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Abstract

Assuming that the observed duration of a non-life insurance policy

is linear towards the underlying risk has been shown to induce spu-

rious over-dispersion. This over-dispersion can distort pricing models

by introducing variance where there is none and create inaccurate in-

surance premiums. This paper shows through simulation that said

over-dispersion may arise from detrimental claims which are claims

that cancel the need for coverage and, in effect, terminate the policy

prematurely. Further, through parametric assumptions on duration, a

method of adjusting for detrimental claims is proposed. This method

shows to remove over-dispersion and maintain accurate model esti-

mates in a simulated setting with improved performance in an applied

setting.
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Abstract

Assuming that the observed duration of a non-life insurance policy is linear towards the underlying
risk has been shown to induce spurious over-dispersion, see [5]. This over-dispersion can distort pricing
models by introducing variance where there is none and create inaccurate insurance premiums. This paper
shows through simulation that said over-dispersion may arise from detrimental claims which are claims that
cancel the need for coverage and, in effect, terminate the policy prematurely. Further, through parametric
assumptions on duration, a method of adjusting for detrimental claims is proposed. This method shows
to remove over-dispersion and maintain accurate model estimates in a simulated setting with improved
performance in an applied setting.

Keywords: Duration Effects, Non-Life Insurance, Actuarial Pricing, Actuarial Sciences
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1 Introduction

In non-life insurance pricing, one seeks to predict the
potential economic compensation of a specific event
over an agreed duration of coverage. The purpose
of this is to provide security and help individuals
manage risk. Usually, these contracts are signed on
a year-by-year basis of coverage, which means one
would expect a duration of 1 year per contract. In
reality, things happen, and the consequences of such
things are that the observed duration does not always
equal 1 year.

Traditionally we model the pricing of these insurances
by assuming that half a year premium corresponds
to half a year of claims. As such one should pay half
the total annual premium for half a year of coverage.
An example would be selling your car or a change of
employer which would remove the need for coverage
and cancel the policy early 1.

This would be natural reasons for cancellation, and
we should expect that the half a year of coverage
reflects half a year of claims. But sometimes a pol-
icy may be canceled for risk-related reasons. For in-
stance, given a fire insurance with the house burning
down after 3 months, this would remove the need for
further coverage and cancel the insurance. In this
scenario, we should not expect the 3 months of cov-
erage to correspond to 3 months of claims, and expect
4 fires to the same building a year.

This paper seeks to study this type of cancellations,
seeing how it affects price modeling in non-life in-
surances, and what adjustments one should make to
correctly account for the risk of detrimental claims.

2 Theory

We represent an insurance contract by the triplet
pX,Z,W q where Z denotes the claim amounts, X
the covariate vector, and W the duration of our con-
tract insurance in years. Contracts tend to be written
to provide 1 year of coverage but may be canceled,

1There’s often regulation and contract specification in how
policies are allowed to be canceled.

which leads to W P p0, 1s. Longer coverage periods
may occur, but that is not a concern in this thesis.

When the contract is written, an insurance provider
provides an actuarial one-year premium πpXq, which
is the expected compensation given X for 1 year of
coverage. We call the actuarial premium fair, if

ErWπpXq | Xs “ ErZ | Xs. (1)

Fundamentally, this states that the expected amounts
of premiums should equal the expected amount of
claims. Observe that associated costs such as claim
handling or profit margins are not included, which is
why it is named as the actuarially fair premium.

As πpXq is known given X and since W is unknown
when the policy is written we can revise (1) as

πpXq “
ErZ | Xs

ErW | Xs
, (2)

which defines the actuarially fair premium as a divi-
sion between 2 expected values given X.

2.1 Probability measure

As the goal is to model insurance premiums to es-
timate a correct pure premium in (2), dividing two
expected values is a bit bothersome. Preferably, one
would want a single expected value to estimate, and
this can be done by introducing a probability mea-
sure, see [6], Let PW be a duration-weighted proba-
bility measure which is defined as

EPW
rAs “ E

„

W

ErW s
A

ȷ

, (3)

where A is an arbitrary random variable and the ran-
dom variable W is positive with expected value 1,
which it is with W P p0, 1s, see [11].

We now introduce Y “ Z{W and rewrite equation
(2) as

πpXq “
ErWY | Xs

ErW | Xs
“ E

„

W

ErW | Xs
Y | X

ȷ

(4)
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Which if we compare to equation (3) yields a single
expectation formulation of the pure premium

πpXq “ EPW

„

Z

W
| X

ȷ

. (5)

We will in this thesis use this formulation and define
a probability measure PW for W which is to account
for the over-dispersion observed in [5].

2.2 Estimating the Fair Premium

The modeling task in actuarial pricing is to accu-
rately estimate the correct fair premium πpXq based
on historical data. For historical data Wi, i “

1, 2, .., n are known and in a perfect world, all con-
tracts would have a duration of 1, but as things oc-
cur, for one reason or another, the historical data has
policies with different periods of coverage. To com-
pensate for this dilemma, one assumes linearity or
constant intensity of the underlying claim generation
process, see [11]. This introduces an intensity µpXq

and variance σpXq such that

ErZ | X,W s “ WµpXq,

VarrZ | X,W s “ WσpXq.
(6)

Using this assumption, one uses historical data con-
sisting of triplets pZi, Xi,Wiq, i “ 1, 2, .., n to esti-
mate µpXq with pµpXq and then writes annual pre-
miums as πpXq “ 1 ¨ pµpXq. Observe here that the
linearity assumption allows one to write contracts for
arbitrary periods of time.

