
Masteruppsats i matematisk statistik
Master Thesis in Mathematical Statistics

Enhancing Image Classi�cation with a Hybrid CNN-
Transformer Model: A Comparative Study of ResNet-
18 and a Modi�ed Architecture

Chinmaya Mathur



Matematiska institutionen

Masteruppsats 2025:1

Matematisk statistik

Februari 2025

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm



Mathematical Statistics
Stockholm University
Master Thesis 2025:1

http://www.math.su.se

Enhancing Image Classification with a Hybrid

CNN-Transformer Model: A Comparative Study of

ResNet-18 and a Modified Architecture

Chinmaya Mathur∗

February 2025

Abstract

In this thesis, we propose a Hybrid model that integrates the strengths
of Convolutional Neural Networks (CNNs) and transformer encoders
to enhance image classification. We specifically modify the ResNet-18
by replacing its 4th block with a transformer encoder which includes
a multi-head self-attention layer and a position-wise feedforward net-
work. This modification aims to leverage the transformer’s ability to
capture long-range dependencies and improve the feature extraction
capability of the model.

On evaluating the performance of both the models on the CIFAR-
10 dataset, we see that the Hybrid model performs slightly better than
ResNet-18. The classwise accuracy analysis shows that the Hybrid
model performs better for several classes like ”airplane”, and ”dog”
but shows a decrease in accuracy for classes like ”cat”. To understand
the impact of architectural modification, we compare the weights of
the first 3 blocks using a quantile-quantile (QQ) plot. The analysis
shows that the weights remain largely similar in distribution but the
magnitude changes with the Hybrid model having bigger weights.

We further analyze the significance of the changes in classwise accu-
racies using the Wilcoxon signed rank test that confirms the observed
changes in accuracy are significant across all classes but the magnitude
of change in medians of the difference in the accuracy of the two mod-
els is not big in all classes. Our findings support the integration of the
transformer encoder into CNN architecture but we see that the perfor-
mance of the model can still be increased by introducing regularization
terms in the training. We can also explore different configurations us-
ing a transformer encoder and experiment with different datasets to
generalize our results and further improve model accuracy.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: mathurchinmaya@gmail.com. Supervisor: Chun-Biu Li.



Acknowledgements

I would like to thank my supervisor Chun-Biu Li for his help in this thesis. He
helped me shape this thesis with his ideas, critique, and feedback. I am thankful
for all the help he provided while writing this thesis.

I have used AI tools to help with spell checks and grammar.

2



Table of Contents

Abstract 1

Acknowledgements 2

List of Figures 5

1 Introduction 6

2 Methodology 8

2.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Cross-Entropy Loss function . . . . . . . . . . . . . . . . . . 10
2.2.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . 11
2.2.4 Adam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Convolutional Neural Network (CNN) . . . . . . . . . . . . . 13
2.3.1 Convolution operation . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Batch Normalization . . . . . . . . . . . . . . . . . . . . . . 17

2.4 ResNet-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Residual connection . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Attention and Self Attention . . . . . . . . . . . . . . . . . . 24
2.5.2 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . 27
2.5.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Data 33

4 Results 36

4.1 Training of ResNet-18 and Hybrid model . . . . . . . . . . . 36

4.2 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Comparing Weights of the blocks in the models . . . . . . . 39

4.4 Comparing Class-wise accuracy . . . . . . . . . . . . . . . . . . 40

5 Conclusion 53

3



References 54

List of Figures

2.1 Feedforward Network. Orange dots represent the input neurons.
Green dots represent the hidden layer and blue dot represent the
output layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Example of a convolution with a 3×3 input and a 2×2 kernel with
a stride of 1 and no padding. . . . . . . . . . . . . . . . . . . . . . . 15

2.3 An example of average pooling with an input of size 6x6, a kernel
of size 2×2, and a stride of 2. . . . . . . . . . . . . . . . . . . . . . 16

2.4 Nested function and non-nested functions. For non-nested functions
increasing the function does not lead it closer to the true function
(f ∗). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 This figure illustrates how a residual connection works. The residual
connection is shown by the line diverging from the input. The input
x is processed through two weight layers and an activation function
and the output f(x) is then added to the original input x, forming
the final output f(x) + x. This helps the network learn identity
mapping and helps with the vanishing gradient problem. . . . . . . 19

2.6 This figure illustrates a ResNet-18 architecture. On the left, it
shows the overall structure of ResNet-18 which includes the con-
volution layer, batch normalization, and ReLU activation function.
It is followed by 4 residual blocks and an average pooling and fully
connected layer leading to the output. On the right, it shows the
detailed structure of a residual block. The 1×1 convolution in the
residual connection is not used in block 1, since there is no change
in the number of channels. . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 (left) Scaled Dot-Product Attention. (right) Multi-head attention
consists of several attention layers running in parallel. Taken from
[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Transformer architecture taken from [2]. It consists of 2 parts:
encoder and decoder. In encoder, there are 2 layers: Multihead
attention and Positionwise FFN. The ’Add & norm’ means that it
first add the residual connection and then performs a Layer nor-
malization. The ’n’ in the figure refers to the number of encoder
and decoder blocks in the transformer. . . . . . . . . . . . . . . . . 31

4



LIST OF FIGURES

2.9 Architecture of the Hybrid model. The overall structure as shown
on the left is similar to ResNet-18 (Figure 2.6) but we replace the
4th block with a transformer encoder. The structure of residual
blocks is the same as in ResNet-18. On the right, we can see a
detailed structure of a transformer encoder. The blue lines coming
from the side and connecting with the ’+’ sign represent the residual
connection. Integrating a transformer encoder into the ResNet-18
structure enhances the model’s ability to capture long-range de-
pendencies in the input (image or words) which leads to improved
feature extraction using its self-attention feature as explained in the
above section of Transformers. . . . . . . . . . . . . . . . . . . . . . 32

3.1 Classes in the CIFAR-10 dataset and 10 random images from each
class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 ResNet-18 training and validation curves . . . . . . . . . . . . . . . 37
4.2 ResNet-18 validation accuracy . . . . . . . . . . . . . . . . . . . . . 37
4.3 Hybrid model training and accuracy curves . . . . . . . . . . . . . . 38
4.4 Number of parameters in the 2 models (ResNet-18 and Hybrid) . . 39
4.5 weight comparison (original vs modified) block 1 conv. 1 . . . . . . 40
4.6 weight comparison (original vs modified) block 1 conv. 2 . . . . . . 41
4.7 weight comparison (original vs modified) block 3 conv. 3 . . . . . . 41
4.8 weight comparison (original vs modified) block 3 conv. 4 . . . . . . 42
4.9 Confusion matrix of model 1 (original ResNet-18) . . . . . . . . . . 42
4.10 Confusion matrix of model 2 (Hybrid model) . . . . . . . . . . . . . 43
4.11 95% Confidence Interval for accuracy for all classes for both original

ResNet-18 and Hybrid model. The points represent the accuracy
of the model. Model 1 (blue) represents the Original ResNet-18
model and Model 2 (orange) represents the Hybrid model. Only
automobiles, birds, cats, and dogs have non-overlapping intervals
showing significance. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.12 Distribution of accuracies for ship class in both the models. They
overlap but the medians are different. Model 1 is the ResNet-18
and Model 2 is the Hybrid model. . . . . . . . . . . . . . . . . . . . 47

4.13 Test statistics of all classes using Wilcoxon signed rank test. . . . . 49
4.14 p-values of all classes using Wilcoxon signed rank test. All classes

are significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.15 The median of the differences between the ResNet-18 and the Hy-

brid model calculated from the Bootstrap samples. . . . . . . . . . 51
4.16 Number of ties in each class of the dataset from the Wilcoxon Signed

Rank Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5



Chapter 1

Introduction

Deep learning has revolutionized the field of computer vision, leading to
significant advancements in tasks such as image classification and object
detection. The ability to categorize and identify objects within images has
revolutionized how we interact with and interpret visual data. This has led to
advancements in medical imaging diagnostics [3], real-time video analysis, and
personalized content delivery. Despite the significant progress made with
Convolutional Neural Networks (CNNs), the quest for improvement in image
classification continues. CNNs have demonstrated remarkable success by
efficiently capturing local spatial hierarchies in images. However, their inherent
limitations in modeling long-range dependencies and global context led to the
introduction of transformer-based architectures.

Convolutional Neural Networks (CNNs) have been influential, with models like
ResNet-18 achieving state-of-the-art performance on numerous benchmarks.
Recently, transformers, originally developed for natural language processing
(NLP) tasks, have been adapted for image processing, showing promising results.
The Vision Transformer (ViT) [4] exemplifies this potential, showing that
transformers can outperform traditional CNNs in image classification tasks when
provided with sufficient data and computational resources. Carion et al. (2020)
also introduced the Detection Transformer (DETR) model, which integrates
transformers for end-to-end object detection, highlighting the versatility and
effectiveness of transformers in vision tasks [5]. Parmar et al. (2018) [6]
illustrates, how models based on the architecture of self-attention can
significantly improve image modeling of complex images in the ImageNet dataset.

In this thesis, we propose a Hybrid model that integrates the strengths of both
CNNs and transformers. We modify the ResNet-18 architecture by replacing its
4th block with a transformer encoder containing a multi-head self-attention layer
and a Position-wise Feedforward network. The motivation behind this
modification is to leverage the transformer’s ability to capture long-range
dependencies and contextual information, potentially enhancing the feature
extraction capabilities of the model. The architecture of ResNet-18 is taken from
[7]. The transformer encoder architecture is similar to the one described in [1].
We used the ResNet-18 model and compared it with the Hybrid model to
determine what changes occur when a transformer encoder is introduced in
ResNet-18. Additionally, we analyzed how these processes impact the model’s

6



CHAPTER 1. INTRODUCTION

performance for image classification and how the weights of the first 3 blocks
change between the models after training. Using Bootstrapping, we compare the
classwise accuracy in the two models by visualizing the 95% Confidence Interval
(CI) of the accuracies. Furthermore, we conducted a Wilcoxon Signed Ranked
test to see the significance of the changes in the accuracy.

