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Abstract

This thesis investigates long-term mortality trends in Sweden using
two main demographic forecasting models: the Poisson Lee-Carter and
Age-Period-Cohort (APC) models. Using mortality data and population
exposure from 1751 to 2023, the models are suitable and evaluated in
various age groups, focusing on the forecast of mortality rates from 2024
to 2050.

For model validation, we trained Lee-Carter between 1751 and 2000
and tested performance between 2001 and 2023 using multiple historical
windows. For the final forecast 2024-2050, the model was re-estimated
in the entire 1751-2023 dataset, assuming that mortality improvements
follow a persistent trend over time. On the other hand, the APC model
includes separate period and cohort effects, allowing more flexible gen-
erational patterns, and is trained on a shorter window to better capture
structural changes.

Out-of-sample evaluations show that the Lee-Carter model performs
better for mid-adult age groups when trained on a long historic window,
and it achieves lower forecast errors in short-term projections for specific
ages. In turn, the APC model provides better predictions for younger
and older age groups when recent decades are highlighted, and it outper-
forms Lee-Carter over much longer forecast horizons. The forecast error
is generally higher for the APC model due to the variability introduced
by cohort effects. These results highlight a trade-off between the robust-
ness and interpretability of the Lee-Carter model and the flexibility and
responsiveness of the APC model to structural changes. In general, the
findings support the use of both models as complementary tools in the
analysis and prediction of mortality.
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1 Introduction

Mortality trends and forecasts have significantly impacted demographic
research, life insurance, and public policy planning. Mortality rates will
never be fixed, so understanding and forecasting how they change over
time will be of interest to healthcare resources and insurance pricing.
Sweden is one of the best countries to collect mortality data. The mor-
tality data used in this thesis date back to 1751, providing an unusu-
ally long historical record that enables the study of long-term survival
trends and structural changes over nearly three centuries.

This thesis will analyze Swedish mortality using two well-known
statistical models: the Lee-Carter and Age-Period-Cohort (APC) mod-
els. The reason for choosing these two models is because of how
they describe mortality changes. Although both models aim to de-
scribe changes in mortality over time, they use different assumptions
and structures, making them suitable for comparison. The Lee-Carter
method was introduced in 1992 by Lee and Carter [6] and has since
been used for long-term forecasts because it handles time index and
age effects well. The APC model [9] has never really been discovered
but instead developed over time. Similarly to Lee-Carter, APC also
uses age and time but uses cohort as a third component to separate
the effects differently. Using the Lee-Carter and APC model, the idea
is to compare their performance when looking at the past and trying
to forecast what happens next.

The data consists of mortality data for men and women between
0 and 110 years of age between 1751 and 2023. It is an extensive
data set and gives a good opportunity to examine how mortality has
changed over almost 300 years. The results will be studied separately
for men and women and the population as a whole to see if there are
any significant differences between them.

An out-of-sample test will validate how well the two models work
with regard to forecasting. This will be done by selecting a train and
test period, where we train the model over time and evaluate forecasts
using data not used for training. This will help us determine how
reliable the models are with regard to long-term forecasting.

The thesis is divided into five main parts. The first section is
Introduction and summarizes the methods and main results of this
thesis. Section 2, called Theory, explains the theory behind the Lee-
Carter and APC models, including how they are built. The third sec-
tion Data, goes through the data set and the steps taken to prepare
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it. Section 4, Analysis and Results, shows the results with tables and
graphs from the calculations and implementations of the theories. Fi-
nally, theDiscussion section includes the conclusions, discussion about
what worked well, and ideas for future enhancements.

The thesis compares the Lee-Carter and APC models using Swedish
mortality data. Hopefully, the results can be helpful for those working
with forecasts in insurance, public health, or demography.

2 Theory

2.1 Mortality Models

2.1.1 Survival Function

The survival function is defined as follows [1]:

The survival function represents an individual’s probability of sur-
viving beyond time x (i.e., experiencing the event after time x). The
survival function is often defined as:

S(x) = P (X > x). (1)

If X is a continuous random variable, then S(x) is a continuous and
strictly decreasing function.