2.3 Severity and Frequency Models

In the above example, we concern ourselves with the
ultimate claim cost Z, which in fact consists of two
components: the number of claims and the cost of
each separate claim. It is general practice, see [7], to
model the number of claims and the claim cost for
each claim separately. One thereby rewrites µ as a
product of two functions:

µpXq “ λpXqSpXq. (7)

Where λ is the expected number of claims per year
and S claim cost per claim given X. Observe that it
is only for the claim intensity λ we need to assume
(6) as S is only dependent on claims being observed.

In this thesis, we will concern ourselves with fre-
quency modeling, as this is where the linearity as-
sumption of constant intensity is needed and where
the problems noted in [4] are relevant. As such Z will
denote the amount of claims moving forward in this
thesis.

2.4 Generalized Linear Models

Generalized linear models (GLM), see [7], are a gener-
alization of ordinary linear regression that allows for
response variables to have distributions other than a
conditional normal distribution. A GLM assumes a
parameter vector β, which is used to define a linear
predictor ηi “ βTXi “

řp
j“1 xijβj and link function

g such that

ErZi | Xis “ g´1pηiq “ g´1pβTXiq. (8)

In addition, we assume that our observations Zi are
independent and distributed according to a distribu-
tion of the exponential family, see [11]. In our anal-
ysis, with Zi denoting the number of claims, we will
assume that Zi follows a Poisson distribution, and
by using the log link function gpηq “ logpηq, we as-
sume Zi „ PoipµpXiqq, where µpXiq “ g´1pβTXiq “

exp pβTXiq.

In training a GLM, one seeks to estimate the β
through estimators pβ, which is done numerically by
minimizing a Kullback-Leibler divergence, see [6].
For the Poisson distribution, the Kullback-Leibler re-
sults in the unit deviance function.

dpy,mq “

n
ÿ

i“1

2pyi lnpyiq ´ lnpmiq ´ yi ` miq (9)

where m is a vector of fitted values mi “ pµpXiq “

exp ppβTXiq, i “ 1, 2, .., n.
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In regards to duration and assuming equation (6) we
introduce the duration W as an offset variable, which
implies that we fixate a linear covariate βW “ 1 to-
wards a covariate logpW q which defines our estimator
as

µpXiq “ eβW logpWiq`βTXi “ Weβ
TXi , (10)

which aligns our assumptions in equation (6).

We will in this thesis use GLM:s to analyse how detri-
mental claims affect model estimation. Specifically,
we will simulate data where all the assumptions of the
GLM are true, introduce the concept of detrimental
claims, and measure how this affects our estimates pβ
and estimation of dispersion, which will be explained
in further detail in section 2.6.

2.5 Gradient Boosting Machines

A modern alternative to generalized linear models is
gradient boosting machines (GBM), see [2]. A gra-
dient boosting machine does, instead of assuming a
linear prediction η, fit a predictor f defined as a sum
of regression trees as fpXq “

řM
i“1 hipXq such that

ErZ | X,W s “ WfpXiq. (11)

This generalizes our expression from equation (8) to
a more arbitrary curve fitting definition.

To train a GBM, we start with an initial model, often
a constant, and iteratively add regression trees, see
[2] to the model. Each tree is fit to the residuals of the
previous model, aiming to correct the errors made by
the previous trees. The process can be summarized
as follows:

1. Initialize the model with a constant value:
f0pxq “ argminc

řn
i“1 Lpyi, cq, where L is the

loss function.

2. For (m = 1) to (M) (number of trees):

(a) Compute the residuals: rim “ Zi ´ fpXiq.

(b) Fit a regression tree hmpxq to rim.

(c) Update the model: fmpxq “ fm´1pxq `

ϵhmpxq where ϵ denotes the learning rate.

Again for our intended purposes, we will assume
that Zi is Poisson distributed according to Zi „

PoipWifpXiqq, and fit regression tree hmpXiq,m “

1, 2, ..,M to minimize the Kullback-Leibler diver-
gence, see [6] which means using the unit deviance
as defined by equation (9). as a loss function L.

In fitting a Poisson GBM, one cares less about spe-
cific parametrization; one wants to find the best hy-
perparameters which provide the best estimator pfpxq.
For our intended purposes this concerns the shrink-
age ϵ, tree depth b , and the number of trees M . The
number of trees is often selected on a subset of the
decisions tree which minimizes the generalization er-
ror, see [6]. In this thesis, this will be done by setting
aside 20% of the data for validation and selecting the
number of trees which minimize the loss on validation
data as MV “ argminm

řn
i“1 dpZi, fmpXiqq. For the

learning rate and tree depth, we will use ϵ “ 0.1 and
b “ 2 trees per tree regressor as used by [5].

In regards to offsetting duration for the GBM there
is no parametric formulation to (6) as for the GLM.
Instead, one supplies the offset by dividing the ref-
erence variable with the duration explicitly, creating
a variable Yi “ Zi{Wi which is used as the reference
variable.. This is done by the gbm package in R using
the offset parameter.

We will in this thesis use GBM:s for modeling of
real insurance data, this to avoid the tedious work of
identifying correct linear parametrization of GLM:s,
while still providing sufficiently good models and in-
tensity estimates.

2.6 Dispersion

In assuming a Poisson distribution on the claim ar-
rival process, we assume that the variance σ equals
the estimated intensity σpXq “ µpXq. This assump-
tion is not always true. Instead, one can generalize
the variance function of equation (6) to assume that
the variance is proportional to the intensity, see [7]
as

σpXq “ ρµpXq (12)

where ρ ą 0 defines the dispersion parameter. We
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say that we exhibit under-dispersion if we have ρ ă 1
and over-dispersion if ρ ą 1.

