
Masteruppsats i försäkringsmatematik
Master Thesis in Actuarial Mathematics

Using autoencoders to initialize neural
networks for claims prediction

Jonathan Bengtsson

Matematiska institutionen

Masteruppsats 2025:4

Försäkringsmatematik

Februari 2025

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Master Thesis 2025:4

http://www.math.su.se

Using autoencoders to initialize neural

networks for claims prediction

Jonathan Bengtsson∗

February 2025

Abstract

In this thesis we discuss predicting number of insurance claims un-

der a Poisson model assumption, using fully connected artificial neural

networks. We initialize the weights of these networks using autoen-

coders, with special attention to the handling of categorical features in

the data. More specifically we primarily use a joint embedding of cate-

gorical features to learn numerical representation of categories, instead

of using the somewhat older and more established way of handling this

- separate entity embeddings. We then use these representations to-

gether with numerical features to learn representations of all features

- representations which we then use to initialize hidden layers in fully

connected feed-forward networks. We use denoising autoencoders and

undercomplete autoencoders. We evaluate prediction power on a real

car insurance data set and find evidence of improvement in comparison

to standard methods.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: jonathan.e.bengtsson@gmail.com. Supervisor: Mathias Millberg Lindholm.

Acknowledgements

I would like to thank my supervisor Mathias Millberg Lindholm for guidance,
encouragement and interesting discussions. I also would like to thank my
family for their support.

1

Contents

Acknowledgements 1

1 Introduction 4
1.1 Insurance pricing . 5
1.2 Artificial neural networks . 5

1.2.1 Handling categorical features 5
1.2.2 Autoencoders for weight initialization 6

1.3 Conclusions from experiments on data 6

2 Artificial Neural Networks 7
2.1 Neurons . 8

2.1.1 Activation functions 8
2.2 Supervised learning . 9

2.2.1 Feedforward networks (multilayer perceptrons) 9
2.2.2 Defining training of a network as an optimization prob-

lem . 13
2.2.3 Computing the gradient using backwards propagation . 14
2.2.4 Training the network: optimizing the loss function . . . 18

2.3 Representing categorical data 20
2.4 Autoencoders . 21

2.4.1 Constraining the autoencoder 21
2.4.2 Denoising autoencoders 22
2.4.3 Autoencoders for numerical features 23
2.4.4 Autoencoders for categorical features 24

3 Insurance pricing 30
3.1 Predicting number of claims using feedforward networks . . . 30
3.2 Architectures . 31
3.3 Improving prediction using autoencoders 32

3.3.1 Re-scaling the weights for the categorical autoencoder . 34

2

4 Quality assessment of predictors 36
4.1 Risk-ordered predictions compared with empirical responses . 37
4.2 Concentration curves . 37

4.2.1 Modified concentration curves 39

5 Application 40
5.1 The data set . 40

5.1.1 A note on reliability 42
5.1.2 Overview of the data 42
5.1.3 Preparation of the data 43

5.2 Types of autoencoders . 44
5.2.1 Implementation from scratch in C 44
5.2.2 Implementation using Python with Keras 45

5.3 Predicting number of claims 47
5.3.1 Gradient boosting machines 48
5.3.2 Feedforward networks 49
5.3.3 Comparing methods 54

6 Discussion 65

A Gradient computation 71
A.1 Square distance loss function 71
A.2 Softmax output and Cross entropy loss function 75
A.3 Frequency prediction and Poisson deviance loss function . . . 78

B Optimization algorithms 81
B.1 Gradient descent . 81
B.2 SGD - Stochastic gradient descent 83
B.3 Momentum and Nesterov’s accelerated gradient 84

B.3.1 Stochastic gradient descent with momentum (classical
momentum) . 84

B.3.2 Nesterov’s accelerated gradient (NAG) 84
B.4 Adaptive moments estimation (ADAM) 85

C Gradient boosting machines 87

3

Chapter 1

Introduction

In the last decades computing power has increased significantly, so conse-
quently machine learning techniques have become more and more feasible.
This has surged research in the area and machine learning techniques have
found increasingly more applications. One field where applications have been
proven useful is actuarial science.

In this thesis we focus on using artificial neural networks, which is a subset
of machine learning, for predicting number of claims for a set of insurance
policy holders given a set of characteristics for each policy holder.

In this chapter we present an overview of the thesis, the particular actu-
arial problem it concerns, the neural network methods that we try for solving
the problem, and the main takeaways of the thesis.

In chapter 2 we give a description of the different types of neural networks
that we will use for prediction and chapter 3 concerns usage of neural net-
works for insurance pricing. We restrict ourselves to predicting the number
of claims, we do not try to predict claim sizes.

In chapter 4 we present methods for evaluating the quality of predictors.
In chapter 5 we first present a data set and then apply our neural network

predictors discussed in earlier chapters and evaluate them on the data set.
We conclude the thesis with a discussion of our results in chapter 6.
The implementation of neural networks is done mostly in Python using

the Tensorflow and Keras libraries, but we also try some implementation from
scratch using C. As a reference we use a GBM (gradient boosting machine)
model, a well-established method, from the GBM library in R. The code used
for this thesis can be found at https://github.com/JonathanBengtsson.

4

1.1 Insurance pricing
A common assumption when modeling insurance portfolios is that the num-
ber of claims and the sizes of claims are independent. This justifies the
modeling of number of claims and claim sizes as separate processes. This
report focuses on predicting the number of claims N for a contract, given
duration v and a set of characteristics for the policyholder X. The model
used throughout this thesis is

N |X, v ∼ Pois (vµ(X)) , (1.1)

which is a standard choice for modeling number of claims. Common tradi-
tional ways to model µ are generalized linear models (GLM) and gradient
boosting machines (GBM). In this thesis we focus on using neural network
based methods for modeling µ. For comparison, we predict the number of
claims for the same data set using a GBM model.

1.2 Artificial neural networks
The particular type of neural network we will use for predicting N is a feed-
forward network, which will be further explained in Chapter 2.

The network takes the duration v and characteristics of a policy holder
X as input, and returns a predicted number of claims N as output. In
order to achieve this the neural network is trained using empirical sets of
characteristics and durations (Xi, vi)m

i=1 and corresponding observed number
of claims (Ni)m

i=1. The performance of the network can then be evaluated
using an other set of empirical characteristics and durations (Xi,vi)m+n

i=m and
compare these predictions by the network with the observed number of claims
(Ni)m+n

i=m . This type of training is called supervised learning and the training
process consists in fact of solving an optimization problem by tuning a large
number of parameters of the network - weights w and biases θ.

1.2.1 Handling categorical features
The characteristics of the policyholders X are generally referred to as features
in machine learning applications. These features can be of three different
types: numerical, categorical and binary. Numerical features are straightfor-
ward to handle, and binary features can often be implemented by replacing
them with a numerical feature taking one of two values, for example {0, 1}
or {−1, 1}. How to handle categorical features is less evident. It can be
especially hard when the number of labels for one or several categories is

5

large (large cardinality). Since categorical features are common in insurance
applications, we especially pay attention to this.

1.2.2 Autoencoders for weight initialization
Before training a neural network it is necessary to decide the initial values
of the weights w and biases θ of the network. This is often done by some
type of randomization. Inspired by earlier work [1], we try to first train an
other type of network - an autoencoder - and then use some of its weights
to initialize some of the weights in our original feedforward network, in an
attempt to improve performance. There is evidence [1] that this approach
may be particularly useful for weights connecting categorical feature inputs
to the network.

1.3 Conclusions from experiments on data
A main inspiration for the methods we try in this thesis is an article by
Delong & Kozak (2020)[1]. Our conclusions are roughly in accordance with
theirs.

We use a data set called freMTPL2freq (French Motor Claims Datasets)
to test our prediction methods, and we find that feedforward neural networks
perform better than the reference method, GBM. We also find that using au-
toencoders to initialize weights in feedforward networks seems to increase
performance. The particular types of autoencoders called denoising autoen-
coders seem to be better than (non-denoising, ordinary) autoencoders, but
this conclusion is less certain than the other ones.

6

Chapter 2

Artificial Neural Networks

The underlying ideas for the class of machine learning techniques called artifi-
cial neural networks emerged from using networks of neurons in mammalian
brains as inspiration [5, p. 2-3]. Most of these techniques were developed
in the later half of the 20th century, and the main purpose initially was to
explain neuro-physiological mechanisms. Here we present some of the main
milestones.

• McCulloch and Pitts introduced in 1943 an abstract model for a neuron
using Carnap’s logical syntax, and demonstrated how such units could
be coupled together in order to represent logical functions. Today al-
gebraic notions are used, but in principle the model of the neurons are
the same as the model McCulloch and Pitts used – these neurons are
often referred to as McCulloch-Pitts neurons.

• In 1949 Hebb described how neural networks learn by strengthening
connections between neurons that are active at the same time. This is
now referred to as Hebb’s learning principle.

• The notion of perceptron was introduced in 1958 by Rosenblatt for
layered networks of McCulloch-Pitts neuron. Rosenblatt showed that
such networks could solve problems that a single McCulloch-Pitts neu-
ron could not.

• In 1986 Rumelhart et al. showed that perceptrons can be trained by
gradient descent. This provides a general method for efficiently training
perceptrons with many layers (multi-layer perceptrons) using backward
propagation.

Since then both theoretical descriptions and methods as well as appli-
cations of artificial neural networks have been further explored and refined.
However, this is still a very active area of research.

7

2.1 Neurons
We use the model introduced by McCulloch and Pitts. This models neurons
as binary threshold units with only two possible outputs, or states: active
and inactive [5, p. 7-9].

In practice, a neuron takes a number of input signals x1,...,xn and which
are weighted and summed, possibly with a bias term θ (also called threshold):
a = ∑n

i=1 wixi− θ. An activation function g(·) (also called transfer function)
is applied to this sum and the result becomes the output signal y = g(a). In
total

y = g

(
n∑

i=1
wixi − θ

)
. (2.1)

Figure 2.1: A single McCulloch-Pitts neuron with n inputs, as described in
equation (2.1).

Since we have many neurons in a network we use indices to keep track of
them. For neuron j:

yj = gj

(
n∑

i=1
wijxi − θj

)
.

2.1.1 Activation functions
The activation function(s) gj should model the biological behavior of the
output signal being active if the input signals are strong enough, and inactive
if the input signal is not strong enough [5, p. 9-10]. A simple choice of
activation function is the step function

g(x) =
1 if x > 0

0 if x ≤ 0.

Other common choices are sigmoid function such as the logistic function

g(x) = 1
1 + e−x

8

and the hyperbolic tangent function

g(x) = tanh(x) = ex − e−x

ex + e−x
.

It should be noted that there is in general no constraint on the weights
wij to be positive, so the interpretation of input signals needing to be strong
enough to activate the neuron is not necessarily straightforward.

2.2 Supervised learning
There are several applications of neural networks. One common class of
problems that neural networks are applied to is supervised learning problems
where we have a set of patterns that we want our algorithm to classify [5,
p. 72-75], [6, p. 103]. If we feed a pattern to the algorithm as input (in
these applications: a neural network, historically e.g. a GLM) we want the
network to return a certain output, called target. For each input pattern
we have a desired target output, the task consists of making the network
recognize each of these patterns. In many applications we not only want our
network to recognize the patterns we use to train (the process of tuning) it,
the network should also recognize similar patterns.

Let each pattern be a vector of values (sometimes called a feature vector).
We label the p input patterns with the index κ = 1, ..., p. Now denote pattern
κ: x(κ), and the corresponding target: t(κ).

2.2.1 Feedforward networks (multilayer perceptrons)
For multilayer perceptrons, also called feedforward neural networks or deep
feedforward networks [6, p. 164], we group neurons (in this application also
called perceptrons) into layers [5, p. 3].

It is common to depict the input layer(s) to the left, and output layer(s)
to the right. Between these there can be one or more hidden layers.

Within each of these layers there are no connections between the neurons.
There are only one-way connections from neurons in a layer to the next layer;
this next layer is generally depicted as the layer immediately to the right.
There are no connections from right to left, and no connections that skip a
layer.

In a fully connected feedforward network each neuron in a layer is con-
nected to all neurons in the next layer. By a neuron (neuron 1) in a layer
being connected to an other neuron (neuron 2) in the next layer we mean

9

that the output signal of neuron 1 acts as one of the input signals of neuron
2.

An example of a fully connected feedforward network can be seen in figure
2.2.

Figure 2.2: A fully connected feedforward network (multilayer perceptron)
with 3 neurons in the input layer (yellow) and 2 neurons in the output layer
(blue). The network has 3 hidden layers with 5 neurons in the first hidden
layer, 3 neurons in the second hidden layer and 4 neurons in the third hidden
layer.

When training a network, we consider its design to be fixed, i.e. the
number of layers is fixed and the number of neurons in each layer is fixed.
The weights between connected neurons are not fixed and subject to change
by training algorithms. The bias terms are not fixed either and may also be
changed by training algorithms.

Notation and forward propagation

We start by introducing some notation. Let the index l denote the layer. Let
l take the values l = 0, ..., L where l = 0 is the input layer and l = L is the
output layer. Let j refer to a neuron in layer l, let i refer to a neuron in layer
l−1, and let k refer to a neuron in layer l+1. Let n(l) be the number of neurons
in layer l, meaning that i, j, k takes values i = 0, ..., n(l−1), j = 0, ..., n(l) and
k = 0, ..., n(l+1).

Denote the output of a neuron j in layer l: Vj = V
(l)

j , the activation

10

function gj = g
(l)
j and the bias θj = θ

(l)
j . The weights between layer l and

layer l − 1 are denoted wij = w
(l)
ij .

Denote the weighted sums of inputs plus bias aj = a
(l)
j = θj+

∑n(l)

i=0 w
(l)
ij V

(l−1)
i .

We now turn our attention to describing the process of forward propagation.
A pattern, represented by n(0) values, is fed by setting the output value

of neurons in the input layer V
(0)

j to the values of the pattern. These values
are used as input signals to the next layer, we can then evaluate the output
signals in this next layer

V
(1)

j = g
(1)
j

n(0)∑
i=0

w
(1)
ij V

(0)
i − θ

(1)
j

 .

This is repeated with outputs of layer 1 acting as inputs of layer 2, and
so on

V
(l)

j = g
(l)
j

n(l−1)∑
i=0

w
(l)
ij V

(l−1)
i − θ

(l)
j

until we reach the output layer

V
(L)

j = g
(L)
j

n(L−1)∑
i=0

w
(L)
ij V

(L−1)
i − θ

(L)
j

 .

We define vectors denoting the values of the neurons in layer l

V(l) =

V
(l)

1

...

V
(l)

n(l)

 ,

weights matrices and bias vectors for layer l

W(l) =

w
(l)
11 w

(l)
12 . . . w

(l)
1,n(l−1)

w
(l)
21
...

w
(l)
n(l),1 . . . w

(l)
n(l),n(l−1)

, θ(l) =

θ
(l)
1

...

θ
(l)
n(l)

 .

If we use the same activation function g(l) within each layer, which is often
the case, we can write

V(l) = g(l)(W(l)V(l−1) − θ(l)).

11

We now introduce a notation for the layers in the network. Layer l we denote
f (l) and we define it as

f (l)(z) = g(l)(W(l)z− θ(l)).

We see that
f (l)(V(l)) = g(l)(W(l)V(l−1) − θ(l))

holds and using the notation Oj := V
(L)

j for each output neuron and

O =

O1

...

On(L)

for all the output layer neurons, if we denote the input x we now have a
compact way of describing an entire network,

O = f (L−1) ◦ f (L−2) ◦ ... ◦ f (2) ◦ f (1)(x). (2.2)

Using a special notation for the output layer gives us the advantage that we
have an easy way to express the output when a specific pattern is fed to the
network (no need to specify layer with an index). When pattern x(κ) is fed
we denote the outputs

O(κ) =

O
(κ)
1

...

O
(κ)
n(L)

 = f (L−1) ◦ ... ◦ f (1)(x(κ)).

