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Abstract

This thesis investigates how an insurance company can determine

optimal deductible levels using Borch’s theorem to maximize expected

utility across a diverse portfolio, given an expected premium. Indi-

vidual wealth characteristics, a key factor in Borch’s framework, are

assigned to each policyholder. Assuming a Bernoulli utility function,

we compare the impact of Gamma and compound Poisson loss dis-

tributions on a representative policyholder, ultimately selecting the

compound Poisson for final analysis. Using this framework, optimal

deductibles are then numerically calculated for each policyholder and

clustered into two- and three-level deductible options. The study also

examines how varying wealth levels affect these results and the appli-

cation of Borch’s theorem.
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1 Introduction

Insurance is an essential arrangement for individuals and businesses to pro-
tect themselves financially against uncertain future events. In non-life insur-
ance, this typically involves protection against damages to property, vehicles,
or liability for harm caused to others. A policyholder (i.e., the insured) pay
a premium to the insurer, who in return assumes the financial risk associ-
ated with these events (Ohlsson and Johansson, 2010).

A common feature in many insurance contracts is the deductible, i.e. the
amount the policyholder must pay out of pocket before the insurer con-
tributes to a claim. Deductibles serve to reduce the insurer’s expected claim
costs and, consequently, often result in lower premiums. As the deductible
increases, the premium typically decreases, making the choice of deductible
level a key consideration for policyholders seeking to balance risk and cost
(Ohlsson and Johansson, 2010).

In today’s competitive insurance market, policyholders are presented with a
variety of products, including options with differing deductible levels. This
means they must decide not only which insurer to choose but also which de-
ductible level aligns with their financial capacity and risk preferences. For
insurers, strategically offering deductible levels that appeal to a broad range
of policyholders can constitute a significant competitive advantage. This
raises a central question: How can an insurance company optimally set de-
ductible levels across a heterogeneous portfolio of policyholders?

This thesis develops a method for determining deductible levels that an in-
surance company can offer across a diverse portfolio of policyholders. The
method builds on Borch’s classical utility-based framework, which defines
the optimal deductible for an individual as the one that maximizes expected
utility, accounting for the individual’s wealth. This individual-level approach
is extended to a portfolio context, with the goal of maximizing total utility
across the insurer’s entire portfolio.

The structure of the thesis is as follows. In Section 2, we review relevant
insurance theory, with a focus on the concepts and models used in this study.
Section 3 presents the methodological framework for determining optimal
deductibles, including data preparation, wealth modeling, and numerical
solutions. Section 4 outlines the results, and Section 5 concludes with a
discussion of key findings and their implications.
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2 Model Theory

2.1 Basic Insurance Theory

In insurance mathematics, the premium charged to each policyholder is gen-
erally based on the expected value of the losses they are likely to generate,
along with a loading. This loading is intended to cover additional costs
such as administration, capital costs, and profit margins, etc. Since differ-
ent policyholders present different levels of risk, statistical models are used
to determine appropriate premiums. According to Ohlsson and Johansson
(2010), factors considered when estimating the expected cost of claims typ-
ically fall into three categories: properties of the policyholder, properties of
the insured object, and properties of the geographic region.

A key concept in this context is the pure premium, which represents the
expected cost of claims per policyholder, before any loading is added. It is
calculated as:

Pure Premium = Claim Frequency× Claim Severity

Here, claim frequency refers to the expected number of claims per policy-
holder over a given period, and claim severity refers to the average cost per
claim. Multiplying the two gives the expected loss, which forms the basis
for setting a fair and risk-adjusted premium. To set premiums, insurers
often use tariff models, where the pure premium is modeled as a function
of several rating factors. For insurance pricing, multiplicative models are
particularly suitable. In the case of three rating factors, the pure premium
πijk for a policyholder in class i for the first factor, class j for the second
factor, and class k for the third factor can be expressed as:

πijk = γ0 · γ1i · γ2j · γ3k.

To ensure that the model parameters are uniquely identified, a reference cell
(also called a base cell) is defined, typically the one with the largest expo-
sure. The multiplicative relativities for this base cell are set to 1. Under
this constraint, γ0 is the base value, and the parameters γ1i, γ2j , and γ3k
represent multiplicative relativities, that is, the relative effect of belonging
to a specific level of a rating factor compared to the base level (Ohlsson and
Johansson, 2010).

In practice, insurers may either model the pure premium directly, or sepa-
rately model the claim frequency and claim severity components. A common
choice is to use a Poisson distribution for the claim frequency and a Gamma
distribution for the claim severity. Both components can then be modeled
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using generalized linear models (GLMs), and their product yields the esti-
mated pure premium.

Another important element in insurance pricing and pure premium estima-
tion is the deductible. A deductible is the amount the policyholder agrees to
pay before the insurer covers any claim costs. By introducing a deductible,
the insurer transfers a portion of the financial responsibility to the policy-
holder, which typically results in a lower pure premium. This reduction
occurs because the insurer’s expected cost of claims decreases when small
claims are absorbed by the policyholder. From a modeling perspective,
deductibles are often handled by analyzing claim amounts net of the de-
ductible when the deductible level is fixed for all policyholders. However,
when policyholders can choose among multiple deductible options, the situ-
ation becomes more complex. As shown in Ohlsson and Johansson (2010),
deductibles do not act as standard multiplicative rating factors. In such
cases, layered modeling approaches may be used, where each deductible
level is treated as a separate coverage layer and analyzed independently.
While this can work in simple cases, it may become impractical in settings
with many deductible choices (Ohlsson and Johansson, 2010).

2.2 Utility Theory and Risk Aversion

A central concept in explaining why individuals are willing to pay an insur-
ance premium that exceeds the expected loss (the pure premium) is utility
theory. According to this theory, individuals assign a value through a utility
function u(w) to their wealth w, which represents the level of satisfaction or
utility derived from that wealth. This utility function is typically assumed
to be non-decreasing, reflecting the natural assumption that more wealth
leads to greater utility. When faced with uncertainty, such as a potential
loss X, a decision maker evaluates the desirability of different alternatives
by comparing their expected utilities. In particular, the choice between
bearing a random loss and paying a fixed insurance premium is modeled by
comparing E[u(w −X)] and u(w − P ), where P is the premium. The value
of P that satisfies:

E[u(w −X)] = u(w − P ) (1)

represents the maximum premium the insured is willing to pay. At this
point, the insured is indifferent, in terms of utility, between purchasing in-
surance and retaining the risk.