One can estimate the dispersion parameter through
the Pearson dispersion statistic, see [11], as

pρ “
1

n

n
ÿ

i“1

WipYi ´ pµpXiqq2

pµpXiq
(13)

which will be used in this thesis, as in [5], to measure
the dispersion. It is this estimate which indicates
over-dispersion which may be observed when assum-
ing (6), see [5].

This thesis will continue the work and confirm obser-
vations made in [5] but will also explore approaches
to estimating equation (2). Specifically, it is deemed
probable that the over-dispersion arises from the so-
called detrimental claims, which are claims that in
effect cancel the policy.

It is shown through simulations that the introduc-
tion of detrimental claims leads to over-dispersion
where the underlying simulated claim arrival process
has none. The paper then suggests an analytical ap-
proach for adjusting the observed duration to account
for the probability that the policy is canceled due to
a claim.

3 Background

The work presented in this thesis is an extension of
[5] and the observations made in the paper. The ob-
servation made in [5] is unique in academia, and few
papers note similar observations. There are studies
where other measures than duration have been used
as a measure of policy exposure, see [11], and dis-
cussion of the suitability of duration as an exposure
variable. Duration as exposure is often the default,
but few papers discuss the consequences of such an
assumption.

There is previous work in understanding the duration
of the insurance correctly, see [4]. In many cases,
this research addresses other aspects than pricing,
like churn rates as in [3], reserves in [8] or customer
analytics as in [10]. In terms of modeling and meth-
ods used in the paper, these are based on standard
practice modeling in non-life insurance, see [7, 11],
which is explained in chapter 2.

3.1 The inaccuracies of linearity

As a basis for the results in this study, the aim is to
confirm that the observation made in [5] is general
across multiple datasets. As such, we will use the
datasets available in the CAS datasets, see [1], which
in addition to freMTPL2freq, contains 3 more P&C
pricing datasets. In table 1 we highlight the complex-
ity of these datasets where n denotes the number of
datapoints, p the number of variables and hyperpa-
rameters used and defined in section 2.5. For more
details regarding these datasets, see the documenta-
tion available at [1].

Dataset n p ϵ b M MV

ausPrivateAuto 67 856 5 0.1 2 300 19
brveh 236 514 4 0.1 2 300 221
freMTPLfreq 413 169 7 0.1 2 300 157
swmotor 47 875 6 0.1 2 300 79

Table 1: Complexity of used datasets with the result-
ing hyperparameter used to fit corresponding GBM.

In [5] it is shown that by inference a local mean
estimate of the duration, based on estimated risk-
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percentile, creates sensible estimates for the expected
duration as in equation (2). More formally, the local
mean is defined as

xWL&N
i “ ErW | X “ xpiqs “

1

2k ` 1

i`k
ÿ

j“i´k

Wpjq

(14)
for i “ k, k ` 1, .., n ´ k and where Wpjq denotes the
duration for observation j ordered according to risk
percentile of pµ. The risk percentiles based on pµ which
is estimated using the GBM package in R using 5-fold
cross-validation to fit an optimal model based on pa-
rameters. In the study they use k “ 2066 which
represents 0.5% of the freMTPL2freq dataset, which
is the same 0.5% window we will use for our other
datasets, specified in table 1.

Seen in Figure 1 we have the fitted duration curves
according to the local mean estimation across multi-
ple datasets. These are the same duration estimates
that would be provided by equation (14) if used on
new data. If duration is linear, one would expect the
highest risk policies to have duration near 1, while
the lowest risk policies to have low duration near 0.
This is not the case, as observed in 1, where swmotor
and freMTPLfreq show linearity between 0.7 and 0.4;
meanwhile, brvehins1b and ausPrivateAuto show
no relation between the risk percentile and duration.

To confirm the observations made by these plots, we
will also conduct a student t-test, see [11], to confirm
the nonlinear structure of the observed duration to-
wards the underlying risk. Using the estimated pure
premium pµpXq and conducting a Poisson regression
towards claims with pure premiums as offset and du-
ration as the dependent variable, we can estimate the
linearity of duration towards claims as

Z “ eβW logpW q
pµpXq (15)

where βW is the parameter we are estimating and pµ
is our already estimated intensity assuming (6). One
could see this regression to relaxing assumption in
equation (6) and the offset requirement on βW to es-
timate how duration relates to risk, seeing it as a
covariate. If we estimate βW “ 1 our observed dura-

Figure 1: Rolling average duration using windows
of 1% of total datapoints. This is across multiple
dataset with percentiles ordered by to fitted pµpXq

ascending values using duration as an offset. The
results show a non-linear nature of the observed du-
ration as in [5].

tion is linear towards the risk and risk-independent if
βW “ 0.

As observed in Table 2 we have no dataset with an in-
significant difference from 1, meaning that even when
assuming linearity for the pure premium, the effect
observed after fitting is not linear.

Dataset βW ˘ 95%
ausPrivateAuto 0.73 ˘ 0.045
brvehins1b 0.67 ˘ 0.040
freMTPLfreq 0.59 ˘ 0.020
swmotor 0.56 ˘ 0.085

Table 2: Estimated Poisson GLM regression coeffi-
cient on equation (15) with 95% confidence interval.

3.2 Detrimental Claims

In the theory above, we see how the linearity assump-
tion leads to over-dispersion across multiple datasets
and that the linear assumption is not statistically sig-
nificant across those datasets. These are pure obser-
vations with little reasoning for why this is the case.
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A reasonable argument is that the over-dispersion
arises from inflated claims, which occur for policies
with claims unproportionate to the duration.

A hypothesis is that there is a probability of detri-
mental claims being claims severe enough that in ef-
fect cancel the policy and generate a low observed
duration compared to the number of claims. To fur-
ther this idea and to show how the introduction of
detrimental claims confirms the empirical observa-
tions made by this thesis, we will show that through
the introduction of detrimental claims, one observes
over-dispersion where there is none.