Initializing the network

Once we have decided the number of layers and the number of neurons in each
of these layers it remains to decide the values of the weights and the biases.
As we have already mentioned, deciding the values of these variables is the
very meaning of training the network. However we need to decide the initial
values. This is generally done by initializing them to random numbers, for
example normally distributed w

(l)
ij (t = 0) ∼ N(0,1) or uniformly distributed

on some interval, for example [−1,1]. For bias values an other common option
is to initialize them to zero.

12

The way to initialize weights and biases is not always clear. In fact one
of the main purposes with this report is to investigate a method based on
autoencoders for an initialization of a network that we hope is better than
random, which then can be fine tuned using conventional training methods.

2.2.2 Defining training of a network as an optimization
problem

In order to be able to tell if the network performs well on some set of patterns
with corresponding targets, we need a measure for this purpose. This measure
is called a loss (or cost) function and can be defined in different ways, but
should be designed such that it has its global minimum when the output of
the network for each pattern equals the correct target pattern. One such loss
function is

L(y, ŷ) =
∑

j

(yj − ŷj)2.

Setting y to be the output we get when we feed a certain pattern x(κ) and
ŷ to be the corresponding correct output t(κ) we can use this to measure the
performance of our network

∑
κ

L(V (L)|V (0)=x(κ) , t(κ)) =
∑

κ

∑
j

(
V

(L)
j |V (0)=x(κ) − t

(κ)
j

)2
. (2.3)

Having defined a loss function L we can define the task of training the
network as an optimization problem. If we define the set of all weights WWW
and the set of all biases θθθ we see that given patterns x(κ) and corresponding
targets t(κ) we want to find weights and biases such that the total loss is
minimized:

WWW ,θθθ
min

∑
κ

L
(
WWW,θθθ|x(κ), t(κ)

)
.

Many methods for training neural networks in a supervised learning set-
ting consist of algorithms for solving this optimization problem, although the
loss function L may vary. It is very common to use gradient based meth-
ods, for example stochastic gradient descent, which is an adaptation of the
ordinary gradient descent optimization algorithm.

13

2.2.3 Computing the gradient using backwards propa-
gation

Computing the gradient of the loss function w.r.t. weights and biases can be
done in several ways, but one of the most common ways of doing this is by the
process of backwards propagation. Backwards propagation makes use of the
fact that in a feedforward network the neurons are only connected to neurons
in adjacent layers, yielding a computationally less expensive algorithm [6,
p. 200].

Keeping in mind our compact formulation of a feedforward network 2.2,
we note that backwards propagation essentially consists of applying the chain
rule to the entire network, where the intermediate derivatives are interpreted
as values of the neurons in the hidden layers. The nested structure of the
feedforward network makes it possible to compute the value of the neurons
in layer l by using already known values of the neurons in layer l + 1. We
only need to compute the last unknown partial derivatives between layer l
and l + 1. For a network with three layers O = f (3) ◦ f (2) ◦ f (1)(x), with
individual layers y = f (1)(x), z = f (2)(y), O = f (3)(z):

∂O
∂z

= ∂f (3)

∂z
∂O
∂y

= ∂O
∂z
· ∂z

∂y
= ∂O

∂z
· ∂f (2)

∂y
∂O
∂x

= ∂O
∂y
· ∂y

∂x
= ∂O

∂y
· ∂f (1)

∂x

So, for each layer when we compute the partial derivatives we can use
results from previous layers.

Square distance loss function

One of the most commonly used loss functions (also called energy function)
is the squared distance loss function

L = 1
2
∑

κ

∑
i

(t(κ)
i −O

(κ)
i)2

Here we let t
(κ)
i denote the i:th component of the target pattern κ. For

clarity we call the output of the network the i:th output neuron of the network
that we get when we forward propagate the input pattern κ. Hence for input
pattern x(κ) we have the output neurons O

(κ)
i = V

(L)
i (x(κ)).

14

To simplify notation we consider the case with one input pattern. This
is easy to generalize to cases with more input patterns since we only need to
sum up the contributions from each pattern in order to obtain the total loss.

We want to compute the gradient, meaning we want to differentiate the
loss function with respect to all weights and all bias terms. The derivative
w.r.t. the bias term in the output layer and the derivative w.r.t. the weights
connected to the output layer is easiest to compute (θ(L)

n , w(L)
nm). We apply

the chain rule as described in previously, with some small deviations since
we differentiate a loss function not the output, and we do not differentiate
w.r.t. the values of the neurons but w.r.t. weights and biases.

After differentiating w.r.t. weights and bias connected to the output layer
(layer L) we proceed by compute derivatives w.r.t. bias term and weights in
the next layer θ(L−1)

n , w(L−1)
nm using results from computing derivatives w.r.t.

weights and bias in layer L. Then when computing w.r.t. bias term and
weights in layer L − 2 we use results from when we computed derivatives
w.r.t. layer L−1. In this way we proceed recursively until we have computed
all derivatives [5, p. 91-107].

The details of the derivations are given in appendix A, here we just present
the final formulas for recursively computing the gradient:

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m , 1 ≤ l < L

∂L

∂θ
(l)
n

= d(l)
n , 1 ≤ l < L

∂L

∂w
(l)
nm

= (tn −On)g′(a(l)
n)V (l−1)

m , l = L

∂L

∂θ
(l)
n

= (tn −On)g′(a(l)
n), l = L

where the partial results d(·)
· are computed recursively starting from l = L.

d
(L)
i = (ti −Oi)g′(a(L)

i)
d

(L−1)
i =

∑
j

d
(L)
j w

(L)
ij g′(a(L−1)

i)

d
(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L.

15

Softmax output and Cross entropy loss function

The softmax output is suitable to use when we deal with a classification
problem and the output neurons signifies different classes. The Softmax
output has the property that all outputs sum to 1. Hence, the outputs may
be interpreted as probabilities.

Softmax output for output neuron i is defined as follows:

Oi = ea
(L)
i∑

k ea
(L)
k

(2.4)

When we use Softmax outputs it is appropriate to use another loss func-
tion, namely the Cross entropy loss function

L =
∑

κ

∑
i

t
(κ)
i log(O(κ)

i). (2.5)

Here we just present the formulas for computing the gradient, the details
of the derivations can be found in appendix A.

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m

∂L

∂θ
(l)
n

= d(l)
n

for 1 ≤ l ≤ L, where the partial results d(·)
· are computed recursively starting

from l = L:

d
(L)
i =

∑
j

(ti − tjOi)

d
(L−1)
i =

∑
j

(ti − tjOi)w(L)
ij g′(a(L−1)

i)

d
(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L− 1.

16

Prediction and Poisson deviance loss function

For the application of prediction, in our case predicting number of claims N
(it would be possible to do this also for frequency N/v, where v as before
denotes duration), it is appropriate to use one single Poisson output neuron

ξ = eR+θ
(L)
1 +

∑
j

w
(L)
j1 V

(L−1)
j . (2.6)

where R denotes the exposure (for our applications this is duration v). Al-
though µ is usually used to denote the Poisson output, we will use ξ to
avoid confusion with the function µ(·) we introduced previously for an other
purpose.

When this type of output is used, i.e. the outputs are assumed to follow
a Poisson model, the appropriate loss function to use is the Poisson deviance
loss function [7]. Using N as target (the observed number of claims), and
once again assuming that we only have one input pattern we write it

L = 2N

(
ξ

N
− 1− log(ξ

N
)
)

The details of the derivations can be found in appendix A, here we just
present the final formulas. The components of the gradient are given by

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m

∂L

∂θ
(l)
n

= d(l)
n ,

where the partial results d(·)
· are computed recursively starting from l = L:

d
(L)
i = 2(ξ −N)

d
(L−1)
i = d

(L)
1 w

(L)
i1 g′(a(L−1)

i)
d

(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L− 1.

17

2.2.4 Training the network: optimizing the loss func-
tion

Knowing how to compute the gradient we are now in a position to use a
gradient based optimization algorithm to optimize the loss function (2.3).

Stochastic gradient descent and different versions of it are among the most
commonly used optimization algorithms for deep learning [6, p. 149], and
the algorithm we use in this thesis – Nesterov-accelerated adaptive moment
estimation (NADAM) is one of these [2]. In appendix B we present the
algorithms on which it is based.

Nesterov-accelerated adaptive moment estimation (NADAM)

NADAM, shown in algorithm 1, improves the ADAM algorithm (adaptive
moments) by incorporating insights from an other algorithm known as Nes-
terov’s accelerated gradient (NAG) [2]. The ADAM improves SGD in two
ways. First, it uses moments – taking into account gradients from previous
iterations. And second, it uses an adaptive learning rate.

The use of moments allows the algorithm to move faster when the update
direction in subsequent iterations are similar, and slower when the direction
oscillates more significantly.

NAG improves SGD with moments by, for each update, move in the
direction of the momentum, and then in this point compute the gradient
and move in the direction of the negative gradient. In SGD with momentum
(classical momentum) we first compute the gradient and then move in the
direction of momentum plus gradient.

Note that with g2
k we mean power of 2 applied elementwise.

18

Algorithm 1 Nesterov-accelerated adaptive moment estimation
Require: Starting point (initial parameters) z0.
Require: Step sizes (learning rate) ϵ
Require: Exponential decay rates for moment estimates ρ1, ρ2 ∈ [0,1)
Require: Small constant δ for numerical stabilization.
Require: Stopping condition C

k ← 1
r0 ← 0 (first order moment)
s0 ← 0 (second order moment)
while C not fulfilled do

Sample a set of m indexes Mk for specifying the minibatch to use in
this iteration

Compute gradient gk ← 1
m
∇zk−1

∑
i∈Mk

L(f(x(i); zk−1), t(i))
First order moment sk ← ρ1sk−1 + (1− ρ1)gk

Second order moment rk ← ρ2rk−1 + (1− ρ2)g2
k

Bias correction in first moment ŝk ← ρ1
1−ρk+1

1
sk + (1−ρ1)

1−ρk
1

gk

Bias correction in second moment r̂k ← ρ2
1−ρk

2
rk

Update zk ← zk−1 − ϵ√
r̂k+δ

ŝk (operations elementwise)
k ← k + 1

end while
return zk

19

2.3 Representing categorical data
A common way of handling categorical variables, not only for neural networks
specifically, is to represent it using so-called one-hot encoding [1].

Suppose that we have a variable consisting of c categorical features. We
call the different values that a categorical feature can take labels. Since
categorical features in general have different number of labels we introduce
notation for this, category j ∈ {1, ..., c} have mj labels. In a one-hot encod-
ing setting each such category is represented by mj binary variables, where
all binary variables are 0 except the one that represents the value of the
categorical feature.

For example, if we have a categorical feature z̃ that represents color (cate-
gory) with four possible colors, say: blue, green, red and yellow (labels), a one
hot encoding of such a variable is (1z̃=”blue”, 1z̃=”green”, 1z̃=”red”, 1z̃=”yellow”)′.
So, if z̃ = ”green” then the one-hot encoded representation is z̃ = (0, 1, 0, 0)′.
If in addition to color (category 1) we have other categorical features, for ex-
ample month (category 2) and finger on a hand (category 3), then the number
of categories is c = 3 and numbers of labels are m1 = 4, m2 = 12 and m3 = 5.

The point of using a set of binary variables as representation instead
of just having one integer-valued variable where different integers represent
different labels, is that in the former way there is no order between the labels
which on the other hand we would get if we used an integer-valued variable to
represent it. Often it is the case that the labels of a categorical feature do not
have an internal order, for example different types of cars, although there are
cases where such an order exists, for example when stratifying an age span.
However, for our applications we will use one-hot encoding handling for all
categorical features.

If we denote a categorical feature xj with mj different labels {bj
1, ..., bj

mj
},

in the process of one-hot encoding we transform this one-dimensional feature
variable into an mj dimensional vector

xj 7→ xcat
j = (xj1 , ...xjmj

)′ = (1xj=bj
1
, ...,1xj=bj

mj
)′

Doing this for all features we get our one-hot encoded categorical feature
vector x = ((xcat

1)′, ..., (xcat
c)′)′.

If we start with data in a d-dimensional vector, representing d features,
and of these features c are categorical and d − c are numerical, we can do
the same one-hot encoding process by just ignoring the numerical features.
Supposing that the order of the variables is such that the c first variables
are categorical and the remaining ones are numerical, the process of one-hot

20

encoding would give us the variable

x = ((xcat)′, (xnum)′)′ = ((xcat
1)′, ..., (xcat

c)′, xc+1, xc+2, ...xd)′

which is a variable of dimension D = ∑c
j=1 mj + d− c.

2.4 Autoencoders
An autoencoder is a neural network that is characterized by the task it tries
to perform, namely copying the input and returning it as output [6, p. 499].
It consists of an encoder part that encodes the input fenc(x) = h and a de-
coder part that tries to reconstruct the input from the code that the encoder
outputs, fdec(h) = r. Typically, an autoencoder is a feedforward network
with one hidden layer. In that case the neurons in the hidden layer describe
the code h.

Since the autoencoder then can be seen as just a special case of a feed-
forward network, one can train it in the same ways as other feedforward
networks.

The usefulness of the autoencoder comes from imposing limitations on
it. If the autoencoder cannot copy perfectly it is forced to prioritize which
properties of the input data that should be encoded, so that the decoder is
able to make sufficiently good reconstructions from it. Often these prioritized
properties of the data are useful.

To sum up, the usefulness of the autoencoder comes from the fact that
the training process is trying to find a compromise between two different
objectives:

• To learn a representation h of the input x in the encoder part, so that
x can be approximately recovered by the decoder part from h.

• Satisfying the limitations imposed on the autoencoder. Typically, this
can be constraints that comes from the design of the autoencoder or
from some type of regularization penalty term added to the reconstruc-
tion cost.

2.4.1 Constraining the autoencoder
A common way to impose limitations on the autoencoder is to make it under-
complete [6, p. 500-501]. An undercomplete autoencoder is a feedforward
network with one hidden layer where the number of neurons in the hidden
layer is lower than the number of input/output neurons.

21

As usual with feedforward networks the training process consists of min-
imizing a loss function L(x, fdec(fenc(x))). In in our previously introduced
terminology for feedforward networks (2.2), the undercomplete autoencoder
can be written as

O = f (2) ◦ f (1)(x)
with f (1) = fenc and f (2) = fdec. The fact that it is an autoencoder means
that n(2) = dim(x), and if the autoencoder is undercomplete we have that
the number of neurons in the hidden layer is smaller than the dimension of
the input data, meaning that we require n(1) < n(2). The choice of activation
functions g(1), g(2) depends on the specific application, but can for example
be hyperbolic tangent functions, or just linear functions.

If we use the mean squared error as loss function, and we use linear ac-
tivation functions for the decoder layer, the autoencoder learns the same
subspace as PCA (principal component analysis). Undercomplete autoen-
coders with nonlinear encoder functions fenc and nonlinear decoder functions
fdec can therefore be thought of as generalizations of PCA.

2.4.2 Denoising autoencoders
A denoising autoencoder is a type of autoencoder that is not defined by the
way it is designed, but how it is trained. In the training step for denoising
autoencoders we corrupt (perturb) the input data x by some process p(·) but
not the output data. Hence, the loss function we minimize in the training
step is L(x, fdec(fenc(p(x)))) [6, p. 504-505, 507-512].

The point of adding noise to the input data is to increase the autoen-
coder’s ability to recognize data that is similar but not identical to the data
represented in the training set. This is useful under the assumption that
small changes in input data should yield small changes in output data (i.e.
if we have a well-conditioned problem).

We present two methods of adding noise here, one for numerical data
p1(·) and one for categorical data p2(·). The reason we use these types of
noise is that they are used by Delong&Kozak (2020)[1] in their experiment
for predicting number of claims in the model with the best result.

When we add noise, we apply p1(·) and p2(·) to each sample.

Gaussian noise for numerical features

This type of perturbation consists of adding a small normally distributed
noise to each numerical feature, p(z) = [N(z1, σ2), N(z2, σ2), ...]T . The size
of the noise can be varied by choosing different values on σ.

22

Sample noise for categorical features

For each category j = 1, ..., c we compute the empirical distribution Fj using
the training data. The noise consists of replacing a fraction of the categories
(randomly chosen) with a random value drawn from the corresponding em-
pirical distribution.