A key assumption in this framework is that individuals are risk averse, mean-
ing they prefer a certain outcome over a risky one with the same expected
value. This behavior is captured mathematically by the concavity of the
utility function, which implies a decreasing marginal utility of wealth. In
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other words, while the utility increases as wealth increases, the rate at which
utility increases diminishes as wealth grows. Formally, this means the first
derivative of the utility function, u′(w), is positive, but the second derivative,
u′′(w), is negative. This decreasing marginal utility reflects the intuitive idea
that each additional unit of wealth provides less additional satisfaction than
the previous one. Jensen’s inequality then guarantees that for any concave
utility function u, it holds that:

E[u(w −X)] ≤ u(w − E[X]).

Consequently, a risk-averse individual prefers to pay a certain amount equal
to the expected loss rather than face the uncertainty of the actual loss. This
preference explains why the maximum premium a risk-averse individual is
willing to pay often exceeds the expected value of the loss (Kaas et al., 2008).

The foundations of utility theory were laid by the St. Petersburg paradox,
which revealed that individuals are not willing to pay large amounts for
gambles with infinite expected value (see Section 2.2.1) (Aase, 2001). Daniel
Bernoulli proposed resolving this paradox by introducing the logarithmic
utility function u(w) = log(w), defined for positive wealth w > 0 (Bernoulli,
1954). Throughout this thesis, this simpler form is used, assuming strictly
positive wealth. Other commonly used utility functions include the linear
utility function u(w) = w, and the power utility function u(w) = wc, where
0 < c ≤ 1 (Kaas et al., 2008).

2.2.1 The St. Petersburg Paradox

Since the St. Petersburg game is defined in terms of repeated fair coin tosses,
the number of tosses until the first head is a discrete random variable. Ac-
cordingly, the original formulation uses a summation rather than an integral
to compute expected utility. In this section, we adopt this discrete approach
to remain consistent with the historical and probabilistic structure of the
paradox.

The St. Petersburg Paradox was originally presented by Nicolaus Bernoulli
and later analyzed by Daniel Bernoulli. It is a well-known example in eco-
nomic theory that illustrates the limitations of relying solely on the expected
monetary value when making rational decisions under uncertainty. Initially
in probability theory, it was assumed that a rational agent should choose
between risky prospects by maximizing the expected monetary value, cal-
culated as:

E[S] =
∑
i

sipi
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where si is the monetary outcome and pi is the probability of that outcome.
Under this criterion, a rational agent should be willing to pay any amount
up to the expected monetary value of the gamble in order to participate
(Aase, 2001; Machina, 1987).

St. Petersburg paradox
Consider a game in which a fair coin is repeatedly tossed until
heads appears. At each toss, the player’s potential profit is dou-
bled. If heads appears on the i-th toss, the player’s gain is 2i.
The expected profit is given by the following summation:

E[S] =
∞∑
i=1

1

2i
· 2i = ∞.

Despite this infinite expected value, no rational person would be
willing to pay a very large amount to enter such a game (Kaas
et al., 2008).

Daniel Bernoulli, as cited by Aase (2001), criticized the expected value cri-
terion by noting: ”there should be no sensible man who would not be willing
to sell his right to this gain for 20 ducats.” To resolve the paradox, Bernoulli
proposed that decisions under uncertainty should be based not on expected
monetary value, but on what he called moral expectation, which we today
refer to as expected utility.

Bernoulli addressed the paradox by introducing the concept of diminish-
ing marginal utility of wealth, the idea that the utility derived from an
additional amount of money decreases as a person’s wealth increases. He
suggested using a logarithmic utility function, u(w) = log(w), where w de-
notes the individual’s wealth. Instead of computing the expected monetary
gain, Bernoulli proposed evaluating the expected change in utility from par-
ticipating in the gamble, i.e. the utility gain or loss from the gamble:

E[∆u] =

∞∑
i=1

1

2i
log

(
w + 2i

w

)
.

This expression captures the expected utility gain from receiving 2i, taking
into account the individual’s initial wealth. The series converges to a finite
value for all realistic values of initial wealth w (Bernoulli, 1954; Machina,
1987). This utility-based approach laid the foundation for modern expected
utility theory, where the logarithmic function is generalized to any increasing
and concave utility function u(w), as later formalized by von Neumann and
Morgenstern (1947) (Aase, 2001).
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2.3 Borch’s Model and the Optimal Deductible

This section is based on Karl Borch’s article on optimal insurance arrange-
ments (Borch, 1975), which builds on the foundational work by Arrow
(1974). Both approaches analyze insurance contracts under the assump-
tion that individuals maximize expected utility.

Consider a setting where an individual faces a random loss X, described
by a cumulative distribution function F (x) = P (X ≤ x) for x ≥ 0. The
individual may purchase an insurance contract that provides compensation
y(x) > 0 in the event of a loss x, and the objective is to find the function
y(x) that maximizes expected utility. The individual’s preferences toward
risk are represented by a Bernoulli utility function u(x), and they possess
initial wealth w.

The premium for the insurance is defined by a functional P (y), which is
assumed to be proportional to the expected compensation, adjusted for a
loading λ:

P (y) = (1 + λ)

∫ ∞

0
y(x) dF (x) = (1 + λ)E[y(X)].

The optimization problem is to choose a contract y(X) ∈ Y, where Y de-
notes the set of feasible insurance policies, in order to maximize the expected
utility:

∫ ∞

0
u(w − P (y)− x+ y(x)) dF (x) = E[u(w − P (y)−X + y(X))],

where w−P (y)−x+y(x) represents the individual’s wealth after paying the
insurance premium P (y), experiencing the loss x, and receiving the insurance
compensation y(x). This expression captures the net wealth available to the
individual in each loss scenario, which determines their utility. As shown by
Arrow (1974), the optimal contract that maximizes expected utility under
this premium structure takes the form:

y(x) =

{
0, x < m,

x−m, x ≥ m,

for some deductible m. This contract structure corresponds to a stop-loss
insurance policy, i.e. the insured is responsible for all losses up to m, and
is fully compensated for any amount exceeding that threshold. Given this
form of y(x), the premium can be written as a function of m:

P (m) = (1 + λ)

∫ ∞

m
(x−m) dF (x) = (1 + λ)E[(X −m)+]. (2)
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For notational convenience, we write P instead of P (m) in what follows,
implicitly treating P as a function of m. Hence, when differentiating ex-
pressions involving P , we account for the fact that P = P (m).

As shown by Borch (1975), the optimization problem thus reduces to deter-
mining the optimal deductible m. The expected utility associated with such
a contract is given by:

U(m) =

∫ m

0
u(w − P − x) dF (x) +

∫ ∞

m
u(w − P −m) dF (x).