When X is a continuous random variable, the survival function is
the complement of the cumulative distribution function (CDF),

S(x) = 1− F (x), (2)

where F (x) = P (X ≤ x) is the CDF. Additionally, the survival func-
tion can be expressed as the integral of the probability density function
(PDF), f(x):

S(x) =

∫ ∞

x

f(t) dt. (3)

Taking the derivative of S(x) gives the relationship between the survival
function and the PDF:

f(x) = −dS(x)

dx
. (4)

Here, f(x) dx can be interpreted as the approximate probability that
the event occurs at time x. Since f(x) is a probability density function,
it is nonnegative, and the total area under f(x) integrates into one:
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∫ ∞

0

f(x) dx = 1. (5)

2.1.2 Hazard Function

The hazard function is defined as follows [1]:

An essential quantity fundamental in survival analysis is the haz-
ard function. This function is also known as the force of mortality in
demography, the intensity function in stochastic processes, the inverse
of Mill’s economic ratio, or simply the hazard function. The hazard
function is defined by

h(x) = lim
∆x→0

P [x ≤ X < x+∆x | X ≥ x]

∆x
. (6)

If X is a continuous random variable, then

h(x) =
f(x)

S(x)
= −d lnS(x)

dx
. (7)

A related quantity is the cumulative hazard function H(x), defined
by

H(x) =

∫ x

0

h(u) du = − lnS(x). (8)

Thus, for continuous lifetimes,

S(x) = exp[−H(x)] = exp

(
−
∫ x

0

h(u) du

)
. (9)

From (6), it can be seen that h(x)∆x can be viewed as the ’approx-
imate’ probability that an individual of age x experiences the event in
the next instant. The hazard function helps determine appropriate fail-
ure distributions by describing how the risk of experiencing the event
changes over time. There are many general shapes for the hazard rate.
The only restriction is that h(x) must be nonnegative, i.e., h(x) ≥ 0,
and we assume that h(x) is continuous.

2.1.3 Cumulative Hazard Function and the Nelson-Aalen Esti-
mator

Without parametric assumptions, the hazard rate h(x) can be any
nonnegative function, making direct estimation difficult. However, it
is easier to estimate the cumulative hazard function [1].
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H(x) =

∫ x

0

h(u) du, (10)

without assuming any structure on h(x). This is similar to estimating
the cumulative distribution function. The result is the Nelson-Aalen
estimator, given by:

Ĥ(x) =
∑
xi≤x

di
Y (xi)

, (11)

where di is the number of events that occur at time xi, and Y (xi)
represents the number of individuals at risk just before time xi. This
estimator provides a nonparametric approximation of the cumulative
hazard function based on observed event times and is widely used in
survival analysis.

These fundamental concepts form the basis for analyzing mortality
patterns. Forecasting techniques, such as the Lee-Carter and Age-
Period-Cohort models, build on these ideas and are explored in subse-
quent sections [2].

2.2 Time Series Modelling

In forecasting mortality, time series models provide a framework to
capture and predict patterns and dynamics in age-specific death rates.
Incorporating time series techniques allows us to leverage the structure
of past trends in order to generate more accurate and robust forward
projections. One of the most well-known models is AutoRegressive
Integrated Moving Average (ARIMA).

2.2.1 ARIMA Process

The ARIMA process is a versatile and powerful tool for univariate time
series forecasting [3]. An ARIMA(p, d, q) model is defined by three
nonnegative integers[4]:

• p: the order of the autoregressive (AR) component, representing
how many past observations are used to model the current value.

• d: the degree of differencing, indicating how often the data have
been differenced to achieve stationarity.

• q: the order of the moving average (MA) component, capturing
the influence of past forecast errors on the current value.
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In terms of yt, the ARIMA(p, d, q) forecasting equation is

∆dyt = c+ ϕ1∆
dyt−1 + · · ·+ ϕp∆

dyt−p + θ1 εt−1 + · · ·+ θq εt−q + εt.

where ∆ is the difference, ϕi and θj are the AR and MA coefficients,
c is the drift (i.e. constant), and ϵt is a Gaussian white noise process
with variance σ2 [5].