The overall accuracy of both models remains almost the same, with the Hybrid
model doing slightly better by 2% than ResNet-18. Regarding classwise
accuracy, the Hybrid model provides a better classification for most of the classes
but for certain classes like "cat", it does not work as well as ResNet-18. The
weights of the first 3 blocks in both models are pretty much the same in terms of
distribution but differ in terms of magnitude with the Hybrid model having
higher weights which can be seen in the quantile-quantile (QQ) plot as it is
slightly bent upwards (more steep) compared to the diagonal line. From the
Wilcoxon Signed Rank test, we find that all the classes have significant change in
the accuracy between the models but only certain classes have practical
significance. We propose some regularization in the training for better results
and further testing to dig deeper into the effects of introducing a transformer
encoder in ResNet-18.

The structuring of this thesis is as follows: Chapter 2 discusses the methodology
used in the thesis including the methods used and the models’ architecture.
Chapter 3 discusses the dataset used. Chapter 4 examines the thesis results and
Chapter 5 concludes with reflections and final thoughts. The code used to make
the models and do the analysis can be found here:
https://github.com/ChinmayaMathur/Thesis-for-masters-Transformers-.

7



Chapter 2

Methodology

2.1 Neural Network
A neural network works similarly to how neurons work in a human brain. It is a
connection of neurons that pass on information to do a specific task such as
classification and pattern recognition. The most common straightforward type of
neural network is a Feedforward Neural Network (FFNN) also known as
Multilayer perceptions (MLP). Feed-Forward Neural Network is a single-layer
perceptron. A sequence of inputs enters the layer and is multiplied by the
models’ weights. The weighted input values sum together to form a total. If the
sum of the values exceeds a predetermined threshold (typically zero), the output
value is usually 1. If the sum is less than the threshold, the output value is
usually -1. The single-layer perceptron is a popular Feedforward Neural Network
model frequently used for classification. They are named this since information
is only propagated forward through the network [8].

All neural networks have three main layers: Input, hidden, and output. Figure
2.1 shows an example where the input layer has 4 neurons, the hidden layer has
3 neurons, and 1 neuron in the output layer. In this case, the model’s depth is 3
as it contains three layers, and its width, defined by the dimensionality of these
layers, is 4. In this example, each neuron is connected to every neuron in the
subsequent layer, meaning that each layer is fully connected.

In a feedforward network, for some vector input x = (x1, x2, ..., xn) where n is the
total number of inputs, the layer calculates outputs as ϕ(ωTx+ b) where ω is the
weight matrix and b is the bias and both of these are learnable parameters. ϕ
here represents a non-linear activation function acting element-wise on its input.

The most commonly used activation function in neural networks is the Rectified
Linear Unit (ReLU). The formula for ReLU is:

f(x) = max(0, x) (2.1)

where x is the input to the neuron. The main advantage of using ReLU is its
sparse activation, indicating that not all neurons are activated when using it;
only non-zero outputs are used. This helps reduce the computational cost
making the network more efficient to compute. It also helps reduce the risk of

8



CHAPTER 2. METHODOLOGY

Figure 2.1: Feedforward Network. Orange dots represent the input neurons. Green
dots represent the hidden layer and blue dot represent the output layer.

overfitting the data since fewer neurons are active at a time and it also helps in
better feature selection. ReLU has better gradient propagation than other
activation functions like sigmoid or tanh, leading to fewer vanishing gradient
problems. It is computationally efficient and also scale-invariant.

For classifying multiple classes, the Softmax function works the best since it
converts the raw output scores of a model into probabilities, making each output
interpretable as the likelihood of belonging to a particular class. It also
emphasizes the highest score, allowing the model to identify the most probable
class. The formula for Softmax is:

Softmax(zi) =
ezi∑
j e

zj
(2.2)

Here, z represents the values from the neurons of the output layer - the
exponential acts as the non-linear function. The Softmax activation function
normalizes the input values into a probability distribution, ensuring that the
sum of all output values is 1. It is suitable for classification problems where the
output needs to represent probabilities over multiple classes. By exponentiating
the inputs, the Softmax function in machine learning amplifies the differences
between the input values, making the largest value more pronounced in the
output probabilities.

There are other activation functions like sigmoid and tanh but in this thesis
since we are dealing with modern architectures like Resnet 18 and Transformers,
ReLU is preferred as it is usually used in hidden layers due to its ability to avoid
vanishing gradient problem and its also computationally efficient. We also use
Softmax in the output layer instead of any other activation function since it
works well with multi-class classification tasks as it converts raw logits into

9



CHAPTER 2. METHODOLOGY

normalized probabilities, ensuring that the model outputs are interpretable as
probabilities.

2.2 Optimization

2.2.1 Cross-Entropy Loss function

We want to optimize the parameters θ (i.e., the set of all weights and biases) to
minimize the loss function, also known as the cost function while training our
model. The loss function quantifies the difference between the model’s predicted
and target values, where a higher loss indicates poorer predictions. In our thesis,
we will be using the cross-entropy loss function. It measures the difference
between the predicted probability distribution and the true labels. The benefit of
using this loss function in our thesis is that it penalizes incorrect predictions
more strongly when the model is confident but wrong, encouraging accurate
probability estimates which makes it perfect for classification tasks. Another
advantage of using it is that it can be used in combination with the Softmax
function as it ensures that the output probabilities sum to 1.

Consider a scenario where we have q number of classes; we represent the correct
labels with a vector y of length q, where each element is either 0 or 1. The
model’s predictions are represented by the vector ŷ, also of length q, which
contains the predicted probabilities for each class. The cross-entropy loss for a
single observation is defined as:

l(y, ŷ) = −
q∑

i=1

yi log ŷi (2.3)

here, yi is the actual label (1 if the class is correct, 0 otherwise), and ŷi is the
predicted probability for the ith class. The loss function is bounded below by 0
and increases as the predicted probability of the true class decreases. We
compute the average loss across all observations to evaluate the model’s
performance over the entire dataset. This aggregate loss provides a measure of
the model’s overall performance and is used to guide the optimization process.

2.2.2 Gradient Descent

Gradient Descent is an optimization algorithm for finding a local minimum of a
differentiable function. Gradient descent in machine learning finds the values of
a loss function’s parameters (coefficients) i.e. θ that minimize a cost function. A
gradient measures the change in all the weights with regard to the change in
error (i.e. difference between the true and predicted values). You can also think
of a gradient as the slope of a function. The higher the gradient, the steeper the
slope and the faster a model can learn. But if the slope is zero, the model stops
learning. In mathematical terms, a gradient of a function is a partial derivative
with respect to its arguments.

For a loss function l(y, ŷ; θ) which depends on some parameters θ, the gradient
descent updates the parameter at each step as follows:

10



CHAPTER 2. METHODOLOGY

θj+1 ← θj − η.
1

N

N∑
i=1

∂l(yi, ŷi; θj)

∂θj
(2.4)

where η is the learning rate which is a positive number, N is the total number of
observations in our dataset, j represents the current step, and i labels the
observation.

In practice, the learning rate decreases after each step. If the learning rate is kept
constant and is too small, it can cause the parameters to update very slowly,
which makes it harder to converge efficiently leading to a prolonged training
process. On the other hand, if it is too large then it can lead it to overshoot the
optimal minima and just oscillate around it. Decreasing the rate after each step
helps reduce this risk and helps the loss function to reach a minimum quickly
because this way it makes large parameter updates in the initial stages for faster
exploration and then slowly smaller updates in later stages for precise
convergence. This helps the model make parameter updates more efficiently.

To calculate the gradient of the loss function we do this using backpropagation
[2]. While training the network, we use Forward propagation (or forward pass)
to calculate and store intermediate variables from the input layer including all
layers in the middle till we reach the output layer. This is used to make a
prediction and then compared with the actual target value to compute the error
(loss) using the loss function. Backpropagation evaluates the gradient of the loss
function with respect to each parameter (weight and bias) in the network using
the chain rule. The gradient indicates how much the loss would change if the
parameter were slightly adjusted. Using the chain rule of calculus, we compute
the gradient of the loss with respect to each weight and bias, layer by layer,
moving backward from the output layer to the input layer. Once the gradients
are computed, the weights and biases are updated in the opposite direction of
the gradient (hence "back" propagation). Once all the gradients are computed
we then use an optimization algorithm to update them. The forward pass and
the backward pass are repeated many times which reduces the error gradually,
improving the models’ performance by fine-tuning the network parameters.

2.2.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a variant of gradient descent in which
instead of computing the gradient of the function over the entire dataset, we
compute the gradient for a mini-batch of observations at each iteration. A
mini-batch is a random subset of observations of the whole dataset. We use SGD
as it is more computationally efficient than running it over millions of
observations.

Let there be b samples in a mini-batch, then at each step, the stochastic gradient
descent updates the parameters using the following rule:

θj+1 ← θj − η.
1

b

b∑
i=1

∂l(yi, ŷi; θj)

∂θj
(2.5)

11



CHAPTER 2. METHODOLOGY

Selecting a smaller mini-batch size helps with training larger models as the small
number of observations in a mini-batch uses less memory while training. It can
also lead to faster convergence as the parameters are updated more often
allowing for quicker adjustments based on the latest gradient information. One
iteration over the whole training set is known as an epoch.

2.2.4 Adam

The Adam (Adaptive Moment Estimation) optimizer is a popular optimization
algorithm used for training deep learning models. It was introduced by Diederik
P. Kingma and Jimmy Ba in their 2015 paper titled "Adam: A Method for
Stochastic Optimization" [9]. Adam optimizer maintains two moving averages
for each parameter: the gradients’ first moment (mean) which tracks the
direction of the gradient and the second moment (uncentered variance) which
measures the magnitude of the gradient. Using these, Adam can adaptively
adjust the learning rate for each parameter based on the gradient. This leads to
stable and effective learning. Adam also includes bias correction in both
moments estimates which ensures that they are not underestimated due to their
bias to 0 during initilization and this leads to appropriately scaled updates which
leads to faster convergence of the training process.

The hyperparameter used in Adam is the Learning rate set to a default value of
0.001, Decay rates (or momentum) with default values are β1 = 0.9 and
β2 = 0.999. These control the decay rates of the moving averages and Epsilon (ϵ)
a small constant (e.g., 10−8) added to the denominator to improve numerical
stability and prevent division by zero.

Adam uses Momentum, a technique used to accelerate gradient descent by
considering past gradients to smooth out the updates. It helps navigate the
parameter space more effectively. The first-moment estimate ’m̂t’ acts as a form
of momentum. It accumulates the gradients with an exponential decay rate β1,
similar to how momentum accumulates gradients in the traditional
momentum-based gradient descent. Adam enjoys the benefits of momentum like
smoother updates by reducing the impact of noisy gradients due to the
exponential decay of past gradients. Exponential decay also leads to faster
convergence in directions with consistent gradients, and it also improves stability
during training by avoiding local minima due to accumulated past gradients
history stored in mt. A pseudocode of the algorithm of how Adam works is
shown below in Algorithm 1.