To characterize the optimal deductible, we differentiate U(m) with respect
to m, accounting for the fact that P also depends on m. The derivative of
the premium is:

dP

dm
= −(1 + λ)(1− F (m)). (3)

Applying the chain rule yields:

dU

dm
= − dP

dm

∫ m

0
u′(w − P − x) dF (x)

−
(
1 +

dP

dm

)
u′(w − P −m)(1− F (m)).

A full derivation of dP
dm and dU

dm is provided in the Appendix, see Section 7.

Setting dU
dm = 0 and substituting Equation (3), we obtain the condition

characterizing the optimal deductible:

(1 + λ)

∫ m

0
u′(w − P − x) dF (x) = [(1 + λ)F (m)− λ]u′(w − P −m). (4)

This equation implicitly defines the optimal m. Furthermore, under the
standard assumption of strict risk aversion, i.e. u′′(x) < 0, the optimal
deductible increases with the loading factor λ, as shown by Borch (1975).

2.4 Key Distributions in Actuarial Science

2.4.1 The Gamma Distribution

The Gamma distribution is a continuous probability distribution commonly
used in insurance mathematics to model non-negative stochastic quantities,
such as claim sizes. A random variable X ∼ Gamma(α, ρ) has the probabil-
ity density function (PDF):

f(x) =
ρα

Γ(α)
xα−1e−ρx, x > 0,
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where α > 0 is the shape parameter and ρ > 0 is the rate parameter. Note
that in some formulations, the scale parameter θ = 1/ρ is used instead
(Kaas et al., 2008). The term Γ(α) in the denominator refers to the gamma
function, which is defined for real α > 0 as:

Γ(α) =

∫ ∞

0
xα−1e−x dx.

The mean and variance of a Gamma-distributed random variable are given
by α/ρ and α/ρ2, respectively (Ohlsson and Johansson, 2010).

2.4.2 The Poisson Distribution

The Poisson distribution is a discrete probability distribution frequently
used in actuarial science to model event frequency, such as the number of
insurance claims within a fixed time period. Let N ∼ Poisson(κ), where
κ > 0 denotes the rate parameter, representing the expected number of
events in the given interval. The probability mass function (PMF) of the
Poisson distribution is given by:

P(N = k) =
κke−κ

k!
, k = 0, 1, 2, . . .

A key property of the Poisson distribution is that its expected value and
variance are both equal to κ (Ohlsson and Johansson, 2010; Kaas et al.,
2008).

2.4.3 The Compound Poisson Distribution

The Compound Poisson distribution is a discrete-continuous mixture dis-
tribution commonly used in insurance mathematics. It describes the total
amount of claims occurring within a fixed period of an insurance contract,
where the number of claims is random and each individual claim amount
follows its own probability distribution.

Formally, let N ∼ Poisson(κ) denote the number of claims during a fixed
time interval, and let X1, X2, . . . be independent and identically distributed
non-negative random variables representing individual claim amounts. As-
sume further that the claim sizes Xi are independent of the claim count N .
The total claim amount Z is then defined as:

Z =

N∑
i=1

Xi.

The distribution of Z is referred to as the Compound Poisson distribution.
Under the assumption of independence, the expected value and variance of
Z are given by:
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E[Z] = E[N ] · E[X], Var(Z) = E[N ] · E[X2],

where E[N ] = κ. While the gamma distribution is commonly used to model
claim severity X, other possible choices include the log-normal and inverse
Gaussian distributions (Kaas et al., 2008; Ohlsson and Johansson, 2010).

2.5 Generalized Linear Models

Generalized Linear Models (GLMs) are a class of statistical models that
extend the classical linear model by (i) allowing the stochastic variables to
follow distributions other than the normal distribution, such as Poisson, Bi-
nomial, and Gamma, and (ii) modeling the mean of the response variable
as a linear function on a different scale, such as the logarithmic scale. This
transformation leads to a multiplicative model, in contrast to the additive
model used in classical linear regression (Kaas et al., 2008). For insurance
pricing, multiplicative models are more suitable since claim amounts and
claim frequencies are often modeled with non-normal distributions, such as
Poisson, binomial, or gamma (Ohlsson and Johansson, 2010).

A Generalized Linear Model (GLM) is composed of three main components:
a stochastic component, a systematic component, and a link function. The
stochastic component defines the probability distribution of the response
variable U , which lies within the exponential family. The systematic com-
ponent represent the linear predictor η. This is a linear function of the
regressors V1, V2, . . . , Vp, typically written as:

η = β0 + β1V1 + β2V2 + · · ·+ βpVp

where β0, β1, . . . , βp are the parameters that are estimated during model
fitting. The link function, denoted as g(·), connects the expected value of
the response variable E(U) to the linear predictor η. The relationship is
expressed as (Kaas et al., 2008):

g(E(U)) = η

and must be a monotone and differentiable function. A common link func-
tion is the logarithmic link g(E(U)) = log(E(U)) which gives us a multi-
plicative model and, as stated before, is more suitable for insurance pricing.
As mentioned in Section 2.1, we have a claim severity and a claim frequency
model, for a GLM we assume that the claim frequency follows a poisson
distribution and often a gamma distribution for the claim severity, and both
a logarithmic link (Ohlsson and Johansson, 2010).
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2.6 K-Means Clustering

K-means clustering is a fundamental unsupervised learning method used
to partition a dataset (q1,q2, . . . ,qp), where each observation qn ∈ RD,
into K distinct clusters. The absence of labeled responses distinguishes this
problem as unsupervised, the algorithm seeks to discover intrinsic groupings
within the data based solely on the observed feature vectors.

Formally, the goal of K-means is to determine both an assignment of each
data point to one of the K clusters and a corresponding set of cluster cen-
troids {c1, . . . , cK} ⊂ RD that minimize the within-cluster sum of squared
Euclidean distances. Introducing indicator variables rnk ∈ {0, 1} such that:

rnk =

{
1, if qn is assigned to cluster k,

0, otherwise,

with the constraint
∑K

k=1 rnk = 1 for all n, ensuring that each data point is
assigned to exactly one cluster, the objective function becomes:

J =

N∑
n=1

K∑
k=1

rnk∥qn − ck∥2.

The algorithm proceeds iteratively via two alternating steps. First, we ini-
tialize the cluster centroids, commonly by randomly selecting K points from
the dataset. Then the algorithm iterates between the following steps: Each
data point is assigned to the cluster whose centroid is closest in Euclidean
distance:

rnk =

{
1, if k = argminj ∥qn − cj∥2,
0, otherwise.

Then, each cluster centroid is updated as the mean of all data points cur-
rently assigned to that cluster:

ck =

∑N
n=1 rnkqn∑N
n=1 rnk

.

