with other features or other unknown
causes.

Notably, go rtv had zero influence in this SHAP analysis, with all points
aligned at zero, indicating that the feature had no effect on model predictions
within this subset.

To explore whether participants had similar explanation patterns, we treated
each participant’s SHAP values as a feature vector in a new explanation space.
These vectors were then projected onto a two-dimensional embedding using
Multidimensional scaling (MDS), allowing us to visualize if participants are
clustered based on how their features influenced the model’s predictions. Both
raw and normalized SHAP values were analyzed. The normalized values, or
relative SHAP contributions, were computed as

φrel,i =
φi

f̂(x)− φ0

, (73)

where φ0 is the baseline prediction. This reflects the proportion of each feature’s
contribution to the deviation from the baseline prediction φ0.

The intuition behind this normalization is that it enables comparison be-
tween participants based on patterns of influence, rather than magnitude. For
example, two participants whose predictions are composed of 40% from one fea-
ture and 60% from another will appear close in MDS space, even if their total
SHAP values differ in scale.

Pairwise distances between SHAP profiles were computed using the Man-
hattan (L1) distance, which better preserves additive and sparse structures of
SHAP vectors compared to Euclidean distance. The resulting MDS projections
are presented in Figure 19.

In the raw SHAP projection (Figure 19a), participants formed two vertically
oriented and elongated clusters. Within each, predicted ASRS scores followed a
color gradient: higher predictions at the bottom of the clusters and lower scores
at the top. This pattern suggests that participants with similar SHAP profiles

54

(a) MDS projection of raw SHAP profiles. (b) MDS projection of relative SHAP profiles.

Figure 19: Multidimensional scaling (MDS) projection of SHAP profiles, colored
by predicted ASRS scores. (a) Raw SHAP values reveal two elongated clusters,
each with a vertical gradient in predicted score, indicating that SHAP profile
similarity aligns with model prediction similarity. (b) Relative SHAP profiles
show no strong color gradient or clustering pattern, suggesting consistent influ-
ence patterns across participants. Several extreme outliers were excluded from
the plot for visualization purposes and were likely due to near-zero denomina-
tors in the normalization formula.

also received similar model predictions. It also suggests that the model relies
on at least two distinct sets of explanatory patterns to produce its predictions.

In contrast, the normalized SHAP projection (Figure 19b) showed no clear
structure or prediction gradient. The absence of clusters implies that, although
participants vary in the strength of feature contributions, the relative pattern
of influence is overall consistent across individuals. Some outliers were removed
from the plot and likely arose from near-zero denominators in Equation (73).
The outliers were all associated with predicted ASRS scores close to the sam-
ple average (≈ 25), where this pattern may be a mathematical artifact of the
normalization process, rather than a meaningful result.

Having completed the interpretability analysis of the regression model, we
next evaluated the performance of a classification approach using the binary
ASRS screener flag as the target variable.

3.2.2.1 Classification Task

After the regression model was analyzed, a classification approach was imple-
mented using the binary ASRS screener flag as the target variable. A second
XGBoost model was trained using the same cross-validation strategy and hy-
perparameter grid as in the regression task. The objective function was log loss
(see Section 2.2.4), and validation RMSE was used to select the final model.
The optimal parameters were nrounds = 6, max depth = 2, and lambda = 1.

55

Although learning curves (not shown) indicated stable convergence behavior,
the final model had poor predictive performance. As shown in Table 4, the clas-
sifier correctly labeled 82 of 83 negative ASRS cases but failed to identify most
positive ones, classifying only one participant as positive. This yielded a bal-
anced accuracy of 0.51, with sensitivity 0.99 and specificity 0.04. This outcome
likely reflects both the strong class imbalance and the limited discriminative
power of the features.

Table 4: Confusion matrix for the XGBoost classifier.

Actual
0 1

Prediction
0 82 23
1 1 1

Further, to investigate the learning behavior of the XGBoost classifier, 5-fold
cross-validation was repeated with classification error as the evaluation metric 5.
The resulting learning curves are shown in Figure 20a. Training error decreased
steadily with the number of boosting rounds, while validation error remained
relatively high and kept increasing again after a minimum at nrounds = 4,
indicating overfitting and weak generalization.

(a) XGBoost: Classification error vs.
number of boosting rounds.
Max tree depth was set to 2. (nrounds).

(b) kNN: Classification error vs. model com-
plexity (N/k).

Figure 20: Classification error curves for XGBoost (a) and kNN (b). Both mod-
els show relatively high validation error across model configurations, suggesting
poor class separation and potentially limited predictive power of the features.

We also experimented by seeing if feature reduction could improve classi-
fication. All

(
9
5

)
× 2 = 252 combinations of five features, at tree depths of 2

5Classification error = # of misclassifications
classified total

.

56

and 3, were evaluated. However, none of these subsets outperformed the full
9-feature model (confusion matrix and RMSE unchanged), and thus all features
were used in the final evaluation.

To determine whether the poor performance was due to modeling problems
or data-driven, a simple k-Nearest Neighbors (kNN) classifier was trained as a
baseline. The number of neighbors k was optimized using 5-fold cross-validation,
with classification error plotted against k. The lowest validation error occurred
at k = 19. Figure 20b presents the learning curve, plotted against the kNN
degrees of freedom N/k, for k = 1, 3, 5, . . . , 21.

As with XGBoost, training error decreased with flexibility (higher k), but
validation error remained high across all k values. The confusion matrix for
k = 19 (Table 5) further confirms that the model failed to classify any positive
ASRS cases correctly.

Table 5: Confusion matrix for the kNN classifier (k = 19).

Actual
0 1

Prediction
0 83 24
1 0 0

In an effort to understand why the classifiers performed poorly, feature dis-
tributions were plotted separately by ASRS screener class. As shown in Fig-
ure 21, serious overlap between positive and negative cases was observed across
all features. No single feature, appeared able to reliably separate the classes.

Taken together, these results suggest that the classification task was partic-
ularly challenging due to class imbalance and overlapping feature distributions.
As a result, SHAP or counterfactual analyses were not pursued for the classifi-
cation models.

57

Figure 21: Feature distributions by ASRS screener class (0 = negative, 1 =
positive). Severe distributional overlap is visible for all features.

3.2.3 Counterfactual Analysis

Counterfactual explanations were generated to understand how minimal feature
changes could reduce predicted ASRS score (see Section 2.3.3). While SHAP
values attribute importance to individual features for a given prediction, coun-
terfactuals complement this by identifying the smallest set of changes needed to
reach a different outcome.

This analysis was applied only to the regression model, since classification
performance was poor and not reliable enough for interpretation. The focus was
further restricted to participants with predicted ASRS scores between 15 and
33, based on the same residual pattern that guided the SHAP analysis.

Because the total ASRS score (derived from both Part A and B of the ques-
tionnaire) does not have an established clinical cutoff for diagnosis, a heuristic
threshold of 30 points was used to distinguish between moderate and low pre-
dicted symptom severity. This value was chosen only to facilitate the application
of counterfactual analysis, and should not be interpreted as a clinically mean-
ingful boundary.6 Participants with predicted scores above 30 were selected as

6In clinical settings, the binary screener is typically based on Part A of the ASRS
questionnaire, which is used to determine whether further ADHD evaluation is recom-

58

targets, and counterfactuals were generated to shift their prediction to below
this threshold.

Seven participants met these criteria. For each, we attempted to find four
counterfactuals under the constraint that age could not decrease, but was al-
lowed to increase to the maximum observed value (70 years). All other features
were allowed to vary within the range observed in the training data, enabling
the optimization to be very flexible in finding counterfactual instances.