Adam uses adaptive learning rates for each parameter as shown in step 12 of the
algorithm 1, which makes it adaptive. The term α√

v̂t+ϵ
represents the adaptive

learning rate as based on the value of v̂t, the learning rate changes. The term α
is the base rate which is fixed, so if v̂t is large meaning high variance in the
gradients, then the learning rate will be small and vice versa. The ϵ term makes
sure that the denominator is not zero when v̂t is zero or really small. Adam
includes bias corrections to the estimates of both the first-order moments (the
momentum term) and the (uncentered) second-order moments (Seen in Steps 8
and 9). This is because at the time of initilaztion, moving averages mt and vt are

12



CHAPTER 2. METHODOLOGY

Algorithm 1 The Adam Algorithm
Require: Step size α (Suggested default: 0.001)
Require: Exponential decay rates β1 and β2 in [0, 1) (defaults: 0.9 and 0.999)
Require: Small constant ϵ used for numerical stabilization (Suggested default:

10−8)
Require: Initial parameters θ0
1: Initialize 1st moment vector m0 = 0
2: Initialize 2nd moment vector v0 = 0
3: Initialize time step t = 0
4: while stopping criterion not met do
5: t← t+ 1
6: Sample a minibatch of m examples from the training set
{(x(1), y(1)), . . . , (x(m), y(m))}

7: Compute gradient: gt ← 1
m

∑m
i=1∇θL(f(x

(i); θt−1), y
(i))

8: Update biased first moment estimate: mt ← β1mt−1 + (1− β1)gt
9: Update biased second moment estimate: vt ← β2vt−1 + (1− β2)gt ⊙ gt

10: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

11: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

12: Compute update: ∆θt ← −α m̂t√
v̂t+ϵ

13: Apply update: θt ← θt−1 +∆θt
14: end while

initialized to zero and are biased in the early stages. Bias correction ensures that
these averages are unbiased estimators of the true first-order and second-order
moments. Adam generally performs well with default hyperparameters(learning
rate, decay rate (β1 and β2) and epsilon), reducing the need for extensive
hyperparameter tuning.[9] The default values for these hyperparameters are
mentioned above.

2.3 Convolutional Neural Network (CNN)

2.3.1 Convolution operation

Generally, convolution operation is applied on two functions of a real-valued
argument. When processing images in a network, convolution operation plays an
important part. The image data is in the form of tensors or multi-dimensional
arrays of real values. The x and y axes in these arrays represent the spatial
dimensions or pixel values, while the third axis represents color channels. The
number of color channels depends on the image type: grayscale images have one
channel, while colored images usually have three (red, green, and blue).

As mentioned in the book Dive into Deep Learning [2], if we are classifying
images then, connecting each pixel of an image of size for example 1 megapixel
to the nodes of a 1000-node fully connected layer would require 106 · 103 = 109

weights to be trained. This makes doing this infeasible as it would require a lot
of computational power. This means that flattening an image and using it as a

13



CHAPTER 2. METHODOLOGY

vector to a feedforward neural network is not the correct way of inputting an
image.

Convolutional operations use filters also known as kernels. Each filter is a small
matrix that convolves around the input image, performing element-wise
multiplications and summing the results to produce a single value in the output
feature map. This process allows the network to detect local patterns and
features such as edges, textures, and shapes in the initial layers, and more
complex patterns like objects and faces in the deeper layers. They are usually
smaller in height and width than that of the image. The usual kernel choices are
odd-sized like 3× 3 and 5× 5 [8]. This is because odd-sized kernels have a
well-defined center which allows the kernel to symmetrically convolve around the
current pixel in the input image. It also allows for symmetric padding on both
sides of the input image.

The smaller size of the kernel (dimensions of the kernel) than the input image
leads to sparse interactions because each output value depends only on a
localized region of the input. Each filter in the convolutional layer extracts
specific features from the input, such as edges, textures, etc. For example, a
convolutional layer with 32 filters of size 3× 3 applied to an input with three
color channels produces 32 feature maps, each representing the activations for
one filter. This setup only requires 32× (3× 3× 3 + 1) = 896 parameters, a
drastic reduction from the billions required by a fully connected approach as it
limits the number of connections between inputs and outputs, decreasing the
computational costs and training time. Convolutional operations also utilize
parameter sharing which means that they use the same filter (kernel) across the
entire input image because of this the weights of the kernel are shared for all
spatial positions which makes the model detect the same features (e.g., edges or
textures) regardless of their location in the image.

The convolution output can be written as:

S(i, j) = (I ∗K)(i,j) =
∑
m

∑
n

I(i+m;j+n)K(m,n) (2.6)

Here, the kernel K is a multidimensional array that contains trainable
parameters, and I is an input with two axes. i, j represents the elements of the
convolution operation. Figure 2.2 shows an example of a convolution operation.
In equation 2.6, we did not consider the case of multiple channels.

In convolution operation changing an object’s location in a picture does not
change the prediction. This is due to the property of convolution operation
called equivariance to translation. It is a property of the convolution operation
where a shift in the input results in a corresponding shift in the output, without
altering the structure of the features detected. To explain this in mathematical
terms, let us consider: I(x) be the input signal (e.g. an image) and k(x) be the
convolutional kernel (filter). Then, The convolution operation is defined as:

(I ∗ k)(x) =
∫

I(y)k(x− y) dy (2.7)

14



CHAPTER 2. METHODOLOGY

Figure 2.2: Example of a convolution with a 3×3 input and a 2×2 kernel with a
stride of 1 and no padding.

or in discrete terms:

(I ∗ k)(x) =
∑
y

I(y)k(x− y) (2.8)

Now let the input I(x) be shifted by a certain amount z, the shifted input
becomes: I’(x) = I(x - z)

When the convolution is applied to this shifted input:

(I ′ ∗ k)(x) =
∑
y

I(y − z)k(x− y) (2.9)

Now due the equivariance to translation property of convolution operation, the
output also shifts by an amount z, Hence:

(I ′ ∗ k)(x) = (I ∗ k)(x− z) (2.10)

The size of the convolution can be changed using zero padding and stride.
Adding a padding of "x" in the convolution adds "x" zero-valued rows and
columns on each side of the input. The stride helps change the kernel’s step size
as it goes over the input. A bigger stride lets the kernel skip over some elements
of the input and leads to a smaller convolution that does not extract the features
of the image as well compared to that with a lower stride.

2.3.2 Pooling

As mentioned in the book by Goodfellow [8], a typical layer of a convolutional
network consists of three stages. The first stage, the layer performs multiple
convolutions simultaneously to give a set of linear activations and in the second
stage, each linear activation runs through a non-linear activation function like
ReLU. The third stage is where the pooling function is used. A pooling function
replaces the output of the layer with a summary statistic of the nearby outputs.
It helps to make the representation approximately invariant to small translations
of the input which means that the output after pooling remains the same even if

15



CHAPTER 2. METHODOLOGY

Figure 2.3: An example of average pooling with an input of size 6x6, a kernel of
size 2×2, and a stride of 2.

the input is shifted even by a small amount. Invariance to local translation can
be a useful property if we care more about whether some feature is present in the
input than exactly where it is located[8]. This property helps us in the case of
image classification tasks.

There are many types of pooling operations, we use average pooling in this
thesis. Consider an input x of size C ×H ×H, where C is the number of
channels, and H ×H is the Height and Width respectively. Let K be a kernel of
size k × k and s be the stride. Performing average pooling with these arguments
yields an output of size C ×Hout ×Hout, where

Hout =
H − k

s
+ 1 (2.11)

here, Hout is the height and width of the output feature map. From [10], we find
that the element (c, h, w) of the output of such an operation is defined as:

AP (x)c,h,w =
1

k2

k∑
m=1

k∑
n=1

xc,s·h+m,s·w+n (2.12)

This formula computes the average of the elements in the k × k neighborhood of
the input tensor x, reducing the output size by the stride factor. In average
pooling, the kernel used does not have any trainable parameters, it simply
computes the mean of the input values within the receptive field. Figure 2.3
shows an example of an average pooling operation where an input of size 6× 6 is
passed through a kernel of size 2× 2 with 1 channel.

16



CHAPTER 2. METHODOLOGY

Another type of pooling operation is max pooling, where instead of taking the
average value within the receptive field, it takes the maximum value. However,
this type of pooling is not covered in this thesis.

2.3.3 Batch Normalization

It was introduced in the paper "Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift" [11]. Batch
normalization is used to improve the training of deep neural networks by
addressing the problem of internal covariate shift. In a neural network, each
layer has inputs (activations) with their own distribution. These distributions
can change during training as the parameters of the previous layers are updated.
While the randomness of parameter initialization contributes to the initial
variability, the continuous changes in activations are primarily caused by the
updates to the parameters during gradient-based optimization. This
phenomenon is often referred to as internal covariate shift, where the input
distribution to a layer changes due to parameter updates in earlier layers. This
can cause instability in the network as shifting input forces layers to
continuously adapt, making optimization less efficient. This leads to layers
having to relearn optimal weights for changing inputs which leads to more
epochs to reach good performance and makes the training process slow.

Batch normalization works by normalizing the input to each layer so that the
mean and variance become 0 and 1 respectively. It performs this normalization
over each mini-batch during training to make sure that the input distribution for
each layer remains constant. This operation can be divided into two main steps:
normalization and rescaling.

For each mini-batch B containing b examples, batch normalization first
computes the mean µ̂B and variance σ̂2

B of the mini-batch:

µ̂B =
1

b

b∑
i=1

xi (2.13)

σ̂2
B =

1

b

b∑
i=1

(xi − µ̂B)
2 (2.14)

Using these statistics, the input x is normalized to produce x̂:

x̂ =
x− µ̂B√
σ̂2
B + ϵ

(2.15)

Here, ϵ is a small constant added to the variance to prevent division by zero and
ensure numerical stability.

After normalization, the normalized values are rescaled and shifted using two
learnable parameters, γ (scale) and β (shift):

BN(x) = γx̂+ β (2.16)
Here, the parameters γ and β restore the degrees of freedom lost by
normalization, ensuring that the operation can represent the identity transform.