Let z̃j ∼ Fj for j = 1, ..., c and denote the set of indices of the categories to
replace by S, where the elements of S are drawn from a uniform distribution
from 1 to c. The number of elements (indices) that are drawn, q, is used as
a hyperparameter to set the amount of noise. Then we can write p2(z) =
[(z1 · 11/∈S + z̃1 · 11∈S), (z2 · 12/∈S + z̃2 · 12∈S), ...]T .

2.4.3 Autoencoders for numerical features
Autoencoders for numerical features can be done in different ways, but we fol-
low Delong&Kozak (2020)[1], who were inspired by an approach investigated
by Rentzmann&Wütrich (2019)[9]. We use an undercomplete autoencoder
with one hidden layer, where the exact number of neurons n(1) in the hidden
layer will vary. For activation functions we use the hyperbolic tangent func-
tion for the encoder and linear activation function for the decoder. In figure
2.3 we show an example of this type of autoencoder.

Like Delong&Kozak (2020), but unlike Rentzmann&Wütrich (2019) we
train bias terms, since we follow Delong&Kozak (2020) in using the min-max
scaler transformation for input data instead of scaling the data to mean zero
and unit variance. To measure the reconstruction error between prediction
and input we use the mean squared error loss function.

23

Figure 2.3: Autoencoder for numerical features with 4 inputs and 4 outputs
and a hidden layer with 3 neurons. The neurons in the hidden layer use the
hyperbolic tangent function as activation function, while the output layer
uses linear activation functions.

2.4.4 Autoencoders for categorical features
Autoencoders for categorical features is a much less explored subject than
autoencoders for numerical or binary features. For insurance applications
categorical features are often relevant, since customers can almost always
be divided into groups that are best represented as categorical features for
quantitative analysis purposes. Just as we do for numerical features, we
follow (parts of) the approach used by Delong&Kozak(2020)[1].

We will only consider the case where the categorical data is one-hot en-
coded, since this is a standard way of representing categorical data where the
labels do not have an internal order. When one-hot encoding is used there is
no need to use biases between the input layer and the hidden layer, since the
sum of inputs for any given neuron in the hidden layer is always equal to the
number of categories c. A bias term b could always be replaced by adding
b/c to every weight connected to the neuron in the hidden layer.

In the first layer (the encoder) we use linear activation functions, since for
one-hot encoded input we get unique constants for each label in each category,
so there is no need to use any transformations that are more complex.

We want to do a classification so we will use the cross-entropy loss func-
tion (2.5) and softmax (2.4) for the output neurons. If we had data with
only one feature the hot one-encoded data could be handled in a straight-

24

forward manner. We could use one softmax function over all outputs with
the interpretation of the values of the output neurons as probability for the
categorical feature to be a specific label.

Since we often do not have only one feature but several features, and
for each one of these features the network is supposed to pick the correct
label, there is no one clear way in which to proceed. Here, we consider three
possible ways to handle classification with several features.

Separate autoencoders for each feature

A straightforward way to do classification with several features is to simply
do it with different networks for each feature. This is possible for our purpose
of training autoencoders. For each network we then have let the number of
inputs n(0) and output neurons n(2) are be n(0) = n(2) = mj – the number
of labels for that categorical feature. The number of neurons in the hidden
layer n(1) can vary, but since we use undercomplete autoencoders we restrict
ourselves to cases with n(1) < mj.

The softmax for the output neuron i for these networks are

Oi = ea
(L)
i∑mj

k=1 ea
(L)
k

,

where the total number of layers are L = 2, mj is the number of labels for
feature j. As before, a

(L)
k is the input signal of neuron k in layer L. We show

an example of such an autoencoder in figure 2.4.
There are however some disadvantages to this approach. First, we cannot

make use of possible cross-term correlations in the data if such correlations
exist. Second, we need to train one network for each feature which takes
more time and computing power to do. And third, we need to investigate
what number of neurons to use in the hidden layer n(1) for each categorical
feature, which requires more analysis than if we only used one network.

25

Figure 2.4: Two categorical features (3 labels for category 1, and 2 labels for
category 2) with separate autoencoders for each categorical feature. In the
encoder part of the autoencoders linear activation functions are used, and
for the decoder part the output neurons are linearly connected to the hidden
layer but with softmax taken over all output neurons.

One autoencoder in total, with one softmax for all outputs

We could also use just one network for all features, with one softmax for all
output neurons. Compared to the method above, the network can capture
correlative effects in the date. The number of input neurons and output
neurons then are equal to the sum of the number of labels in each categorical
feature n(0) = n(2) = ∑c

j=1 mj

The softmax is designed to for each neuron output a number between 0
and 1 so that all outputs sum to one, which can be interpreted as probabili-
ties of the categorical feature to belong to the label that the output neuron
represents. Here the output is several features, but we only use one softmax.
An example of this type of autoencoder can be seen in figure 2.5.

Oi = ea
(L)
i∑n(2)

k=1 ea
(L)
k

,

26

Hence the probabilities of the labels within each categorical feature, will
not sum up to one, but the probabilities for labels from all categories will.
The way we interpret this is to, for each feature, say that the label that is
picked by the network is the one with the output neuron with the highest
probability. A problem with this is that it could be the case that for some
of the features all labels may have very low probability although the correct
one have the highest probability. In the process of training the network this
correct classification would not be recognized as well as if the probability
were significantly higher than the probabilities of the other labels.

Figure 2.5: Two categorical features (3 labels for category 1, and 2 labels for
category 2) in one autoencoder with one softmax for categorical features. In
the encoder part of the autoencoders linear activation functions are used, and
for the decoder part the signals from the hidden layer (linearly connected)
are taken as input to one softmax function.

27

One autoencoder in total, with one softmax per feature among the
outputs

A third way of handling classification with several categorical features is
to use one network, but with one softmax function over each set of output
neurons that represent labels of the same feature. As before we have the
number of inputs and outputs n(0) = n(2) = ∑c

j=1 mj, and since we use
undercomplete autoencoders we chose the number of neurons in the hidden
layer n(1) < n(2). Defining m0 = 0 we can express these softmax functions as

Oi = ea
(L)
i∑mj

k=mj−1+1 ea
(L)
k

with j such that mj−1 < i ≤ mj.

This way the output neurons can for each categorical feature, be interpreted
as probabilities of the feature belonging to the label that the neurons rep-
resent, and we do not get the same problem as with the case where only
one softmax function is used. The main disadvantage compared to the both
previous methods is that it is a bit less straight forward to implement. We
show an example of this type of autoencoder in figure 2.6.

28

Figure 2.6: Two categorical features (3 labels for category 1, and 2 labels for
category 2) in one autoencoder with a softmax for each categorical feature (c
softmax functions). In the encoder part of the autoencoders linear activation
functions are used. For the decoder part the signals from the hidden layer
(linearly connected) that are connected to output neurons that represents
labels of the same categorical feature are taken as input into the same softmax
function, i.e. one softmax per categorical feature. So, here with c = 2
categories, two softmax functions are used.

29

Chapter 3

Insurance pricing

In order for the insurer to set a fair price for the premium, given a set of
features characterizing a policyholder, we want to know the expected amount
of money that the insurer needs to pay this type of policyholder. It is often
appropriate to assume that the risk of a claim to occur is independent of the
size of the claim. This motivates us to model the size of each claim given
a set of features X separately from modeling the number of claims given a
group of policyholder characterized by features X. In this thesis we focus
solely on predicting the number of claims.

We assume that claims occur according to an unknown distribution µ(X),
which we want to model in order to predict future number of claims. We
denote the distributions of these models π(X). We focus on models where
π(X) is a neural network, more specifically a feedforward neural network.
We also try gradient boosting machines (GBM) for reference, since this is
a well-established method for predicting number of claims. An overview of
GBM and of the particular version we use, is given in Appendix C.

3.1 Predicting number of claims using feed-
forward networks

A common type of artificial neural network that is used for insurance pricing,
and can be used to predict number of claims, is the feedforward network with
one output neuron and where the features X are fed to the input neurons [7].
Categorical features are generally one-hot encoded so assuming that we have
d features, of which c are categorical features with mj categories for feature j
(see section 2.4 for more details on representing categorical data) the number
of input neurons in our network is D = ∑c

j=1 mj + d− c. There are a couple
of design choices that need to be made on how to concatenate the categorical

30

feature input neurons and the numerical feature input neurons [1] which will
be discussed in the next section.

We chose to use the Poisson deviance loss function to measure the error
between the observed number of claims N (κ) for a set of features (pattern)
κ, and the network’s prediction of number of claims π(X(κ), v(κ)) (were we
write durations v explicitly) for the same features.

L(N (κ), π(X(κ), v(κ))) = 2N (κ)
(

π(X(κ), v(κ))
N (κ) − 1− log

(
π(X(κ), v(κ))

N (κ)

))
,

which is a common choice for this type of application of feedforward networks
[7]. More specifically the reason that Poisson deviance loss is suitable, is the
underlying Poisson model assumption 1.1. For details on the implementation
of these types of networks see chapter 2.

In our model we will assume that claims for different policyholders occur
independently from each other, which means that we do not implement ex-
posure v with an input neuron in the same way as numerical features. We
implement it as a multiplication of the networks output with the exposure,

π(X, v) = v · π∗(X), (3.1)

where π denotes the entire predictor, and π∗ is the feedforward network in
the proper sense of the term, which predicts probability of a claim to occur
given unit exposure, π∗(X) = π(X, 1).

3.2 Architectures
The goal of our network is to predict the number of claims, this means that
as for output neurons it is appropriate to use one output neuron with Poisson
activation function (2.6). In section 2.3.3 we discussed this in more detail.

For input neurons, since we have both one-hot encoded categorical fea-
tures and numerical features the choice of design is less evident. The naive
choice of having all features fed to the network in the same input layer is a
possibility but since one-hot encoded categories, where several input neurons
represents one feature and numerical features are represented only by one
neuron there is reason to believe that this is not optimal [1].

Instead we will use the first layer for categorical feature inputs, which will
be connected to a number of neurons in the second layer. These neurons will
constitute a numerical representation of the categorical features. Since the
inputs can only have values one and zero we can use simple linear activation
functions and there is no need to use bias terms (for the same reasons as in

31

the encoder part of autoencoders, discussed in section 2.4.4). These repre-
sentations will be concatenated with the numerical inputs and be connected
to the next layer which will be a hidden layer with no inputs or outputs.

Next, we can choose whether we want to use only one hidden layer or
several hidden layers before the output layer, consisting of a single neuron.
For the hidden layers it is suitable to use a more complex activation function
than the linear activation function. One common choice of activation function
for this or these layers is the hyperbolic tangent function. We also note that
in contrast to the first layer, we use bias terms in all connections.

For the first input layer, since the inputs are one-hot encoded one could
argue that this grouping of inputs should be reflected in the network architec-
ture by dividing the second layer neurons into subsets representing a feature
so that inputs representing the same features are only connected to this one
subset in the second layer. Then, for each categorical feature one would have
to choose the number of neurons in the second layer that should represent
the feature.

The other obvious design choice to make is to just connect all input
neurons in the first layer to the second layer, see figure 3.1. The advantage
of using a full connection between the inputs in the first layer and their
representation in the second layer is that the network can then take into
account potential correlations between different categorical features already
in the second layer. This discussion is analogous to the one in section 2.4.4
on whether one should use separate autoencoders for each feature or just
one autoencoder for all features. This latter design is the one that we will
use, since attempts by Delong&Kozak(2020)[1] indicate that this design is
the more promising one.

3.3 Improving prediction using autoencoders
The purpose of training autoencoders is to use representations given by the
hidden layer in the autoencoders as initial values for some of the weights
in our network. The architecture of the network for predicting number of
claims to which we will use autoencoders to initialize weights, is of the type
discussed in the previous section, with input neurons for the one-hot encoded
categorical features in the first layer and input neurons for the numerical
features in the second layer. It is for these two first layers that using initial
weights obtained from autoencoders may turn out to be useful for improving
the performance of the network in predicting the number of claims.

We train the autoencoder for categorical features, see section 2.4.4 for
details. We use the hidden layer’s neuron’s values as representations of the

32

Figure 3.1: Architecture for net predicting number of claims with both one-
hot encoded categorical variables and numerical variables as inputs.

categorical input. After that we re-scale the weights of this autoencoder
so that for all inputs the output remains the same, but the neuron values
that constitute the representation given by the hidden layer is in the interval
[−1,1]. This rescaling process will be outlined in more detail in the next
section.

Then we use these representations together with the numerical input val-
ues to train a second numerical autoencoder. To be more precise, the repre-
sentations are obtained by feeding the data to inputs in the first layer, and
for each sample fed to the network, the values of the neurons in the next
layer concatenated with numerical inputs, forms a new sample in the new
training set that we use to train the numerical autoencoder.

We use the weights between the input layer and the hidden layer in the
categorical autoencoder as initial values of the weights in the first layer in
the neural network. The weights in the numerical autoencoder between the
input and the hidden layer we use as initial values for the weights in the
second layer in our network.

After that we can train our network in the same way as if we were not
using autoencoders.

33

3.3.1 Re-scaling the weights for the categorical au-
toencoder

We want to re-scale the weights in the autoencoder so that the neurons in
the hidden layer only take values between 1 and −1. The reason for this is
that the numerical features are scaled to [−1,1], and when we use the encoder
weights for initializing weights between the categorical input layer and the
concatenation layer, we want (before training the network) all the neurons
in the concatenation layer to take values on the same scale for all (properly
scaled) input patterns.

Re-scaling of the weights wenc in the encoder part of the categorical au-
toencoder, i.e. between the input layer and the hidden layer, can be done[1]
by the transformation

wenc
i,j 7→ w∗,enc

i,j = 2
maxp{x(p),enc

i } −minp{x(p),enc
i }

wenc
i,j

− 2 minp{x(p),enc
i }

c(maxp{x(p),enc
i } −minp{x(p),enc

i })
+ 1

c
,

so that for pattern λ = argmaxp{x
(p),enc
i } and ⟨wi, x(λ),cat⟩ = ∑m̄c

k=1 x
(λ),cat
k wi,k

we get

⟨w∗
i , x(λ),cat⟩ = 2

maxp{x(p)
i } −minp{x(p)

i }

m̄c∑
k=1

x
(λ),cat
k wi,j

− 1
c

 2minp{x(p)
i }

maxp{x(p)
i } −minp{x(p)

i }
− 1

 m̄c∑
k=1

x
(λ),cat
k

= 2
⟨wi, x(λ),cat⟩ −minp{x(p)

i }
⟨wi, x(λ),cat⟩

− 1
c

 2minp{x(p)
i }

⟨wi, x(λ),cat⟩ −minp{x(p)
i }
− 1

 c

= 2⟨wi, x(λ),cat⟩
⟨wi, x(λ),cat⟩ −minp{x(p)

i }
− 2minp{x(p)

i }
⟨wi, x(λ),cat⟩ −minp{x(p)

i }
+ 1

= 1,

where we used that ∑m̄c
k=1 x

(λ),cat
k = c since our categorical inputs consists of

one-hot encoded features there are always c elements with value 1 and the
other elements have value 0.

34

With analogous computations one can verify that with η = argminp{x
(p),enc
i }

one gets
⟨w∗

i , x(η),cat⟩ = ... = −1.

We also need to re-scale the decoder part of the autoencoder[1]:

wdec
i,j 7→ w∗,dec

i,j =
maxp{x(p),enc

j } −minp{x(p),enc
j }

2 wdec
i,j

θdec
i 7→ θ∗,dec

i = θdec
i +

l∑
k=1

(w∗,dec
i,j + minp{x(p),enc

j }wdec
i,j).

Since we only use the encoder part of the autoencoder to initialize weights and
we do the re-scaling after training the network, there is no need to actually
compute the re-scaling of the decoder weights in practice.

35

Chapter 4

Quality assessment of
predictors

In this chapter we describe two methods for evaluating the quality of predic-
tors. The notation we use when describing them is adapted for our particular
application of them, although the methods are general statistical evaluation
tools and not restricted to actuarial applications.