Suppose that the underlying claim generation pro-
cess is Poisson distributed with 5 risk groups, with
intensity λi “ 0.02i “ expβi, i “ 1, 2, 3, 4, 5. We
will simulate claim arrivals across these groups across
the natural duration of a policy Wn

i , i “ 1, 2, .., n
which is conditionally uniformly distributed based on
a Bernoulli probability

Wn
i „

#

1, p1 ´ pnq

Unifp0, 1q, pn
i “ 1, 2, .., n (16)

where we set the probability of cancellation pn “ 0.2
to be similar to the observations made in the study of
previous datasets. Equation (16) is used to describe
the natural dynamics of duration, which for many
reasons may be canceled for reasons not related to
risk.

We now introduce the concept of detrimental claims,
which for a given claim from the above claim arrival
process have a probability pd of being detrimental.
This implies that given the underlying natural as-
sumption of linearity, when a claim arrives, there is
a probability that it censors the natural duration,
yielding a smaller observed duration Wi ă Wn

i and
also unobserved claims Zi ď Zn

i that could have oc-
cured after a detrimental claim.

The simulation process is described in algorithm 1
where we will use n “100 000, pn “ 0.2 and vary p
from 0 to 1 in this thesis. We will then fit a GLM
on the data tXi,Wi, Ziu, i “ 1, 2, .., n and compare
the dispersion estimate ρ according to equation (13)

and intensity estimates pλj “ expppβjq, j “ 1, 2, .., 5
to the same GLM estimated on the natural data
tXi,W

n
i , Z

n
i u, i “ 1, 2, .., n, where our GLM assump-

tions are true.

Algorithm 1 Simulation Process

Require: n: Number of policies,
pd: Probability of a Detrimental claim,
pn: Early cancellation probability.

Ensure: Simulation Process
1: for Policies i “ 1, 2, . . . , n do
2: Assign risk group Xi “ j „ Unifpt1, 2, .., 5uq.
3: Assign risk intensities λi “ λj .
4: Simulate natural durations

Wn
i “

#

1 p “ 1 ´ pn

Unifp0, 1q p “ pn
5: Generate claims Zn

i „ Poissonpλi ¨ Wn
i q.

6: end for
7: – Adjust data with detrimental claims
8: Set Wi “ Wn, Zi “ Zn

i , i “ 1, 2, . . . , n.
9: for each policy i with Zn

i ą 0 do
10: Claim arrival tij „ Unifp0,Wiq, j “ 1, . . . , Zn

i

11: for each claim j do
12: With Probability pd:

Set Wi “ tij
Set Zi “ j

13: end for
14: end for
15: return tXi,Wi, Zi,W

n
i , Z

n
i u, i “ 1, 2, .., n

Seen in Figure 2 we see how the probability of detri-
mental claims induces over-dispersion. The observa-
tion made here is that a relatively low probability
of detrimental claims will lead to quite significant
over-dispersion. This aligns with the empirical ob-
servations, and the results imply that if one were to
account for detrimental claims, we would be able to
account for the over-dispersion. Do note that the
graph implies some linear relationship between the
dispersion and probability of detrimental claim, a re-
lationship which became steeper as one increased n.

In terms of how detrimental claims impact intensity
estimates, we see in Figure 3 that as pd increases,
there is no significant change to mean intensity es-
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timates, but an increase in the variance of our esti-
mates. This increased variance makes it impossible
to distinguish between risk groups for high pd. This
is the case of using the over-dispersion in modeling
through a Quasi-Poisson GLM, if one would assume
unit dispersion ρ “ 1 this variance is not observed.

Figure 2: Observed median dispersion estimate pρ us-
ing equation (13) with GLM estimate pµ on data with
and without detrimental claims and the estimated
95% Chi-squared confidence intervals across 100 ex-
periments per probability pd “ p of a claim being
detrimental and sample size n “100 000.

4 Methodology

As observed in the previous chapter, one can use the
concept of detrimental claims to explain the over-
dispersion observed in [5]. One could thereby imagine
that if we adjust our modeling to take the risk of
detrimental claims into consideration, we may avoid
induced over-dispersion. The problem with this is
how does one identify a detrimental claim and what
is the expected true duration given that the policy
was canceled through a detrimental claim.

In practice, one could identify detrimental claims
through seeing if the cancellation is in connection
with the claim being reported. However, knowing
this, what is the suitable adjustment needed for detri-

Figure 3: Observed mean intensity estimates of pλi “

exp pβi and 95% confidence interval estimates across
the 5 risk groups when estimating intensity through
a Quasi-Poisson GLM on 100 000 simulated policies
without and with detrimental claim probability p a
100 times.

mental claims? Given a detrimental claim, one would
want to adjust the duration towards what the du-
ration would have been if the claim was not detri-
mental. To make the matter even more complicated,
given that we do not know if a claim is detrimen-
tal, what adjustments should we make to correctly
account for detrimental claims?

We will now suggest an estimation technique to es-
timate the unobserved natural duration W adj “

ErWn | W,Zs given a set of observed duration W
and potential detrimental claims Z. In this, we will
assume linearity and equation (2) of the underlying
claim generation process, but now we will assume
that the observed duration W may be a censored ob-
servation of the natural duration Wn.

To formulate this assumption we reformulate (6) as

ErZ | X,W s “ WnµpXq,

VarrZ | X,W s “ WnσpXq.
(17)

Observe that the model assumptions are the same as
in (6), where we assume linearity towards the insured

7



period, but now Wn is an unknown variable, similar
to equation (2).