17



CHAPTER 2. METHODOLOGY

Batch normalization is primarily used to reduce internal covariate shift, however,
as highlighted in [12], the effectiveness of batch normalization extends beyond
just reducing internal covariate shift. It also contributes to smoothing the loss
function’s surface with respect to the model’s parameters (weights and biases).
This loss function’s surface is known as the optimization landscape. It contains
many local minima, saddle points, and flat regions where optimization becomes
unstable or can get stuck. Smoothing this landscape reduces sharp peaks or
valleys, making it easier for optimization algorithms like gradient descent to
converge to a good solution. Batch normalization does this by normalizing the
inputs at each layer which ensures that inputs to subsequent layers have a
consistent mean and variance. This reduces large fluctuations in the loss caused
by varying input scales or distributions. This also leads to more consistent
gradients during backpropagation which reduces the likelihood of vanishing or
exploding gradients, making it easier for the optimizer to find a low-loss region.

Batch normalization normalizes the inputs of each layer in a mini-batch during
training using the mean and variance computed from the mini-batch. Since each
mini-batch is a random subset of the dataset, the computed mean and variance
are only an estimate of the overall mean and variance of the whole dataset. This
variability in mean and variance due to randomness of the mini-batch introduces
noise into the normalized outputs, which in turn affects the gradients during
training. This noise acts as a form of regularization and can reduce overfitting as
it slightly changes the activation for each mini-batch preventing it from replying
to a certain pattern in the training data which improves the generalization of the
network to unseen data. As a result, batch normalization can sometimes reduce
the need for other regularization techniques such as dropout. Batch
normalization helps maintain healthy gradient magnitudes throughout the
network preventing the gradients from becoming too large or too small (vanishing
or exploding gradients) and ensures stable and efficient backpropagation.

During training, batch normalization uses the statistics (mean and variance) of
the current mini-batch. However, during testing, the network needs to be
consistent and use the estimated population statistics (mean and variance)
computed over the entire training set. This ensures that the network behaves
consistently and does not depend on the specific mini-batch used during
evaluation. In CNNs, batch normalization is applied before the activation
function to ensure more stable and effective activation, improving the learning
process. It is also applied after the convolution operation to normalize the
outputs of the convolution layer. Given a mini-batch of size b and a
convolutional layer output of width w, height h, and number of channels c, batch
normalization is applied independently to each channel. The mean and variance
are computed over all b× h× w elements in each channel, and the normalization
is performed per channel. The rescaling and shifting parameters γ and β are also
learned per channel.

18



CHAPTER 2. METHODOLOGY

Figure 2.4: Nested function and non-nested functions. For non-nested functions
increasing the function does not lead it closer to the true function (f ∗).

Figure 2.5: This figure illustrates how a residual connection works. The residual
connection is shown by the line diverging from the input. The input x is processed
through two weight layers and an activation function and the output f(x) is then
added to the original input x, forming the final output f(x) + x. This helps the
network learn identity mapping and helps with the vanishing gradient problem.

19



CHAPTER 2. METHODOLOGY

2.4 ResNet-18

2.4.1 Residual connection

Residual connections also known as skip connections, were first introduced in the
paper "Deep residual learning for image recognition" by He et al. [7]. It talked
about the degradation problem in deep neural networks, where the performance
of deeper networks was worse compared to the performance of swallow networks.
This happened because deeper networks struggled to learn identity mapping,
which is essential for preserving the learned features from previous layers.

The book "Dive into Deep Learning" [2], talks about how for non-nested
functions, increasing the functions does not lead us to be closer to the actual
value of the function. From Figure 2.4, we can see that for some target function
f ∗ that we want to approximate, let F1 be the class of functions that a network
can model using different parameter configurations. Now, if f ∗ lies within F1,
then we can approximate f ∗ but if it lies outside then for our network to be able
to approximate this function, we might think of adding layers to it and increase
the complexity of the model as shown by F2, F3 and F4 in the figure. This does
not always lead to getting the correct answer. Adding another layer without
knowing if that layer would contain the previous layer/function, we might end up
going farther from our target function f ∗.

To solve this issue, we use residual connections. Suppose that we are trying to
approximate a function g(x) for some input x. The layer learns a function f(x)
such that g(x) = f(x) + x. This way, if f(x) has a small change or is close to 0,
each layer can learn identity mapping where g(x) ≈ x, and it makes sure that the
new layer always contains the previous layer. This makes sure that adding more
layers with residual connections increases the network’s ability to approximate
the target function f ∗. Figure 2.5 shows an example of a residual connection.

One can think of residual connections as a mechanism to prevent the loss of
information. They act as a "shortcut" that helps preserve the original
information about the input throughout the layers. This mechanism ensures a
consistent flow of information throughout the network. During backpropagation,
residual connections play a critical role in mitigating the vanishing gradient
problem. In Figure 2.5, the output is computed as: g(x) = f(x) + x, where f(x)
is the output of the layers, and x is the input to the layer. When calculating
gradients during backpropagation, the derivative of this function becomes:

∂g(x)

∂x
=

∂f(x)

∂x
+ 1

Even if ∂f(x)
∂x

becomes very small or zero, the gradient of x with respect to itself
is always 1. This ensures that the gradient never vanishes completely and
maintains a consistent flow of gradient information which enables the network to
learn efficiently and effectively mitigate the issue of vanishing gradients.

20



CHAPTER 2. METHODOLOGY

2.4.2 Architecture

For our thesis, we use the ResNet-18 model. It is mostly used for image
classification tasks due to its robust performance and high accuracy. The
architecture has become a benchmark in the field, significantly influencing
subsequent neural network designs. ResNet-18 is a CNN network that contains
block structures known as residual blocks. The architecture begins with an initial
convolutional layer using a 3× 3 kernel with a stride of 1 and padding 1, followed
by batch normalization and the ReLU activation function as shown in Figure 2.6.

The network then consists of four residual blocks. Each residual block in
ResNet-18 contains four convolutional layers each using a 3× 3 kernel, each
followed by batch normalization and ReLU activation. Importantly, these blocks
incorporate residual connections that bypass the convolutional layers, allowing
the network to learn identity mappings. This helps mitigate the degradation
problem in deep networks, ensuring that deeper models do not perform worse
than their shallower counterparts.

Some residual connections, especially when the number of channels changes
between blocks, utilize a convolution operation with a 1× 1 kernel followed by
batch normalization to match the dimensions. This can be seen in the right
image of Figure 2.6 where there is a line connecting input ’y’ to the output after
2nd Batch normalization (g(y)) right before applying ReLU function. This
adjustment ensures that the residual connection aligns with the output of the
convolutional layers. Specifically, this applies to the first residual connection in
the second, third, and fourth blocks, where the number of channels increases. In
the first block there is no 1× 1 kernel as there is no increase in channels.

The convolutions in the network utilize padding of 1 and a stride of 1 other than
the first convolutions in blocks 2, 3, and 4, which use a stride of 2. We use a
padding of 1 with a 3× 3 convolution to ensure that the output feature map
retains the same spatial dimensions (height and width) as the input. Increasing
the stride to 2 effectively halves the spatial dimensions (height and width) of the
feature maps which makes the convolutional filter cover a larger portion of the
original image, effectively increasing the receptive field. This helps the network
capture more global features, which are essential for understanding complex
patterns and contexts within the image. The 1× 1 convolutions in the model use
a stride of 1 and no padding as padding is unnecessary because the filter
perfectly aligns with each spatial location in the input feature map.

Following the residual blocks, an average pooling layer is used. In the average
pooling, we use an adaptive average pooling function to make sure that our
output is 1× 1. So to make sure our output is 1× 1, we choose the kernel size in
average pooling to be 4× 4. The final fully connected (dense) layer outputs a
10-dimensional vector, corresponding to the 10 classes in the CIFAR-10 dataset.
Each element of this output vector represents the unnormalized log probability
of each class. After this, we need to apply a softmax function to get a proper
output that represents a certain class from our dataset.

21



CHAPTER 2. METHODOLOGY

Figure 2.6: This figure illustrates a ResNet-18 architecture. On the left, it shows
the overall structure of ResNet-18 which includes the convolution layer, batch
normalization, and ReLU activation function. It is followed by 4 residual blocks
and an average pooling and fully connected layer leading to the output. On the
right, it shows the detailed structure of a residual block. The 1×1 convolution
in the residual connection is not used in block 1, since there is no change in the
number of channels.

22



CHAPTER 2. METHODOLOGY

Dimensionality
Input 32 x 32 x 3

After Block 1 32 x 32 x 64
After Block 2 16 x 16 x 128
After Block 3 8 x 8 x 256
After Block 4 4 x 4 x 512

After Average Pooling 1 x 1 x 512
After Fully Connected Layer 1 x 1 x 10

Table 2.1: Dimenionality of input as it passes through the network. It is repre-
sented in the form Height x Width x Channels.

The dimensionality of the data changes as it passes through the network as we
can see from Table 2.1. The dimension of the input image is 32× 32× 3 (Height
x Width x Channel), after passing through each block it changes to 32× 32× 64,
16× 16× 128, 8× 8× 256, and 4× 4× 512 respectively. After it passes through
the average pooling layer, the dimensionality changes to 1× 1× 512, and the
final output we get after the fully connected layer is of dimension 1× 1× 10.
There is an initial increase in the number of channels after passing through the
first block since it helps increase the image’s dimensions which helps with finding
the decision boundary. We then decrease the spatial dimensions by half and
increase the channels by 2 after each block. The spatial dimensions are reduced
gradually so that the network still retains enough spatial information while
decreasing the resolution which decreases the computational cost. The channels
are increased after each block so that the networks learns more features from the
deeper layers as shallow layers focus on simple features like edges which require
less channels but deeper layers focus on complex features which require higher
number of channels. The reason for increasing it by 2 is to balance out the
decrease in the spatial information by half and preserve the total information
capacity of the feature map. The architecture of ResNet-18 which gets its name
due to 18 convolution layers in the structure, is used for various computer vision
tasks, including image classification, object detection, and segmentation.