These steps are repeated until convergence. Because each phase reduces the
value of the objective function J , convergence of the algorithm is guaranteed.
Specifically, the update for the cluster centroids ck is obtained by minimizing
J with respect to ck, which leads to a closed-form solution by setting the
derivative of J with respect to ck equal to zero. However, the procedure
may converge to a local rather than a global minimum of J (Bishop, 2006).
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3 Methods

3.1 Data Description

The dataset used in this study was provided by Länsförsäkringar AB and
contains detailed information on insurance contracts related to collision
damage for privately owned passenger cars. The dataset includes 3 586 572
insurance policies and consists of 13 variables, of which seven are explanatory
variables describing characteristics of either the policyholder or the insured
vehicle. These variables include, for example, the age of the policyholder,
the age of the car, annual mileage, and vehicle risk zone, but do not contain
information on policyholders’ wealth or income, nor the market value of the
insured vehicles. The dataset also contains information on claims: whether
a claim occurred, the number of claims per contract, and the total cost of
reported claims. Out of all contracts, 109 070 policies had at least one claim,
and the total number of claims was 119 676, indicating that some policies
experienced more than one claim during the contract period.

Quantile 95% 99% 99.5% 99.9%

Total cost 0.00 25 607.36 39 482.84 80 511.04

Table 1: Quantiles of total claim costs (SEK)

In Table 1, we can see selected quantiles of the total claim costs (in SEK)
reported in the dataset. The table illustrates the highly skewed nature of
the claim cost distribution, showing that while most claims are of relatively
low cost (with 99% of claims below 25 607 SEK), there are some very large
claims, as indicated by the 99.9th percentile at 80 511 SEK.

It is important to note that originally all policyholders had a deductible
threshold of 3000 SEK. However, since the aim of this thesis is to estimate
the optimal deductible m, any deductible originally applied to the claims
was added back to the observed claim costs before any further analysis. This
adjustment ensures that the estimations accurately reflect the insurer’s full
risk exposure rather than only the portion exceeding the deductible. The
dataset also contained some observations with zero claim cost despite an in-
dicated claim, typically because the claim amount falls below the deductible
threshold. These observations were excluded from the analysis since the ac-
tual loss amount is unknown. This limitation is inherent in insurance data,
as claims below the deductible are generally not reported, introducing a sys-
tematic bias that cannot be fully avoided even with complete data

Furthermore, despite the presence of extreme claim costs, no outliers were
removed nor were the data trimmed at any upper percentiles. This decision
is motivated by the fact that large claims represent genuine risks that insur-
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ers face and should therefore be included in premium calculations to avoid
underestimating the insurer’s exposure.

3.2 Modeling Individual Wealth

To model individual wealth for all policyholders we assume that a person’s
monthly income is directly proportional to their wealth. We base our analy-
sis on income data from Statistics Sweden (SCB) for 2024, where the mean
monthly salary is 39 900 SEK and the median monthly salary is 35 600 SEK.
Since income distributions are typically right-skewed, with a long right tail,
we model the distribution of monthly income using a lognormal distribution.
Specifically, we assume:

W ∼ Lognormal(µ, σ2)

with an expected value E[W ] = 39 900 SEK and a median value Median(W ) =
35 600 SEK. Here, µ and σ are the location and scale parameters of the
lognormal distribution, i.e., the mean and standard deviation of the log-
transformed income ln(W ). The standard deviation parameter σ determines
the dispersion of incomes: a lower σ results in incomes clustered more closely
around the median, while a higher σ results in greater variability, with many
low-income individuals and a few very high-income earners.

To account for a reasonable degree of income inequality, we estimate µ and
σ using the expected value and the median of the lognormal distribution.
For a lognormal distribution, the expected value and median are related to
µ and σ as follows (Ross, 2014):

E[W ] = exp
(
µ+ σ2

2

)
Median(W ) = exp(µ)

We compute µ from the median and calculate σ using the relationship be-
tween the expected value and the median of the lognormal distribution:

µ = ln
(
Median(W )

)
σ =

√
2 ln

(
E[W ]

Median(W )

)
By solving for µ and σ using these equations, we obtain µ = 10.480 and
σ = 0.478. Based on these estimates, we simulate the monthly incomes for
each policyholder.
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3.3 Numerical Solution of Borch’s Equation

While Equation (4) provides an implicit condition for the optimal deductible
m, it cannot be solved analytically due to the involvement of the cumulative
distribution function F (x), as well as the dependency of the premium P (m)
on the deductible itself. In particular, P (m) is a function of the expected
claims retained by the insurer, which depends on the distribution of the loss
amount in excess of the deductible, i.e., (x−m)+.

To overcome this, we adopt a numerical approach. Specifically, we evaluate
both sides of Equation (4) over a grid of candidate deductible values M ,
and select the value m ∈ M that minimizes the absolute deviation between
the two sides. All computations are carried out in R, and the loading fac-
tor is set to λ = 0.15, resembling a realistic practice at Länsförsäkringar AB.

We assume a logarithmic utility function u(x) = log(x), consistent with the
Bernoulli utility principle as advocated by Borch (1975). The marginal util-
ity is then given by u′(x) = 1/x, which is used in the evaluation of both
sides of the condition. For each candidate value of m ∈ M , the correspond-
ing premium P (m) is computed, and both sides of Equation (4) are then
evaluated. The optimal deductible is selected as:

m∗ = arg min
m∈M

|LHS(m)− RHS(m)| .

This simulation-based framework provides a flexible and robust method for
determining optimal deductibles under varying distributional assumptions.
In the next section, we implement this procedure under two specific models
for the loss distribution F (x): a Gamma distribution and a Compound
Poisson distribution with Gamma-distributed severities. As will be shown,
the latter better accommodates the structure of the problem, particularly
the possibility of zero-loss outcomes, making it more appropriate for the
numerical solution of Borch’s equation.

3.4 Parameter Estimation and Model Selection

Our initial thought was to assume a Gamma distribution for F (x), since it
should describe a setting where an individual faces a random loss x and in
insurance mathematics the severity model is often assumed to be Gamma
distributed (Ohlsson and Johansson, 2010). However, this specification im-
plies that a loss always occurs and therefore does not account for the pos-
sibility of zero claims. To assess whether this simplification is justified, we
performed an exploratory analysis on one individual from the dataset, rep-
resenting the most typical policyholder characterized by the median values
of the explanatory variables and median wealth. Specifically, we solved the
numerical version of Borch’s equation, as outlined in Section 3.3, under two
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alternative distributional assumptions: (i) a pure Gamma distribution, and
(ii) a continuous compound distribution, where the number of claims follows
a Poisson distribution and the claim sizes are Gamma distributed.