We assume that we have a set of features X1, ..., Xp which we denote X
for short and a response, which in our case is the number of claims N . We
are interested in modeling the relation

µ(X) = E[N |X] (4.1)

In actuarial applications generally we often think of X as information about
policyholders and µ(X) as the pure premium. However, in this thesis we
focus on modeling just the number of claims N , so we consider cases where
the response is the number of claims N , and hence we think of µ(X) not as
the pure premium but as the true expected number of claims.

In practice the function X 7→ µ(X) is unknown in general, and we try
to model it with a simpler function π(X). The quality of a method for
prediction can thus be assessed using the pairs (µ(X), π(X)). For insurance
applications one factor which is almost always relevant for predictions is the
time policyholders are exposed to risk - duration v. If v is assumed to be
known, we could treat it is as one of the features in X, but because of its
importance we write it explicitly as µ(X, v) and π(X, v). We note that one
often assumes that the risk is linearly related to duration and it is common
to use models where this relation holds, i.e. π(X, v) = vπ(X, 1).

In this chapter we assume that we have n observations (Ni, Xi, vi)n
i=1 and

a method for prediction π(X, v) that we want to assess.

36

4.1 Risk-ordered predictions compared with
empirical responses

The following method is similar to the binned response plots described and
used by Delong et al. [14] and Lindholm et al. [4].

First we want to obtain a risk order from the predictions. This is done
by ordering the predictions for all observations, but with duration v set to
1, from smallest to largest. We define the set of integers I = {1, 2, ..., n}
representing the indices. Next, we define an integer-valued function ρ(i) :
I → I to keep track of the risk order, where ρ(i) if such that

π(Xρ(i), 1) ≤ π(Xρ(i+1), 1) for i = 1, ..., n− 1 (4.2)

holds. This risk order we will use to compare (π(Xi, vi))n
i=1 with (Ni)n

i=1. In
order to do that we will order (π(Xi, vi))n

i=1 according to the risk order ρ(i),
and put them into b equally large bins of size n/b, where b (and n) is chosen
such that n/b is an integer, where we compute the mean for each bin. We
apply the same procedure to (Ni)n

i=1. We define bin functions

βπ(k) = 1
n/b

n
b

k∑
i= n

b
(k−1)+1

π(Xρ(i), Nρ(i)) for k = 1,...,b

βN(k) = 1
n/b

n
b

k∑
i= n

b
(k−1)+1

Nρ(i) for k = 1,...,b

Plotting βπ(k) as a curve and βN(k) as dots we can see how well our
prediction method π works depending on the size of the risk. Examples of
this can be seen in figures 5.2 and 5.3.

4.2 Concentration curves
Another method for assessing the quality of methods for prediction is to use
concentration curves. This is particularly useful when we want to compare
performance of several prediction methods π1, π2, ..., since we can easily plot
the concentration curve for each one of them in the same plot and compare
their performances for different risk sizes. For example we could observe that
one method, π1, better predicts events for low-risk areas in the feature space
than π2, but π2 may yield better predictions than π1 for high-risk areas in
the feature space.

37

We consider a method π with distribution function Fπ(z) = P[π(X, v) ≤
z] for z ≥ 0. We define the concentration curve [3] of µ(X, v) with respect
to π based on the information contained in X and v as

α 7→ CC[µ(X, v), π(X, v); α] = E[µ(X, v)I(π(X, v) ≤ F −1
π (α))]

E[µ(X, v)] (4.3)

Using our definition (4.1) and the law of total expectation we see that

E[µ(X, v)I(π(X, v) ≤ F −1
π (α))] = E[E[N |X, v]I(π(X, v) ≤ F −1

π (α))]
= E[E[NI(π(X, v) ≤ F −1

π (α))|X, v]]
= E[NI(π(X, v) ≤ F −1

π (α))]

and hence it is possible to use N instead of µ(X, v),

CC[µ(X, v), π(X, v); α] = CC[N, π(X, v); α] = E[NI(π(X, v) ≤ F −1
π (α))]

E[µ(X, v)] .

If we assume the our samples (Ni, Xi, vi)n
i=1 to be independent and identically

distributed, we can estimate the concentration curve:

ĈC[µ(X, v), π(X, v); α] = ĈC[N, π(X, v); α]

= n∑n
i=1 Ni

1
n

∑
i|π̂(Xi,vi)≤F̂ −1

π (α)

Ni

=
∑

i|π̂(Xi,vi)≤F̂ −1
π (α) Ni∑n

i=1 Ni

=
{

F̂ −1
π (z) = 1

n

n∑
i=1

I(π̂(Xi, vi) ≤ z)
}

= 1∑n
i=1 Ni

∑
i|F̂π(π̂(Xi,vi))≤α

Ni

= 1∑n
i=1 Ni

∑
i|[1

n

∑n

j
I(π̂(Xj ,vi)≤π̂(Xi,vi))]≤α

Ni, (4.4)

where π̂ denotes the estimated predictor.
In our applications we focus on the frequency of claims N/v (number

of claims divided by duration for the corresponding contracts). Thus we
compare frequency of claims µ(X, v)/v with predictions where we set v = 1:
π(X, v) = π(X, 1). Inserting this into (4.4), we get

ĈC[µ(X, 1), π(X, 1); α] = 1∑n
i=1

Ni

vi

∑
i|[1

n

∑n

j
I(π̂(Xj ,1)≤π̂(Xi,1))]≤α

Ni

vi

. (4.5)

38

Note that the risk order in (4.5), i|F̂π(π̂(Xi, 1)) ≤ α, is the risk order (4.2)
expressed cumulatively (corresponding to the set of indices i|ρ(i)/n ≤ α).

Since we have different durations for different contracts in our data set, by
setting duration v = 1 we compare the just predictive power of the method µ.
Otherwise the distribution of durations in the data set (which are just given
in the data, and thus completely unrelated to the methods for prediction)
would influence the concentration curve. However we note that the difference
in duration for different data points influences our methods of prediction µ
in that points X with more duration v in the data set are better estimated
than points X with less duration v.

Furthermore we note that our prediction methods work by computing a
probability of claim per time unit and then multiplying by duration (3.1), so
setting v = 1 makes sense for risk ordering.

Examples of usage of concentration curves can be seen in figure 5.4.

4.2.1 Modified concentration curves
Although risk-ordering with durations set v = 1 is reasonable, using µ(X, v)/v
relies on the assumption (1.1). Since this assumption most likely only holds
approximately at best, using (Ni/vi)n

i=1 in (4.5) probably introduces noise
into the evaluation. We therefore also try a modified version of concentration
curves, where we risk order as in (4.5) but use (Ni)n

i=1 instead of (Ni/vi)n
i=1,

ĈCmod[µ(X, v), π(X, v); α] = ĈC[µ(X, v), π(X, 1); α]

= 1∑n
i=1 Ni

∑
i|[1

n

∑n

j
I(π̂(Xj ,1)≤π̂(Xi,1))]≤α

Ni.

39

Chapter 5

Application

5.1 The data set
To investigate the methods discussed in previous sections we apply the meth-
ods to a data set called freMTPL2freq (French Motor Claims Datasets),
available via the R package CASdatasets, consisting of 678 013 observations.
The set contains data about car insurance policies. For each contract we
have data about various features of the policyholders, exposure period and
number of claims during the exposure period.

Following Delong&Kozak(2020)[1] we use 100 000 randomly sampled ob-
servations (contracts), in order to keep computations less time consuming.

A common practice in machine learning is to divide the sample into three
types of subsets:

• A training set which is used to train the network.

• A validation set which is used to evaluate the network’s performance
as we vary different parameters.

• A test set is then used to make the final evaluation of the performance,
using the parameters that performed the best on the validation set.

We divide our set of 100 000 samples into five subsets consisting of 20
000 samples each.

For the preliminary experiment, where we compare performance of dif-
ferent types of autoencoders, we perform training and evaluation on each
of our five subsets. This is the same approach as Delong&Kozak(2020)[1].
Since the purpose of training autoencoders is to obtain a low dimensional
numerical representaion of categorical features, assuming that each combi-
nation of levels of the categories are represented to a similar extent in each

40

of the five subsets, there is no advantage performing the evaluation on an
"out-of-sample" validation set compared to the "in-sample" approach we use.

For predicting the number of claims, we divide our 100 000 samples into
a set of 80 000 samples which we use as training set and validation set
alternately in a 4-fold cross validation process. The validation sets thus
consist of 20 000 samples and training sets of 60 000 samples. The remaining
20 000 samples we use as a test set.

The features we use are described in 5.1.

Feature Feature name Type No. levels
in data set

Area code. Area Categorical 6
The power of the car. VehPower Categorical 6
Age of the car (years). VehAge Categorical 3
Driver’s age (years). DrivAge Categorical 7
Brand of the car. VehBrand Categorical 11
Region (areas are subdivided Region Categorical 21
into regions).

Bonus malus (bonussystem BonusMalus Numerical -
depending on environmental
impact of the vehicle):50-350
<100 means bonus,
>100 means malus.

The density of inhabitants log-Density Numerical -
where the driver of the car lives.

Gas: diesel or regular. VehGas Binary 2

Table 5.1: Features in the data set freMTPL2freq that we use, description,
type and for categorical features, number of levels.

41

5.1.1 A note on reliability
Since our data is generated by purchases of insurance contracts it is likely
there are several combinations of features where we do not have any sam-
ples. Hence we do not know anything about the so-called true probability
of these contracts resulting in claims. It is reasonable to require our model
to handle these cases in a smoothing way, so that features in the data that
are unrepresented in the training set are predicted to result in a number of
claims close to the number of resulting claims to input data that is similar
but represented in the training data.

For example, for a specific value on Area, VehPower, VehAge, DrivAge
and Region, we may only have data for 2 vehicle brands. Then for contracts
with the other 9 vehicle brands, and all other data the same, we want the
model to predict a number of claims similar to the number of claims predicted
for the data where the categories, except vehicle brand, are the same.

We also note that combinations of the categorical features that we do
have contracts for (input that it is represented in our training data) have
different amounts of exposure. The more exposure we have for a certain
input the more we can trust in the observed number of claims to be a good
representation of the underlying generating distribution µ(X) for that input.
We want our model π(X) to take this into account.

5.1.2 Overview of the data
In table 5.2 we present some summary statistics for each of our five 20 000
sample subsets of the total 100 000 samples.

We check exposures for each subset and category (we do not present the
numbers here since it would take up a large amount of space but is only of
peripheral interest), and we note that for each level in each category there
seems to be a fairly similar amount of exposure. Thus we can assume that
dividing the data into these subsets will cause no bias related to misrepre-
sentation.

42

Set 1 Set 2 Set 3 Set 4 Set 5 All sets
No. claims:
Total 1071 1103 1002 1117 1050 5343
Mean 0.05355 0.05515 0.05010 0.05585 0.05250 0.05343
Variance 0.05539 0.05871 0.05330 0.06553 0.05565 0.05772
Observed:
0 claims 18976 18956 19053 18965 19007 94957
1 claim 977 989 894 963 938 4761
2 claims 47 53 51 70 53 274
3 claims 1 2 1 2 6
4 claims 0
5 claims 1 1
6-10 claims 0
11 claims 1 1
>11 claims 0

Table 5.2: Summary statistics for the data set and its subsets. Note that the
samples have different exposure times.

5.1.3 Preparation of the data
Before we start modeling, we transform the data using min-max scaling for
the numerical data and binary data. For each numerical feature it maps
the largest value represented in the data to 1 and the smallest value to −1.
The other values in the data are mapped linearly onto (−1,1). For binary
variables the value True is mapped to 1 and False is mapped to −1. This
transformation is done to the entire data set consisting of 100 000 samples,
not to the training set, validation set and test set independently. Bonus-
malus is capped at 150.

For categorical features we use one-hot encoding as described in section
2.3.

The preparation and cleaning of the data is the same as Delong&Kozak(2020)[1],
which in turn follows Wüthrich (2019) [11] where the process is described in
detail.

43

5.2 Types of autoencoders
We start by trying different types of autoencoders for categorical data and
evaluate them by two measures which we call marginal precision and joint
precision. These are the same measures as Delong&Kozak(2020)[1] use, so
we can easily compare our results with theirs. Marginal precission is the
percentage of correctly classified features (each correctly classified feature is
weighted by dividing by the number of levels of the feature). Joint precision
is the percentage of correctly classified samples – all features for a correctly
classified sample are correctly reproduced by the autoencoder.

We try different numbers of neurons in the hidden layer of the autoen-
coder, two different numbers of epochs in the training process (15 epochs and
500 epochs), and the three different architectures outlined in section 2.4.4.
namely:

1. Separate autoencoders for each feature (separate),

2. One autoencoder in total, with one softmax for all output (softmax
all),

3. One autoencoder in total, with one softmax per feature among the
outputs (softmax each).

Here we use all 100 000 samples and compute marginal and joint precision
on each of our five subsets of the total 100 000 samples.

5.2.1 Implementation from scratch in C
We start by implementing the networks and training algorithms – backwards
propagation for computing the gradient and NADAM for optimizing the loss
function, as described in section 2.2 – from scratch in C without external
libraries. In table 5.3 we show the results.

Although implementation from scratch is useful for understanding the
underlying concepts of artificial neural networks, it turned out to be rela-
tively slow to run. Since optimizing program code is note the focus on this
thesis, we chose only to try out a few combinations of hyperparameters us-
ing this C-code and then proceed to use Python with Keras (runned on top
of Tensorflow), which are well established libraries for both industrial and
academic applications.

The results from our C implementation of autoencoders (table 5.3) seem
to correspond well with the results that Delong&Kozak(2020)[1] obtained,
which is an indication that the implementation is correct, but not optimal
from a programming perspective.

44

Neurons in Epochs Learning Network Joint Marginal
hidden layer rate type precision precision
6 15 0.001 separate 0.114% 25.99%
6 15 0.001 softmax all 0.44% 33.65%
6 15 0.001 softmax each 0.264% 37.75%
6 500 0.001 softmax all 18.053% 68.95%
6 500 0.001 softmax each 76.64%∗ 91.58%∗

Table 5.3: Performance of autoencoders using code implemented from
scratch in C. On each of our 5 data sets we train an autoencoder and evalu-
ate the joint precision and marginal precision on the same training set. The
performance measures in this table are the averages of the results on the five
data sets. For the run marked with an asterisk the autoencoder was only
trained and evaluated on one data set.

5.2.2 Implementation using Python with Keras
The type of architecture that seems to yield best results from our limited
trials with autoencoders implemented in C was "softmax each". Since this
is in accordance with Delong&Kozak(2020)[1], for the Python/Keras imple-
mentation we restrict ourselves to only considering this type of network.

We compute marginal and joint precision on each of our five subsets of
the total 100 000 samples, for 15 epochs and 500 epochs. For the learning
rate hyperparameter, we use values 0.01 and 0.001. As for the number of
neurons, we try autoencoders with 6, 8, 10, 12, 15, 20 and 30 neurons in the
hidden layer. The result can be seen in figure 5.1.

45

Figure 5.1: Performance of autoencoders with 6, 8, 10, 12, 15, 20 and 30
neurons in the hidden layer, using Python and Keras. On each of our 5 data
sets we train an autoencoder and evaluate the joint precision and marginal
precision on the same set. The performance measures in this table are the
averages of the results on the five data sets. Here we only use the autoen-
coders of type "softmax each".

More neurons in the hidden layer yields better performance, and longer
training times yields better performance – this seems reasonable. We also
note that our results are very similar to the results obtained by Delong&Kozak(2020)[1],
so we agree with their conclusion to use 8 neurons in the hidden layer in fur-
ther experiments.

46

5.3 Predicting number of claims
For predicting the number of claims using empirical data we try three differ-
ent methods:

1. Gradient boosting machines

2. Feedforward networks

3. Feedforward networks with (some) weights initialized using autoen-
coders

Since each of these methods contains several hyperparameters, we use
4-fold cross validation on the first 80 000 samples in our set in order to find
as good hyperparameters as possible. Using the hyperparameters we found,
we compare the three on an independent test set – the last 20 000 samples.