2.5 Transformers
In the paper by Vaswani et al. (2017), "Attention Is All You Need"[1],
Transformers were first introduced and now they are used for mostly all natural
language processing (NLP) tasks and has also been used in many other fields as
well like computer vision. The main reasoning behind using Transformers is its
ability to process input sequences in parallel, unlike recurrent neural networks
(RNNs) or long-short-term memory (LSTM) networks, which process data
sequentially [13]. This makes Transformers highly efficient and scalable specially
when using large datasets. The Transformers were originally built for sequence
transduction tasks such as language modeling and machine translation. It
consists of encoder and decoder stacks, each with multiple identical layers that
utilize self-attention mechanisms. The model uses attention mechanisms such as
Scaled Dot-Product Attention and Multi-Head Attention, Layer normalization,

23



CHAPTER 2. METHODOLOGY

Position-wise feedforward networks, and positional encoding. [1]. The
Transformers have better computational efficiency than RNN’s or CNN’s and
can also handle long sequences. In my thesis, we are going to use Transformers
for image classification task.

2.5.1 Attention and Self Attention

The attention mechanism allows the Transformer model to dynamically focus on
relevant parts of the input data. It assigns different importance (weights) to
various elements in the input sequence or image. The intuition behind using
attention is that rather than compressing the whole input as we do in RNNs
(Recurrent Neural Network), it might be better to revisit the input sequence at
every step. It also helps in seeing different representations of the input by
selectively focusing on certain aspects of the input instead of always seeing only
one representation. [2] Transformers use mainly self-attention which is a specific
type of attention, where each element in the input sequence either words in a
sentence or image patches, attends to all other elements in the same sequence.
This allows the model to capture both local and global dependencies. For
example, in a sentence, self-attention helps determine how much each word
contributes to the meaning of another word by comparing them together. The
key difference between normal attention and self-attention is that self-attention
works within a single sequence to model relationships among its elements, while
normal attention operates across two sequences to align their elements.

The attention is computed using the scaled dot-product attention, defined as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.17)

Here:

• Q (Query): Represents what the model is focusing on (e.g., a specific word
or image patch).

• K (Key): Represents the "labels" or identity of all input elements.

• V (Value): Contains the actual information of the input elements.

• dk: Dimensionality of the keys used to scale the dot product.

• Attention(Q, K, V): The attention score.

In this equation, the dot product (QKT ) measures the similarity between queries
and keys. A higher dot product value means a stronger similarity between the
query and a specific key. The values V are weighted by the attention scores,
producing a context-aware representation of the query. We also normalize the
dimensionality of the keys because for large values of dk the dot products grow
large in magnitude, pushing the softmax function into regions where it has
extremely small gradients. We scale the dot products by 1/

√
dk to counteract

this effect. [1] We use the Softmax function which converts the similarity scores
into probabilities (attention weights) that sum to 1. These probabilities

24



CHAPTER 2. METHODOLOGY

represent how much attention the model pays to each key for a given query.
These probabilities are used to weight the value vectors (V) when constructing
the final output (context vector). By summing the weighted values, the model
produces a context-aware representation of the query that reflects the relative
importance of all keys. For example, let’s consider a case where our input is a
sentence containing 3 words. In this, Q is the query vector for the first word, V
is the value vector for all the words in the sentence and K is the key vector for
all the words in the input sentence. After applying the Softmax function, we get
that P(1) = 0.5, P(2) = 0.2, and P(3) = 0.3, this means that 50% attention is
paid to the first word, 20% attention is paid to the second word and 30%
attention is paid to the third word for this query.

Let us consider another example, where the input is an image, we first convert
the image into smaller patches and then flatten them into 1-D and project them
into a higher-dimensional embedding space using a linear transformation as
shown in Figure 2.7 (on the right-hand side in the light blue box with Linear
written in it). For each patch, the 3 vectors: Q,K, V are calculated using the
learned weight matrix for each of them respectively. Attention scores are then
calculated using the formula in Eq. 2.17, in which the dot product of Q and K
compares how much one patch is similar to another. For example, if the input
image is a dog, it will give a high score to a patch containing the dog’s ear with
the patch containing the dog’s face. These scores are then scaled by dividing
them by the square root of dk to stabilize them and then passed through a
softmax function to turn them into probabilities between 0 and 1. These
probabilities are then multiplied by the weighted sum of the values. This
produces a new representation for each patch, enriched with information from
other patches.

In Transformers, multi-head Self-attention is used which allows the model to
focus on different aspects of relationships within the input sequence (words or
image patches) by running multiple self-attention mechanisms in parallel. Each
attention head operates in a different subspace learned from the input. This
enables the model to focus on multiple types of dependency simultaneously. For
example, in a sentence, one head might focus on the relationships between
subject and verb alignment, while another might focus on word meanings.
Similarly in images, one head might detect edges, while another identifies
textures. By combining the outputs of these multiple attention heads, the model
creates a more comprehensive representation of the input. This aggregation of
different perspectives allows the Transformer to learn more complex features,
improving its performance. Multi-head attention also reduces the risk of
overfitting by splitting the input into multiple small subspaces. This reduces the
reliance on a single attention head overfitting to specific patterns. Each head
captures a different perspective of the sequence or image, which makes the model
generalize better as various parts of the input contribute differently to the overall
prediction. However, using too many heads can also increase the risk of
overfitting due to over-parameterizing the model as each head has its own set of
learnable parameters. Therefore, the number of heads should be chosen carefully
to balance the embedding size (dmodel) and model capacity based on the task and
dataset size. It also helps Transformer capture a wider range of dependencies for

25



CHAPTER 2. METHODOLOGY

Figure 2.7: (left) Scaled Dot-Product Attention. (right) Multi-head attention
consists of several attention layers running in parallel. Taken from [1].

example in language tasks, one head might focus on short-range dependencies
like consecutive words, while another tracks long-range dependencies across
sentences and in images, one head might attend to nearby patches, while another
looks at distant patches.

The final output from each of these multiple attention heads is then
concatenated and linearly transformed using dot product multiplication to
obtain the final output as shown in Figure 2.7 (right side image in the yellow box
with ’Concat’ written in it and the grey box with ’Linear’ written in it). The
multi-head attention mechanism can be represented by the following equations:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.18)

where

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.19)

Here,

• The Q,K, V are query, key and, value same as in the formula of attention
score.

• WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , and WO ∈ Rhdv×dmodel

are weight matrices.

• Here dmodel, dk and dv means the dimensionality of the input and output
embeddings in the model, dimensionality of the keys and query, and
dimensionality of the value respectively.

26



CHAPTER 2. METHODOLOGY

• Here h represents the number of heads in the multi-head attention model

• The Attention(QWQ
i , KWK

i , V W V
i ) here is the attention score calculation

formula as mentioned in Eq. 2.17. Here dot product multiplication is used
to find attention scores.

The ’Concat’ operation in this formula means stacking the outputs of all
attention heads along the feature dimension. For example, if each attention head
outputs a matrix of size (n, dv), where n is the sequence length and dv is the
dimension per head, concatenation combines these matrices into a single matrix
of size (n, h · dv), where h is the number of heads. Finally, the concatenated
matrix is multiplied by a learnable weight matrix WO to project the output back
to the original feature dimension dmodel and this done using dot product
multiplication. The advantage of this design is that multi-head attention allows
the model to capture diverse relationships in the input data by attending to
different parts of the input simultaneously. Also since we operate on a lower
dimension subspace due to splitting into multiple heads for each head the
dimension of the model is decreased by the number of heads, which makes
computational complexity easier to manage which helps in the case of larger
datasets or complex models.

In our thesis, we employ h (number of heads) = 4, and we use dk = dv =
dmodel/h = 64. The total computational cost in this case is approximately the
same as that of the single-head attention model as the decreased dimensionality
of the keys and values balances out the increase in the number of heads. This is
beneficial because using multiple heads allows the model to compute attention
for smaller subspaces of the input embedding in parallel while keeping the
computational cost almost the same.

2.5.2 Layer Normalization

After passing the input through the attention mechanism in the Transformer, it
is necessary to normalize the inputs for improved training stability and
convergence. To achieve this, layer normalization is applied at two key points in
the Transformer: after the attention mechanism and after the position-wise
feedforward layer, as shown in Figure 2.8. In the multi-head attention
mechanism, the outputs from different attention heads are concatenated which
results in a dynamic range of outputs which can vary significantly. Layer
normalization ensures that these combined outputs are well-scaled before being
passed to subsequent layers.

Layer Normalization was first introduced in the paper by Ba et al.[14] and it
differs from batch normalization by normalizing across the feature dimension
instead of the batch dimension. This design choice provides several benefits that
make layer normalization particularly suited for Transformer architectures.
Unlike batch normalization, which relies on statistics computed per batch, layer
normalization computes the mean and variance independently for each training
sample. This makes it batch-size independent, allowing consistent performance
even for small or variable batch sizes, which is usually seen in natural language
processing (NLP) and sequence modeling tasks.

27



CHAPTER 2. METHODOLOGY

For an n-dimensional vector x, layer norms are given by:

x→ LN(X) =
x− µ̂

σ̂
(2.20)

where scaling and offset are applied coefficient-wise and given by,

µ̂ =
1

n

n∑
i=1

xi (2.21)

and

σ̂2 =
1

n

n∑
i=1

(xi − µ)2 + ϵ (2.22)

As before we add a small offset ϵ > 0 to prevent division by zero. One of the
major benefits of using layer normalization is that it prevents divergence.
Divergence refers to the instability that occurs when the model’s parameters or
gradients grow uncontrollably, leading to a failure in convergence. Transformers
have a large number of parameters and nonlinear activations, which can result in
gradients that either explode (grow too large) or vanish (become too small).
Layer normalization addresses this by normalizing the outputs of each layer to
have a mean of zero and a standard deviation of one across the feature
dimension. This normalization ensures that the inputs to subsequent layers are
consistently scaled, stabilizing gradient updates during backpropagation and
improving the likelihood of successful convergence. It is also independent of
whether we are doing training or testing. This is due to the fact that layer
normalization computes statistics per sample during both training and inference.
This per-sample normalization ensures consistent behavior, leading to more
reliable and stable model performance during deployment. In contrast, batch
normalization behaves differently during these two phases: during training, it
uses statistics (mean and variance) from the mini-batches, while during testing, it
uses the estimated population statistics (mean and variance) computed over the
entire training set. This discrepancy can sometimes lead to performance issues if
the running averages fail to capture the true data distribution. This is another
reason why Layer normalization is used here instead of Batch normalization.