This thesis uses ARIMA(0, 1, 0) with drift for the time-varying pa-
rameter kt in Lee-Carter which gives

∆kt = c+ εt.

In APC ARIMA(1, 1, 0) with drift will be used for γt and δc which gives

∆δt−x = ϕ∆δt−x−1 + c + εt−x,

∆γt = ϕ∆γt−1 + c + εt.

The choice of these Arima(p, d, q) models will be discussed in Sec-
tions 2.3.4 and 2.4.3.

2.3 The Poisson Lee-Carter Model

The Lee-Carter (LC) model, introduced by Lee and Carter in their
seminal paper [6], is one of the most widely used approaches to model
and forecast mortality rates. Although initially developed for the U.S.
population, it has been applied in numerous countries and subpopu-
lations. However, it should be clarified that this thesis uses Poisson
Lee-Carter.

2.3.1 Model Specification

Let mx,t denote the central death rate at age x in year t. The Lee-
Carter model assumes a log-bilinear structure:

log
(
mx,t

)
= ax + bx kt, (12)

where

• ax is an age-specific baseline capturing the overall level of mor-
tality at age x,

• kt is a calendar time effect capturing how mortality changes across
all ages in year t,

• bx represents how sensitive age x is to changes in kt.
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2.3.2 Parameter Estimation via SVD

To give a brief historical explanation of the Lee–Carter model, we first
explain the original SVD-based fitting procedure.

Lee and Carter (1992) estimate (ax, bx, kt) with a rank 1 Singular
Value Decomposition (SVD) [6]. First set

ax =
1

T

T∑
t=1

log(mx,t), Zx,t = log(mx,t)− ax.

Applying SVD to Z gives the approximation

Z = U ΣV⊤ =
r∑

i=1

σiuiv
T
i ,

where U(X×X) and V(T×T ) are orthogonal matrices and Σ(X×T ) is a rect-
angular diagonal matrix.

Retaining only the first component gives the rank 1 approximation
Z ≈ σ1u1v

⊤
1 . We set bx = u1,x and kt = σ1v1,t, then rescale so that∑

x bx = 1 and
∑

t kt = 0.
This is just a brief walk-through of the implementation; for the

interested reader, see Lee and Carter (1992) [6].

2.3.3 Parameter Estimation via Poisson Maximum Likelihood

Following Brouhns, Denuit, and Vermunt [7], we model the death
counts Dx,t as

Dx,t | Ex,t ∼ Poisson
(
Ex,tmx,t),

where Ex,t are the exposures and mx,t = exp(ax + bxkt). The parame-
ters (ax, bx, kt) are estimated by maximizing the Poisson log-likelihood
under the identifiability constraints∑

x

bx = 1,
∑
t

kt = 0.

These constraints are needed because, without them, there is an infinite
number of solutions for {ax, bx, kt} [8]. In practice, we obtain the MLEs
via an iterative algorithm such as Newton–Raphson.

Once (ax, bx, kt) have been estimated via maximum likelihood, ax
and bx are held fixed across all ages, and future values of kt are projected
using an ARIMA process.

11



2.3.4 Forecasting the Time Index

We must project kt for periods beyond the observed sample to predict
future mortality. A common choice, originally advocated by Lee and
Carter [6], is a random walk with drift:

kt+1 = kt + c+ ϵt+1, (13)

where c is a constant drift and ϵt+1 is white noise.
In particular, this random walk with drift can be viewed as an

ARIMA(0, 1, 0) model [4]. Setting p = q = 0 is motivated by the struc-
ture of the Lee–Carter model, which assumes that mortality changes
gradually over time without reverting to a long-term mean. The choice
d = 1 captures this non-reverting trend by modeling kt as a random
walk with drift.

The key idea is that kt captures the overall level of mortality im-
provement at all ages. Once the chosen ARIMA model is fitted, we
forecast future values k̂t+h for h = 1, 2, . . . years ahead.

Since ax and bx are fixed, the projected logarithmic mortality for
year (t+ h) then becomes:

log
(
m̂x, t+h

)
= âx + b̂x k̂t+h.