In addition to these three methods we first try an intercept model to
predict future number of claims, that is we take the mean on the training set
and use this as a predictor for every data point in the validation set.

We use Poisson deviance loss to measure performance of the methods,
since it is not so evident what constitutes a good value of Poisson deviance
loss, using a simple intercept model is useful to better understand the pre-
dictive power of the more complex models.

We present the results in table 5.4.

Used as validation set
Set 1 Set 2 Set 3 Set 4 Mean

Intercept 0.3200126 0.3281709 0.3081252 0.3350932 0.3228505
only

Table 5.4: Poisson deviance loss for predicting number of claims with training
set intercept. 4-fold cross validation using the first 80 000 observations.

47

5.3.1 Gradient boosting machines
Gradient boosting machines (GBM), explained in more detail in appendix
C, is not our main focus in this report but we use it as a reference since it is
a fairly commonly used method for predicting number of claims.

We start by using Gaussian loss function and exposure as weights, see
table 5.5. Then we try to use the Poisson loss function with exposure as
log-offset, see table 5.6.

The parameter number of trees constitutes the number of iterations com-
puted (number of trees), but we use the best iteration from a 10-fold cross
validation process (this is a feature of the library, we do not do it manu-
ally) for prediction. When we use Gaussian loss function the best iteration
is obtained quite early, so there is no point in trying large numbers of trees.
However when we use Poisson loss function, sometimes the best iteration is
obtained comparatively late (at about between iteration 10 000 and 15 000),
which is why we in this case mainly use 15 000, but also include one attempt
with 1000 trees for comparison. The downside of using larger numbers of
trees is longer computation times.

Used as validation set
Set 1 Set 2 Set 3 Set 4 Mean

intDepth=1 0.3191205 0.3283910 0.3115208 0.3350613 0.3235234
intDepth=2 0.3179736 0.3316878 0.3130488 0.3361251 0.3247088
intDepth=3 0.3281063 0.3361417 0.3099411 0.3359109 0.3275250

Table 5.5: Poisson deviance loss for predicting number of claims with GBM
using Gaussian loss function and exposure as weights. Shrinkage = 0.001.
4-fold cross validation for the first 80 000 observations.

When we use Gaussian loss function, increasing the interaction depth
does not seem to improve the performance, whereas in the case when we use
Poisson loss function, using interaction depth = 3 gives us the best result.
GBM with Gaussian loss function performs worse than the simple intercept
model (table 5.4), so clearly it is not useful for this application. Just having
a quick glance at the data as in section 5.1.2, the data seems to be closer to
Poisson distributed rather than normally distributed, so the fact that GBM
with Poisson loss function performs better is not very surprising.

The fact that increasing the interaction depth yields better results, as
we observe when using Poisson loss function, is an indication that there are
dependencies between the features.

48

Used as validation set
Set 1 Set 2 Set 3 Set 4 Mean

intDepth=1, 0.3212994 0.3303933 0.3131945 0.3370526 0.3254849
1000 trees
intDepth=1, 0.3118076 0.3219771 0.3079024 0.3286407 0.3175820
15000 trees
intDepth=2, 0.3100158 0.3181216 0.3052694 0.3299227 0.3158324
15000 trees
intDepth=3, 0.3087078 0.3171972 0.3040827 0.3288496 0.3147093
15000 trees

Table 5.6: Poisson deviance loss for predicting number of claims with GBM
using Poisson loss function and log-exposure as offset. Shrinkage = 0.001.
4-fold cross-validation for the first 80 000 observations.

Although there are stochastic elements of GBM, since we use GBM mainly
for reference and each evaluation of a model with a certain set of hyperpa-
rameters is fairly time consuming, we choose not to evaluate them more than
once each.

5.3.2 Feedforward networks
The networks we try here have the design presented in section 3.2 and are
depicted in figure 3.1.

Since there are a lot of different hyperparameters we can vary, and train-
ing models is time consuming we have to make restrictions on what hyper-
parameters we try.

We start by trying models with three hidden layers, since this number of
layers yielded good results for Delong&Kozak (2020)[1] and also autoencoders
have been shown to be unsuitable for shallow and small neural networks [12]
[13] - three layers is hopefully a good compromise, since we also want to keep
the model small if possible.

We decide to start by trying networks with 60 neurons in total, distributed
differently in the three hidden layers.

Our previous experiment regarding autoencoders for categorical features
shows that 8 neurons in the layer connected to the categorical input seems
suitable. From this experiment we also conclude that when we use autoen-
coders for categorical features, we use learning rate 0.001 and train the au-
toencoder for 500 epochs.

49

Since we have not performed any experiments regarding the choice of
learning rate and number of epochs for the numerical autoencoder, we use
inspiration from Delong&Kozak (2020)[1]. For three layers in the model with
autoencoders without noise added that performs best for them the numerical
autoencoder is trained for 200 epochs and uses learning rate 0.005. When
they use denoising autoencoders in the model that performs best the numer-
ical autoencoder is trained for 15 epochs and uses learning rate 0.005.

We decide to try models both using autoencoders and denoising autoen-
coders, and decide to keep the number of epochs trained and learning rates
constant. The values we decide to use are learning rate 0.001 and 500 epochs
for categorical autoencoders. For numerical autoencoders we use learning
rate 0.005 and 200 epochs.

As discussed in section 2.4.4. on categorical autoencoders, we do not use
bias terms in the layer with the neurons that constitutes the representation
of the categories (the layer where we use 8 neurons). Except for this, bias
terms are used in all neurons in the network, and we initialize both biases
and weights for all neurons using Xavier initialization, unless the neurons are
initialized with weights from autoencoders.

For the feedforward network we use the learning rate 0.0001, since this
learning rate was used for most of the successful networks tried by De-
long&Kozak (2020)[1].

When we use denoising autoencoders we use sample noise for categories
(for q = 2 features per sample) and Guassian noise for numerical features
(with σ = 0.1) since this was the type of noise used by Delong&Kozak
(2020)[1] for their model that performed the best.

Initial attempts

A first attempt using three layers with 10, 20 and 30 neurons and autoen-
coders (not denoising) for 4-fold cross validation, average computed from
5 runs, and parameters as described above yields the result 0.3134550 in
terms of Poisson deviance. The same network but without autoencoders
gives the result 0.3138441, and if we instead use denoising autoencoders (as
described in the previous section) we get the result 0.3137780. Although
we get increased performance when we use autoencoders, training them for
500 and 200 epochs is time consuming, so it may be worth considering pos-
sibilities of reducing the number of epochs that we train the autoencoders
for.

The model which gives the best performance for Delong&Kozak (2020)[1]
is a model where denoising autoencoders are used – the numerical autoen-
coder is trained for 15 epochs with learning rate 0.005, and autoencoder for

50

categorical features is also trained for 15 epochs with learning rate 0.005.
We try these values for three layers with number of neurons 10, 20 and 30 as
before, and with (non-denoising) autoencoders and get the result 0.3137979
and using denoising autoencoders we get 0.3137256, so for non-denoising
autoencoders we clearly get a worse result, but for denoising autoencoders
we actually get a somewhat better result.

We also mention that we made an attempt at using early stopping with
15 epochs of patience when training autoencoders, but since autoencoders
both for numerical and categorical features mostly did not stop before the
500 or 200 epochs it is not clear that stopping before 500 and 200 epochs is
the best option.

Since we want to have these hyperparameters fixed (in order to limit the
scope of this thesis), we decide to use 500 and 200 epochs, although we note
that for denoising autoencoders it is probably possible to improve the results
somewhat by using fewer epochs when training the autoencoders.

It is also possible that we could find a useful early-stopping condition if
we for example use fewer epochs of patience or allow the training process
to stop if improvements in Poisson deviance are small enough (we now only
allow stopping if Poisson deviance ceases to decrease).

Three layers with 60 neurons

We now train different permutations of networks with 10, 20 and 30 neurons
in three layers, without autoencoders, with autoencoders, and with denoising
autoencoders using previously mentioned hyperparameters. We use 4-fold
cross validation and 5 runs - in total 20 runs for each model, with 60 000
samples as training set and 20 000 samples as validation set.

For the feedforward network (but not for autoencoders, if used) we also
use an early stopping condition. We stop if we see no improvement (on the
validation set) for 15 epochs. Note that the set we use for early stopping is the
same validation set we use for prediction. These 80 000 samples correspond
to the sets 1-4 in table 5.2.

The 20 000 samples corresponding to set 5 in table 5.2 are used in the
next step, as an independent test set to compare some of the best models
with each other and also the best GBM model and the intercept model for
reference.

The result of runs with three layers and permutations of 10, 20 and 30
neurons can be seen in table 5.7. We note that the best model is the model
with autoencoders and 20-30-10 neurons. For models using denoising au-
toencoders the setting 30-20-10, which is also the setting that performs best
if we use no autoencoders.

51

Poisson deviance (·102)
Conf.
neurons No AE With AE With denoising AE
10-20-30 31.38441 (0.86701) 31.34550 (0.86737) 31.37780 (0.84886)
10-30-20 31.40698 (0.86972) 31.33979 (0.85685) 31.35682 (0.84909)

20-10-30 31.40325 (0.88503) 31.32712 (0.86557) 31.36300 (0.85859)
20-30-10 31.36925 (0.86003) 31.31859 (0.87391) 31.34188 (0.87538)

30-10-20 31.36017 (0.86955) 31.32668 (0.86540) 31.36644 (0.85364)
30-20-10 31.36008 (0.88026) 31.32016 (0.88478) 31.33366 (0.87864)

Table 5.7: Predictions made with 4-fold cross validation, mean taken over
five runs (i.e. 20 in total) and standard deviation in parentheses. The set
used for checking the early stopping condition is also used for prediction
here. The networks tried here all have 60 neurons in three hidden layers,
we try different configurations of them (10-20-30 means 10 neurons in the
first layer and 30 in the last layer). For each configuration we try using:
1. no autoencoders, 2. with autoencoders but without adding noise when
training them, 3. denoising autoencoders. For denoising autoencoders we use
sample noise for categories (for q = 2 features per sample) and Gaussian noise
for numerical features (with σ = 0.1). The feedforward network is trained
for a maximum of 1000 epochs (early stopping condition with 15 epochs of
patience), and when autoencoders are used AE for categorical features are
trained for 500 epochs with learning rate 0.001 (no early stopping), and AE
for numerical features are trained for 200 epochs with learning rate 0.005 (no
early stopping).

In general models using autoencoders perform better than models that
use denoising autoencoders. But models that use denoising autoencoders
perform better than models that do not use autoencoders.

We decide to pick three of these models for the next step, where we com-
pare them using the independent test set: 30-20-10 without autoencoders,
20-30-10 with autoencoders, and 30-20-10 with denoising autoencoders.

52

Three layers: 50-35-20

Since we to a large degree are inspired by Delong&Kozak (2020)[1], it is in-
teresting to test the the hyperparameters and models with denoising autoen-
coders that performed best for them: three layers with 50-35-20 neurons; for
autoencoders for categories we use sample noise (q = 2) features per sample
and train them for 15 epochs with learning rate 0.005, and for autoencoders
for numerical features we use Gaussian noise σ = 0.1 and train them for 15
epochs with learning rate 0.005.

In addition to this we also try training and evaluating the model in the
same way as Delong&Kozak (2020)[1]: we use 60 000 samples as training set,
20 000 samples as validation set used for determining early stopping with 15
epochs of patience (for a maximum of 1000 epochs), and Poisson deviance
computed on an independent test set consisting of 20 000 samples.

In this way we train the model 10 times and compute the average Poisson
deviance.

For comparison we also try the same model with modifications: 1. with-
out using autoencoders, 2. using non-denoising autoencoders and train the
autoencoders for categorical features for 500 epochs with learning rate 0.001,
and for numerical features 200 epochs with learning rate 0.005, i.e. same
hyperparameters as in previous experiment, but models are trained and eval-
uated in the same way as we do for the model with 50-35-20 neurons and
denoising autoencoders.

When we use denoising autoencoders we get the result 0.3080082, for
the model without any autoencoder we get the result 0.3088068 and for
the model using non-denoising autoencoders we get 0.3081206. The setting
where we use denoising autoencoders performs best, which is consistent with
the result of Delong&Kozak (2020)[1].

One layer, without using autoencoders

For Delong&Kozak (2020)[1] there were some well-performing models using
only one hidden layer, especially so for models where autoencoders were not
used. We decide to try models with one layer without using autoencoders
where the networks have 3, 4, 6, 8, 10, 15, 20, 30, 50 and 80 neurons in a
single hidden layer. Except for this, the models are trained and evaluated in
the same way as models with 10, 20, and 30 neurons in three layers.

We see in table 5.8 that all models have similar performance although
models with only 3 and 4 neurons in the hidden layer seem to perform a
bit worse. This is also true for the largest models with 50 and 80 neurons.
The model using 20 neurons performs the best, 0.3137784, and we decide

53

to pick this model from here to include in further comparisons with the other
well-performing models from previous experiments.

Poisson deviance (·102)
Number of.
neurons Mean Std. deviation
3 31.41211 0.88134
4 31.40179 0.88170
6 31.37958 0.88205
8 31.42447 0.86552
10 31.38509 0.89553
15 31.39181 0.88311
20 31.37784 0.86005
30 31.38671 0.87705
50 31.40366 0.85271
80 31.46292 0.81731

Table 5.8: Predictions made with 4-fold cross validation, mean taken over
five runs (i.e. 20 in total). The set used for checking the early stopping
condition is also used for prediction here. The networks tried here all have
one hidden layer and we try 10 different numbers of neurons between 3 and
80. The feedforward network is trained for a maximum of 1000 epochs (early
stopping condition with 15 epochs of patience).

We also note for all runs for models with 6 or more neurons, the early
stopping is activated, while for networks with 3 and 4 in a few cases the
networks are trained for the maximum number of epochs (1000). So the
reason that networks with more neurons, for example 50 or 80, in the hidden
layer, performs worse than networks with 20 neurons in the hidden layer
seems not to be because of insufficient training time for the larger networks.

5.3.3 Comparing methods
We train each of our three predictors once using the 80 000 samples previously
used for 4-fold cross validation as training set (sets 1-4 in table 5.2), and
then we evaluate them using our 20 000 last samples not previously used
as test set (set 5 in table 5.2). For each predictor we make a risk ordering
evaluation as described in section 4.1, and we compare the methods using
concentration curves as described in section 4.2. As hyperparameters we use
the best ones from our previous results, see table 5.9 for a summation, we

54

also present the Poisson deviance for the runs used to create risk-ordering
plots and concentration curves. The number of epochs we train networks are
the average numbers of epochs based on the early stopping condition in the
runs in section 5.3.2.

Predictor Hyperparameters Poisson deviance
Intercept only - 0.3228505
GBM intDepth=3, 0.3089879

15000 trees,
Shrinkage = 0.001.

Feedforward network 3 layers: 30-20-10, 243 epochs. 0.3083416
Feedforward network 3 layers: 20-30-10, 237 epochs. 0.3074430
with autoencoders CatAE: 500 epochs, learning

rate: 0.001. NumAE: 200
epochs, learning rate: 0.005.

Feedforward network 3 layers: 30-20-10, 243 epochs. 0.3088095
with denoising CatAE: 500 epochs, learning
autoencoders rate: 0.001. NumAE: 200

epochs, learning rate: 0.005.
Feedforward network 3 layers: 50-35-20, 183 epochs. 0.3080738
Feedforward network 3 layers: 50-35-20, 155 epochs. 0.3074336
with autoencoders CatAE: 500 epochs, learning

rate: 0.001. NumAE: 200
epochs, learning rate: 0.005.

Feedforward network 3 layers: 50-35-20, 198 epochs. 0.3078815
with denoising CatAE: 15 epochs, learning
autoencoders rate: 0.005. NumAE: 15

epochs, learning rate: 0.005.
Feedforward network 1 layer: 20, 463 epochs. 0.3083020

Table 5.9: Some of the better performing networks based on previous exper-
iments in section 5.3.2, GBM and intercept-only models. Hyperparameters
not listed in the table are described in section 5.3.2. The Poisson deviances
for the networks are for the run that is used to compute risk-ordering and
concentration curves, with prediction made on the independent test set.