To numerically solve Borch’s equation under these assumptions, we begin
by estimating the relevant parameters for both the Gamma and Poisson dis-
tributions. This is done by fitting Generalized Linear Models (GLMs) with
a logarithmic link function for both a frequency and a severity component,
each with four predictors. The predictors include two continuous variables
(e.g., age of the policyholder and the vehicle) and two categorical variable
(risk zone and mileage). Through these models, we obtain individual es-
timates for each policyholder i in the dataset, allowing the parameters to
reflect each policyholder’s specific risk profile rather than relying on general
estimates across the entire portfolio.

For the severity component, we fit a Gamma-distributed GLM using only
observations with at least one reported claim. The logarithm of the number
of claims is included as an offset in the model, enabling us to estimate the
expected claim cost per claim for each policyholder. To ensure that the
resulting quantity corresponds to the expected cost of a single claim, we
generate predictions using a modified version of the dataset in which the
number of claims is set to one for all individuals. Consequently, individuals
sharing the same combination of explanatory variable classes receive identi-
cal predicted mean claim costs µi. These predicted means are then used to
derive the parameters of the Gamma(α, ρi) distribution for each individual.
Specifically, the shape parameter α is obtained from the GLM dispersion
parameter ϕ, defined by:

α =
1

ϕ
,

and the rate parameter ρi is computed for each individual as:

ρi =
α

µi
,

derived from the expected value of the Gamma Distribution (Ohlsson and
Johansson, 2010). For the frequency component, we fit a Poisson-distributed
GLM using only observations with strictly positive exposure. The logarithm
of the duration is included as an offset to model the number of claims per
unit time. To obtain the expected annual claim frequency κi, we generate
predictions on a modified dataset where the exposure duration is set to one
for all individuals. Similarly to the Gamma predictions, individuals with
identical combinations of explanatory variables receive the same estimated
frequency parameters.
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To illustrate the application of the numerical solution of Borch’s equation
under different distributional assumptions, we use the estimated parameters
corresponding to the most typical policyholder as defined earlier. These
parameters include the individual’s wealth wi, expected claim frequency κi,
and the Gamma distribution parameters (α, ρi) used to model claim severity.

We begin by solving Borch’s equation under the assumption that F (x) fol-
lows a pure Gamma distribution, using the estimated parameters for indi-
vidual i, which corresponds to a single-claim severity model. In this case, the
cumulative distribution function F (x) is available in closed form, allowing
us to directly apply the numerical solution procedure described in Section
3.3.

Under the Compound Poisson assumption, where the total loss Z is the sum
of a random number of Gamma-distributed claims, no closed-form expres-
sion exists for the cumulative distribution function F (x). To handle this,
we approximate F (x) empirically through Monte Carlo simulations. Specifi-
cally, we simulate the total loss by first drawing the number of claims N from
a Poisson distribution with parameter κi, and then summing N independent
Gamma-distributed severities with parameters (α, ρi). If N = 0, the total
loss is set to zero, reflecting a year without any claims (Kaas et al., 2008).
This process is repeated K times to generate a sample {Z(1), Z(2), . . . , Z(K)}
of total losses. Here, we set the search space to values m ≤ 0.9 ·w to ensure
strictly positive post-loss wealth and avoid undefined utility values under
log utility. A more detailed explanation is given in the discussion section.

The empirical cumulative distribution function at deductible m is then es-
timated as the proportion of simulated losses not exceeding m, i.e. F (m) =
P (Z ≤ m), given by:

F̂ (m) =
1

K

K∑
k=1

1{Z(k) ≤ m}.

The insurance premium P (m) for a given deductible m is defined as the
expected retained loss for the insurer, including the loading factor λ, as
expressed in Equation (2). Hence, in this case, we estimate the premium
by:

P̂ (m) = (1 + λ)× 1

K

K∑
k=1

max(Z(k) −m, 0).

In the optimal deductible condition in Equation (4), the left-hand side rep-
resents the expected marginal utility of wealth over all losses up to M ,
weighted by the distribution of losses. We approximate this integral by the
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empirical average over the simulated losses:

(1 + λ)× 1

K

K∑
k=1

u′
(
w − P̂ (m)− Z(k)

)
1{Z(k) ≤ m}.

Here, the indicator function 1{Z(k) ≤ m} ensures that only losses below the
deductible contribute to the expectation, and the average is taken over the
entire sample to properly approximate the integral with respect to the loss
distribution F . This simulation-based approach enables numerical evalua-
tion of the optimal deductible condition despite the absence of closed-form
expressions, allowing us to solve for the deductible m.

After computing the optimal deductible m∗ and the corresponding premium
P (m∗) under both distributional assumptions, we compare the results to
determine which loss model provides a better representation for our analysis.

3.5 Calculation and Clustering of Optimal Deductibles

Based on the exploratory analysis presented in Section 3.4, it will be shown
that the compound Poisson distribution provides a more realistic model. Ac-
cordingly, we adopt the compound Poisson framework when solving Borch’s
equation for all individuals in the dataset. Although the detailed method-
ology in Section 3.2 was illustrated for a single representative individual,
the same simulation-based procedure is applied to each policyholder i, using
their respective estimated parameters (wi, κi, αi, ρi). Specifically, for each
individual, Borch’s equation is numerically solved under the compound Pois-
son assumption to determine the optimal deductible m∗

i .

After obtaining the set of optimal deductibles, we apply the k-means clus-
tering algorithm to identify representative contract structures, as outlined
in Section 2.6, following the methodology inspired by Bishop (2006). Since
the number of clusters t is not known a priori, we use the elbow method to
determine an appropriate choice of t. This involves running k-means clus-
tering for various values of t and identifying the point at which the marginal
reduction in within-cluster sum of squares begins to level off. Based on this
criterion, we select an appropriate number of clusters and perform k-means
clustering with multiple random initializations in R to ensure stability. The
resulting cluster centroids represent distinct levels of deductibles, allowing
for a meaningful segmentation of the dataset.

3.6 Modeling Wealth Effects

In the baseline simulations, policyholder’s initial wealth levels are randomly
assigned using a log-normal distribution, as described in Section 3.2. This
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approach does not incorporate any characteristics of the policyholder or
the insured vehicle, which may result in unrealistic allocations of wealth. In
practice, a policyholder’s wealth is expected to correlate with both individual-
specific attributes and the value of the insured asset. Ignoring this relation-
ship reduces the realism of the model and may distort the resulting insurance
design. To investigate the implications of this simplification and analyze how
wealth influences the choice of optimal deductible m∗, we conduct a targeted
simulation study.