Exponentiating provides the forecast for mortality at each age x:

m̂x, t+h = exp
(
âx + b̂x k̂t+h

)
.

Thus, the future mortality of each age depends on the predicted
trajectory of kt. If k̂t+h consistently decreases over time, it implies
ongoing improvements in mortality; If it stabilizes or increases, the
improvements slow or reverse. Using ARIMA methods, the model sys-
tematically captures any serial dependence (by regressing kt on its own
past values) as well as any drift in the historical kt sequence, enabling
more flexible forecasts.

2.4 Poisson Age Period Cohort (APC) Model

The Age-Period-Cohort (APC) model is widely used in demographic,
epidemiological, and actuarial research to analyze mortality trends
and distinguish the effects of age, period, and cohort. This section
overviews the APC model, its identification challenges, estimation tech-
niques, and applications. We would also like to specify that this thesis
uses Poisson Age-Period-Cohort.
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2.4.1 Components of the APC Model

The APC model decomposes the observed mortality rates into three
distinct effects[9]:

• Age Effect: Represents aging-related biological and social changes.
Mortality typically increases with age due to physiological dete-
rioration and accumulated exposure to risk.

• Period Effect: Captures external events or societal changes that
influence all age groups at a given time (e.g. pandemics, medical
advancements, economic crises).

• Cohort Effect: Reflects generational influences, where individu-
als born in the same period may share common exposures, habits,
or health risks (e.g. the prevalence of smoking and early life con-
ditions).

The log mortality rate mx,t at age x and period t is expressed as:

log(mx,t) = αx + γt + δc, (14)

where:

• αx represents the age effect,

• γt represents the period effect,

• δc represents the cohort effect, where c = t− x.

2.4.2 Parameter Estimation via Maximum Likelihood for APC

Following Section 2.3.3, the parameters (αx, γt, δc) are estimated by
maximizing the Poisson log-likelihood subject to the identifiability con-
straints ∑

t

γt = 0,
∑
c

δc = 0,
∑
c

c δc = 0.

Similar to the Lee–Carter model, these constraints are imposed to avoid
infinitely many equivalent solutions. In practice, the MLEs are ob-
tained via an iterative process such as Newton–Raphson [10].

Once (αx, γt, δc) are estimated, αx is held fixed while we can start
projecting future γt and δc
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2.4.3 Forecasting With The Age-Period-Cohort Model

To extrapolate mortality using the APC model, we follow the frame-
work described by [11], where the logarithm of mortality is specified as
in Equation (14). The model faces an identifiability issue because age,
period, and cohort are linearly dependent. This is why the identifiabil-
ity constraints are so important.

Once the period γt and cohort δt−x effects are estimated, we forecast
them beyond the observed data using time-series methods that remove
these identification-related linear trends.

As shown in Section 2.2.1, we use an ARIMA(1,1,0) model with drift to
forecast the cohort effect δt−x. Concretely, we difference the estimated
δt−x to obtain ∆δt−x = δt−x − δt−x−1, and then model this differenced
series as an AR(1) process:

∆δt−x = ϕ∆δt−x−1 + c + εt−x,

where ϕ is the autoregressive parameter, c is a drift term, and εt−x is
white noise.

For the period effect γt, we apply a similar ARIMA(1, 1, 0) specification.
In the StMoMo software, this is sometimes labeled a ”mean-reverting
random walk with drift (mrwd)”. Strictly speaking,

∆γt = ϕ∆γt−1 + c + εt

implies that the increments ∆γt partially revert toward zero if |ϕ| < 1.
This prevents long-run drift in γt without forcing γt itself to revert to
a specific mean. Hence, “mean reversion” refers only to the differenced
series, not a strict stationarity in γt. After forecasting ∆γt forward
from the last observed year, we reintegrate to obtain predicted values
of γt in the forecast horizon.