55

Risk-ordering

Risk-ordering, as described in section 4.1, can be seen in plots 5.2 and 5.3.

(a) GBM. (b) 30-20-10, no AE.

(c) 20-30-10, with AE. (d) 30-20-10, with denoising AE.

Figure 5.2: Risk-ordering for predictors listed in table 5.9 part 1/2.

In figures 5.2 and 5.3, we see no clear difference between different models.
Network models compared to GBM seem to perform similarly well or slightly
better. The models using denoising autoencoders, especially the model with
50-35-20 neurons, seem to perform slightly better than the other models.

56

(a) 50-35-20, no AE. (b) 50-35-20, with AE.

(c) 50-35-20, with denoising AE. (d) One layer: 20, no AE.

Figure 5.3: Risk-ordering for predictors listed in table 5.9 part 2/2.

57

Concentration curves for frequency of claims

To compare the performance of different predictors we also use concentration
curves for frequency of claims, as described in section 4.2. The concentration
curves are plotted in figure 5.4. Since the curves are pretty close to each
other at many times, we present the values of the concentration curves, used
to create figure 5.4, in table 5.10.

Pr. Predictor (·102)
GBM 30- 20- 30- 50- 50- 50- 20

20- 30- 20- 35- 35- 35-
10 10 10 20 20 20

AE den. AE den.
AE AE

0.1 2.64 2.54 1.87 1.74 1.90 2.13 1.53 2.97
0.2 6.84 7.44 6.18 8.72 9.29 6.95 6.23 12.92
0.3 16.29 17.23 11.33 11.83 17.44 10.41 16.80 18.38
0.4 20.72 21.21 21.11 14.53 22.71 15.17 20.99 24.10
0.5 24.27 27.45 24.43 18.30 26.25 24.57 24.74 27.93
0.6 29.89 31.60 28.16 27.18 32.54 28.50 28.71 32.30
0.7 34.46 35.24 34.90 34.41 36.61 35.34 36.40 36.96
0.8 43.83 43.02 43.09 49.32 49.60 44.06 49.28 44.54
0.9 56.99 56.66 57.25 57.00 56.60 56.86 56.76 50.99

Poisson deviance (·102)
30.899 30.834 30.744 30.881 30.807 30.743 30.788 30.830

Table 5.10: Values used for the concentration curves (frequency) in figure
5.4. Best values in bold font, and worst values underlined. We also repeat
Poisson deviances from table 5.9.

Judging by figure 5.4 and table 5.10 it seems like the models using autoen-
coders, especially denoising autoencoders, performs best, while the network
model with only one layer performs worst at most probabilities.

Compared to network models, GBM have an average performance. If we
compare the model 30-20-10 with denoising autoencoders with GBM we see
that GBM performs better at probabilities 0.2, 0.8 and 0.9, while for all other
probabilities 30-20-10 with denoising autoencoders performs better (for 0.4,
0.5, 0.6 and 0.7 it performs better than the other network models too).

58

Figure 5.4: Concentration curves comparing predictions using the different
predictors (frequency of claims, see section 4.2) listed in table 5.9. Since
values of the curves often are close to each other, we also present these
values in table 5.10.

Modified concentration curves

We note that the concentration curves for frequency of claims in figure 5.4
are not very smooth, which is an indication that our suspicion discussed in
sections 4.2-4.2.1 that our assumption (1.1) about distribution of claims N
only holding approximately, is probably right.

59

In figure 5.5 we present modified concentration curves (as discussed in
section 4.2.1). Here concentration curves are done for the number of claims,
but with risk-ordering by frequency of claims. As before, since values of
concentration curves often are very close to each other we also present them
in table 5.11.

Figure 5.5: Modified concentration curves comparing predictions using the
different predictors (number of claims, risk order by frequency of claims, see
section 4.2.1) listed in table 5.9. Since values of the curves often are close to
each other, we also present these values in table 5.11.

60

Pr. Predictor (·102)
GBM 30- 20- 30- 50- 50- 50- 20

20- 30- 20- 35- 35- 35-
10 10 10 20 20 20

AE den. AE den.
AE AE

0.1 6.57 4.38 4.10 4.48 4.10 4.10 3.81 4.67
0.2 14.38 10.19 9.62 10.57 10.29 9.90 9.43 9.90
0.3 21.05 16.95 16.00 17.43 17.24 17.24 16.57 18.19
0.4 29.43 25.05 25.33 26.29 25.43 24.19 24.67 25.14
0.5 38.29 33.43 32.29 34.29 33.24 33.43 32.48 33.43
0.6 45.90 43.90 42.48 42.67 43.05 42.76 41.24 43.24
0.7 55.14 53.90 53.33 53.62 53.52 53.81 54.00 53.90
0.8 65.62 66.57 66.38 67.43 66.29 65.52 66.10 66.57
0.9 78.95 78.95 79.14 78.38 78.48 78.48 78.48 79.05

Poisson deviance (·102)
30.899 30.834 30.744 30.881 30.807 30.743 30.788 30.830

Table 5.11: Values used for the modified concentration curves (number of
claims, risk ordered by frequency) in figure 5.5. Best values in bold font, and
worst values underlined. We also repeat Poisson deviances from table 5.9.

In figure 5.5 and table 5.11, we see that all neural networks clearly perform
better than GBM, except at some high probabilities (0.8 and 0.9). Moreover
we see that neural networks using autoencoders (denoising or non-denoising)
mostly perform better than networks without autoencoders. It is less clear
which of the networks using autoencoders that perform best, but we point
out that the network with 50-35-20 neurons that uses denoising autoencoders
is a good candidate. It performs best at probability levels 0.1, 0.2 and 0.6,
and when it does not perform best it mostly performs better than median
(of the models we tried here).

The overall impression, judging by assessments by risk-ordering and con-
centration curves, is that it is probably possible to find neural network mod-
els that perform better than standard methods such as GBM, if one chooses
network design and hyperparameters carefully.

61

Predictions

We use the models previously evaluated on a validation set to measure per-
formance on the independent test set (set 5 in 5.2), but we do not try all
models - we restrict ourselves to using the seven network settings presented
in table 5.9. For the three model settings with 50-35-20 neurons, we retrain
them (since they were not previously trained in the same way as the other
models, i.e. using 4-fold cross-validation and average of five runs – 20 models
in total, and with the validation set used for determining early stopping with
patience of 15 epochs).

In figure 5.6 we plot the Poisson deviances for these 7·20 models computed
on the test set and the training sets. In addition we plot the average Poisson
deviances for each of the seven parameter settings. The averages plotted in
the figure we also present in table 5.12.

It seems like networks with (non-denoising) autoencoders performs best
on the test set, but not on the training set, although the models using de-
noising autoencoders are pretty close to models using (non-denoising) au-
toencoders in terms of performance on the test set.

Over all, we se a larger variance for all models on the training set com-
pared to the test set. This however is no doubt at least partially due to
the fact that the single models (each point) for a set of hyperparameters are
trained using 4-fold cross validation, and therefore only partially use the same
training data. We also observe that models using autoencoders, both non-
denoising and denoising autoencoders, have a smaller variance than networks
were autoencoders were not used.

62

Figure 5.6: We use networks for predicting using training data and test data,
and plot Poisson deviance. The models used are the same ones as in section
5.3.2, except for the three settings with 50-35-20 neurons, since they were
not trained in the same way as the other models - these are trained again,
but in the same way as the other models with three layers. The same scale
is used on both axes.

63

Predictor Poisson deviance
Training set Test set

Intercept only - 0.3228505

GBM - 0.3089879

30-20-10 0.3091587 0.3089812
(0.002820922) (0.0006392708)

20-30-10 with autoencoder 0.3096118 0.3082169
(0.003271673) (0.0003565637)

30-20-10 with denoising 0.3094618 0.3086091
autoencoder (0.003433416) (0.0004761066)

50-35-20 0.3090609 0.3089794
(0.002836947) (0.0007491169)

50-35-20 with autoencoder 0.3094906 0.3079088
(0.003323964) (0.0003369356)

50-35-20 with denoising 0.3093917 0.3082644
autoencoder (0.003268549) (0.0003591402)

20, one layer 0.309553 0.3091737)
(0.003446142) (0.0006105103)

Table 5.12: The averages of predictions plotted in figure 5.6, standard devia-
tions in parentheses. For the intercept only and the GBM models, we repeat
results from table 5.9.

64

Chapter 6

Discussion

In this thesis we have used feedforward neural networks with both numerical
and categorical features and known exposure, to predict the number of claims.

We have trained autoencoders to learn representations (numerical) of the
categorical features ("one-hot encoded"), in order to use these representa-
tions as initial values for weights and biases before training the feedforward
network. We have also used autoencoders to learn representations of the
concatenation of representations of the categorical features with numerical
features. These representations we then used as initial values for weight and
biases in the next layer in the feedforward network.

In addition to this we used a well-established method, gradient boosting
machines, as a reference.

Global performance

We clearly see that all models we tried clearly perform better than a simple
intercept model. The results presented in table 5.12 are the most relevant
when comparing models, since here we trained the networks in the same way
(4-fold cross validation five times, i.e. each model was trained 20 times), and
GBM was trained on the sets used for 4-fold cross validation and evaluated
on the same independent test set as network models.

Here we see that all network models perform better than GBM except
the one with only one single layer. Furthermore the model with 30-20-10
neurons without autoencoders only very slightly performs better than GBM.
However all four models using autoencoders clearly perform better than the
other network models as well as GBM. We also observe that the standard
deviations between instances of models are clearly smaller for the models
using autoencoders, compared to network models without autoencoders. In
terms of average Poisson deviance on the independent test set, we do not

65

observe any advantage from using denoising autoencoders compared to using
only non-denoising autoencoders.

When evaluating the models on the test set we do not observe any ad-
vantage from using autoencoders, the three-layer neural networks without
autoencoders perform best. This, however, is much less relevant than the
evaluation on the test set and only illustrates the importance of using inde-
pendent test sets for evaluation.

Another general pattern we observe is that models using more neurons
(with other parameters equal such as use/non-use of autoencoders) improves
performance. Models with 10+20+30 = 60 neurons perform better than the
model using only one layer with 20 neurons, and models using 50+35+20
= 105 neurons perform better than models using 60 neurons. But we also
see that the use of autoencoders may yield better performance than adding
more neurons, for example 20-30-10 with autoencoders performs better than
50-35-20 without autoencoders.

Local performance

Although in terms of global performance as presented in table 5.12, non-
denoising autoencoders performs better than denoising autoencoders, there
may be local (in terms of probability level of events) advantages from using
denoising autoencoders.

For example if, say, model A predicts events with probabilities between
0.1 and 0.2 badly, but very well at all other probability levels, while model
B predicts reasonably well at all probability levels, model A may outperform
model B in terms of global measures such as Poisson deviance. But if events
at probability levels 0.1-0.2 are important (for example claim sizes may be
large), it may be preferable to use model B, or to use model A in combination
with some other model.

In figures 5.2 and 5.3 models using denoising autoencoders seem to have
a somewhat more even performance over different probabilities compared to
models, we especially note this in relation to models using only non-denoising
autoencoders, since these seem to have better global performance.

Assessing the methods using concentration curves for frequency of claims,
see figure 5.4 and table 5.10, we also notice this pattern to some degree. Most
obvious is the fact that the network using only one layer clearly performs the
worst, except at large probability levels 0.8-0.9, interestingly. For probability
level 0.9 it even performs better than all other models. GBM and network
models not using autoencoders seem to perform similarly well, worse than
networks using autoencoders, but better than the one-layer network. As for
networks using autoencoders we see that the model using 30-20-10 neurons

66

and denoising autoencoders performs better than the model using 20-30-10
neurons and non-denoising autoencoders at most probability levels. For levels
0.4-0.7 the model with 30-20-10 neurons and denoising autoencoders even
performs best of all models tried here. However for the models using 50-35-
20 neurons the use of denoising autoencoders or non-denoising autoencoders
seem to yield similar performance.

Since denoising autoencoders for the 50-35-20 network model were trained
only for 15 epochs (but for 500 and 200 epochs for the other networks using
autoencoders), there is a risk of representations not being learned properly.
In section 5.2.2 where we tried performance (ability to properly re-generate
the input) of different autoencoders, we saw that autoencoders with 8 neu-
rons (which is what we used in subsequent experiments) trained for 15 epochs
(with learning rate 0.01 – larger than what we later used: 0.005) only classi-
fied about 50% correctly, although in terms of the marginal measure we used
about 80% were correctly classified.

This could explain why for the model using 30-20-10 neurons and de-
noising autoencoders outperforms the model with 20-30-10 neurons and non-
denoising autoencoders, but for 50-35-20 the models using denoising autoen-
coders and non-denoising autoencoders they perform similarly.

On the other hand, when we investigate local performance using modi-
fied concentration curves (number of claims, but risk-ordering by frequency
of claims, see figure 5.5 and table 5.11), we see somewhat different results
than when we used concentration curves for frequency. As before we see
clearly (even more clearly) that neural network methods outperform GBM,
and we also see that networks using autoencoders perform better than net-
works not using autoencoders in general. However the four models using
autoencoders perform similarly well. If we were to point out one model that
performs best, a good candidate would be the model using 50-35-20 neurons
and denoising autoencoders. It performs best at the probability levels (0.1,
0.2 and 0.6, no model performs best at 4 probability levels), it never performs
worst and even when it is not the best model it mostly performs better than
the median model. When we compare methods using concentration curves
for frequency of claims this model did not stand out, while the model with
30-20-10 neurons and denoising autoencoders seems to be best. From re-
sults using modified concentration curves, the model with 30-20-10 neurons
and denoising autoencoders seems not to be better than other models using
autoencoders, so results are to some degree conflicting.

Using concentration curves for frequency of claims probably introduces
noise (see section 4.2.1), but on the other hand the modified version of con-
centration curves used here is not a standard method so it is not clear which
method is more reliable. However, with results from risk-ordering and both

67

types of concentration curves taken together, we can draw some conclusions.
Neural networks seem to be better than GBM, and networks using autoen-
coders seem to perform better than networks not using autoencoders. We
also see some evidence that using denoising autoencoders seems to be better
than using non-denoising autoencoders, but this is much less certain.

Permutations of layers with 10, 20 and 30 neurons

In the thesis we tried only a limited set of hyperparameters, mostly by varying
use of autoencoders, numbers of neurons and distribution of neurons in the
hidden layer(s). An interesting pattern we saw when trying permutations
of 10, 20 and 30 neurons in three hidden layers (see table 5.7) was that
having large numbers of neurons in early hidden layers seems to generally
yield better results than networks with fewer neurons in early hidden layers
. One could have theorized that having 10 neurons in the second layer would
have caused worse performance due to a bottle-neck effect, this was however
not always observed. For example when not using autoencoders, the setting
30-10-20 outperformed the setting 20-30-10 (which corresponds to a more
smooth network design: 11-20-30-10-1, with 8 (representation of categories)
+ 3 (numerical and binary input) neurons in the concatenation layer and
1 neuron in the output layer). In other cases we do observe a bottle-neck
effect; for example, using denoising autoencoders, 20-10-30 performs worse
than the smother design 10-30-20.

The theorized rule of thumb of more neurons in early hidden layers yield-
ing better results seem to mostly hold, but not always. For example when
using denoising autoencoders, 30-10-20 performs worse than 20-10-30.

Conclusions

In conclusion autoencoders seem to increase local performance as well as
global performance. Regarding whether non-denoising autoencoders or de-
noising autoencoders are preferable, results are conflicting. There seem to be
possible advantages from using denoising autoencoders if one can find appro-
priate parameter settings. We recall our experiments with three layers with
neuron setting 50-35-20 were networks were trained in an other way (same as
Delong&Kozak(2020)[1]) where Poisson deviance were lowest for the setting
using denoising autoencoders, so there seem to be possible to get improve-
ment even on global measures by using denoising autoencoders compared to
non-denoising autoencoders.