2.5.3 Architecture

In the original paper "Attention is all you need" [1], Transformers have an
encoder-decoder structure. In the encoder, the input sequence x = (x1, . . . , xn),
where n is the number of tokens in the input sequence, is mapped to a sequence
of continuous representations z = (z1, . . . , zn) through layers of multi-head
self-attention and position-wise feed-forward networks as shown in Figure 2.8 on
the left-hand side in the encoder block. Here, x represents the input tokens or
embeddings (e.g., words or patches), and z represents the intermediate
continuous representations capturing contextual information about the input
sequence. The decoder takes z as input, along with its own input sequence
y = (y1, . . . , ym−1), to generate the output sequence y = (y1, . . . , ym), where m is
the number of tokens in the output sequence. The decoder generates y one token

28



CHAPTER 2. METHODOLOGY

at a time in an auto-regressive manner, using masked multi-head self-attention
(In Figure 2.8 in decoder block) to prevent attending to future tokens in the
sequence. Additionally, the decoder employs attention over the encoder’s output
z to condition the generation of y on the input sequence x.

At each step, the decoder consumes previously generated symbols as additional
input to produce the next. This architecture is implemented using stacked
self-attention layers and point-wise feedforward networks for both the encoder
and decoder. The encoder comprises 6 identical stacked layers, each with two
sub-layers: a multi-head self-attention mechanism and a position-wise fully
connected feedforward network. Residual connections surround each sub-layer,
followed by layer normalization which can be seen in Figure 2.8 (left side in the
encoder block). The output of each sub-layer can be expressed as:
LayerNorm(x+ Sublayer(x)), where Sublayer(x) is the function implemented
by the sub-layer itself. The decoder is also composed of a stack of 6 identical
layers as mentioned in [1]. In addition to the two sub-layers in each encoder
layer, the decoder inserts a third sub-layer, which performs multi-head attention
over the output of the encoder stack. The decoder output is then processed
through a fully connected layer (FC) (In Figure 2.8 at the end of the decoder
block) to produce the final probabilities for each token in y.

Transformers architecture can be adapted so that they can be used for image
data and they are known as Vision Transformers (ViTs). ViTs, introduced by
Dosovitskiy et al. [4] in 2020, demonstrated that the Transformers which are
known for their effectiveness in Natural Language Processing (NLP), can also be
used to handle image data and they outperform CNN’s in this task. ViTs only
use the encoder component, converting images into embeddings via patch
embedding and positional encoding. An additional classification (CLS) token is
prepended to the sequence of patch embeddings to aggregate global image
information for final classification tasks. Due to this property of ViT’s, it makes
them flexible with respect to image size unlike CNNs, where input resizing
affects feature extraction. They also perform well on larger datasets like
ImageNet due to their ability to model global relationships using self-attention.
This helps them capture complex dependencies across the entire image especially
when the dataset is large.

In this thesis for our hybrid model, we integrate a Transformer block into a
ResNet-18 architecture, replacing the 4th residual block as seen in Figure 2.9
(left side image). The transformer block includes only 1 encoder stack since we
want to see how the encoder changes the performance of the original Resnet-18
model. We do not include the decoder part in this block since it’s not a Natural
Language translation task and we do not need decoding. In this model, we are
not using positional encoding in the transformer block as the positional encoding
is used in the transformer to make sure that the information about the position
of the input image is preserved since the transformer processes inputs as
sequences that lose the positional context, but since in our hybrid model there
are convolutional layers in the previous 3 blocks of the model due to ResNet-18
structure, it already preserve the spatial structure of the image. As a result, the
transformer encoder processes spatially-aware feature representations directly,

29



CHAPTER 2. METHODOLOGY

making positional encoding redundant. The encoder consists of a single stack
with a multi-head self-attention layer and a position-wise feed-forward network.
The dimensions of the output by the multi-head attention is 256, the same as the
input taken from the output of the 3rd residual block of our model as shown in
figure 2.9 (left side diagram, f(x) is the output of the multi-head attention). In
this model, after the multi-head attention layer, there is a residual connection
that is added to the output and then it is passed through the Layer
Normalization as seen in the left side of Figure 2.9. After this, the output ’y’ of
the Layer Normalization is passed through a position-wise fully connected
feedforward network (FFN). This is applied to the feature vector of each position
in the input sequence independently and identically. This ensures that the
transformations at each position are consistent and do not interfere with the
positional relationships learned by the attention mechanism. This consists of two
linear transformations with a ReLU activation in between. The output from
FFN (In Figure 2.9 right side in the Position-wise Feedforward Network block)
can be as follows:

FFN(x) = max(0, xTW1 + b1)W2 + b2 (2.23)

Here,

• Here x represents the input to the positionwise feedforward network. It is
the output of the multi-head attention layer.

• W1 and W2 are the weights of the 2 linear transformation layer and b1, b2
represent the bias in respective layer.

While the linear transformations are the same across different positions, they use
different parameters from layer to layer. Another way of describing this is as two
convolutions with kernel size 1. The dimensionality of input and output is 256
and 512 respectively to facilitate the residual connections, and the inner layer
has a dimensionality of 2048. The output then passes through a Layer
Normalization layer again before which residual connection is again added to it
to make sure there is no loss of information. This is where the Transformer
encoder ends and the output of this goes into the average pooling layer and then
to a Fully connected layer to get the final output similar to how it is done in
ResNet-18 architecture. By comparing this architecture against standard
ResNet-18, we aim to explore how the inclusion of a Transformer encoder
influences image classification accuracy and performance.

30



CHAPTER 2. METHODOLOGY

Figure 2.8: Transformer architecture taken from [2]. It consists of 2 parts: encoder
and decoder. In encoder, there are 2 layers: Multihead attention and Positionwise
FFN. The ’Add & norm’ means that it first add the residual connection and then
performs a Layer normalization. The ’n’ in the figure refers to the number of
encoder and decoder blocks in the transformer.

31



CHAPTER 2. METHODOLOGY

Figure 2.9: Architecture of the Hybrid model. The overall structure as shown on
the left is similar to ResNet-18 (Figure 2.6) but we replace the 4th block with a
transformer encoder. The structure of residual blocks is the same as in ResNet-18.
On the right, we can see a detailed structure of a transformer encoder. The blue
lines coming from the side and connecting with the ’+’ sign represent the resid-
ual connection. Integrating a transformer encoder into the ResNet-18 structure
enhances the model’s ability to capture long-range dependencies in the input (im-
age or words) which leads to improved feature extraction using its self-attention
feature as explained in the above section of Transformers.

32



Chapter 3

Data

We use CIFAR-10 as our dataset [15]. It is commonly used for classification
tasks, it consists of 60000 images and all the images are from one of the 10
classes present in our dataset. Each class has 6000 images each of resolution
32× 32. Since our dataset has 3 color channels, they are represented as a
3× 32× 32 tensor. The dataset is split into a training set and validation or
testing set with 50000 and 10000 observations each. Each set contains an equal
number of elements from each class. In Figure 3.1, we see a few examples of
images from each class.

Before training, each image is normalized by subtracting the mean of each
channel and dividing by the standard deviation, based on the training set. This
ensures that all the images in the training set have mean 0 and standard
deviation of 1 across all channels which benefits the overall training process as
all the inputs are on similar scale and one channel can’t dominate the other. We
also randomly flip some images horizontally in the training set with a probability
of 0.5. This augmentation is done during the data loading process, such that, for
each training epoch an image has an equal chance of appearing in its original
form or as a horizontally flipped version. This does not increase the size of the
dataset so it is also efficient. The purpose of this is to prevent overfitting and
improve the generalization capability of the model by exposing the model to
flipped versions of the input images, it learns more robust and invariant feature
representations that are less sensitive to the spatial orientation of objects. This
is particularly useful in datasets like CIFAR-10, where the horizontal orientation
of objects (e.g., animals, vehicles, etc.) does not affect their class label. These
normalized and data augmented images are input to our ResNet-18 and the
Hybrid model, which is trained using the Adam optimizer and the cross-entropy
loss function.

For weight initialization in the model, we use He initialization [16]. This method
helps to keep the variance of the activations roughly the same across every layer.
It is especially useful for layers with ReLU (Rectified Linear Unit) activation
functions. The He initialization sets the weights to be sampled from a normal
distribution with a mean of 0 and a variance of 2

l
, where l is the number of input

units in the weight tensor.

W ∼ N (0,
2

l
) (3.1)

33



CHAPTER 3. DATA

Figure 3.1: Classes in the CIFAR-10 dataset and 10 random images from each
class

34



CHAPTER 3. DATA

After training the ResNet-18, we use the weights of the first 3 blocks and load
them in our Hybrid model, and train them again on the CIFAR-10 training set.
We do this since we want to compare the two models (ResNet-18 and Hybrid)
and make sure that any results or changes in performance that we see are due to
architectural changes in the Hybrid model and not due to any initialization
difference. This also helps in converging the Hybrid model faster as the weights
for the first 3 blocks are already close to optimal.

35



Chapter 4

Results

4.1 Training of ResNet-18 and Hybrid model
We trained our models on the CIFAR-10 dataset. We made the training and
validation loss curves along with a graph for validation accuracy for both the
models as seen from Figures 4.1, 4.2, and 4.3. Validation accuracy is calculated
by testing the trained model on a validation dataset (a subset of the data that is
not used for training) and determining the proportion of correct predictions.
This metric is used to evaluate how well the model generalizes to unseen data.
For ResNet-18, the validation accuracy shows a steep increase from around
67.5% to over 80% within the first 10 epochs, indicating efficient initial learning.
After 15 epochs, we see that the validation accuracy increases more slowly and
stabilizes around 87.5% between epochs 20 and 40, indicating that the model has
captured most of the significant patterns in the dataset. The training loss
decreases rapidly, approaching near-zero values, showing the model’s effective
learning on the training data. The training loss plateaus after around 15 epochs,
indicating the model has started to overfit the training data. The validation loss
decreases initially but stabilizes with minor fluctuations indicating that it is
performing well. We use the weights that gave the lowest validation loss for our
model to prevent overfitting which is done around epoch 7 as seen in Figure 4.1.
The accuracy we get around this epoch is 86%.