To adjust to Wn being unknown we will estimate
Wn based on the expected natural duration given W
and Z as W adj “ ErWn | W,Zs. The resulting esti-
mate is similar to using equation (14), see [5] but here
we will provide a single parametric form which does
not require you to estimate pµ and calculate xWL&N

retroactively. Do observe that compared to [5] the
suggested method can not be used to predict the du-
ration as per equation (6), but to adjust the observed
duration in training.

In deriving the parametric estimate of the natural
duration W adj , the crucial observation is that we are
given true observations of the natural duration when
there are no claims. Given a policy with 0 claims, we
have pure observations on the natural level of cancel-
lations, and given a policy with Z “ 1 claims, we are
qd “ 1 ´ pd certain to observe it as well.

We will begin by deriving the probability of a pol-
icy being canceled by a detrimental claim, and then,
through parametric assumptions on duration, what
the expected duration we would expect given a detri-
mental claim. Underlying these derivations will be
the following definition of a detrimental claim:

Definition 4.1. Given a natural duration Wn,
claims Zn and observed duration W and claims Z
as defined in chapter 3.1, an insurance claim i P

t1, 2, .., Znu is defined as detrimental if W ă Wn

and Z “ i.

4.1 Probability of Detriment

For a policy with Z : Z ą 1 claims, we know that
the first Z ´ 1 claim was not detrimental, and our
probability of a policy being canceled by a detrimen-
tal claim is independent of the amount of claims. We
can formalize this through the following lemma:

Lemma 4.1. Given a policy with claims Z ą 0 and
assuming that all claims i “ 1, 2, .., Z are indepen-
dent, we have the probability of the policy being can-
celed through a detrimental claim, as defined in 4.1,
independent of the amount of claims Z and equal pd.

Proof. Let di be a boolean random variable being 1 if
a policy was canceled by claim number i and 0 if not.
For a policy with Z “ 1 we have the probability of
the policy being canceled due to a detrimental claim
as

P pd1 “ 1q “ pd. (18)

For a policy with Z “ i claims we have the probabil-
ity of claim i being detrimental given that

P pdi “ 1 | di´1 “ 0q “
P pdi “ 1q

P pdi´1 “ 0q
“

qi´1
d pd

qi´1
d

“ pd

(19)
Through induction we can thereby deduce that the
probability of a policy being detrimental is indepen-
dent of the amount of claims Z and equal pd.

Lemma 4.1 states that all policies with Z ą 0 have
a probability pd of being canceled by a detrimental
claim, assuming that our observations are indepen-
dent. We can also state that for policies with Z “ 0
or W “ 1, it is not possible to observe a detrimental
claim, meaning the probability is 0 for these policies.
As such, we will now derive the probability of detri-
ment, or the probability of a policy being canceled
through the following lemma:

Lemma 4.2. Given an observed duration W , claims
Z and by assuming independent claims with a single
probability for detriment pd according to lemma 4.1
we have the probability of detriment, defined as a pol-
icy being canceled as a consequence of a detrimental
claim, as

pD “ 1 ´ qD “

#

0,W “ 1 or Z “ 0

pd

´

1 ´
şW

0
fwpwqdw

¯

, else
.

(20)
where fw is the pdf of the underlying natural duration
Wn.

Proof. For a policy to be canceled by a detrimental
claim it is conditional on the policy having not been
canceled for natural reasons. Given an observed du-
ration W we have the probability
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pc “ 1 ´ qc “ P pWn ă W q “

ż W

0

fwpwqdw (21)

that it has been canceled for natural reasons. Com-
bining this with equation (22) we have the probability
pdqc that our observed duration policy has been can-
celed due to detrimental claims, and 1 ´ qdpc that it
has been canceled for natural reasons, yielding equa-
tion (20)

Observe the difference between pd from lemma 4.1
and pD from lemma 4.2 where pd denotes the prob-
ability of a single claim being detrimental, while pD
denotes the cancellation of the whole policy due to
a detrimental claim. In addition, we will now show
through the following corollary that we have a closed
form expression for the probability of detriment given
pd and pn.

Corollary 4.2.1. Given the assumptions of lemma
4.2 and assuming a conditional uniform Bernoulli
distribution according to equation (16) we have the
probability of detrimental claims as

pD “ 1 ´ qD “

#

0,W “ 1 or Z “ 0

pd p1 ´ Wpnq , else
. (22)

Proof. Given the parametric assumptions on Wn as
specified in equation (16) we have the cdf

FW pwq “

ż W

0

fwpwqdw “

#

Wpn,W ă 1

1, else
(23)

Inserting this into equation (20) as specified by
lemma 4.2, we arrive at equation (22).

4.2 Expected Natural Duration

We have now derived an expression for the probabil-
ity of a policy being canceled by a detrimental claim.
It now remains that given the probability of detri-
ment as specified by corollary 4.2.1 equation (22) to
provide an expression for the expected natural dura-
tion Wn given X, W , and Z. This will result in a

closed-form expression of the expected natural dura-
tion W adj “ ErWn|X,W,Zs, which is derived by the
following lemma.

Lemma 4.3. Given an observed duration W , claims
Z, assuming independent claims with a single prob-
ability for detriment pd according to lemma 4.1 and
assuming a conditional uniform Bernoulli distribu-
tion according to equation (16), we have the expected
natural duration

|W adj “ qDW ` pD

ˆ

p1 ´ pnq ` pn
pW ` 1q

2

˙

(24)

Proof. Given pD from lemma 4.2 we have the ex-
pected value of Wn given W,Z as

ErWn|X,W,Zs “ qDW `pD ErWn|Wn ą W s. (25)

Using the parametric assumptions as per equation
(16) we have

ErWn | Wn ě W s “

ż 1

W

wfW pwqdw

“ p1 ´ pnq ¨ 1 ` pn

ˆ

W `
p1 ´ W q

2

˙

“ p1 ´ pnq ` pn
pW ` 1q

2
.