The model successfully found 28 counterfactuals (four per participant). Fig-
ure 22 displays how often each feature was altered across all generated counter-
factual instances. Features related to planning and response time (total moves,
mean switch cost, gono rtv, go rtv and congruencyeffectRT) were changed
in every counterfactual, suggesting they had the greatest impact on reducing
predicted ASRS scores. In contrast, correct trials c3, chronotype score

and reverse max were altered less frequently. Notably, despite being the only
constrained variable, age was modified in 27 cases.

Figure 22: Frequency of feature changes across 28 counterfactual instances with
predicted ASRS > 30. Here, age could only increase (up to 70 years). All other
features were bounded by their training set minimum and maximum values.
Features related to response time and planning were most frequently altered.

Summary metrics for these counterfactuals are presented in Table 6. On
average, 8.14 out of 9 features were changed, with a mean scaled distance of
0.13 from the original instance. Minimality scores, which measure the number

mended. Part B is intended for additional symptom insight, and the combined total score
is not used with formal thresholds. See, e.g., https://novopsych.com/assessments/diagnosis/
adult-adhd-self-report-scale-asrs/ for an example of unofficial cutoff-ranges.

59

https://novopsych.com/assessments/diagnosis/adult-adhd-self-report-scale-asrs/
https://novopsych.com/assessments/diagnosis/adult-adhd-self-report-scale-asrs/

of features that could be reverted without affecting the desired prediction, were
also high. When both the number of altered features and minimality score are
high, it means that the model changed a lot, but most were not essential.

Table 6: Summary metrics across 28 counterfactuals (minimally constrained).

Metric Mean

Number of features changed 8.14
Distance from original (distx∗) 0.13
Minimality 7.42

In a secondary analysis, cognitive task features were bounded more real-
istically to try to reflect what could possibly be changed through clinical in-
terventions. Specifically, each feature was allowed to vary by ±1.5 standard
deviations from the original instance’s value, where standard deviations were
computed from the training dataset. The earlier restriction for age remained,
where it could not decrease but was allowed to increase by up to 70 years. These
bounds were based on recommendations from the data provider and by SHAP
value inspection. However, under these constraints, only a single counterfactual
was successfully generated across all seven participants. This implies that most
participants could not be shifted below the threshold through small, “realistic”
changes.

To illustrate the solutions, Table 7 and Figure 23 show four successful coun-
terfactuals generated for a participant with a predicted ASRS score of 32.38.
The participant’s original features are shown in the first row, followed by the
four counterfactuals that reduced the score below 30.

Table 7: Feature-level comparison between the original test instance x (top row,
bold; predicted ASRS = 32.38) and the four nearest counterfactuals (CF 1–CF
4) that reduce the regression model’s predicted ASRS score below the heuristic
threshold of 30.

Feature
correct

trials c3

gono

rtv

mean

switch

cost

go

rtv

congruency

effectRT

reverse

max

total

moves
age

chronotype

score

Original (x) 10 12.91 11.87 7.17 245.36 4 245 22 10
CF 1 10 13.74 309.54 15.17 204.61 6 234 23 11
CF 2 10 5.32 363.70 8.40 199.08 5 213 27 12
CF 3 8 13.70 333.78 6.10 233.57 6 177 30 12
CF 4 7 9.66 352.60 12.33 165.14 4 225 31 12

60

Figure 23: Parallel coordinate plot comparing an original instance (blue) with
predicted ASRS score of 32.38 to four counterfactuals (gray) with scores below
30. Most features required large changes to lower the prediction.

As seen in Table 7, both correct trials c3 and reverse max were changed
the least times, which aligned with the results in Figure 22. Distances to the
original instance ranged from 0.12 to 0.14 in scaled feature space, with each
counterfactual altering between 8 and 9 features. Minimality scores ranged
from 7 to 8, meaning that in most cases, only one or two of the altered features
were actually necessary to achieve the prediction shift; the remaining changes
could be reverted without affecting the outcome.

Summary of results

The exploratory and predictive analyses found limited success in predicting total
ADHD symptom level from cognitive task performance, age and self-assessed
chronotype. Clustering attempts yielded no reliable structure, but regression
modeling achieved reasonable accuracy in the mid-range of ASRS scores. SHAP
analysis identified age, chronotype and planning-related features as most influ-
ential, with some features showing impact in specific participant subgroups.
Counterfactual analysis demonstrated that reducing predicted symptom levels
generally required changes to most features, and few plausible counterfactuals
were found when realistic bounds were imposed.

By contrast, classification models performed poorly, primarily due to class
imbalance and overlapping feature distributions, limiting their potential for
screening applications.

61

4 Discussion

The main aim of this thesis was to investigate whether cognitive task perfor-
mance, along with age and chronotype, could be used to predict adult ADHD
symptom level as measured by the ASRS questionnaire. Beyond predicting, we
also wanted to interpret the model’s decisions using SHAP values and counter-
factual explanations.

The clustering analysis using Gaussian mixture models revealed no clear
structure in the data. The absence of distinct clusters aligns with the over-
lapping feature distributions (Figure 21), PCA projections and weak validation
metrics. The not-so-contrastive Xie-Beni indices and near-zero fuzzy silhouette
scores show the poor separation between components, suggesting that the fea-
ture space lacks clear subgroups. Given the “VVV” model allowed full covariance
flexibility, the number of free parameters reached 164 for three components and
nine features. With only 356 observations, this yields a low ratio of 356

164 ≈ 2.17
observations per parameter.

In practice, there is no strict theory linking N to number of parameters in
unsupervised models, but many rules-of-thumb exist. A common guideline is on
the order of 5-10 observations per free parameter. For example, one review states
that the sample size should preferably be 10 per parameter (Psutka & Psutka,
2019, p. 31). In latent-variable mixture modeling more broadly, Bentler and
Chou (1987, p. 90-91) recommend a 5-10 ratio. Later overviews (e.g. Muthén
and and (2002, p. 599-600)) advise even larger ratios, noting that “the sample
size needed for a study depends on many factors, including the size of the model,
distribution of the variables, amount of missing data, reliability of the variables,
and strength of the relations among the variables.”

On that basis, our ratio of 2.17 lies well below even the relaxed end of the
recommended range, making overfitting and ill-conditioned Σ̂k almost inevitable
unless the covariance structure is regularized. The failure to identify clusters
may therefore be a combination of limited sample size, overlap in feature space
and heterogeneity in the ADHD symptom variable, where boundaries between
severity levels are gradual rather than discrete.

Likewise, visualizing the regression residuals in PCA space resulted in a
random scatter with no obvious pattern or cluster structure. Together, these
observations suggest that the model did not systematically miss any hidden clus-
ters among participants; the ADHD and non-ADHD individuals largely occupy
overlapping regions of feature space.

The XGBoost regression model performed reasonably well in predicting to-
tal ASRS scores, with a test RMSE of 11.70, approximately 16% of the scale’s
72-point range. Performance was best in the mid-range but struggled at the
extremes, systematically underpredicting high ASRS scores and overpredicting
low ones (Figure 16a). This bias may stem from the squared error loss, which
penalizes large errors quadratically. In regions with sparse data (e.g., the ex-
tremes), the model defaulted to predictions closer to the mean, a behavior that
could be due to the built-in regularization of the method. By default, XGBoost

62

“shrinks” its predictions toward a baseline on each tree’s node, which reduces
variance but increases bias. In our case, with the limited sample, the model
favored more central predictions over trying to fit outliers. It seems reasonable
to assume that a very flexible model on a small dataset can underfit at the tails
(adding parameters lowers bias but raises variance).