By combining these projected time-series paths for {γt} and {δt−x} with
the age effect {αx}, the APC model yields forecasts of log-mortality.
Formally, for t > T (future years),

mx,t = exp
(
α̂x + γ̂t + δ̂t−x

)
,

where hats denote the estimated or forecasted parameter values. This
approach accounts for separate period and cohort influences while re-
specting the identifiability constraints inherent in the APC framework.
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2.5 Deviance and Residuals in a Poisson Framework

When fitting the Lee-Carter and APC models via a Poisson likelihood,
deviance is the natural measure of lack of fit. We can write the Poisson
likelihood according to

D = 2
∑
x,t

[
yx,t ln

(
yx,t
µ̂x,t

)
−

(
yx,t − µ̂x,t

)]
, (15)

where yx,t is the observed count of deaths Dx,t at age x and time t,
and µ̂x,t is the Poisson mean Ex,tmx,t fitted to the model (e.g.∼ mx,t =
exp(ax+bxkt) for Lee-Carter) [12]. The corresponding deviance residual
for each cell (x, t) is given by

rx,t = sign
(
yx,t − µ̂x,t

)√
dx,t , dx,t = 2

[
yx,t ln

(
yx,t
µ̂x,t

)
−
(
yx,t − µ̂x,t

)]
.

(16)
The function sign(yx,t − µ̂x,t) ensures that the residuals retain the

direction of deviation. Specifically, it assigns a value of +1 when the
observed death count yx,t exceeds the fitted value µ̂x,t, indicating an
underestimation by the model. In contrast, it assigns −1 when yx,t <
µ̂x,t, indicating that the model has overestimated the observed death
count. If yx,t = µ̂x,t, the residual is zero, representing a perfect fit.

sign(z) =


1, if z > 0

0, if z = 0

−1, if z < 0

where z = yx,t − µ̂x,t. (17)

This allows for an intuitive evaluation of whether the model system-
atically underestimates or overestimates mortality in different age-time
groups.

Summing or averaging these residuals highlights age-time combi-
nations where the model fits poorly. In this paper, we summarise
goodness-of-fit by the Poisson deviance, to measure how well the Lee-
Carter and Age-Period-Cohort model captures mortality patterns by
age group.

2.6 Model Evaluation and Validation

We employ several validation metrics to assess the performance of the
mortality models. The following subsections detail these evaluation
methods.
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2.6.1 Out-of-sample test (MAPE)

To evaluate the predictive accuracy of our models on data not used
in parameter estimation, we employ an out-of-sample test using the
Mean Absolute Percentage Error (MAPE). After fitting the models
to the training period, we generate forecasts for the test period and
compare them with the observed mortality rates. The MAPE is then
calculated as follows [13]:

MAPE =
100%

N

N∑
t=1

∣∣∣∣mx,t − m̂x,t

mx,t

∣∣∣∣ , (18)

where

• N is the number of observations in the test set,

• mx,t is the actual mortality rate in year t for age x, computed as

mx,t =
Dx,t

Ex,t
, where Dx,t is the number of deaths and Ex,t is the

exposure for age x in year t,

• m̂x,t is the predicted mortality rate for year t and age x.

A lower MAPE indicates better predictive performance, as the fore-
casts deviate less (in relative terms) from the actual observed rates. By
examining the MAPE values for the Lee-Carter and Age-Period-Cohort
models, we can directly compare their out-of-sample forecast accuracy.
This measure is intuitive because it translates the average forecast error
into a percentage, facilitating interpretation and comparison between
different models or data sets.

2.6.2 Out-of-sample test (MAE)

To complement the percentage-based assessment provided by the MAPE,
we also report the Mean Absolute Error (MAE), which measures the
error between paired observations expressing the same phenomenon.
After fitting the models to the training period, we generate forecasts
for the test period and compute the MAE as

MAE =
1

N

N∑
t=1

|mx,t − m̂x,t| , (19)

where N,mx,t and m̂x,t are described as in Section 2.6.1 [13].

A lower MAE indicates better predictive performance, as the fore-
casts deviate less (in absolute terms) from the observed rates. Unlike
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MAPE, MAE retains the original units of the response variable, making
it especially useful when percentage errors can be misleading. By com-
paring the MAE values across the Lee–Carter and Age–Period–Cohort
models, we obtain a scale-sensitive view of out-of-sample accuracy that
complements the relative perspective offered by the MAPE.