(26)

Inserting this equation into equation (25) we arrive
at our estimate as defined by equation (24).

We have now derived a closed form expression of the
expected natural duration Wn given W and Z. This
is to be used to estimate the true underlying duration
of our observed claims. There still are some techni-
calities; specifically, we have by definition 4.1 that
detrimental claims not only censor the observed du-
ration but also the observed amount of claims. As
such we need to adjust our estimate in equation (24)
to the observed amount of claims and after that esti-
mate our model parameters.

9



4.3 Unobserved Claims

The censoring of duration does not only censor the
remaining duration of our policy, it may also censor
the observed amount of claims. One could imagine
reformulating (24) as ErWn | W s “ W ` ĂW and es-
timating outstanding claims according to µpXq. We
will now show that this analogue to equation (6) by
the following lemma:

Lemma 4.4. Given an adjusted duration W adj “

W ` ĂW , and estimating outstanding claims according
to equation (17) as

µpXq “
ErZ | W s ` ĂWµpXq

W ` ĂW
. (27)

is identical to equation (6).

Proof. Rewrite equation (27) as

µpXqpW ` ĂW q “ ErZ | W s ` ĂWµpXq (28)

We here observe that ĂWµpXq is present on both sides
of the equal sign, yielding

µpXqW “ ErZ | X,W s (29)

which is analogous to equation (6).

An alternative approach would be not to expect the
full natural duration Wn of the policy, but the re-
maining coverage W tail which would be somewhere
between 0 and the expected time for the following
unobserved claim. This is illustrated in Figure 4, but
no results in estimating the remaining coverage have
been found and the topic is left for future research.

4.4 Adjusting for Unobserved Claims

Instead of seeking to estimate unobserved claims or
expected tail, we decided to ensure the adjusted du-
ration reflects the same amount of claims as the ob-
served durations. What this means is to ensure that
the sum of adjusted duration equals the sum of ob-
served duration, which can be done by the following
adjustment:

Figure 4: Alternative suggested idea to estimate the
tail of remaining coverage W tail to take unobserved
claims into consideration.

xW adj “ |W adj ErW s

ErWns
(30)

Observe that ErxW adjs “ ErW s and that we have
an adjustment that does not increase or decrease
the total duration. We will estimate ErWns with
1
n

řn
i“1

|W adj
i and ErW s with 1

n

řn
i“1 Wi.

A way to motivate this adjustment is to see equation
(30) in terms of a probability measure, see [6], and
define a probability measure PWn as

EPWn rA | W s “ Er
Wn

ErWns
A | W s. (31)

Through this definition one can rewrite the equation
(17) as

EPWn rY | W s “ µpXq. (32)

Which, if you expand the expression, yields our esti-
mate (30) and assumption (17). This formulation is
possible to motivate the adjustment, but for all in-
tended purposes, this adjustment is made to account
for unseen claims.

As a conclusion, we now have a closed-form expres-
sion for the expected duration of a policy given the
observed duration and the amount of claims. Observe
that this methodology could be extended to other
parametric assumptions on W . Also note that our
pD is generalizable to be 1 if one manually identifies
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detrimental claims and 0 otherwise. Even so, we still
need to estimate the parameters of this model, which
will be the final step of the methodology.

4.5 Estimation of Parameters

In the above model, we have two unknown parame-
ters, pd, the probability of a detrimental claim and
pn, the probability that a policy will be canceled for
natural reasons. Again, for Z “ 0 we only have obser-
vations on the duration that naturally occurs, which
means that we can estimate the cancellation rate pn
as

ppn “

ř

i:Zi“0 1rWiă1s
ř

i:Zi“0 1
. (33)

For pd the estimation is trickier, for Z ą 0 our data
contains both policies canceled naturally or by detri-
mental claims. To distinguish these scenarios we will
try to estimate pd by comparing the cancellation rates
when Z “ 0 and Z ą 0. If the cancellation rate is
high for Z ą 0 compared to Z “ 0, it means a high
probability of detrimental claims, and low probabil-
ity if the cancellation rates are similar. For Z ą 0,
we have the probability of cancellation pz as

ppz “

ř

i:Zią0 1rWiă1s
ř

i:Zią0 1
. (34)

We now show through these estimates how to calcu-
late an estimate pd based on the discrepancy between
pz and pn.

Lemma 4.5. Given a dataset Xi,Wi, Zii “

1, 2, . . . , n and cancellation rates pn for Z “ 0 and
pz for Z ą 0, one has the probability of detrimental
claims according to

pd “
pz ´ pn
1 ´ 2pn

(35)

Proof. By the definition pd as per lemma (4.1) and
definition 4.1 we have the probability of cancellation

for a policy with Z ą 0 being canceled by either a
detrimental claim or naturally as

pz “ P pW ă 1 | Z ą 0q

“ qdpn ` pdqn

“ p1 ´ pdqpn ` pdp1 ´ pnq

“ pn ` pd ´ 2pdpn

“ pn ` pdp1 ´ 2pnq.

(36)

Rearranging this equation we arrive at equation (35).

From lemma 4.5 we can insert our estimates ppz and
ppn to estimate ppd as

ppd “
ppz ´ ppn
1 ´ 2ppn

(37)

Using these estimates, we see in Figure 5 the results
from estimating pd using equation 35 on simulated
policies as simulated by algorithm 1. As can be seen,
there is some indication of positive bias, but gener-
ally, the real value is within the 95% confidence in-
terval.