Not all combinations of categories are represented in the data set, but it
is reasonable that combinations of categories that are similar to each other

68

should have similar probabilities of accidents to occur. This well-conditioned
property – small changes in input yields small changes in output – is the type
of setting that denoising of autoencoders should be well suited for.

Possible improvement

There are a lot of routes not investigated in this thesis, for example one could
vary hyperparameters: learning rate, the other hyperparameters related to
NADAM (there are more hyperparameters than just learning rate), num-
bers of epochs trained, patience for early stopping, learning rates and epochs
trained for autoencoders, different types of noise (and related hyperparame-
ters) for denoising autoencoders, initializing deeper layers using autoencoders
(we only initialized two layers this way).

As for the problem of how to handle categorical data, and the related
problem that may arise where cardinality is large, one could also consider
other techniques for learning representations of categories. Essentially any
type of dimension-reducing neural network may be relevant here.

We also acknowledge a weakness in our comparison between models in
section 5.3.3. For risk-ordering, and concentration curves we only trained
each model once. It is possible that we could get more reliable results by
training the models several times and using averages instead, however the
results we obtained still seem consistent enough to be useful.

Choice of optimization algorithm

In addition to running experiments on data, this thesis includes a study of
the underlying algorithms for training feedforward neural networks. Training
a feedforward neural network essentially consists of solving an optimization
problem. It is well-known that the objective function of an optimization
problem affects what optimization algorithm to use. We would like to point
out that the starting point may also affect what optimization algorithm that
is suitable.

By initializing weights and biases to pre-trained values changes the start-
ing point in the optimization, hopefully to something closer to an optimum.
ADAM and NADAM algorithms for example use exponentially weighted
moving averages instead of just accumulated gradients because it improves
performance when applied to nonconvex objective functions, but with pre-
initialized weights and biases the starting point may already be within an
area where the objective is locally convex where the best, or at least a good
optimum is located. In that case it may be better to use an algorithm adapted
for convex problems.

69

For the settings we have tried where we initialize two layers using autoen-
coders, this is probably not very relevant since weights in all other layers,
including hidden layers are randomly initialized. But since it is possible
to generalize the method we use for training our numerical autoencoders, to
pre-train weights of deeper layers using autoencoders, one could theoretically
initialize all weights with values from pre-trained autoencoders in this way.
This would be a situation where this discussion on choice of optimization
algorithm could be worth considering.

70

Appendix A

Gradient computation

The topic of gradient computation by backwards propagation was introduced
in section 2.2.3. Here we present the details.

A.1 Square distance loss function
We start by computing derivatives w.r.t. bias and weights in the last layer
L.

∂L

∂w
(L)
nm

= ∂

∂w
(L)
nm

(∑
i

1
2(ti −Oi)2

)
=
∑

i

(ti −Oi) ·
∂Oi

∂w
(L)
nm

(A.1)

We compute the derivative of the output w.r.t. weights.

∂Oi

∂w
(L)
nm

= ∂

∂w
(L)
nm

(
g(a(L)

i)
)

= ∂

∂w
(L)
nm

g

θi +
∑

j

w
(L)
ji V

(L−1)
j

= g′(a(L)

i) · ∂

∂w
(L)
nm

θi +
∑

j

w
(L)
ji V

(L−1)
j

= g′(a(L)

i)V (L)
m δin (A.2)

Similarly when we differentiate w.r.t. to the bias term in the output layer
we get

∂Oi

∂θ
(L)
n

= g′(a(L)
i)δin.

71

We now insert (A.2) into (A.1)

∂L

∂w
(L)
nm

=
∑

i

(ti −Oi) · g′(a(L)
i)V (L)

m δin = (tn −On)g′(a(L)
n)V (L−1)

m (A.3)

and similarly when differentiating w.r.t. the bias term we get

∂L

∂θ
(L)
n

=
∑

i

(ti −Oi) · g′(a(L)
i)δin = (tn −On)g′(a(L)

n) (A.4)

When computing the gradient for weights and biases in the next layer we
want to make use of these results for the first layer so we denote a partial
result from these first computations as follows:

d
(L)
i = (ti −Oi)g′(a(L)

i).

The use of this will be clear in subsequent steps.
We now turn our attention to the bias term in layer L − 1 (θ(L−1)

n) and
weights between layers L − 2 and L − 1 (w(L−1)

nm). As we did before we
differentiate the loss function w.r.t. these weights and bias term.

∂L

∂w
(L−1)
nm

= ∂

∂w
(L−1)
nm

(∑
i

1
2(ti −Oi)2

)
=
∑

i

(ti −Oi) ·
∂Oi

∂w
(L−1)
nm

Now when differentiating the output neurons, we make use of the chain
rule in order to be able to use the partial result from the L:th layer compu-
tations.

∂Oi

∂w
(L−1)
nm

=
∑
k1

∂Oi

∂V
(L−1)

k1

·
∂V

(L−1)
k1

∂w
(L−1)
nm

(A.5)

We compute the first factor:

∂Oi

∂V
(L−1)

k1

= ∂

∂V
(L−1)

k1

g

θ
(L)
i +

∑
j

w
(L)
ji V

(L)
j

 = g′(a(L)
i) · w(L)

k1i , (A.6)

and the second factor:

∂V
(L−1)

k1

∂w
(L−1)
nm

= ∂

∂w
(L−1)
nm

g

θ
(L−1)
k1 +

∑
j

w
(L−1)
jk1 · V (L−2)

j

= g′(a(L−1)

k1) · V (L−2)
m · δnk1 (A.7)

72

Inserting (A.6) and (A.7) into (A.5) we obtain

∂Oi

∂w
(L−1)
nm

=
∑
k1

∂Oi

∂V
(L−1)

k1

·
∂V

(L−1)
k1

∂w
(L−1)
nm

=
∑
k1

g′(a(L)
i)w(L)

k1i · g′(a(L−1)
k1)V (L−2)

m δnk1

= g′(a(L)
i)w(L)

ni g′(a(L−1)
n)V (L−2)

m (A.8)

We now use this result from (A.5) to compute the derivative of the loss
function

∂L

∂w
(L−1)
nm

=
∑

i

(ti −Oi) ·
∂Oi

∂w
(L−1)
nm

=
∑

i

(ti −Oi)g′(a(L)
i)w(L)

ni g′(a(L−1)
n)V (L−2)

m .

We note that we can use the partial result from earlier computations to
evaluate this as

∂L

∂w
(L−1)
nm

=
∑

i

d
(L)
i w

(L)
ni g′(a(L−1)

n)V (L−2)
m

In order to use this result for simplifying computations when we differ-
entiate w.r.t. to biases in layer L− 2 and weights between layers L− 2 and
L− 3 we denote a partial result:

d
(L−1)
i =

∑
j

d
(L)
j w

(L)
ij g′(a(L−1)

i) (A.9)

We begin to see a pattern in how we can recursively use previous results
to compute derivatives w.r.t. weights and biases in the other layers. But to
clarify, we explicitly compute the derivatives w.r.t. weights and bias for one
more layer.

∂L

∂w
(L−2)
nm

= ∂

∂w
(L−2)
nm

(∑
i

1
2(ti −Oi)2

)
=
∑

i

(ti −Oi) ·
∂Oi

∂w
(L−2)
nm

(A.10)

Here we use the chain rule twice when computing the output neuron
derivative:

∂Oi

∂w
(L−2)
nm

=
∑
k1

∑
k2

∂Oi

∂V
(L−1)

k1

·
∂V

(L−1)
k1

∂V
(L−2)

k2

·
∂V

(L−2)
k2

∂w
(L−2)
nm

(A.11)

73

As before we have for the first factor

∂Oi

∂V
(L−1)

k1

= g′(a(L)
i) · wk1i. (A.12)

And analogously to previous calculations we get for the third factor

∂V
(L−2)

k2

∂w
(L−2)
nm

= g′(a(L−2)
k2) · V (L−3)

m δnk2 . (A.13)

It remains to compute the second factor:

∂V
(L−1)

k1

∂V
(L−2)

k2

= ∂

∂V
(L−2)

k2

g

θ
(L−1)
k1 +

∑
j

w
(L−1)
jk1 V

(L−2)
j

= g′(a(L−1)

k1) · w(L−1)
k2k1 (A.14)

Inserting (A.12), (A.14) and (A.13) into (A.11) yields

∂Oi

∂w
(L−2)
nm

=
∑
k1

∑
k2

(
g′(a(L)

i)wk1i

) (
g′(a(L−1)

k1)w(L−1)
k2k1

) (
g′(a(L−2)

k2)V (L−3)
m δnk2

)
=
∑
k1

g′(a(L)
i)w(L)

k1i · g′(a(L−1)
k1)w(L−1)

nk1 · g′(a(L−2)
n)V (L−3)

m (A.15)

Inserting (A.15) into (A.10) gives us the derivatives w.r.t. the weights of
the loss function:

∂L

∂w
(L−2)
nm

=
∑

i

(ti −Oi) ·
∂Oi

∂w
(L−2)
nm

=
∑
k1

∑
i

(ti −Oi)g′(a(L)
i)w(L)

k1i g
′(a(L−1)

k1)w(L−1)
nk1 g′(a(L−2)

n)V (L−3)
m

=
∑
k1

d
(L−1)
k1 w

(L−1)
nk1 g′(a(L−2)

n)V (L−3)
m

In the last step we used the previous result (A.9).
We see that we once again can define a new partial result to use for

computing derivatives in the next layer:

d
(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

74

Now we are in a position to observe a general pattern:

d
(L)
i = (ti −Oi)g′(a(L)

i)
d

(L−1)
i =

∑
j

d
(L)
j w

(L)
ij g′(a(L−1)

i)

d
(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L.

From which we easily compute the derivatives that the gradient consists
of (except output layer):

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m , 1 ≤ l < L

∂L

∂θ
(l)
n

= d(l)
n , 1 ≤ l < L

And for the weights and bias in the output layer we recall our previous
results (A.3) and (A.4)

∂L

∂w
(L)
nm

= (tn −On)g′(a(L)
n)V (L−1)

m

∂L

∂θ
(L)
n

= (tn −On)g′(a(L)
n)

A.2 Softmax output and Cross entropy loss
function

As for the case with the square distance loss function we assume we only have
one pattern and omit the pattern index κ. As before we want to compute
the gradient w.r.t. weights and biases, so we start with differentiating w.r.t.
weights connecting to the output layer L.

∂L

∂w
(L)
nm

=
∑

i

ti

Oi

∂Oi

∂w
(L)
nm

(A.16)

We use the chain rule for a
(L)
i

75

∂Oi

∂w
(L)
nm

=
∑

s

∂Oi

∂a
(L)
s

· ∂a(L)
s

∂w
(L)
nm

. (A.17)

We compute the factors

∂Oi

∂a
(L)
s

= Oi(δis −Os) (A.18)

∂a(L)
s

∂w
(L)
nm

= δsmVn (A.19)

and insert them, (A.18) and (A.19), into (A.17).

∂Oi

∂w
(L)
nm

= Oi(δim −Om)Vn

We can now use this in (A.16), so we get

∂L

∂w
(L)
nm

=
∑

i

ti

Oi

∂Oi

∂w
(L)
nm

=
∑

i

ti

Oi

Oi(δim −Om)Vn =

=
(∑

i

(tm − tiOm)
)

Vn

Now we can, as before, define a help variable to keep track of the partial
results that we will use for the next layer.

d
(L)
i =

∑
j

(ti − tjOi)

Note that if ∑i ti = 1 this can be reduced to d
(L)
i = ti −Oi. However for

some of our applications, when we use one Softmax for outputs that signifies
more than one class, this will not be the case.

Differentiating w.r.t. the bias variable can be treated in a similar way.
We obtain

∂L

∂θ
(L)
n

= ... = d
(L)
i .

We now compute the derivatives w.r.t. weights in the next layer, L− 1.

∂L

∂w
(L−1)
nm

=
∑

i

ti

Oi

∂Oi

∂w
(L−1)
nm

(A.20)

When computing the derivative of the output i we use the chain rule
w.r.t. the neurons in layer L− 1.

76

∂Oi

∂w
(L−1)
nm

=
∑

l

∂Oi

V
(L−1)

l

· V
(L−1)

l

∂w
(L−1)
nm

(A.21)

We see that the second factor is the same as in the case with square
distance loss function (A.7)

V
(L−1)

l

∂w
(L−1)
nm

= g′(a(L−1)
l)V (L−2)

m δnl (A.22)

and for the first factor we use the chain rule w.r.t. a
(L)
i and get

∂Oi

∂V
(L−1)

l

= ∂Oi

∂a
(L)
l

· ∂a
(L)
l

∂V
(L−1)

l

,

∂Oi

∂a
(L)
l

= Oi(δil −Ol),

∂a
(L)
l

∂V
(L−1)

l

= w
(L)
li

=⇒ ∂Oi

∂V
(L−1)

l

= Oi(δil −Ol)w(L)
li . (A.23)

We now insert (A.22) and (A.23) into (A.21) and get

∂Oi

∂w
(L−1)
nm

= Oi(δin −On)w(L)
ni g′(a(L−1)

n)V (L−2)
m (A.24)

We use this, (A.24), with (A.20) to obtain the derivative

∂L

∂w
(L−1)
nm

=
∑

i

ti(δin −On)w(L)
ni g′(a(L−1)

n)V (L−2)
m =

=
(∑

i

(tn − tiOn)w(L)
ni g′(a(L−1)

n)
)

V (L−2)
m

We see here that actually we can not use the partial result from layer L,
but defining this partial result for layer L− 1

d
(L−1)
i =

∑
j

(ti − tjOi)w(L)
ij g′(a(L−1)

i),

this result can be used in derivatives w.r.t. weights and biases in further
layers. We now realize that for further layers the computations will be the

77

same as in the squared distance loss function case, so we get the results:

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m

∂L

∂θ
(l)
n

= d(l)
n

for 1 ≤ l ≤ L, where the partial results d(·)
· are computed recursively starting

from l = L:

d
(L)
i =

∑
j

(ti − tjOi)

d
(L−1)
i =

∑
j

(ti − tjOi)w(L)
ij g′(a(L−1)

i)

d
(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L− 1.

A.3 Frequency prediction and Poisson deviance
loss function

We start by differentiating w.r.t. weights connected to the output neuron

∂L

∂w
(L)
m1

= 2 ∂ξ

∂w
(L)
m1
− 2N

∂(R + θ
(L)
1 +∑

j w
(L)
j1 V

(L−1)
j)

∂w
(L)
m1

= 2 ∂ξ

∂w
(L)
m1
− 2NV (L−1)

m = 2ξV (L−1)
m − 2NV (L−1)

m

= 2(ξ −N)V (L−1)
m

and similarly
∂L

∂θ
(L)
1

= 2(ξ −N).

We define a partial result

d(L) = 2(ξ −N).

78

For the weights in the next layer L− 1 we get

∂L

∂w
(L−1)
mn

= 2 ∂ξ

∂w
(L−1)
mn

− 2N
∂(log ξ)
∂w

(L−1)
nm

. (A.25)

We start with the second term, and use the chain rule using the layer
L− 1 neurons as the middle variables in the chain.

∂(log ξ)
∂w

(L−1)
nm

=
∂(∑j w

L)
m1V

(L−1)
j)

∂w
(L−1)
nm

=
∑

l

∂(∑j w
L)
m1V

(L−1)
j)

∂V
(L−1)

l

· ∂V
(L−1)

l

∂w
(L−1)
nm

=
∑

l

w
(L)
l1 ·

∂V
(L−1)

l

∂w
(L−1)
nm

. (A.26)

For the first term we also use the chain rule with the layer L− 1 neurons
as the middle variables in the chain

∂ξ

∂w
(L−1)
mn

=
∑

l

∂ξ

V
(L−1)

l

V
(L−1)

l

∂w
(L−1)
mn

=
∑

l

ξw
(L)
l1

V
(L−1)

l

∂w
(L−1)
mn

(A.27)

From previous computations in the squared distance loss function case
(A.7), we remember that

V
(L−1)

l

∂w
(L−1)
mn

= g′(a(L−1)
l)V (L−2)

m δnl.