The random distribution of residuals in PCA space (Figures 16b and 27)
further supports the idea that the errors are not systematically tied to feature
combinations but instead a result of global model limitations. The nearest-
neighbor plots (Figure 17) reinforce this, where residuals in feature space showed
no specific pattern or clustering, suggesting that the model’s errors are not local
to certain regions of the input space but instead arise from not being able to
learn the nonlinear relationships.

For nearest neighbors based on residual value (Figure 17b), the majority
of points are centered around (1,1,1). This means that points with similar
ASRS scores have similar residuals (all underpredicted or all overpredicted by
similar amounts), forming the center of the cone. As we move from middle
scores toward extremes, the magnitude of residuals increases consistently, but
their sign (positive/negative) is predictable based on the ASRS range. This
creates an expanding cone shape as the relationships become more varied but
still structured. Symmetry likely reflects that the model’s bias is proportional
to how extreme the score is, whether extremely low or extremely high.

Finally, there seems to be no difference in how test points (red) and training
points (blue) behave, as they both appear in the same regions in both plots in
Figure 17. The same global limitations that affect the training set carry over to
unseen data.

The SHAP analysis revealed that age and chronotype were the most in-
fluential predictors (Figure 10), together explaining roughly half of the model’s
summed SHAP importance. Younger participants and those with more evening-
type chronotypes (lower feature values) pushed the prediction higher, suggesting
that younger “night-owl” participants receive the largest positive contributions
to their ASRS score. This is consistent with existing research linking circa-
dian preferences to ADHD symptoms; for example, college students with higher
ADHD traits are far more likely to be “evening types” than controls (Becker
et al., 2024). The features total moves and mean switch cost, both measures
of executive function and planning, showed moderate influence and may reflect
difficulties in task switching or goal maintenance, common in ADHD.

Surprisingly, go rtv had zero impact, contradicting expectations that atten-
tion variability would strongly predict ADHD (Epstein et al., 2011; Kofler et al.,
2013). This could again be due to the regularization in XGBoost, which sup-
presses weak or noisy features, or from interactions between go rtv and other
variables that were not explicitly modeled. The absence of SHAP impact for
Go RTV, despite its structural similarity to the Go/No-Go RTV, could also be
explained in psychology terms, where it suggests that inhibitory control, rather
than simple reaction time variability, is more diagnostic in this context.

Moreover, MDS projections of SHAP profiles (Figure 19a) showed that par-
ticipants grouped into two clusters (although not so dense), suggesting that

63

the model relies on at least two different ways to make predictions. One could
attribute this to the additive property of Shapley values (Equation 58), where
features contribute independently but may be expressed differently across in-
stances. Normalizing the SHAP values removed this structure (Figure 19b),
implying that the relative importance of features is consistent across partici-
pants, even when absolute contributions vary.

Hence, predictions are dominated by age and chronotype, followed by plan-
ning ability (total moves) and other response-time related variables (except
go rtv) forming the second tier. Accuracy-oriented scores (reverse max and
correct trials c3) contribute marginally.

Counterfactual analysis provided a complementary view of feature influence.
Results show that no single small change suffices, as most participants require
changes in ≥ 8 of 9 features. When feature ranges were unconstrained, the
optimization algorithm was able to find valid counterfactuals for all seven par-
ticipants with predicted ASRS scores above 30, changing an average of 8.14
features out of 9 (Table 6). This could be a result of the regression model rely-
ing on global interactions, rather than isolated features, which is a consequence
of XGBoost’s ensemble structure (Equation 22), where predictions emerge from
additive contributions across many trees. The most frequently changed features
matched those identified as impactful in the SHAP analysis (e.g., total moves,
gono rtv).

Minimality scores showed that most of these changes were not essential,
indicating that a few large changes in feature values were enough to cross the
decision threshold. However, since counterfactual explanations want to find the
minimal change, the alterations were spread over multiple features. The reason
is the sparsity term in (71), which penalizes the count of altered features, not the
magnitude of each alteration. The multi-objective optimization therefore prefers
to make many small moves, rather than a few large ones that would inflate the
similarity or plausibility objectives (objectives c2 and c4, respectively). The
resulting counterfactuals are sparse in dimension but not necessarily in total
Euclidean distance, consistent with what is observed in Table 6.

However, when more “realistic” bounds were imposed (±1.5 SD for cognitive
features), only a single counterfactual was found. This could imply the model
not being able to generalize outside the narrow training distribution, or it being
sensitive to multivariate interactions. For example, reducing gono rtv alone
might not suffice without simultaneously changing age or chronotype. We can
also understand this as a reflection of the high-dimensional optimization prob-
lem in Equation (67), where satisfying multiple objectives (prediction shift, sim-
ilarity, sparsity, plausibility) becomes computationally challenging. The results
suggest that actionable interventions would require full changes across cognitive
and demographic domains, which is a finding with limited clinical applicability
but great methodological implications.

It is very important to note that counterfactual methods assume that one
can vary features independently and in meaningful compatible units. However,
these assumptions may not fully hold here, as for instance; it is not obvious how
a person could specifically “increase” their correct trials in a task or shift their

64

chronotype at will. Thus, our counterfactual results are best seen as illustrating
the model’s logic (showing that decisions are globally stable), rather than as
realistic means of action.

Turning to classification, the poor performance of classification models (XG-
Boost and kNN) can be attributed to a combination of class imbalance (78
positive vs. 278 negative cases) and severe class overlap. Only a few partici-
pants were labeled to need screening, thus the training set was heavily skewed
toward the negative class, and under great class imbalance, many learning algo-
rithms will default to predicting the majority class without class-weighting or
resampling.

In such setting, the optimal separating surface may be highly nonlinear and
irregular, and with limited data (particularly in the minority class) models like
XGBboost an kNN may underfit or simply fail to learn the boundary. While
XGBoost’s tree ensembles can theoretically model such boundaries, the small
sample size and imbalance, together with not being able to build deeper trees,
prevent the algorithm from learning properly. Via the bias-variance tradeoff
philosophy: increasing model complexity (e.g., deeper trees) risks overfitting
(higher variance), while simplicity fails to detect necessary patterns.

In addition, because the dataset contains 78% negative cases, the optimizer
sees far more opportunities to reduce the loss on that majority class. Since the
logistic loss is class-agnostic, each minority-class error costs the same but occurs
far less often 7. Consequently, the optimizer minimizes the total loss fastest by
nearly perfecting class 0 at the expense of class 1, which explains the near-zero
specificity (4%).

The kNN baseline model, which has no internal optimization, also failed
to classify any positive cases (Table 5), indicating that the poor performance
was not due to the complexity of XGBoost, but instead due to the dataset’s
structure.

This is also evident in the validation curves in Figure 20, where we see high
validation error without a clear underfitting phase, which is typically character-
ized by a steep drop in the beginning of learning. This implies that neither model
began to meaningfully learn the decision boundary. Additional attempts to im-
prove classification performance through feature subset selection were made.
Evaluating all 252 combinations of choosing 5 features at both tree depths 2
and 3, yielded no improvement in test RMSE or confusion matrices, suggesting
that the failure was not due to suboptimal feature choice but rather limitations
in the feature signal.

A number of limitations should be kept in mind. First, the sample size was
small (order of a few hundred observations), especially for the positive class
in classification, restricting generalization. Gaussian mixture models, which
require sufficient data to estimate covariance matrices (Equation 11b), were
probably affected, among the other machine learning methods. This together
with great feature overlap hindered both regression and classification.

7A loss function is class-agnostic when a misclassification of either class, given the same
confidence error, is penalized equally.

65

Second, the cognitive task features proved to be only weakly informative,
as seen in the SHAP analysis. In a large independent study using similar cog-
nitive measures as features (in thousands of youths), machine learning models
explained only 15-20% of the variance in ADHD symptom scores (Weigard et
al., 2023). This suggests that cognitive task performance captures only a small
portion of the underlying ADHD variation. In addition, some of the features
used in this analysis were discrete (e.g., total moves), yet were modeled as
continuous, which may violate the assumptions of for example GMM.