Figure 5: 95% confidence interval of detrimental
claim probability estimate ppd using equation (37) on
100 simulations of data per algorithm 1 using differ-
ent values of p as in chapter 3.2.
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4.6 Arbitrary Duration

Duration is sometimes not limited to 1. Sometimes a
policy is signed to cover multi-year or arbitrary peri-
ods of coverage. One should also mention that many
contracts are ”renewed”, meaning it is the same cus-
tomer, but a new policy. One could imagine the full
coverage period across renewals could be seen as the
duration measure.

In these cases, the above terminology would not work
as we expect a maximum duration of 1. Instead,
we would need to generalize our expression from the
maximum period of 1. Let W tail denote the potential
remaining period of the policy, in the above case we
have W tail “ 1´W , much according to the idea pre-
sented in chapter 4.3. Using this definition, we can
generalize equation (24) to

|W adj “ qDW ` pD

˜

ż W`W tail

W

wfW pwqdw

¸

(38)

We here generalize our formula to have an arbitrary
remaining coverage W tail. The integral is a gener-
alization of equation (26). Observe that Wmax “

W tail ` W does not have to be the maximum ex-
pected tail or highest possible duration; it can be be-
low a certain threshold. In such a scenario pn needs
to be redefined as the probability of early cancella-
tion and pn as the probability of early cancellation
due to a detrimental claim.

In this thesis we will strictly study the case of
Wmax “ 1. As such, the evaluation of said method
is left for future research.

4.7 Experiments

To evaluate the suggested duration adjustment, we
will begin on the simulated data, where the underly-
ing model parameters are known. Here we will use
the same simulation as in chapter 3.2, algorithm 1,
and see how the estimates of the dispersion and risk
intensities differ. Specifically, we want our adjusted
duration to remove the over-dispersion observed in

Figure 2 but still accurately estimate the intensities
as in Figure 3.

Further, we also want to see how said method would
affect dispersion estimates in an applied setting. As
such, we will replicate the experiment in 3.1, but now
specifically study dispersion and how it is estimated
across risk-quantiles.

In estimating the dispersion ρ, we will insert our dif-
ferent duration estimates W , xWL&N as the expected
duration according to [5] equation (24) and xW adj the
adjusted duration as specified by equation (30) into
equation (13). Doing so, we will replicate the results
in [5] and compare these to the new method suggested
by this thesis. The experiments and results can be
replicated using [9].

Finally, we will evaluate the predictive performance
of the method. Specifically, we want to evaluate per-
formance in an applied situation, where the final du-
ration is unknown. As such, we will perform 10-fold
cross validation prediction, where we will use the ad-
justed duration by equation (30) in training, but in
evaluation on the test fold, we will evaluate the real-
ized earned premium compared to realized claims. In
doing so, we will evaluate the deviance and absolute
error of the resulting earned premium and claims in
a setting where the final duration is unknown.

In analyzing real data, we replicated the experiment
conducted in [5] and added additional datasets from
the CAS dataset, see [1]. Doing so, we fitted a gra-
dient boosting machine using the gbm package in R,
using a shrinkage factor of ϵ “ 0.1, training fraction
80%, maximum depth of 2, and out of 500 maximum
trees selected an optimal amount of trees based on
the validation loss.

Details regarding the resulting fit is found in section
3.2. In this model, all covariates will be used, and we
will have the different duration measures as offset. In
the results W obs denotes observed duration, xW adj is
the detrimental adjusted duration in equation (30)

and xWL&N is the local mean estimate in [5] equation
(24)
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5 Results

As described in section 4.7 we will begin by present-
ing the results on simulated data, seeing how the
suggested method changes dispersion and intensity
estimated on known true values. Following this, we
will show the results from estimating the dispersion
ρ using the adjusted duration and compare it to the
results using [5] equation (14). Finally, we will show
the results in an applied setting, where our pure pre-
miums πpXq are estimated on historical data, but
evaluated in an applied setting, whereW is unknown.

5.1 Simulated Data

In Figure 6 we observe how adjusting the duration for
detrimental claims compares to the underlying esti-
mates in the Poisson claim generating process. These
results should be taken in comparison to figures 2 and
3 where the main observation is that we no longer ob-
serve over-dispersion and no longer induce variance
in our risk estimates. Unfortunately, we do observe
small negative bias that arise for high values of p.

5.2 Real Insurance Data

5.2.1 Dispersion Estimates

The resulting dispersion estimates can be seen in ta-
ble 3. Here we observe that the duration-adjusted
dispersion estimate pρadj is close to 1 and does not
indicate over-dispersion. In fact, the results indi-
cate that mostly we cannot dismiss the hypothesis
of ρ “ 1, meaning that there is no over or under-
dispersion. An exception is swmotor where both us-
ing pρL&N and pρadj indicate under-dispersion. Note
that we observe unit dispersion and consistency be-
tween using pρL&N and pρadj .

Continuing by replicating the dispersion plot in [5]
we see in Figure 7 the moving average dispersion es-
timate across the pure premium percentiles. First
observe that some local means do not exhibit claims
which leads to an estimate of 0. Secondly, observe
that the detrimental claim adjusted duration xW adj

aligns with the local mean estimate xWL&N across
the dataset.

(a) Dispersion estimate using the Pearson dispersion es-
timate with 95% Chi-squared confidence intervals.

(b) Estimated Risk intensities for the 5 different risk
groups.