Inserting (A.27) and (A.26) and (A.7) into (A.25) yields

∂L

∂w
(L−1)
mn

=
∑

l

2w
(L)
m1 (ξ −N) V

(L−1)
l

∂w
(L−1)
mn

=
∑

l

2w
(L)
l1 (ξ −N)g′(a(L−1)

l V (L−2)
m δnl

= 2w
(L)
n1 (ξ −N)g′(a(L−1)

n)V (L−2)
m .

Using our previous partial result we see that

∂L

∂w
(L−1)
mn

= d
(L)
1 w

(L)
n1 g′(a(L−1)

n)V (L−2)
m .

We define a new partial result

d
(L−1)
i = d

(L)
1 w

(L)
i1 g′(a(L−1)

n).

79

Now we realize that we can compute derivatives recursively in the same
way as for the previous cases. We summarize it here

d
(L)
i = 2(ξ −N)

d
(L−1)
i = d

(L)
1 w

(L)
i1 g′(a(L−1)

i)
d

(L−2)
i =

∑
j

d
(L−1)
j w

(L−1)
ij g′(a(L−2)

i)

...

d
(l)
i =

∑
j

d
(l+1)
j w

(l+1)
ij g′(a(l)

i) for 1 ≤ l < L− 1.

Using these partial results, we can compute all the components of the
gradient:

∂L

∂w
(l)
mn

= d(l)
n V (l−1)

m

∂L

∂θ
(l)
n

= d(l)
n .

80

Appendix B

Optimization algorithms

In this thesis we use Nesterov-accelerated adaptive moment estimation (NADAM)
for optimizing the loss function when training neural networks. This al-
gorithm is presented in chapter 2. In this appendix we present the main
algorithms on which it is based.

NADAM was created by combining ideas from the ADAM algorithm
(adaptive moments) and Nesterov’s accelerated gradient algorithm (NAG),
which both are versions of the Stochastic gradient descent algorithm (SGD)
[2]. SGD itself is a variation of the optimization algorithm gradient descent
(also known as steepest descent), so we start by giving a short description of
the gradient descent algorithm.

B.1 Gradient descent
Suppose we have a multivariate differentiable function F (z) that we want to
minimize. The gradient descent algorithm we present here is a variation of
a broader class of descent algorithms [8, p. 282-283], which we describe in
algorithm2.

The basic idea of the gradient descent algorithm is to move in the direction
in which the function F decreases the fastest, i.e. in the opposite direction
of the gradient. This specifies the method D in the descent algorithm 2. In
the version of the gradient descent we present here in algorithm 3, we also
specify the method of choosing step sizes S.

Step sizes ϵk in algorithm 3 can be chosen to be constant, ϵk = ϵ for all
k. If different sizes of step sizes are used one typically chooses these to be
increasingly smaller ϵk+1 < ϵk since the earlier estimates in the optimization
process are more rough than the later ones.

There are several options for the stopping condition C, for example stop-

81

Algorithm 2 Descent algorithm
Require: F (z) multivariate differentiable function
Require: Starting point z0 ∈ Rn

Require: Stopping condition C
Require: A method D of determining a descent direction pk ∈ Rn

Require: A method S of determining step length αk > 0, such that F (zk +
αkpk) < F (zk) holds.
k ← 0
while C not fulfilled do

(descent direction) Determine descent direction pk ∈ Rn by D
(line search) Determine a step length αk by S
(update) zk+1 ← zk + αkpk

k ← k + 1
end while
return zk

Algorithm 3 Gradient descent (steepest descent)
Require: F (z) multivariate differentiable function
Require: Starting point z0 ∈ Rn

Require: Sequence of step sizes ϵk, k = 0, 1, 2, ...
Require: Stopping condition C

k ← 0
while C not fulfilled do

zk+1 ← zk − ϵk∇F (zk)
k ← k + 1

end while
return zk

82

ping if |F (zk+1)− F (zk)| < δ for some fixed small δ.

B.2 SGD - Stochastic gradient descent
In machine learning problems the function we want to optimize is generally of
a specific type F (z) = ∑

i L(f(x(i); zk), t(i)), where L is a loss function which
evaluates a distance between targets t(i) and output of the machine learning
algorithm f given parameters z when fed input patterns x(i). In our case z
consists of the weight and the threshold parameters of the neural network.

The idea for the SGD method is that instead of computing the gradient
for F where we summarize over all patterns and targets, in each iteration
k we sample a mini batch of m samples from the training set with corre-
sponding targets and let Mk be the set of indices specifying these samples.
We compute the gradient in the average of the sum of the loss function in
these mini batch samples and update the parameters [6, p. 290-292]. We
present SGD in algorithm 4. We note that just as for the gradient descent

Algorithm 4 Stochastic gradient descent
Require: Starting point (initial parameters) z0.
Require: Sequence of learning rates (step sizes) ϵk, k = 0, 1, 2, ...
Require: Stopping condition C

k ← 0
while C not fulfilled do

Sample a minibatch Mk.
Compute gradient estimate ĝk ← 1

m
∇zk

∑
i∈Mk

L(f(x(i); zk), t(i)).
Update zk+1 ← zk − ϵkĝk.
k ← k + 1

end while
return zk

algorithm, step sizes ϵk in algorithm 4 can be chosen to be constant, ϵk = ϵ
for all k. If different sizes of step sizes are used one typically chooses these
to be increasingly smaller ϵk+1 < ϵk since the earlier estimates in the opti-
mization process are more rough than the later ones. We note that there are
convergence results on how to chose learning rate schedules but in practice it
is common to linearly decrease the learning rate up to the point of reaching
some iteration k = τ , and after that k > τ use a constant convergence rate
[6, p. 291].

For the stopping condition C just as for the gradient descent algorithm
there are several options, for example we can chose to stop if |F (zk+1) −

83

F (zk)| < δ for some fixed small δ.

B.3 Momentum and Nesterov’s accelerated
gradient

B.3.1 Stochastic gradient descent with momentum (clas-
sical momentum)

This extension of SGD consists of replacing the negative gradient as descent
direction with a decaying sum of previous updates plus negative gradient (a
momentum vector) [2]. Compared to SGD this algorithm (see algorithm 5)
moves slower when the direction of the update significantly oscillates, and
faster when it does not.

Algorithm 5 Stochastic gradient descent with momentum
Require: Starting point (initial parameters) z0.
Require: Sequence of learning rates (step sizes) ϵk, k = 0, 1, 2, ...
Require: Stopping condition C
Require: Decay factor µd

k ← 0
while C not fulfilled do

Sample a minibatch Mk.
Compute gradient estimate ĝk ← 1

m
∇zk

∑
i∈Mk

L(f(x(i); zk), t(i)).
Update momentum vector mk+1 ← µdmk + ϵkĝk

Update zk+1 ← zk −mk+1.
k ← k + 1

end while
return zk

B.3.2 Nesterov’s accelerated gradient (NAG)
In SGD with momentum we take momentum into account in the update of zk.
NAG extends SGD with momentum by also taking momentum into account
in the computation of the gradient. The update in SGD with momentum can
be seen to consist of first moving in the direction of the previous momentum
and then in the direction of the gradient (computed in the point before
update), NAG improves this by first moving in the direction of the previous
momentum, then computing the gradient in this new point, and after that

84

move in the direction of the gradient [2]. For difficult optimization objective
functions there is evidence that NAG is superior to both SGD and SGD with
momentum. We present the algorithm in algorithm 6.

Algorithm 6 Nesterov’s accelerated gradient
Require: Starting point (initial parameters) z0.
Require: Sequence of learning rates (step sizes) ϵk, k = 0, 1, 2, ...
Require: Stopping condition C
Require: Decay factor µd

k ← 0
while C not fulfilled do

Sample a minibatch Mk.
Compute gradient estimate ĝk ← 1

m
∇zk

∑
i∈Mk

L(f(x(i); zk −
µdmk), t(i)).

Update momentum vector mk+1 ← µdmk + ϵkĝk

Update zk+1 ← zk −mk+1.
k ← k + 1

end while
return zk

B.4 Adaptive moments estimation (ADAM)
The previously discussed optimization algorithms are all algorithms that use
a set learning rate (or a set scheme of learning rates). ADAM uses an adap-
tive learning rate, with only one global learning rate as a parameter. The
algorithm [6, p. 306] is shown in algorithm 7.

Conceptually, ADAM can be thought of as a combination of RMSProp – a
modification of the AdaGrad algorithms (we will not go into these algorithms
here), and momentum with some additional modifications [6, p. 303-306].
Compared to previously mentioned algorithms ADAM uses a decaying mean
over previous gradients rather than a decaying sum over previous updates
[2].

The update is based on the idea of moving in the direction of an expo-
nentially decaying moving average of the first order moment of the gradient.
The learning rate is adapted by scaling these updates with an accumulated
squared gradient (scaled – an exponential moving average), a second mo-
ment estimate. Using exponentially weighted moving averages rather than
just accumulated gradients improves performance when applied to noncon-
vex objective functions, since when the objective is not convex the gradients

85

close to the initial point z0 may not be relevant.
To account for the initialization at zero for both first and second order

moments, ADAM includes a bias correction for this.

Algorithm 7 Adaptive moments estimation
Require: Starting point (initial parameters) z0.
Require: Global learning rate (step size) ϵ (suggested default: 0.001)
Require: Exponential decay rates ρ1, ρ2 ∈ [0,1) (suggested defaults: 0.9 and

0.999)
Require: Small constant δ for numerical stabilization (suggested default:

10−8)
Require: Stopping condition C

k ← 0
s0 ← 0 (first moment)
r0 ← 0 (second moment)
while C not fulfilled do

Sample a minibatch Mk.
Compute gradient estimate ĝk ← 1

m
∇zk

∑
i∈Mk

L(f(x(i); zk), t(i)).
Biased first moment estimate sk+1 ← ρ1sk + (1− ρ1)ĝk

Biased second moment estimate rk+1 ← ρ2rk + (1− ρ2)ĝk ⊙ ĝk

Correct bias in first moment ŝk+1 ← sk+1
1−ρk

1

Correct bias in second moment r̂k+1 ← rk+1
1−ρk

2

Update zk+1 ← zk − ϵ ŝk+1√
r̂k+1+δ

k ← k + 1
end while
return zk

86

Appendix C

Gradient boosting machines

We use the GBM package in R, the algorithm described here is based on the
description in the GBM package vignette [10]. This implementation uses the
AdaBoost algorithm’s exponential loss function, but uses Friedman’s gradient
descent algorithm – more specifically, the stochastic gradient boosting version
of it. This version of the algorithm achieves variance reduction by using
subsampling.

We want to find an estimate f̂(x) of the function f(x) that minimizes a
loss function Ψ(y, f):

f̂(x) = arg min
f(x)

Ey,xΨ(y, f(x))

= arg min
f(x)

Ex[Ey|xΨ(y, f(x))|x]. (C.1)

The algorithm we use solves this for cases when x is assumed to be known.
This reduces equation C.1 to equation C.2,

f̂(x) = arg min
f(x)

Ey|x[Ψ(y, f(x))|x]. (C.2)

In practice this estimate is computed using a given set of observed covariates
(features) and responses (xi, yi)N

i=1.
The general idea of the algorithm is to stepwise change the estimate

f̂(x) by adding (weighted) estimates of the negative gradient of the loss
function. The negative gradient of the loss function is in each step estimated
by first analytically computing it and then estimating it by fitting a regression
tree using only a randomly selected subset of the observations, with the
analytically computed negative gradient as response. This fitted regression
tree is used as the estimate of the negative gradient that is added to f̂(x).

Closely following the algorithm as described in the vignette[10], we present
the algorithm in algorithm 8.

87

Algorithm 8 Stochastic gradient boosting (following the implementation in
the gbm package in R)
Require: Set of observed covariates and responses, (xi, yi)N

i=1.
Require: Loss function, Ψ.
Require: Number of iterations, T .
Require: Depth of each regression tree, K.
Require: Shrinkage (learning rate) parameter, λ.
Require: Subsampling rate (a fraction of N), p.

Initialize f̂(x) to be a constant, f̂(x)← arg minρ
∑N

i=1 Ψ(yi, ρ).
Set t← 1
for t = 1,.., T do

Compute the negative gradient as the working response

zi ← −
∂

∂f(xi)
Ψ(yi, f(xi))

∣∣∣∣∣
f(xi)=f̂(xi)

Select p×N observations from the data set randomly.

Fit a regression tree with K terminal nodes, that estimates the gradient
g(x) = E(z|x), using only the randomly selected observations.

Compute the optimal terminal node predictions ρ1, ..., ρK (using only
the randomly selected observations), as

ρk = arg min
ρ

∑
xi∈Sk

Ψ(yi, f̂(xi) + ρ)

where Sk is the set of observations that define the terminal node k.

Update f̂(x) as
f̂(x)← f̂(x) + λρk(x)

where ρk(x) is the index of the terminal node into which an observation
with features x would fall.
end for
return f̂(x)

88

Bibliography

[1] Delong, Ł., Kozak, A. (2023). The use of autoencoders for training neural
networks with mixed categorical and numerical features. ASTIN Bulletin:
The Journal of the IAA, Volume 53 , Issue 2 , May 2023 , pp. 213 - 232.
Cambridge University Press. DOI: 10.1017/asb.2023.15

[2] Dozat, T. (2016). Incorporating Nesterov Momentum into Adam. Pro-
ceedings of the 4th International Conference on Learning Representa-
tions, Workshop Track, San Juan, Puerto Rico, 2-4 May 2016, 1-4.
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

[3] Denuit, M., Sznajder D., Trufin J.(2019). Model selection based on
Lorenz and concentration curves, Gini indices and convex order. Insur-
ance: Mathematics and Economics, Volume 89, November 2019, Pages
128-139. Elsevier B.V. DOI: 10.1016/j.insmatheco.2019.09.001

[4] Lindholm, M., Lindskog, F., Palmquist, J. (2023). Local bias adjustment,
duration-weighted probabilities, and automatic construction of tariff cells.
Scandinavian Actuarial Journal, Volume 2023, 2023 - Issue 10, Pages 946-
973. DOI: 10.1080/03461238.2023.2176251

[5] Mehlig, B. (2021), Machine learning with neural networks.
ISBN: 9781108494939, Cambridge University Press. DOI:
10.1017/9781108860604

[6] Goodfellow, I., Bengio, Y., Courville, A. (2016), Deep Learning. ISBN:
9780262035613, The MIT Press. https://www.deeplearningbook.org/

[7] Ferrario, A., Noll, A., Wüthrich, M. V. (2020), Insights from Inside Neural
Networks. SSRN Manuscript https://ssrn.com/abstract=3226852

[8] Andréasson, N., Evgrafov, A., Patriksson, M., Gustavsson, E., Önnheim,
M. (2013). An Introduction to Continuos Optimization (Second edition).
ISBN 978-91-44-06077-4, Studentlitteratur AB, Lund.

89

[9] Renzmann, S., Wüthrich, M. V. (2019), Unsupervised learning: What is
a sports car? https://ssrn.com/abstract=3439358

[10] Ridgeway, G. (2024), Generalized boosted models: A guide to
the gbm package. Vignette to the gbm package in R https://cran.r-
project.org/web/packages/gbm/

[11] Wüthrich, M (2019), From generalized linear models to neural networks,
and back. SSRN Electronic Journal. doi 10.2139/ssrn.3491790.

[12] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent,
P., and Bengio, S. (2010), Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research, 11(19):625–660.
http://jmlr.org/papers/v11/erhan10a.html

[13] Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P.
(2009). The difficulty of training deep architectures and the effect of un-
supervised pre-training. In van Dyk, D. and Welling, M., editors, Proceed-
ings of the Twelfth International Conference on Artificial Intelligence and
Statistics, volume 5 of Proceedings of Machine Learning Research, pages
153–160, Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA. PMLR. https://proceedings.mlr.press/v5/erhan09a.html.

[14] Delong, Ł., Lindholm, M., Zakrisson, H. (2023), On Cyclic Gradient
Boosting Machines https://ssrn.com/abstract=4352505

90