The hybrid model’s training curve shows a rapid decrease and stabilizes at a
lower value, indicating effective learning. Since we already loaded the trained
weights of the ResNet-18 model in the Hybrid model the loss is already low as
seen in Figure 4.3. This is because the weights are already optimized in the
training of ResNet-18 but we do see an initial decrease in the training loss due to
the structural change in the architecture of the model. There is an initial
decrease in the validation loss but it starts rising again after epoch 5 which
shows that the model has started overfitting. The accuracy curves for the hybrid
model show that the training accuracy increases rapidly, reaching close to 98%
within 50 epochs. However, the validation accuracy fluctuates around 88%,
indicating stability. In this model, we choose the weights for the optimal model
where the validation loss is minimum which is around epoch 5. The accuracy we
get at epoch 5 is around 88%

Both models achieve similar validation accuracies but the Hybrid model has

36



CHAPTER 4. RESULTS

Figure 4.1: ResNet-18 training and validation curves

Figure 4.2: ResNet-18 validation accuracy

37



CHAPTER 4. RESULTS

Figure 4.3: Hybrid model training and accuracy curves

slightly better accuracy indicating that it performs slightly better than the
ResNet-18 model. The ResNet-18 model, with its well-established architecture
and residual connections, effectively mitigates the vanishing gradient problem as
already explained in the previous section of ResnNet-18. On the other hand, the
hybrid model, which incorporates a combination of convolutional and
transformer-based components, shows high training accuracy but struggles with
generalization as seen in Figure 4.3 on the right side graph by the gap between
training accuracy and validation accuracy. The high variability in validation
performance of the hybrid model as seen in Figure 4.3, suggests that the models
ability to generalize on unseen data is not good as it does not show stable or
increasing pattern in the accuracy curve. This can also be linked to overfitting as
the validation loss increases and fluctuations in validation accuracy imply that
the model’s predictions on unseen data are unstable. Overfitting occurs because
the model has focused too much on specific features of the training data, leading
to a situation where it performs well on data it has seen but poorly or
inconsistently on new data. This highlights the importance of regularization
techniques, such as dropout and data augmentation to enhance model robustness.

Comparisons between the models based on which one is faster to train can not
be done based on these graphs as although we are training the ResNet-18 from
scratch but for the Hybrid model, we are using pre-trained weights. This will not
give us a full picture of which model is easier to train. In our thesis, we are not
doing any regularization techniques as we just want to see how the model
architecture of ResNet-18 and transformers differ from each other in terms of
training on CIFAR-10.

38



CHAPTER 4. RESULTS

Figure 4.4: Number of parameters in the 2 models (ResNet-18 and Hybrid)

4.2 Computational Efficiency
To determine which model would be faster and cheaper to train meaning which
model is more computationally efficient, we can see how many trainable
parameters each model has. This provides a good indication of the
computational resources and time required by the models for training.

The number of parameters is greater in ResNet-18 compared to the hybrid
model. The number of parameters in the first 3 blocks of both the models is the
same since the architecture of both of them is similar as seen in Figure 4.4. The
difference comes in the 4th block where in ResNet-18 there are 8,393,728
trainable parameters and in the hybrid model there are 1,971,712 parameters.
This means that it will be more computationally efficient to train the hybrid
model as it has fewer parameters in total.

4.3 Comparing Weights of the blocks in the models
We check the distribution of the weights for the first 3 blocks of both models and
compare them to see if there are any differences in them. We used the weights of
the trained ResNet-18 model, loaded them on the Hybrid model, and trained it
again. We want to see if introducing a transformer encoder changes the weights
of the first 3 blocks.

We plot the quantile-quantile (QQ) plot as well as a Scatter plot to see how the
distribution of the weights is for each layer in the first 3 blocks. We can see this
from Figures 4.5 and 4.6, which show the QQ-plot and Scatter plot for the 1st

and 2nd convolution layer in block 1 respectively. From this, we can see that in
the QQ-plot for 1st convolution layer, the blue line is slightly tilted upwards
(more steep) than the diagonal red line. In a perfect QQ-plot the blue line
should perfectly align with the red line which would mean that the weights of
both the models in these 2 convolution layer in block 1 are similar. But in our
case, this upward tilted blue line means that the distribution of weights in the
hybrid model is scaled differently compared to the original ResNet-18 but the
overall distribution of weights between the two models remains similar and the
weights in the hybrid model are larger in magnitude compared to those in the
original ResNet-18. These changes in the weights are likely due to the hybrid

39



CHAPTER 4. RESULTS

Figure 4.5: weight comparison (original vs modified) block 1 conv. 1

model’s adaptation to the introduction of the transformer encoder block, which
excels at capturing long-range dependencies and global relationships in the data.
To support this processing, the earlier layers of the hybrid model (inherited from
ResNet-18) adjust their weights to extract features that better align with the
transformer’s strengths. In Figure 4.6, the one for the 2nd convolution layer of
block 1, we see similar behavior, but in the scatter plot, we see more scatter of
the points compared to the previous convolution layer, suggesting that it
underwent greater adaptation during training, possibly because this layer deals
with higher-level feature extraction compared to the previous convolution layer.
We also see slight deviations at the lower and upper quantiles (the tails) that
suggests that extreme weight values in the hybrid model differ from those in the
original ResNet-18.

We see similar results for the convolution layers 3 and 4 of the 3rd blocks as
shown in Figures 4.7 and 4.8. In the scatter plot of both the convolution layers
we see that the scatter of points is more compared to what we saw in the earlier
convolution layers of the first block. This indicates that the closer the
convolution layers in the earlier blocks are to the Transformer encoder block, the
more their weights are influenced by the architectural change. In the QQ-plot,
we see similar results to the ones we observed before which indicates in these
layers the weights distribution is also almost similar but the scale is different and
hybrid model has higher magnitude of weights compared to Original ResNet-18
model especially at the tails. In conclusion, we see that as layers get closer to the
transformer block, the weights show increasing adaptation, reflecting the hybrid
model’s adjustment to the architectural change.

4.4 Comparing Class-wise accuracy
To further analyze the change that introducing a transformer encoder in
ResNet-18 architecture gets, we compare the classwise accuracy for both models.

40



CHAPTER 4. RESULTS

Figure 4.6: weight comparison (original vs modified) block 1 conv. 2

Figure 4.7: weight comparison (original vs modified) block 3 conv. 3

41



CHAPTER 4. RESULTS

Figure 4.8: weight comparison (original vs modified) block 3 conv. 4

Figure 4.9: Confusion matrix of model 1 (original ResNet-18)

42



CHAPTER 4. RESULTS

Figure 4.10: Confusion matrix of model 2 (Hybrid model)

43



CHAPTER 4. RESULTS

For this, we use the confusion matrix which gives us classwise data on the
number of images correctly classified for each class and also the misclassified
ones. This can be seen in Figures 4.9 and 4.10 which represent the confusion
matrix for ResNet-18 and Hybrid model respectively. From these confusion
matrices, we can also find classwise accuracies for both models by summing over
the correctly classified images for a class over total observations. From Figure
4.11, we can see classwise accuracy for both the models (the points represent the
accuracies of the model).

We can also look at the Type 1 and Type 2 errors to know how well our models
are performing. Type 1 errors (False Positives) occur when an instance from a
different class is incorrectly classified as the target class. Table 4.1, shows the
Type 1 error for both the models, and from this we can see that the ResNet-18
model has higher Type 1 errors than the Hybrid model for most of the cases. For
example in the table see can see that for the class Airplane the Type 1 error is
143 and 132 in the ResNet-18 and Hybrid model respectively. This reduction
suggests that the hybrid model has better generalization abilities and is less
prone to incorrectly classifying instances from different classes.

Class ResNet-18 Model Type 1 Error Hybrid Model Type 1 Error
Airplane 143 132
Automobile 46 86
Bird 140 305
Cat 385 173
Deer 179 111
Dog 150 172
Frog 107 72
Horse 68 55
Ship 87 55
Truck 130 63

Table 4.1: Type 1 Errors Comparison for ResNet-18 and Hybrid model

Type 2 errors (False Negatives) occur when an instance of the target class is
incorrectly classified as another class. Table 4.2 shows the Type 2 error in both
the models. In this, we see that for most of the cases the Hybrid model performs
better than the ResNet-18 model. For example, in the class Airplane, the Type 2
error in the Hybrid model is 93 compared to 116 in the ResNet-18 model. This
suggests that the transformer encoder helps in capturing features that are
critical for accurately identifying certain classes, thereby reducing the likelihood
of false negatives. However for classes like "cats" and "deer", this trend is not
observed. ResNet-18 performs better in these classes. The reason behind this
could be the superiority of the ResNet-18 model in capturing local features and
for classes like "cats" and "deer", local features might be important to classify
them. In conclusion, we can see that the Hybrid model performs better than the
ResNet-18 model both in terms of generalization as well as correctly classifying
classes. However in some cases, the Hybrid model has slightly higher Type 1 or

44



CHAPTER 4. RESULTS

Type 2 error which shows that the improvements in the Hybrid model in metric
may come with a minor trade-off in the another.

Class ResNet-18 Model Type 2 Error Hybrid Model Type 2 Error
Airplane 116 93
Automobile 96 39
Bird 220 95
Cat 212 271
Deer 151 173
Dog 255 168
Frog 115 106
Horse 141 122
Ship 74 77
Truck 55 80

Table 4.2: Type 2 Errors Comparison for ResNet-18 and Hybrid model

From Figure 4.11, we can see that for almost all the classes the Hybrid model
performs better than the ResNet-18 in terms of accuracy. It could be because
the Hybrid model might be better at capturing certain features from the images
than the ResNet-18 model due to the introduction of a transformer encoder. But
we do see certain classes like "cat" where the accuracy of the Hybrid model
(72.9%) is less than that of the ResNet-18 model (78.8%). This suggests that the
ResNet-18 model might be better at capturing features related to cats than the
Hybrid model.

We find that there is a change in classwise accuracy between the models but to
know which class has a significant change in accuracy, we make a 95% confidence
interval for each class in both the models using the Bootstrapping technique by
taking 1000 random samples from the testing set and finding accuracy for each
sample using both models. From the Confidence intervals for each class, as
shown in Figure 4.11, we see that there are only 4 classes (Automobile, bird, cat,
and dog) for which the Confidence intervals don’t overlap indicating that the
change in accuracy for these classes between the models might be significant.
But from Figure 4.12, can see that for the class ship the median of the two
models is different but the distributions of the two models overlap where model 1
is ResNet-18 and model 2 is the Hybrid model. This means that by just seeing if
the intervals overlap or not we can’t comment on the significance of the change
in accuracies and we need further testing to clarify this.