We start by calculating the pure premium for each insurance contract us-
ing the previously estimated frequency and severity models. For simplicity,
instead of a full spectrum of contracts, we select three representative con-
tracts corresponding to the 25th, 50th, and 75th percentiles of the premium
distribution. This approach captures low, medium, and high-risk profiles,
allowing us to explore how deductible choices vary across different levels of
risk exposure while maintaining a streamlined analysis.

For each of these contracts, the optimal deductible is simulated over a range
of wealth levels. The optimization procedure for the deductibles follows the
same framework as in earlier simulations, using a logarithmic utility function
and solving Borch’s condition via Monte Carlo simulation. Premiums are
updated dynamically to reflect the deductible level and contract-specific
risks. The relationship between wealth and the optimal deductible for these
three risk profiles is illustrated using line plots.
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4 Results

This section presents results from the preliminary analysis, optimization,
and the investigation of wealth effects on deductible choice. Section 4.1
covers parameter estimation and the selection of a loss distribution, with
the latter illustrated through a representative individual. Section 4.2 shows
the optimal deductibles based on the chosen model, followed by clustering
results that identify recommended deductible levels for the insurer. Finally,
Section 4.3 explores how varying policyholders’ wealth impacts the selection
of optimal deductibles across different risk profiles.

4.1 Preliminary Analysis

As outlined in the methodology, the parameters of the Poisson(κi) and
Gamma(α, ρi) distributions were estimated via generalized linear models
(GLMs) for each unique risk profile. A risk profile here corresponds to a
unique combination of explanatory variables. The Gamma shape parame-
ter α is constant across profiles and estimated from the overall dispersion,
yielding α = 1.16. Since the predictions correspond to claim counts per
unit exposure, all individuals sharing the same risk profile receive identical
parameter estimates. This allows us to summarize the results in an aggre-
gated table with one row per unique risk profile. Given the multiple classes
within the four explanatory variables, presenting all possible combinations
is impractical, therefore, Table 2 shows a selected subset of estimated pa-
rameters for illustrative risk profiles. The table is sorted by decreasing κ,
with the overall highest claim frequencies at the top and the lowest at the
bottom. The starred row highlights the most typical policyholder profile.

Owner Age Vehicle Age Mileage (km) Risk Zone κ ρ/10−5

18 0 >2500 3 0.44 3.078
19 0 >2500 3 0.44 3.094
36 5 ≤1000 1 0.11 4.24
34 7 ≤2500 1 0.11 4.41
48 16 ≤2000 3 0.08 6.41
52 9 ≤1500 1 0.074 5.13 ∗
60 19 ≤1500 1 0.03 5.048
85 20 ≤1000 1 0.02 7.15

Table 2: Estimated parameters κ and ρ from a generalized linear model
(GLM) for selected risk profiles, sorted in descending order by κ. The star
marks the most typical policyholder profile.

From Table 2, we observe that younger policyholders with new vehicles and
high mileage exhibit the highest claim frequencies κ, while older individuals
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with older vehicles exhibit the lowest. Although variation in the severity
parameter ρ is less pronounced, it still reflects meaningful differences in ex-
pected claim size across profiles.

The result of evaluating the loss distributions on a single representative
individual, referred to as the typical policyholder (marked with ∗ in Table 2)
with a median wealth of 35 600, is as follows. Using the estimated parameters
for this profile, the Gamma model suggests an optimal deductible of 11 220
and a premium of 15 505, but it fails to provide meaningful results at lower
wealth levels. The reason for this will be discussed later. In contrast, the
compound Poisson model estimates a deductible of 4 800 and a premium of
1 740, which align better with practical expectations. Therefore, we proceed
with the compound Poisson model for the subsequent analyses.

4.2 Optimization Results

Under the compound Poisson assumption, we numerically solved Borch’s
equation for each policyholder to determine their individual optimal de-
ductible and corresponding premium. Note that even policyholders with
identical risk profiles may receive different deductible values due to varia-
tions in individual wealth wi.

To summarize these individualized results into representative contract struc-
tures, we applied k-means clustering to all computed optimal deductible
values across policyholders. The clustering was based on minimizing the
total within-cluster sum of squares, and the optimal number of clusters t
was determined using the elbow method, as illustrated in Figure 1. The
plot suggests that t = 3 is a reasonable choice. However, since it is not
uncommon for insurers to offer only two deductible levels, we also report
results for t = 2.

Figure 1: Total within-cluster sum of squares for different number of clusters
t.
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After constructing contract structures with two and three deductible levels
using k−means, we obtained the cluster centers shown in Table 3, which are
interpreted as representative deductible levels. Exact values are reported
without rounding.

Deductible Level Three-Level Grouping Two-Level Grouping

Level 1 3,375 4,054
Level 2 6,558 9,180
Level 3 11,691 –

Table 3: Deductible levels for t = 3 and t = 2.

4.3 Wealth Effects on Deductibles

Figure 2 presents the optimal deductible as a function of individual wealth
across three levels of pure premium (25th, 50th, and 75th percentiles). A
clear positive relationship is observed, with the optimal deductible increasing
nearly linearly with wealth. This suggests that wealthier individuals are
generally willing to assume a greater portion of the risk themselves, which
aligns with economic theory predicting higher risk tolerance with increased
capital.

Figure 2: Optimal deductible as a function of wealth for three levels of pure
premium. The red line represents the 25th percentile, green the 50th, and
blue the 75th.

The variation across the different percentiles is minimal, as indicated by the
overlapping curves. This implies that the model’s results are relatively ro-
bust to variations in parameters such as the pure premium and expected loss,
and that wealth is the dominant factor influencing the optimal deductible
rather than differences in claim frequency or claim size.
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Figure 3 illustrates the insurance premium as a function of the optimal de-
ductible for three levels of pure premium (25th, 50th, and 75th percentiles).
The premium decreases as the deductible increases, reflecting that higher
deductibles reduce the insurer’s exposure and thus the cost of insurance.
This relationship mirrors the wealth effect observed in Figure 2, as individ-
uals with greater wealth tend to select higher deductibles and consequently
pay lower premiums.

Figure 3: Premium as a function of the optimal deductible, illustrating how
the premium varies with deductible levels that depend on wealth. The red
line represents the 25th percentile, green the 50th, and blue the 75th.

In Figure 3, the variation across different percentiles is more pronounced.
Unlike the optimal deductible, where differences between percentiles are
minimal, the premium curves are clearly separated. The 25th percentile
consistently pays the lowest premium, the 50th percentile an intermediate
amount, and the 75th percentile the highest. While the inverse relationship
between deductible and premium holds across all risk groups, the differences
in intercepts suggest that factors other than wealth, such as higher expected
claim frequency or claim severity, lead to increased expected loss and thus
higher premiums. This indicates that although wealth primarily drives de-
ductible choice, risk heterogeneity plays a stronger role in determining the
premium.
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5 Discussion

This discussion is divided into three parts. In Section 5.1, we interpret the
key results obtained in this thesis. Section 5.2 provides a critical reflection
on the methodological choices made throughout the work. Finally, in Sec-
tion 5.3, we outline the main limitations of the study and suggest directions
for future improvements.