Third, ASRS scores are self-reported, introducing potential measurement
noise and bias, and may not correspond to clinical diagnosis. Lastly, The NSGA-
II algorithm (Section 2.3.3) generated theoretically valid but clinically unrealis-
tic explanations, as cognitive features cannot be arbitrarily changed in practice.
All of these factors should caution against over-interpreting the results found.

Despite these limitations, this analysis provides valuable groundwork for fu-
ture projects. To improve predictive capability, collecting more data with a
better balance of ADHD-positive cases should be prioritized, which can in turn
open up possibilities for more complex machine learning models. Additional
feature engineering, or the inclusion of other cognitive tasks, could also be con-
sidered. From an interpretability standpoint, extending the SHAP analysis to
include interaction effects would help to better understand how combinations
of features jointly influence model predictions. Finally, refining counterfactual
constraints using clinical or empirical benchmarks could improve realism and
utility.

5 Conclusion

This thesis evaluated the potential of using cognitive task performance, age, and
chronotype to predict adult ADHD symptoms as measured by the ASRS. The
results demonstrated that the XGBoost model could not reliably predict ASRS-
based ADHD symptoms from cognitive task performance, age and chronotype.
The extreme overlap of feature distributions and the small sample size prevented
the model from learning distinguishable behaviors. On the other hand, the
SHAP and counterfactual analyses were valuable for understanding the model’s
logic, as they showed which features had any effect on predictions (e.g., chrono-
type), and confirmed that most features had only minor influence.

Overall, while our current model did not yield a reliable clinical predictor,
the findings highlight both the promise and the current limitations of applying
interpretable machine learning to psychological self-report data.

6 Code Availability

Code supporting this project is published online at https://github.com/a-myllymaki/
master thesis

66

https://github.com/a-myllymaki/master_thesis
https://github.com/a-myllymaki/master_thesis

The main R packages used in the analysis include mclust for GMM-clustering,

stats for PCA, xgboost for XGBoost modeling, SHAPforxgboost for Tree-

SHAP value computation, iml and counterfactuals for counterfactual anal-

ysis, ggplot2 and patchwork for data visualization, dplyr and data.table

for data manipulation, and caret and Metrics for performance evaluation.
All analyses were performed in R version 4.4.1.

References

Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions
when features are dependent: More accurate approximations to shapley
values. Artificial Intelligence, 298, 103502. https://doi.org/https://doi.
org/10.1016/j.artint.2021.103502

Ayano, G., Tsegay, L., Gizachew, Y., Necho, M., Yohannes, K., Abraha, M.,
Demelash, S., Anbesaw, T., & Alati, R. (2023). Prevalence of attention
deficit hyperactivity disorder in adults: Umbrella review of evidence
generated across the globe. Psychiatry Research, 328, 115449. https :
//doi.org/https://doi.org/10.1016/j.psychres.2023.115449

Becker, S. P., Luebbe, A. M., Kofler, M. J., Burns, G. L., & Jarrett, M. A. (2024).
Adhd, chronotype, and circadian preference in a multi-site sample of
college students. Journal of sleep research, 33 (1), e13994.

Bentler, P. M., & Chou, C.-P. (1987). Practical issues in structural modeling.
Sociological Methods & Research, 16 (1), 78–117. https://doi.org/10.
1177/0049124187016001004

Bishop, C. M. (2006). Pattern recognition and machine learning (information
science and statistics). Springer-Verlag.

Boyd et al. (2004). Convex optimization. Cambridge University Press. https:
//web.stanford.edu/∼boyd/cvxbook/

Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for precision psy-
chiatry: Opportunities and challenges. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging, 3 (3), 223–230. https://doi.org/https:
//doi.org/10.1016/j.bpsc.2017.11.007

Campello, R., & Hruschka, E. (2006). A fuzzy extension of the silhouette width
criterion for cluster analysis. Fuzzy Sets and Systems, 157 (21), 2858–
2875. https://doi.org/https://doi.org/10.1016/j.fss.2006.07.006

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.
1145/2939672.2939785

67

https://doi.org/https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/https://doi.org/10.1016/j.psychres.2023.115449
https://doi.org/https://doi.org/10.1016/j.psychres.2023.115449
https://doi.org/10.1177/0049124187016001004
https://doi.org/10.1177/0049124187016001004
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/https://doi.org/10.1016/j.bpsc.2017.11.007
https://doi.org/https://doi.org/10.1016/j.bpsc.2017.11.007
https://doi.org/https://doi.org/10.1016/j.fss.2006.07.006
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

Dandl, S., et al. (2020). Multi-objective counterfactual explanations. Parallel
Problem Solving from Nature – PPSN XVI, 448–469.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolution-
ary Computation, 6 (2), 182–197. https://doi.org/10.1109/4235.996017

Dempster, A. P., et al. (1977). Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39 (1), 1–22. https://doi .org/https://doi .org/10.
1111/j.2517-6161.1977.tb01600.x

Developers, X. (2022). Xgboost release notes [Accessed: 2025-04-16].

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable
machine learning. arXiv: Machine Learning.

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches
for clinical psychology and psychiatry. Annual Review of Clinical Psy-
chology, 14 (Volume 14, 2018), 91–118. https://doi.org/https://doi.
org/10.1146/annurev-clinpsy-032816-045037

Epstein, J. N., Langberg, J. M., Rosen, P. J., Graham, A., Narad, M. E., An-
tonini, T. N., Brinkman, W. B., Froehlich, T., Simon, J. O., & Altaye,
M. (2011). Evidence for higher reaction time variability for children
with adhd on a range of cognitive tasks including reward and event
rate manipulations. Neuropsychology, 25 (4), 427.

Fraley, C., & Raftery, A. (2007). Model-based methods of classification: Using
the mclust software in chemometrics. Journal of Statistical Software,
18 (6), 1–13. https://doi.org/10.18637/jss.v018.i06

Gower, J. C. (1971). A general coefficient of similarity and some of its properties.
Biometrics, 27 (4), 857–871.

Guo, J., Ren, L., Zhu, X., Zhuang, J., Jiang, B., Liu, C., & Wang, L. (2024).
Pseudo-huber loss function-based affine registration algorithm of point
clouds. 2024 39th Youth Academic Annual Conference of Chinese As-
sociation of Automation (YAC), 1034–1039. https://doi.org/10.1109/
YAC63405.2024.10598436

Hart, S. (1989). Shapley value. In J. Eatwell, M. Milgate, & P. Newman (Eds.),
Game theory (pp. 210–216). Palgrave Macmillan UK. https://doi.org/
10.1007/978-1-349-20181-5 25

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical
learning. Springer New York Inc.

Kim, Pack, S. P., Lim, Cho, & Lee. (2023). Machine learning–based predic-
tion of attention-deficit/hyperactivity disorder and sleep problems with
wearable data in children. JAMA network open, 6 (3), e233502–e233502.

68

https://doi.org/10.1109/4235.996017
https://doi.org/https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.18637/jss.v018.i06
https://doi.org/10.1109/YAC63405.2024.10598436
https://doi.org/10.1109/YAC63405.2024.10598436
https://doi.org/10.1007/978-1-349-20181-5_25
https://doi.org/10.1007/978-1-349-20181-5_25

Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Fried-
man, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in
adhd: A meta-analytic review of 319 studies. Clinical Psychology Re-
view, 33 (6), 795–811. https://doi.org/https://doi.org/10.1016/j.cpr.
2013.06.001

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B.,
Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local ex-
planations to global understanding with explainable ai for trees. Nature
machine intelligence, 2 (1), 56–67.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. Proceedings of the 31st International Conference on Neural
Information Processing Systems, 4768–4777.