Figure 6: Results comparing Quasi-Poisson GLM
model estimates on poisson generated data without
detrimental claims compared towards glm model ad-
justing for simulated detrimental claims by equation
(30). Experiment done 100 times simulating n “100
000 policies

5.2.2 Performance

In table 4 and table 5 we see the resulting perfor-
mance metrics using the above duration adjustment
methods on unseen data. This compares the earned
premiums in an applied setting, where the duration
is unknown, to the realized claims.
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Dataset pρ pρL&N
pρadj

ausPrivateAuto 1.43 ˘ 0.15 1.07 ˘ 0.04 0.99 ˘ 0.04
freMTPLfreq 1.68 ˘ 0.11 1.03 ˘ 0.02 0.98 ˘ 0.02
swmotor 1.45 ˘ 0.28 0.85 ˘ 0.11 0.85 ˘ 0.11
brveh 2.46 ˘ 1.20 0.87 ˘ 0.15 0.88 ˘ 0.16

Table 3: Resulting dispersion estimates ˘ the 95%
confidence interval by equation (13) where pρ used the
observed duration, pρL&N expected duration accord-
ing to [5] equation (24) and pρadj the adjusted duration
as specified by equation (30).

In table 4 we note that the alternative methods pro-
vide similar deviance to using the observed duration,
except for the scenario of swmotor. Also, we see in ta-
ble 5 that the duration adjustment methods decrease
the absolute error in the amount of claims. Specif-
ically, we see that the local mean estimate xWL&N

and detrimental claim adjusted duration xW adj cre-
ate similar improvements in the amount of absolute
claim error, except for the case of fretmtpl.

Dataset W obs
xW adj

xWL&N

ausprivate 25394 25413 25427
fretmtpl 103766 104643 104581
swmotor 3952 4510 8028

brveh 10561 10627 10627

Table 4: Total Deviance from 10 fold cross val pre-
dicted pure premiums using the different duration es-
timates as offset and evaluating using realized earned
premium W pµpXq compared to claims

Dataset W obs
xW adj

xWL&N

ausprivate 8968 8888 8884
fretmtpl 31012 31257 30743
swmotor 869 782 755
brveh 2115 2086 2085

Table 5: Absolute error from 10 fold cross val pre-
dicted pure premiums using the different duration es-
timates as offset and evaluating using realized earned
premium W pµpXq compared to claims Z.

6 Discussion

The results indicate that adjusting for detrimental
claims can improve modeling performance. From the
simulated data, we observe that over-dispersion is
controlled for in Figure 6a and that we no longer
induce variance in our risk estimates. We do observe
some type of bias towards under-dispersion for high
values of p. which seems to arise from the high in-
tensity group 5 in Figure 6b where there likely are
censored claims which would arise after cancellation.

A potential reason for this bias is that unobserved
claims are not correctly accounted for, and one sees
fewer claims for high intensity groups (see risk group
5 in Figure 6b) But one may argue that the scenario
of high intensity and a large chance of detrimental
claims is rare, and the bias should be taken into rela-
tion with the dispersion observed in Figure 2, where
the bias is marginal, even for large p. But it is a topic
for future research in how one may remove this bias;
some suggestions for handling unobserved claims are
discussed in chapter 4.3.

In evaluating the model on real data, we observe how
the resulting dispersion estimates in table 6a align
with the local mean estimate suggested in [5]. In
this case, we no longer observe over-dispersion, as we
would using the observed duration. As this is real
data, we cannot say what the real dispersion would
be, but by referring to the results on simulated data,
Figure 6 and 2, the over-dispersion observed without
adjustments may be induced. An application of these
methods could be to test for over-dispersion, as seen
this method corrects for over-dispersion caused by
detrimental claims.

Lastly, we see from evaluating the methods on unseen
data, where the duration is unknown, we decrease the
absolute error in the amount of claims, while having
similar results observed deviance. This is a welcome
addition, indicating that the over-dispersion observed
can worsen model performance in an applied setting.
Based on the results simulated scenario, see Figure
3, the induced variance of detrimental claim does not
significantly affect parameter estimation, even if some
bias is indicated.
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7 Conclusion

We have in this thesis reassessed the duration effect
in non-life insurance. Largely, this is an extension to
the work made in [5] which observed that the linear
assumption on the observed duration leads to over-
dispersion which induces variance in our risk esti-
mates and makes it impossible to distinguish between
risk groups. This thesis analyzes the over-dispersion
and shows in a simulated experiment that it may arise
from detrimental claims.

A detrimental claim is a claim severe enough to in
effect cancel the policy. It is shown that by introduc-
ing said dynamic to a regular Poisson claim arrival
process, one exhibits over-dispersion where the un-
derlying claim generation process has none.

The paper suggests a method for adjusting data to-
wards detrimental claims. By estimating the proba-
bility of a policy being canceled for natural reasons pn
and the probability of a claim being detrimental pd,
we derive an expression which adjusts the duration
for potential censoring by detrimental claims.

Using said method we show that we can remove the
over-dispersion caused by detrimental claims, main-
tain estimates and improve the absolute error on un-
seen data. The method seems to indicate a small bias
for large values of pd and high intensity, a situation
which is speculated to arise from unseen claims which
could be observed if the policy was not canceled by
a detrimental claim.

This method can be applied directly in the modeling
of P&C insurance and is compatible with existing
methods. It can also be used as a test to validate
if one exhibits over-dispersion or not. Further work
could extend on the possibility and modeling of unob-
served claims which arise due to detrimental claims
and analyze duration which is not limited to 1 as
in this thesis. Suitable approaches are suggested in
chapter 4.3 and 4.6.
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(a) fretmtpl (b) ausprivate

(c) swmotor (d) brveh

Figure 7: Resulting dispersion estimates ordered by predicted pure premium percentile with 0 being lowest
risk. W “ W obs denote the observed duration, xW adj the detrimental claim adjusted duration, and xWL&N

the local mean duration, suggested in [5] equation (24).
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