To confirm our results from the visual inspection of the graph, we conduct a
statistical test to find if the significance shown in the graph is true or not. Since
the distribution of the accuracies of the classes is unknown and not necessarily
normally distributed, we will use a non-parametric test to find the significance.
We will use the Wilcoxon Signed-Rank test, which is a non-parametric test for

45



CHAPTER 4. RESULTS

Figure 4.11: 95% Confidence Interval for accuracy for all classes for both original
ResNet-18 and Hybrid model. The points represent the accuracy of the model.
Model 1 (blue) represents the Original ResNet-18 model and Model 2 (orange)
represents the Hybrid model. Only automobiles, birds, cats, and dogs have non-
overlapping intervals showing significance.

46



CHAPTER 4. RESULTS

Figure 4.12: Distribution of accuracies for ship class in both the models. They
overlap but the medians are different. Model 1 is the ResNet-18 and Model 2 is
the Hybrid model.

paired samples. In this case, the paired samples are the accuracies of the two
models. Since both models are evaluated on the same dataset, this test is a
suitable choice for comparing their performance. The Wilcoxon Signed-Rank test
will help us determine whether the observed differences in accuracies between the
models are statistically significant.

The objective of this test is to find if the median of the differences between the
accuracy of the 2 models for each class is zero or not. It means that if the
median of the differences is zero then it means that there is no significant
difference in accuracy between the 2 models. Wilcoxon test is more sensitive to
the outliers so the median is a good measure to check if there is any significance.

The null hypothesis (H0): The median of the differences of the accuracy for
each class is zero.
The alternative hypothesis (HA): The median of the differences of the
accuracy for each class is not zero.

For the Wilcoxon test, we first calculate the difference in accuracy between the 2
models for each class. We use the samples generated by the Bootstrapping. We
then take the absolute differences and rank the differences in ascending order
and then put the positive and negative signs back into the ranks as they were
initially. For the test statistics, we sum all the positive ranks and negative ranks
and then choose the one which is the smallest of the two, and then find the
p-value based on that test statistics. If the p-value is less than 0.05 then we can

47



CHAPTER 4. RESULTS

reject the null hypothesis meaning the differences in the accuracies of the 2
models are significant.

The Wilcoxon Signed-Rank test is well-suited for comparing the median of
paired differences as it takes into account both the direction and magnitude of
the differences. The test determines whether these absolute differences are
positive, negative, or centered around zero. This makes it less sensitive to
outliers and makes it robust, unlike tests such as the paired t-test, which rely on
means and can be influenced by extreme values. As a result, the Wilcoxon test is
a good method for assessing whether the median difference between paired
samples is significantly different from zero, especially when the distribution of
the differences is unknown or non-normal.

By doing this test, we find that the p-value for all the classes is small and less
than 0.05 as shown in Figure 4.14. This means we reject the null hypothesis and
that all the classes have a significant change in accuracy between the two
models. Although we see significant results from the Wilcoxon test, we also need
to see if these changes in accuracy are practically significant or not. To see this,
we find the median of the differences in the accuracies of the two models for each
class from the Bootstrap samples to see if the median difference is big enough to
be significant or not. The negative difference would mean that the Hybrid model
outperformed the ResNet-18 model and the positive difference would mean the
ResNet-18 model performed better. This is shown in Figure 4.15 and from this
we can that only 4 classes (automobile, bird, cat, and dog) have differences higher
than 0.05 or 5%. This suggests that although all classes show significant changes
in accuracy only these four classes mentioned above actually have any practical
significance which also aligns with our results from Figure 4.11 where only these
classes had nonoverlapping intervals. The other classes have a median difference
of less than 5% which could be due to the large sample size and consistent
direction of differences, amplifying statistical significance even for small changes.

Class Positive Ranks Sum Negative Ranks Sum
Airplane 5.5 500494.5
Automobile 0.0 500500.0
Bird 0.0 500500.0
Cat 500500.0 0.0
Deer 192716.0 282109.0
Dog 0.0 500500.0
Frog 12490.5 478054.5
Horse 7921.0 490580.0
Ship 321428.5 151449.5
Truck 500485.5 14.5

Table 4.3: Positive and Negative Ranks for Each Class

From the Wilcoxon test, we also see some test statistics are 0 (for automobile,
bird, cat, and dog) (Figure 4.13), meaning that all differences for that class are

48



CHAPTER 4. RESULTS

Figure 4.13: Test statistics of all classes using Wilcoxon signed rank test.

either positive or negative, making the rank sum zero. This suggests a consistent
direction of difference between the two models for these classes. This is further
verified by the results from Table 4.3, which shows the positive and negative
rank sum for all the classes. From this, we see that for classes like automobile,
bird, and dog, the sum of ranks are all negative and for cat the rank sum is all
positive, hence the test statistics is 0 since we take the minimum of the two
sums. This just means that the Hybrid model out performed the ResNet-18
model in these 3 classes (automobile, bird, and dog) but for cat class ResNet-18
outperformed Hybrid model which we also saw from Figure 4.11.

From Figure 4.13, we also we that for some classes like airplanes, the test
statistics are in fractions. This is due to the presence of ties in the ranked sum
which arises due to the same magnitude (ignoring the sign) of some paired
sample differences. The Wilcoxon test assigns average ranks to these tied
differences, which can result in fractional ranks. This kind of behavior is normal
in the presence of ties in the sample and does not make the test invalid. We also
confirm this from Figure 4.16, which shows how many ties are present in each
class which are calculated from the Wilcoxon Test. This shows that due to this,
some test statistics are in fractions.

49



CHAPTER 4. RESULTS

Figure 4.14: p-values of all classes using Wilcoxon signed rank test. All classes
are significant.

50



CHAPTER 4. RESULTS

Figure 4.15: The median of the differences between the ResNet-18 and the Hybrid
model calculated from the Bootstrap samples.

51



CHAPTER 4. RESULTS

Figure 4.16: Number of ties in each class of the dataset from the Wilcoxon Signed
Rank Test

52



Chapter 5

Conclusion

In this thesis, we compared the performance of two models: ResNet-18 and a
Hybrid model where the 4th of ResNet-18 was replaced with a transformer
encoder. The primary objective was to understand how the substitution affects
model performance on the CIFAR-10 dataset and to investigate the changes in
weights and classification accuracy.

We compared the weights of the original ResNet-18 and the Hybrid model using
a quantile-quantile (QQ) plot. This analysis revealed that the weights of the first
three blocks for both the models remained the same in distribution but in terms
of magnitude, the Hybrid model had higher weights. This meant that due to the
architectural change in the Hybrid model, the weights were adapted in the
earlier layers, and as the layers come closer to the transformer encoder in the 4th
block, these adaptations increase which can also be seen from the scatterplot of
these two models’ weights as the points had bigger scatter.

Both models were evaluated on the CIFAR-10 dataset. The ResNet-18 model
achieved a validation accuracy of approximately 86%, while the hybrid model
attained a slightly higher accuracy of around 88%. This suggests that the
transformer encoder in the 4th block contributed positively to the overall
performance. Classwise accuracy was also analyzed using confusion matrices.
The hybrid model showed improvements in most of the classes however, a slight
decrease in accuracy was noted for the "cat" class, indicating that certain
features might be better captured by traditional convolutional layers. By making
the 95% Confidence interval for both models, we found that only four classes
(automobile, cat, bird, and dog) show significance in accuracy change as their
intervals did not overlap. To statistically validate the observed changes in
accuracy, a Wilcoxon signed-rank test was conducted. The results indicated that
the changes in accuracy between the two models were significant for all classes
even though their confidence intervals overlapped. To further investigate this we
checked the median of the differences in accuracy of the two models to see if the
median difference is even big enough to be practical. We found that for most of
the classes, this difference was less than 5%, and only the 4 classes (Automobile,
bird, cat, and dog) for which the intervals didn’t overlap have this difference of
more than 5% and this was in the favour of the Hybrid model meaning it
performed better than ResNet-18 model for all these 4 classes other than cat.

53



CHAPTER 5. CONCLUSION

Our findings align with prior research that has demonstrated the effectiveness of
transformer models in various computer vision tasks. For example, Dosovitskiy
et al. (2020) introduced the Vision Transformer (ViT), which showed that
transformers could achieve competitive performance with convolutional networks
on image classification tasks [4]. Similarly, recent studies by Parmar et al. (2018)
and Carion et al. (2020) have highlighted the benefits of integrating transformer
architectures with CNNs for enhanced feature extraction and image classification
[5, 6].

In the future, we can explore more configurations of transformer encoders within
CNN architectures. Instead of replacing just the 4th block of ResNet-18, we can
replace other blocks or a combination of blocks to see how it impacts the
performance of the model. We can also include the positional encoding in the
Transformer block to see if adding this has any effect on the effectiveness of the
model. Additionally, experimenting with different datasets could provide further
insights into the generalizability and versatility of hybrid models. We can also
investigate the impact of regularization techniques like the L2 norm, which
might also yield improvements in model performance. Another future work could
be to do a test to find out after which block the distance becomes apparent
between the images of different classes. For this, we can find Frobenius distance
between the images and take into account the different dimensions of the blocks
as well as the separation measure and compactness of the images to make sure
that the distance is comparable.

In conclusion, we demonstrate that incorporating a transformer encoder into a
standard CNN architecture like ResNet-18 can lead to notable improvements in
classification accuracy. The hybrid model leverages the strengths of both CNNs
and transformers, offering a balanced approach to feature extraction and
representation. These findings support the idea of integrating transformers with
CNNs for computer vision tasks, paving the way for future innovations in model
architecture design.

54



Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–6008,
2017.

[2] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. Cambridge University Press, 2023. https://D2L.ai.

[3] Huanhuan Zhang. Applying deep learning to medical imaging: A review.
Applied Sciences, 13(18):10521, 2023.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2021.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. End-to-end object detection with trans-
formers. arXiv preprint arXiv:2005.12872, 2020.

[6] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam
Shazeer, Alexander Ku, and Dustin Tran. Image transformer. arXiv preprint
arXiv:1802.05751, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2015.

[10] PyTorch Documentation. torch.nn.AvgPool2d, 2023. https://pytorch.org/
docs/stable/generated/torch.nn.AvgPool2d.html.

[11] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 448–456, Lille, France, July 2015. PMLR.

55

https://D2L.ai
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html
https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html


BIBLIOGRAPHY

[12] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Samy Bengio, Hanna
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 2483–2493. Curran Associates, Inc., 2018.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer nor-
malization. arXiv preprint arXiv:1607.06450, 2016. Available at https:
//arxiv.org/abs/1607.06450.

[15] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, May 2012.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifica-
tion. arXiv preprint arXiv:1502.01852, 2015.

56

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450