McLachlan et al. (2012). The em algorithm. In Handbook of computational statis-
tics: Concepts and methods (pp. 139–172). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-21551-3 6

Molnar, C. (2019). Interpretable machine learning: A guide for making black
box models explainable [https://christophm.github.io/interpretable-ml-
book/]. https://christophm.github.io/interpretable-ml-book/.

Molnar, C. (2022a). Interpretable machine learning [Accessed: 2025-04-16]. https:
//christophm.github.io/interpretable-ml-book/shap.html

Molnar, C. (2022b). Interpretable machine learning [Accessed: 2025-04-23]. https:
//christophm.github.io/interpretable-ml-book/counterfactual.html

Muthén, L. K., & and, B. O. M. (2002). How to use a monte carlo study to decide
on sample size and determine power. Structural Equation Modeling: A
Multidisciplinary Journal, 9 (4), 599–620. https ://doi .org/10 .1207/
S15328007SEM0904\ 8

Polanczyk, G., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The world-
wide prevalence of adhd: A systematic review and metaregression anal-
ysis. American Journal of Psychiatry, 164 (6), 942–948. https://doi .
org/10.1176/ajp.2007.164.6.942

Psutka, J. V., & Psutka, J. (2019). Sample size for maximum-likelihood esti-
mates of gaussian model depending on dimensionality of pattern space.
Pattern Recognition, 91, 25–33. https://doi.org/https://doi.org/10.
1016/j.patcog.2019.01.046

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20, 53–65. https://doi.org/https://doi.org/10.1016/0377-
0427(87)90125-7

Shapley, L. S. (1953). 17. a value for n-person games. In H. W. Kuhn &
A. W. Tucker (Eds.), Contributions to the theory of games, volume

69

https://doi.org/https://doi.org/10.1016/j.cpr.2013.06.001
https://doi.org/https://doi.org/10.1016/j.cpr.2013.06.001
https://doi.org/10.1007/978-3-642-21551-3_6
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/shap.html
https://christophm.github.io/interpretable-ml-book/counterfactual.html
https://christophm.github.io/interpretable-ml-book/counterfactual.html
https://doi.org/10.1207/S15328007SEM0904_8
https://doi.org/10.1207/S15328007SEM0904_8
https://doi.org/10.1176/ajp.2007.164.6.942
https://doi.org/10.1176/ajp.2007.164.6.942
https://doi.org/https://doi.org/10.1016/j.patcog.2019.01.046
https://doi.org/https://doi.org/10.1016/j.patcog.2019.01.046
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7

ii (pp. 307–318). Princeton University Press. https : / /doi . org /doi :
10.1515/9781400881970-018

Spencer, T. J. (2006). Adhd and comorbidity in childhood. Journal of Clinical
Psychiatry, 67, 27.

Tai, A. M., Albuquerque, A., Carmona, N. E., Subramanieapillai, M., Cha, D. S.,
Sheko, M., Lee, Y., Mansur, R., & McIntyre, R. S. (2019). Machine
learning and big data: Implications for disease modeling and therapeutic
discovery in psychiatry. Artificial Intelligence in Medicine, 99, 101704.
https://doi.org/https://doi.org/10.1016/j.artmed.2019.101704

Wachter, S., Mittelstadt, B., & Russell, C. (2018). Counterfactual explanations
without opening the black box: Automated decisions and the gdpr.
https://arxiv.org/abs/1711.00399

Weigard, A., McCurry, K. L., Shapiro, Z., Martz, M. E., Angstadt, M., Heitzeg,
M. M., Dinov, I. D., & Sripada, C. (2023). Generalizable prediction
of childhood adhd symptoms from neurocognitive testing and youth
characteristics. Translational Psychiatry, 13 (1), 225.

Wright, S. J., & Nocedal, J. (2006). Numerical optimization (2nd). Springer
New York, NY.

Wright, S. J., & Wright, M. H. (2018). Optimization: Principles and algorithms
(2nd). Cambridge University Press.

Xie et al. (1991). A validity measure for fuzzy clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13, 841.

A Mathematical Derivations

A.1 Derivation of GMM Parameters

The goal is to verify Equations (11a),(11b),(11c) by differentiating the log-
likelihood

ln p(X | p,µ,Σ) =

N∑
n=1

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
,

where

N (xn | µk,Σk) =
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
.

Verifying Equations (11a) and (12)
Solving ∂

∂µk
ln p(X | p,µ,Σ) = 0.

Since the log-likelihood involves a sum over all data points and all components,
and only the derivative with respect to µk is of interest, the focus is on the term
inside the log that involves µk. This yields:

70

https://doi.org/doi:10.1515/9781400881970-018
https://doi.org/doi:10.1515/9781400881970-018
https://doi.org/https://doi.org/10.1016/j.artmed.2019.101704
https://arxiv.org/abs/1711.00399

∂

∂µk

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
=

1∑K
j=1 p(j)N (xn | µj ,Σj)

· ∂

∂µk

(p(k)N (xn | µk,Σk)) .

Note: The index in the denominator is changed to j because the summation
there is a sum over all components, not just the specific component k that we
are differentiating with respect to. To avoid confusion and make it clear that
the summation is generic over all components in the mixture, j is used instead.

Now, the derivative of the Gaussian N (xn | µk,Σk) can be computed using the
following matrix multiplication property. Let W ∈ RD×D be a symmetric and
invertible matrix, and a, b ∈ RD be column vectors independent of W . Then:

∂

∂s
(a− s)TW (a− s) = −2W (a− s) .

This yields

∂

∂µk

N (xn | µk,Σk) =
∂

∂µk

(
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

))
=

1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
· ∂

∂µk

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
=

1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
·
(
−1

2
(−2Σ−1k (xn − µk)

)
=

1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
·Σ−1k (xn − µk)

= N (xn | µk,Σk) ·Σ−1k (xn − µk).

The derivative of the Gaussian is substituted back into the log-likelihood deriva-
tive:

∂

∂µk

ln p(X | p,µ,Σ) =

N∑
n=1

p(k)N (xn | µk,Σk)∑K
j=1 p(j)N (xn | µj ,Σj)

·Σ−1k (xn − µk).

Recall from (9) that

p(k)N (xn | µk,Σk)∑K
j=1 p(j)N (xn | µj ,Σj)

= p(k | xn).

Thus, the derivative becomes:

71

∂

∂µk

ln p(X | p,µ,Σ) =

N∑
n=1

p(k | xn)Σ
−1
k (xn − µk).

Next, the derivative is set equal to zero and is solved for µk:

N∑
n=1

p(k | xn)Σ
−1
k (xn − µk) = 0.

Multiplying both sides by Σk and rearranging:

N∑
n=1

p(k | xn)(xn − µk) = 0

N∑
n=1

p(k | xn)xn =

N∑
n=1

p(k | xn)µk

µk =

∑N
n=1 p(k | xn)xn∑N
n=1 p(k | xn)

.

This gives

µk =
1

Nk

N∑
n=1

p(k | xn)xn, (11a)

where

Nk =

N∑
n=1

p(k | xn). (12)

Verifying (11b):
Solving ∂

∂Σk
ln p(X | p,µ,Σ) = 0.

Following a similar procedure to the derivation of µk, yields:

∂

∂Σk
ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
=

p(k)∑K
j=1 p(j)N (xn | µj ,Σj)

· ∂

∂Σk
(N (xn | µk,Σk)) .

Now, the derivative of the Gaussian N (xn | µk,Σk):

∂

∂Σk
N (xn | µk,Σk) =

∂

∂Σk

(
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

))
.