2.6.3 Out-of-sample test (RMSE)

To capture the effect of significant forecast errors, which might not
work as well in absolute or percentage averages, we also report the
root mean square error (RMSE). After estimating each model on the
training period, we forecast the test period and compute the RMSE as

RMSE =

√√√√ 1

N

N∑
t=1

(mx,t − m̂x,t)
2, (20)

where N,mx,t, and m̂x,t are defined as in Section 2.6.1 [13].

Because errors are squared before averaging, the RMSE assigns a
greater weight to large deviations than the MAPE or the MAE. A
lower RMSE, therefore, indicates better predictive performance, with
a stronger penalty on forecasts that miss sharply. Like MAE, RMSE
is expressed in the original units of the response variable, facilitating
an intuitive interpretation of the magnitude of the forecast errors. By
comparing RMSE values for the Lee–Carter and Age–Period–Cohort
models, we gain an additional perspective on out-of-sample accuracy,
highlighting models’ sensitivity to occasional but severe forecasting
misses.

2.6.4 Akaike information criterion

Akaike’s Information Criterion (AIC) measures how well a model fits
the data set without adding too many explanatory variables. When
selecting the ARIMA(p, d, q) process to forecast kt or (γt, δc), we use
(AIC), assuming Gaussian errors for the time-series[14]:

AIC = −2 logL(ψ̂) + 2 dim(ψ), (21)

where L(ψ̂) is the Gaussian likelihood function [15], and dim(ψ) is the
number of free parameters for that ARIMA model.

This criterion is commonly used to compare different ARIMA(p, d, q)
models, the one with the lowest score is the model favored by the AIC.
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3 Data

To forecast Swedish mortality using the Lee-Carter and Age-Period-
Cohort models, we require a data source that provides consistent, high-
quality mortality measures over a long period. The Human Mortality
Database (HMD) is an ideal choice, offering detailed records of deaths,
exposures, and mortality rates for many countries, including Sweden
[16]. We will use Swedish mortality data for the period 1751-2023 for
people ages 0 to 110. The reason for the choice of this dataset is the
amount of historical coverage. Since our data are of such a variety,
we can explore different sets to analyze long-term trends and conduct
robust forecasts.

The data obtained from the HMD website include various aspects,
but the most important ones for us are the following.

• Number of deaths: The observed number of deaths occurred for
a single age group during a specific calendar year, denoted Dx,t.

• Population exposures: An estimate of the number of people at
risk during a year, illustrating how many people could experience
mortality during that period, is denoted Ex,t.

• Central mortality rates: A ratio derived by the number of deaths
divided by the corresponding exposures, denoted by mx,t.

Since the HMD applies numerous quality checks to ensure consis-
tency and reliability, only minimal data cleaning was necessary. We
did not detect any missing or anomalous values, meaning that the data
was already in a format appropriate to mortality modeling.

3.1 Stochastic Mortality Models in StMoMo

The R package used in this thesis is StMoMo, as it supports both the
Lee–Carter and Age–Period–Cohort models. Implementing this pack-
age means that the theory behind how mortality rates are computed
follows from Section 2, which discusses the Lee-Carter and Age-Period-
Cohort models.

In practice, StMoMo takes the user-supplied mortality data {Dx,t, Ex,t},
the chosen model structure uses a generalized non-linear modeling ap-
proach to fit these parameters by maximum likelihood.

For our analysis we leverage these built-in facilities of StMoMo to
calibrate both the Lee–Carter and APC models under the Poisson as-
sumption,

Dx,t

∣∣Ex,t ∼ Poisson
(
Ex,tmx,t

)
,
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where Dx,t is the observed number of deaths, Ex,t the exposure, and
mx,t the central death rate [10].