5.1 Interpretation of Results

This study aimed to determine optimal deductible levels for an insurance
portfolio using Borch’s utility-based method. While Borch’s framework iden-
tifies the optimal deductible for a single individual, we extended it to a full
portfolio of heterogeneous policyholders to derive common deductible levels.

Based on the results seen in Figure 1, the three-level deductible structure
appears to offer the most appropriate segmentation. The elbow plot of
within-cluster sum of squares suggests that additional levels provide limited
improvement, and a three-level structure captures most of the explanatory
variation without unnecessary complexity.

The resulting deductibles in the three-level structure align reasonably well
with real-world products, though they tend to be slightly higher, likely due
to uncertainty in wealth estimates affecting the utility calculations. There-
fore, results should be interpreted cautiously, especially where reliable wealth
data is unavailable. As shown in Section 4.3, wealth has a significant effect
on the optimal deductible choice, with deductibles increasing nearly linearly
with wealth. Interestingly, the model suggests that different risk profiles
receive similar deductible recommendations at the same level of wealth, in-
dicating that wealth dominates deductible preferences. However, this does
not imply that wealth and risk are uncorrelated in reality. On the contrary,
a policyholder’s risk (e.g., claim frequency or severity) may correlate with
their wealth. For example, more expensive vehicles may result in costlier
claims. Nevertheless, the method holds promise when wealth data or close
proxies exist.

A notable pattern, when examining the individual-specific optimal deductibles,
is that individuals with very high wealth receive correspondingly high de-
ductibles, reflecting low marginal utility of wealth and near indifference to
risk transfer. Applying Equation (1), we found that their expected utility
of bearing the risk themselves, E[u(w−X)], often exceeds the utility of pur-
chasing insurance, u(w−m−P ), confirming that self-insurance is preferable.
While these extreme cases could be excluded, we retained them to capture
the full behavioral spectrum. They also constitute a small fraction of poli-
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cyholders and have negligible impact on the overall results.

5.2 Methodological Reflections

In this thesis, wealth is a central concept, since it plays a key role in the
framework by Borch (1975) for determining the optimal deductible. While
Borch defines wealth as an individual’s total available assets, particularly
liquid assets, we instead use monthly income as a proxy for wealth. This
choice is motivated by the idea that individuals are unlikely to use their
accumulated assets to cover recurring expenses such as insurance premiums.
Instead, monthly income better reflects the financial resources they have at
their disposal on a regular basis. Another alternative available to insurance
companies could be the value of the insured asset, such as the vehicle’s mar-
ket value, as this information is typically accessible to them. Using it either
as a proxy for wealth or as a tool for approximating it could improve the
precision of the model. However, we do not have access to such data in this
thesis, and this limitation is discussed further in the limitations section.

Wealth is only one component of the framework. Another important mod-
eling choice lies in the selection of an appropriate distribution for claim
amounts. As shown in the results, the Compound Poisson-Gamma distribu-
tion proved to be the best-fitting model. This outcome is reasonable given
the nature of the data: as observed in the data section (see 3.1), a signifi-
cant proportion of the observations are zero claims. A Gamma distribution
alone cannot account for this mass of zeros, whereas the Compound Poisson
component naturally incorporates the frequency of zero claims through the
Poisson process. This makes the Compound Poisson-Gamma a more realis-
tic choice in modeling insurance losses, where many policyholders may not
report a claim within the observed time frame. In contrast, relying solely
on a Gamma distribution led to unrealistic results across a wide range of
wealth levels, with the optimal deductible frequently converging to zero for
many policyholders. An explanation for this behavior is the following:

The Gamma distribution models only positive claim sizes, implicitly assum-
ing a claim occurs in every period. Consequently, the expected loss remains
consistently high, resulting in a high premium, as demonstrated by the re-
sults. This premium, calculated as:

P (m) = (1 + λ)E[(X −m)+]

remains elevated even for substantial deductibles. This occurs because the
Gamma distribution has both a long right tail, which implies a non-negligible
probability of very large claims, and a significant density near zero, indicat-
ing a large number of small claims. Increasing the deductible m excludes
these small claims from coverage. However, since their amounts are low,
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the marginal reduction in expected indemnity E[(X −m)+] is minimal. In
other words, although a significant portion of claims lies just above zero, the
difference (X −m)+ for these claims is close to zero, contributing little to
the decrease in expected indemnity as m increases.

As a result, for policyholders with lower wealth, the high premium makes
it optimal, under log utility, to choose no deductible, thereby avoiding out-
of-pocket costs. Although this behavior is derived from log-utility, similar
patterns may occur with other utility functions as well. Investigating alter-
native utility specifications could therefore be a relevant direction for further
analysis. This limitation illustrates why the Gamma distribution does not
yield meaningful results across the entire wealth spectrum.

A comparable, but manageable, issue occurred in the simulations using the
compound Poisson distribution, where we encountered both numerical and
economic difficulties when the deductible m approached or exceeded the
initial wealth of the policyholder w. In such cases, the residual wealth:

w − P (m)−m

which represents the worst-case outcome for the insured, could become neg-
ative. This poses a fundamental issue when using a log-utility function,
as its marginal utility is only defined for strictly positive wealth. While it
is mathematically possible to compute values outside the domain, the re-
sults are economically meaningless and lead to misleading behavior in the
optimization. Specifically, when residual wealth is negative, the marginal
utility:

u′(w − P (m)−m) =
1

w − P (m)−m

becomes a small negative number. This may cause the left- and right-hand
sides of the Borch equilibrium condition to appear numerically close, falsely
suggesting optimality. To prevent this, we imposed a constraint on the
deductible by limiting the search space to values m ≤ 0.9 ·w, ensuring that
the policyholder’s post-loss wealth remains strictly positive and that the
utility function remains well-defined.

5.3 Limitations

This study is subject to several limitations related to both data availability
and methodological choices.

First, individual wealth levels were assigned randomly due to the absence of
detailed data connecting policyholders to financial characteristics. In par-
ticular, the dataset does not contain information on vehicle value, such as
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purchase price, make, or model, which could have served as a proxy or as
a tool when approximating wealth. This simplification may be misleading,
as wealth plays a central role in determining the optimal deductible. For
instance, policyholders with high-value vehicles may have been assigned un-
realistically low wealth, or vice versa, leading to inaccurate estimates of
optimal deductibles. This introduces noise by causing a misalignment be-
tween assumed wealth and actual financial capacity, ultimately reducing the
model’s accuracy. Future studies could improve precision by incorporating
vehicle characteristics or other relevant factors to better approximate wealth.