Using the product rule for derivatives yields

∂

∂Σk
N (xn | µk,Σk) =

=
exp

(
− 1

2 (xn − µk)
TΣ−1k (xn − µk)

)
(2π)D/2

·

 ∂

∂Σk

(
1

|Σk|

)
︸ ︷︷ ︸

A

+
1

|Σk|
· ∂

∂Σk

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
︸ ︷︷ ︸

B

 .

72

Next, the following matrix multiplication property is used to compute the deriva-
tives of A and B. Let W ∈ RD×D be a symmetric, invertible matrix, and let
a, b ∈ RD be fixed column vectors that do not depend on W . Then

∂|W |
∂W

= |W |W−T and
∂aTW−1b

∂W
= −W−TabTW−T .

With this, the derivatives of A and B are

A :
∂

∂Σk

(
1

|Σk|

)
= −1

2
|Σk|−3/2|Σk|Σ−1k = −1

2
|Σk|−1/2Σ−1k ,

B :
∂

∂Σk

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)

)
=

1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k .

Inserting this back into ∂
∂Σk
N (xn | µk,Σk), yields

∂

∂Σk
N (xn | µk,Σk) =

=
exp

(
− 1

2 (xn − µk)
TΣ−1k (xn − µk)

)
(2π)D/2|Σk|

·
[
−1

2
Σ−1k +

1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k

]
= N (xn | µk,Σk) ·

[
−1

2
Σ−1k +

1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k

]
.

This can now be substituted back into the log-likelihood derivative:

∂

∂Σk
ln p(X | p,µ,Σ) =

N∑
n=1

p(k | xn)

[
−1

2
Σ−1k +

1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k

]
.

To solve for Σk, the derivative is set equal to zero and the expression is simplified:

N∑
n=1

p(k | xn)

[
−1

2
Σ−1k +

1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k

]
= 0

N∑
n=1

p(k | xn)

[
−1

2
Σ−1k

]
+

N∑
n=1

p(k | xn)

[
1

2
Σ−1k (xn − µk)(xn − µk)

TΣ−1k

]
= 0

The terms − 1
2Σ
−1
k and 1

2Σ
−1
k can be factored out, and both sides of the expres-

sion are multiplied with 2Σk:

− 1

2
Σ−1k

N∑
n=1

p(k | xn) +
1

2
Σ−1k

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
TΣ−1k = 0

−
N∑

n=1

p(k | xn) +

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
TΣ−1k = 0.

73

Now, isolate the sum:

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
TΣ−1k =

N∑
n=1

p(k | xn),

and multiply both sides by Σk:

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
T = Σk

N∑
n=1

p(k | xn).

Finally, isolate Σk:

Σk =

∑N
n=1 p(k | xn)(xn − µk)(xn − µk)

T∑N
n=1 p(k | xn)

.

Σk =
1

Nk

N∑
n=1

p(k | xn)(xn − µk)(xn − µk)
T , (11b)

where

Nk =

N∑
n=1

p(k | xn). (12)

Equation 11c:
Solving ∂

∂pk
ln p(X | p,µ,Σ) = 0.

The log-likelihood function is maximized with respect to p(k) while enforcing

the constraint that the mixing coefficients sum to one, i.e.,
∑K

k=1 p(k) = 1. As
Pattern Recognition and Machine Learning page 436 suggests, this constraint
can be handled using a Lagrange multiplier (Bishop, 2006, p. 436). The term

λ
(∑K

k=1 p(k)− 1
)
is added to the log-likelihood and the modified expression is

maximized. Next, define the Lagrangian as:

L = ln p(X | p,µ,Σ) + λ

(
K∑

k=1

p(k)− 1

)

=

N∑
n=1

ln

(
K∑

k=1

p(k)N (xn | µk,Σk)

)
+ λ

(
K∑

k=1

p(k)− 1

)
.

The derivative of L is taken with respect to p(k) and set to zero:

∂L
∂p(k)

=

N∑
n=1

N (xn | µk,Σk)∑K
j=1 p(j)N (xn | µj ,Σj)

+ λ

=

N∑
n=1

p(k | xn) + λ = 0.

74

To solve for λ, both sides are multiplied by p(k) and summed over all k:

K∑
k=1

p(k)

N∑
n=1

p(k | xn) + λ

K∑
k=1

p(k) = 0.

Using the constraint
∑K

k=1 p(k) = 1 yields:

K∑
k=1

p(k)

N∑
n=1

p(k | xn) + λ = 0.

Since
∑K

k=1

∑N
n=1 p(k | xn) = N (because the sum of responsibilities over all

components for each data point is 1), this yields:

λ = −N.

Substitute λ = −N back into the derivative equation:

N∑
n=1

p(k | xn)−Np(k) = 0,

and solve for p(k):

p(k) =

∑N
n=1 p(k | xn)

N
.

Thus,

p(k) =
Nk

N
. (11c)

A.2 Second-Order Objective Optimization

The goal is to optimize the quadratic loss in (28). Because the first-order term

ℓ(yi, ŷ
(m−1)
i) is independent of the tree that is fitted, it can be excluded during

optimization. The simplified objective thus becomes

L̃(m) =

N∑
i=1

[
gitm(xi) +

1

2
hit

2
m(xi)

]
+ γLm +

1

2
λ

Lm∑
j=1

(
O

(m)
j

)2
. (74)

This is now a weighted least squares problem with L2 regularization, where
gi act as residuals, hi weight the importance of each instance and λ prevents
extreme leaf values.

Having derived the main elements of the XGBoost framework, the full train-
ing procedure can be summarized. Algorithm 1 in Appendix A.3 outlines the
high-level steps performed during boosting, while the tree-building method is
detailed separately in Section 2.2.2.

75

In the next stage of the derivation, the tree structure sm is assumed to be fixed,
meaning each input xi is already assigned to a leaf 8. The goal is then to

determine the optimal output value O
(m)
j assigned to each leaf j.

Let Ij ⊆ {1, ..., N} denote the set of data points, or instances, assigned to
leaf j, such that (Chen & Guestrin, 2016, p. 3):

Ij = {i ∈ {1, ..., N} | sm(xi) = j}. (75)

Since all instances in a leaf receive the same prediction, the tree’s output for
any i ∈ Ij satisfies

tm(xi) = O
(m)
sm(xi)

. (76)

Substituting this into (74) yields

L̃(m) =

Lm∑
j=1

∑
i∈Ij

[
giO

(m)
j +

1

2
hi(O

(m)
j)2

]
+ γLm +

1

2
λ

Lm∑
j=1

(O
(m)
j)2. (77)

Grouping terms by leaf j gives

L̃(m) =

Lm∑
j=1

O(m)
j

∑
i∈Ij

gi +
1

2
(O

(m)
j)2

∑
i∈Ij

hi + λ

+ γLm. (78)

The double sum over instances i and j in (77) collapses into a single sum over

leaves because all i ∈ Ij share the same O
(m)
j . The objective becomes

L̃(m) =

Lm∑
j=1

[
GjO

(m)
j +

1

2
(Hj + λ)(O

(m)
j)2

]
+ γLm, (79)

where Gj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi. Next, the expression in (79) is

minimized with respect to each O
(m)
j , assuming all Gj , Hj , λ are known. Taking

the derivative and setting it equal to zero gives the optimal leaf value O
∗(m)
j :

∂

∂O
(m)
j

[
GjO

(m)
j +

1

2
(Hj + λ)(O

(m)
j)2

]
= 0. (80)

Gj + (Hj + λ)O
(m)
j = 0⇒ O

∗(m)
j = − Gj

Hj + λ
. (81)

If the gradients Gj are large in magnitude, it implies that the current model is

making large errors on instances in leaf j, meaning O
∗(m)
j has to adjust aggres-

sively. A large value of Hj , suggests steep curvature, prompting smaller updates
to avoid overshooting, whereas a low value implies that larger corrective steps

8In practice, the tree structure is determined dynamically using greedy split finding; how-
ever, for the purposes of deriving the optimal leaf values, it is treated as fixed.