As noted above, the dataset spans 1751–2023 and we will select
ages 20–90 in single-year increments. The reasoning behind the age
span is to reduce the number of tables and figures. We calibrate each
StMoMo model on three historical windows, 1751–2000, 1850–2000, and
1950–2000 and evaluate the forecasts on the period 2001–2023. Al-
though Lee and Carter originally recommended training on a much
shorter period, we include longer windows to examine how the choice
affects the accuracy of the forecast. But more on this in Section 4.
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4 Analysis and results

4.1 Exploratory Visualization

Figure 1 presents the historical mortality rates for Swedish men, women,
and the combined population over 1751-2023. We observe a general de-
cline in mortality across all ages, with a notably steeper decrease for
younger and mid-life age groups. The male and female patterns visually
appear similar, prompting a more detailed analysis below.
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Figure 1: Historical Mortality Rates
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4.2 Lee Carter method

In this section, we compare Swedish mortality data under the Lee-
Carter model, examining separate fits for males vs. females and finally
the combined death counts and exposures for both sexes. We also
investigate different training windows and forecast mortality rates out
to 2050. All analyses use mortality data for ages 20–90 unless otherwise
specified.

The data for men and women look very much alike. Therefore, we
want to keep them together for further analysis to obtain more data
and trustworthy results. However, we can not make these assumptions
from Figure 1. We will therefore look at the model parameters such as
a, b, k, and Poisson deviance (PD) and the out-of-sample MAPE test
to see if they are similar.

4.2.1 Lee-Carter Model: Male vs. Female Comparison

We apply the Poisson Lee-Carter model to Swedish female and male
mortality data from 1751 to 2000, focusing on ages 20-90. After esti-
mating the age-specific baseline parameters (ax) and sensitivities (bx),
we evaluate goodness-of-fit with the Poisson deviance, computing an
age-specific deviance PD by summing the deviance contributions across
all years of the estimation window.

Because a table that ranges from ages 20 to 90 could be lengthy,
we group ages into five-year intervals (20-24, 25-29, . . . , 85-90) and
then take the average of ax, bx, and PDx within each group. A table
of these metrics concisely summarizes how well the model fits across
broader age groups.

Table 1 presents these grouped results. The a column reflects the
baseline level of log-mortality for each group, while b captures how sen-
sitive that group’s mortality is to the overall time trend {kt}. Table 2
shows the mean of the PD values, indicating which age ranges tend to
deviate the most under the Poisson-Lee-Carter model.
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Table 1: Grouped summary of Lee-Carter parameters for Swedish males and
females by five-year age groups (1751-2000).

AgeGroup ax (F) ax (M) bx (F) bx (M)

20-24 -5.59 -5.27 0.0197 0.0196
25-29 -5.48 -5.25 0.0208 0.0216
30-34 -5.35 -5.17 0.0216 0.0224
35-39 -5.21 -5.02 0.0203 0.0216
40-44 -5.01 -4.78 0.0193 0.0207
45-49 -4.82 -4.52 0.0160 0.0183
50-54 -4.52 -4.20 0.0146 0.0160
55-59 -4.20 -3.89 0.0129 0.0130
60-64 -3.78 -3.50 0.0124 0.0112
65-69 -3.33 -3.10 0.0111 0.00934
70-74 -2.84 -2.66 0.0100 0.00828
75-79 -2.36 -2.21 0.00844 0.00699
80-84 -1.90 -1.77 0.00669 0.00569
85-90 -1.42 -1.30 0.00507 0.00451

Table 2: In-sample grouped summary of Lee-Carter Poisson deviance for
Swedish males and females by five-year age groups (1751-2000).

AgeGroup PD (F) PD(M)

20-24 543.31 705.46
25-29 447.51 447.03
30-34 273.49 218.98
35-39 176.07 126.60
40-44 128.90 95.04
45-49 92.09 83.32
50-54 134.53 134.05
55-59 154.61 171.76
60-64 224.48 277.24
65-69 231.15 323.75
70-74 274.83 327.98
75-79 304.92 245.03
80-84 262.70 166.85
85-90 186.16 124.07

As we can see from the table above, the in-sample PD look very
much alike. In some age groups the female model achieves a slightly
smaller PD, whereas in others the male model fits marginally better.
We view as positive since this gives us more information about that
specific age group. Also, no one is substantially better than the other
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across the board, implying that a suitable idea would be to combine
these.