Second, the approximation of expected values using Monte Carlo simulation,
as described in Section 3.4, introduces some numerical error and randomness
in the results. Although a large number of simulations were performed to en-
sure stability, some variability remains between repeated runs. This stochas-
tic error may affect the precision of the estimated optimal deductibles, espe-
cially in scenarios involving extreme values or rare events. Future research
could explore variance reduction techniques such as antithetic or control
variates, or alternative numerical methods like Panjer recursion. However,
while Panjer recursion can give exact results for certain aggregate claim
distributions, it generally requires discrete claim sizes and can be computa-
tionally demanding or impractical when applied to continuous or complex
severity distributions such as the Gamma (Dickson, 1995).

Lastly, in determining deductible levels across the population, the k-means
clustering algorithm was applied using the optimal deductible values them-
selves as inputs, and the within-cluster sum of squares as the criterion. An
alternative approach would be to cluster based on individual utility values
instead, potentially leading to more utility-optimal segmentation. However,
since the utility function is already incorporated into the optimization pro-
cedure used to determine each individual’s deductible, we reasoned that
clustering on the deductible values indirectly reflects the underlying utility.
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6 Conclusion

This thesis applied Borch’s utility-based framework to determine individu-
als’ optimal deductibles, and expanded it to obtain optimal deductible lev-
els for a heterogeneous insurance portfolio using k-means clustering. While
Borch defines wealth as an individual’s total available assets, we used sim-
ulated monthly income as a proxy for wealth.
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7 Appendix

Derivation of the Premium and Utility

In this section, we provide the full derivation of dP
dm and dU

dm , as used in
the Borch model described in Section 2.3. To differentiate integrals with
variable limits or parameters, we apply Leibniz’s integral rule, which states
(Protter and Morrey, 1985):

d

dm

(∫ b(m)

a(m)
f(m,x) dx

)
= f(m, b(m)) · b′(m)− f(m, a(m)) · a′(m)

+

∫ b(m)

a(m)

∂

∂m
f(m,x) dx.

(5)

We start by recalling the expression for the premium P , which depends on
the deductible m:

P (m) = (1 + λ)

∫ ∞

m
(x−m) dF (x) = (1 + λ)

∫ ∞

m
(x−m)f(x) dx,

where f(x) is the probability density function associated with the cumulative
distribution function F (x), i.e. f(x) = dF

dx . We now apply Equation (5) to
the integral. Let:

f(m,x) = (x−m)f(x),

a(m) = m ⇒ a′(m) = 1,

b(m) = ∞ ⇒ b′(m) = 0.

Note that the density f(x) does not depend on m. Then we obtain:

dP

dm
= (1 + λ)

[
0− f(m,m) · 1 +

∫ ∞

m

∂

∂m

(
(x−m)f(x)

)
dx

]
.

We compute the terms. For the first one, we have f(m,m) = (m−m)f(m) =
0,. For the latter term, we compute:

∂

∂m

(
(x−m)f(x)

)
= −f(x),

since f(x) does not depend on m, and the derivative of x−m with respect
to m is −1. Substituting into the expression, we obtain:

dP

dm
= (1 + λ)

∫ ∞

m
(−f(x)) dx

= −(1 + λ)

∫ ∞

m
f(x) dx.
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We now simplify the integral:

∫ ∞

m
f(x) dx =

∫ ∞

−∞
f(x) dx−

∫ m

−∞
f(x) dx

= 1− F (m),

where we have used the fact that the total area under a probability density
function is 1, and that (Wackerly et al., 2021):

F (m) =

∫ m

−∞
f(x) dx.

Hence, we conclude:

dP

dm
= −(1 + λ)(1− F (m)),

which matches the expression presented in Borch (1975). We now proceed
to derive the full expression for dU

dm . Recall the definition of U(m):

U(m) =

∫ m

0
u(w − P − x) dF (x) +

∫ ∞

m
u(w − P −m) dF (x).

We denote the first integral by UA(m) and the second by UB(m), and com-
pute their derivatives separately. To compute dUA

dm , we apply Leibniz’s rule
as stated in Equation (5). Define:

f(m,x) = u(w − P − x)f(x),

a(m) = 0 ⇒ a′(m) = 0,

b(m) = m ⇒ b′(m) = 1.

Hence, the derivative becomes:

dUA

dm
= f(m,m) · 1 +

∫ m

0

∂

∂m
(u(w − P − x)f(x)) dx.

Here, the first term is f(m,m) = u(w − P −m)f(m), and for the integral
term, we apply the chain rule to account for the m-dependence in P :

∂

∂m
(u(w − P − x)f(x)) = u′(w − P − x)

d

dm
(w − P − x)f(x)

= −u′(w − P − x)
dP

dm
f(x).

Substituting into the expression gives:
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dUA

dm
= u(w − P −m)f(m)− dP

dm

∫ m

0
u′(w − P − x)f(x) dx.

We now differentiate the second term UB(m). Again, applying Equation (5),
define:

f(m,x) = u(w − P −m)f(x),

a(m) = m ⇒ a′(m) = 1,

b(m) = ∞ ⇒ b′(m) = 0.

Hence, the derivative becomes:

dUB

dm
= −f(m,m) · 1 +

∫ ∞

m

∂

∂m

(
u(w − P −m)f(x)

)
dx.

The first term is f(m,m) = −u(w − P − m)f(m), and the integrand now
depends on m via both P and m. Hence:

∂

∂m
(u(w − P −m)f(x)) = u′(w − P −m)

d

dm
(w − P −m)f(x)

= −u′(w − P −m)

(
1 +

dP

dm

)
f(x).

Thus:

dUB

dm
= −u(w − P −m)f(m)−

(
1 +

dP

dm

)
u′(w − P −m)

∫ ∞

m
f(x)dx,

where we have moved out
(
1 + dP

dm

)
u′(w − P − m) from the integral since

they do not depend on x. As noted previously when differentiating P , we
can use the identity: ∫ ∞

m
f(x) = 1− F (m).

Adding the expressions for dUA
dm and dUB

dm , we obtain:

dU

dm
= −dP

dm

∫ m

0
u′(w−P −x)dF (x)−

(
1 +

dP

dm

)
u′(w−P −m)(1−F (m)).

This completes the derivation of the premium and utility derivatives with
respect to the deductible m, confirming the results in Borch (1975). Note
that the boundary terms f(m,m) from the two parts cancel each other out.
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