76

can be taken safely. The parameter λ stabilizes the optimization, especially
when Hessians are small.

Substituting these optimal leaf values back into the loss yields a scoring
function for evaluating candidate trees

L̃(m)(s) = −1

2

Lm∑
j=1

G2
j

Hj + λ
+ γLm. (82)

The first term in (82) measures how well the tree explains the data, and can
be interpreted as a form of signal-to-noise ratio for each leaf. When the gradi-
ents are large and aligned (Gj large), and curvature is shallow (Hj small), this
term grows large, indicating strong predictive contribution. The negative sign
reminds that better predictive fit reduces the overall loss.

A.3 Algorithms

Algorithm 1: XGBoost training algorithm

Input: Training data {(xi, yi)}Ni=1, loss function ℓ, number of trees M ,
learning rate η, regularization parameters λ, γ

Output: Ensemble model F (x) =
∑M

m=1 η · tm(x)

Initialize predictions: ŷ
(0)
i ← argminc

∑N
i=1 ℓ(yi, c) ; // e.g., mean of

yi
for m = 1 to M do

// Compute gradients and Hessians

for i = 1 to N do

gi ← ∂ℓ(yi, ŷ
(m−1)
i)/∂ŷ

(m−1)
i

hi ← ∂2ℓ(yi, ŷ
(m−1)
i)/∂(ŷ

(m−1)
i)2

// Grow tree using a tree-building algorithm (see Alg. 2)

tm ← TreeBuild({gi, hi}Ni=1, λ, γ)
// Update model predictions

for i = 1 to N do

ŷ
(m)
i ← ŷ

(m−1)
i + η · tm(xi) ; // Apply shrinkage

return ŷi = ŷ
(M)
i

77

Algorithm 2: Exact greedy split finding algorithm (XGBoost)

Input: Gradients {gi}, Hessians {hi}, regularization parameters λ, γ
Output: Regression tree tm with optimal structure sm and leaf

outputs {O∗(m)
j }

Initialize root node with all training instances;
while there exists a node that can be split do

foreach node L in the current tree layer do
Compute total gradients and Hessians:

G←
∑

i∈L gi, H ←
∑

i∈L hi;
Initialize best gain Gmax ← −∞;
foreach feature d ∈ {1, . . . , D} do

Sort instances in L by feature xd
i foreach threshold s in

sorted feature xd
i do

Compute left child stats:
GL ←

∑
i∈L
xd
i≤s

gi, HL ←
∑

i∈L
xd
i≤s

hi;

Compute right child stats: GR ← G−GL,
HR ← H −HL;

Compute split gain:

G ← 1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

]
− γ

if G > Gmax then
Gmax ← Gain;
Store best split: (d∗, s∗)← (d, s);

if Gmax > 0 then
Split node L into LL and LR using (d∗, s∗);

Assign instances to children based on xd∗

i ≤ s∗;

foreach leaf node j do
Assign optimal output:

O
∗(m)
j ← −

∑
i∈Ij gi∑

i∈Ij hi + λ

return Tree tm with structure sm and outputs {O∗(m)
j }

78

Algorithm 3: TreeSHAP with path-dependent feature perturbation

Input: Instance x∈RD; ensemble {tm}Mm=1, each tree

tm = {v(m), a(m), b(m), τ (m), r(m), d(m)}
Output: SHAP vector φ∈RD

procedure TREESHAP PATH(x, {tm})
φ← 0;
for m← 1 to M do // accumulate over trees

φ = φ+TREESHAP TREE(x, tm);

return φ

procedure TREESHAP TREE(x, tm)
φ(m) ← 0;

procedure RECURSE(j, γ, qz , qo, qi)
γ ← EXTEND(γ, qz , qo, qi) ; // Extend subset path with a fraction of zeros and
ones

if v
(m)
j ̸= internal then
; // Check if we are at a leaf node

for i← 2 to len(γ) do
; // Calculate the contributions from every feature in our path

w ← sum(UNWIND(γ, i).w) ; // Undo the weight extension for this
feature

φ
(m)
γi

= φ
(m)
γi

+ w (γi·o− γi·z) v
(m)
j ; // Contribution from subsets

matching this leaf

else

h, c← (a
(m)
j , b

(m)
j) if x

d
(m)
j

≤ τ
(m)
j else (b

(m)
j , a

(m)
j) ; // Determine hot and

cold children

iz ← io ← 1; k ← FINDFIRST(γ·d, d
(m)
j);

if k ̸= nothing then
; // Undo previous extension if we have already seen this feature

(iz , io)← (γk·z, γk·o); γ ← UNWIND(γ, k);

RECURSE(h, γ, iz r
(m)
h /r

(m)
j , io, d

(m)
j);

RECURSE(c, γ, iz r
(m)
c /r

(m)
j , 0, d

(m)
j);

procedure EXTEND(γ, qz , qo, qi)
l, γ = len(γ), copy(γ);
γl+1·(d, z, o, w) = (qi, qz , qo, (1 if l = 0 else 0)) ; // Init subsets of size l

for i← l to 1 do
; // Grow subsets using qz and qo
γi+1·w = γi+1·w + qo · γi·w · (i/l) ; // Subsets that grow by one

γi·w = qz · γi·w · (l − i)/l ; // Subsets that stay the same size

return γ ; // Return the new extended subset path

procedure UNWIND(γ, i)
l← len(γ); n← γl·w; γ ← copy(γ1...(l−1));
for j ← l − 1 to 1 do

; // Shrink subsets using γi·z and γi·o if γi·o ̸= 0 then
τ ← γj·w; γj·w ← n l/(jγi·o); n← τ − γj·w γi·z (l− j)/l;

else
γj·w ← (γj·w l)/(γi·z (l− j));

for j ← i to l-1 do
γj·(d, z, o)← γj+1·(d, z, o)

return γ

RECURSE(1, [], 1, 1, 0) ; // Start at first node with all zero and one extensions

return φ(m)

79

Legend for Algorithm 3

Inputs / Output

x ∈ RD instance to be explained
{tm}Mm=1 trained trees (see node arrays below)
φ final SHAP vector (D entries)

Per-node arrays in one tree tm

vj leaf value (or “internal” flag)
aj , bj left / right child indices
τj split threshold
rj cover (training-sample count)
dj feature index used for the split

Run-time variables

γ current path object holding (d,z,o,w) tuples
qz , qo fractions of zero / one subsets propagated downward
qi feature index being appended to the path

Helper functions

RECURSE : depth-first traversal, accumulates SHAP mass

EXTEND : adds one feature to γ and updates weights

UNWIND : inverse of EXTEND (back-tracking). Removes one feature from γ and restores
weights

FINDFIRST : returns index of first occurrence of feature d in γ (or None if d has not
appeared yet)

For a detailed description of Algorithm 3, including its derivation and imple-
mentation details, please refer to the original paper by Lundberg et al. (2020).

A.3.1 The NSGA-II Algorithm

The NSGA-II algorithm evolves its solution set over multiple generations, with
each generation involving the below steps. The algorithm for a generation can
be summarized as follows (Deb et al., 2002):

Step 1: Initialization. Each generation begins with a population of candidate
counterfactuals x∗ that are generated by modifying the original instance
x slightly. The candidates represent potential explanations, each one an
alternative input that might shift the model’s prediction.

Step 2: Evaluation. Each candidate is evaluated using the four objectives c1
through c4 (Molnar, 2022b).

Step 3: Sorting. The candidates are then ranked into “fronts” according to
Pareto dominance, where a front is a set of candidates with the same
level of non-dominance. A solution x∗a dominates x∗b if x∗a is better in at
least one objective and no worse in all others. Further, a candidate is
considered non-dominated if not other candidate in the entire population
dominates it.

80

The first Pareto front then consists of all non-dominated candidates, the
second front contains candidates dominated only by members of the first
front, and so on. Each front is therefore dominated only by members of
earlier fronts, and by none of its own members. Figure 24 illustrates the
first few Pareto fronts for a two-objective example.

Step 4: Selection. The algorithm selects parent candidates for reproduction, giv-
ing preference to those from higher-ranked fronts (less dominated solu-
tions). Within the same front, selection favors candidates with greater
diversity.

Step 5: Recombination and mutation. Chosen parents are recombined to cre-
ate new candidates/offspring: numerical features may be averaged and
categorical values swapped. Random mutations are also applied to intro-
duce slight variation, allowing exploration of new regions in the feature
space (Molnar, 2022b).

Step 6: Replacement. To form the next generation, parent and offspring popula-
tions are combined, and the NSGA-II then selects from this pool based on
two criteria: non-domination rank and “crowding distance”. The crowd-
ing distance favors candidates that lie in sparse regions of the objective
space.

81

c1 (prediction)

c2 (sparsity)

Front 1
(non-dominated)

Front 2

Front 3

Front 4

minimize

minimize

Figure 24: Visualization of Pareto front sorting in the NSGA-II algorithm. Each
dot represents a candidate counterfactual solution evaluated on two objectives:
prediction difference (c1) and sparsity (c2). Lower values are preferred for both
objectives (indicated by gray minimization arrows). Candidates on the outer-
most curve (blue) form the first Pareto front, as they are not strictly dominated
by any other solution in the entire population. Solutions in subsequent fronts
(green, orange, red) are dominated by at least one candidate in all preceding
fronts, meaning they are worse at minimizing both objectives simultaneously.
NSGA-II ranks solutions by front and prefers diverse candidates within each
front.

By iterating this process over multiple generations, NSGA-II produces a diverse
set of counterfactuals that represent different solutions. From this set, one
can either select individual counterfactuals of interest or summarize general
patterns, such as which features are most commonly altered across the Pareto
front. The iteration for one generation is illustrated in Figure 25.

82

1. Initial Population Pt

Population of candidate
counterfactuals generated by

modifying the
original instance

2. Evaluation

Evaluate each candidate
using objectives
c1, c2, c3, c4

3. Sorting

Rank solutions into Pareto
fronts by dominance

c1

c2
Front 1
Front 2
Front 3

4. Selection

Select parents based on front
rank and crowding distance

c1

c2

p

5. Recombination

Create offspring through
crossover and mutation

Parent 1
[0.2, 0.8, 0.3]

Parent 2
[0.7, 0.4, 0.9]
Crossover

Offspring

[0.45, 0.6, 0.6]

[0.4, 0.6, 0.7]
Mutation

6. Replacement

Combine parent and offspring
populations, then select best

solutions based on non-
domination and
crowding distance

Offspring population Qt
Combined population

Rt = Pt ∪Qt

New population Pt+1

Final diverse set of
counterfactual
explanations

Figure 25: One generation of the NSGA-II algorithm for counterfactual expla-
nation generation. The algorithm sorts solutions into Pareto fronts and selects
parents based on front rank (prioritizing solutions in earlier fronts, e.g., Front
1 > Front 2). If solutions share a front rank (are from the same front), the one
with larger crowding distance (i.e., isolated candidates) is preferred to maintain
diversity. Finally, the algorithm creates new solutions through recombination
and mutation of features.

B Data Details

B.1 ASRS Scoring

The Adult ADHD Self-Report Scale (ASRS v1.1) consists of 18 questions divided
into two parts: Part A (6 questions) and Part B (12 questions). A binary
ADHD screener flag was derived based on responses to the 6 questions in Part

83

A, following established scoring guidelines. A participant screens positive if they
report “often” or “very often” on at least four of the six Part A items. The total
ASRS score was calculated by summing the responses of all 18 items (Parts A
and B), resulting in a theoretical score range of 0 − 72. Higher scores indicate
greater self-reported symptom severity.

In clinical use, the screener flag is typically used to determine whether a
participant should undergo further diagnostic evaluation. The total score lacks
a formally validated diagnostic cutoff. In this thesis, the screener flag was used as
the classification target, while the total score served as the regression outcome.

B.2 Cognitive Task Description

Before each task, participants completed practice trials to ensure task compre-
hension. All tasks were administered via participants’ own smartphones.

Design Fluency (correct trials c3)
Participants connected dots under varying rule sets to reach a goal position.
In Condition 3, they alternated between black and white dots while avoiding
repetitions. The feature represents the number of correct trials in this condition.
Duration: 1 minute per condition.

Go (go rtv)
Participants pressed a button as quickly as possible when a black square ap-
peared. The feature represents response time variability (RTV). Duration: 3
minutes

Go/No-Go (gono rtv)
Participants pressed a button as quickly as possible when red cards showed up,
but withheld responses to black cards. The feature represents response time
variability (RTV) for trials with red cards. Duration: 4 minutes

Stroop (congruencyeffectRT)
Participants were shown color words (e.g., “RED,” “GREEN”) displayed in
incongruent ink colors (e.g., the word RED printed in green). They were re-
quired to choose the alternative corresponding to the ink color of the word while
ignoring the written word itself. Four alternatives were given for each trial.

• Congruent Trials: The word meaning and ink color matched (e.g., RED).

• Incongruent Trials: The word meaning and ink color mismatched (e.g.,
RED)

The feature represents the mean response time (RT) difference between incon-
gruent and congruent trials (incongruent RT – congruent RT). Duration: 2
minutes

Stroop switch (mean switch cost)
A variant of the Stroop task where participants alternated between two rules:

1. Name the ink color (ignoring the word).

84

2. Read the word (ignoring the ink color).

A cue indicated which rule to apply before each trial, requiring cognitive switch-
ing between tasks.

The feature represents the mean difference in response time between trials
requiring a rule switch vs. those without a switch (switch RT – no-switch RT).
Duration: 2 minutes

Grid (reverse max)
Participants viewed a sequence of flashing grid squares and were asked to recall it
in reverse order. The feature represents the longest correctly recalled sequence.
Duration: 4.5 minutes per condition.

Tower of London (total moves)
Participants moved colored blocks to match a target configuration using the
fewest moves possible. The feature represents total moves across all trials.

B.3 Outlier Removal Criteria

Outliers were removed based on rules specified by the data providers. These in-
cluded invalid trials, extreme values, or incomplete responses in either cognitive
task performance or questionnaire data. Further details on exclusion thresholds
are available upon request.

C Supplementary Figures and Tables

Figure 26: Empirical cumulative distribution functions (ECDFs) for all predic-
tors. The smooth, continuous shapes suggest no clear multimodality or abrupt
discontinuities, and therefore no strong signs of subgroup structure.

85

Figure 27: PCA projection of the full data set (training and testing), colored
by residual values. No clear regional bias is visible, indicating residuals are
randomly distributed in feature space.

Figure 28: Learning curves for the XGBoost regression model using 5-fold cross-
validation to select the optimal number of boosting rounds and maximum tree
depth. Thin lines represent validation (test) performance, while thick lines
represent training performance. Tree depth 2 achieves a good balance between
bias and variance, with minimal gap between training and validation curves and
relatively stable error across boosting rounds.

86