Figure 2: Female kt values from 1751-2000 with ages 20-90

Figure 3: Male kt values from 1751-2000 with ages 20-90

The kt values in Figures 2 and 3 illustrate that the overall mortality
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trend decreases over time. This observation is expected, primarily due
to improvements in medical care and increasing medical knowledge.
Nevertheless, we observe certain outliers, especially around the year
1919. A key contributing factor to this anomaly is the Spanish flu,
which occurred during 1918-1919 and claimed roughly 39 000 Swedish
lives [18]. It may be a good idea to remove these outliers and investigate
how well our model fits the data once such irregularities occur, but more
on this under Section 4.2.5.

The average ax is most negative at younger ages and steadily be-
comes less negative (i.e., larger on the log scale) with increasing age
group. These results align with the expectation that baseline mortality
rates rise as we move from young adulthood to older ages.

The mean bx is somewhat higher in early adulthood (around 0.02)
and gradually declines for older age groups, indicating that younger
adult mortality is slightly more sensitive to the overall mortality index
kt.

Younger adults (20-24) and some older groups (70-79) exhibit higher
average PD, suggesting that the Poisson Lee-Carter model may fit those
age segments less tightly or that those segments have more volatile mor-
tality counts over time. Meanwhile, mid-adults (45-49) have relatively
small PD, implying a closer fit in that range.

Overall, these findings are consistent with typical patterns in mor-
tality modeling: the log-bilinear structure captures mid-adult ages
quite well, whereas very young and older ages often introduce more
significant variability.

To evaluate how well the Poisson Lee-Carter model performs in
predicting future mortality, we conduct an out-of-sample test for 2001-
2023. The model is fitted to Swedish female and male mortality data
(ages 20-90) for 1751-2000; then forecasts are generated for 2001-2023.
We compare these forecasts against the actual observed rates during
that interval and measure accuracy using the Mean Absolute Percent-
age Error (MAPE), as defined in Equation (19).

Since MAPE can vary substantially by age (particularly for low
mortality at younger ages), we further group the results into five-year
age intervals and compute the average MAPE in each interval. Table 3
summarizes the findings: the highest MAPE appears at younger adult
ages (20-24), reflecting the difficulty of accurately forecasting very low
mortality rates. MAPE generally improves through midlife, reaching a
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low of about 6% in ages 65-69, before rising again at older ages, likely
due to greater mortality volatility in later life.

Table 3: Mean Absolute Percentage Error (MAPE) for Swedish males and
females by five-year age groups (2001-2023).

AgeGroup MAPE (F) MAPE (M)

20-24 43.35 24.19
25-29 28.96 14.65
30-34 18.50 16.37
35-39 15.75 13.01
40-44 17.38 11.95
45-49 14.95 12.56
50-54 14.98 13.24
55-59 13.08 15.86
60-64 11.76 19.67
65-69 6.42 27.79
70-74 12.28 33.89
75-79 24.70 36.56
80-84 26.82 29.87
85-90 17.36 16.44

The results confirm that the Poisson Lee-Carter model forecasts
most accurately in the mid-adult range, where mortality is neither ex-
tremely low nor highly volatile. Higher relative errors typically arise at
the youngest ages because mortality rates are so low that even minor
absolute discrepancies inflate percentage errors. Older ages can also
show higher observed MAPE due to greater volatility in late-life mor-
tality and the simplifying single-factor structure. It is worth noting
that, historically, relatively few individuals survived to very old ages,
so the available data can be sparse. This sparsity may lead to over-
fitting a handful of observations and thus producing an artificially low
MAPE in certain older age intervals.

The MAPE values also confirm that the male and female data are
not too far apart. Thus, we continue our analysis with a combined
female and male data set. More analysis on male and female data can
be seen in Section 6.

4.2.2 Combined data

Now that we have combined the Female and Male dataset, we can start
by looking at the parameters below.
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Table 4: Grouped summary of Lee-Carter parameters and Poisson deviance
for Swedish males and females combined by five-year age groups (1751-2000).

AgeGroup ax bx PD

20-24 -5.41 0.0195 631.67
25-29 -5.35 0.0211 459.24
30-34 -5.25 0.0219 242.67
35-39 -5.11 0.0209 142.62
40-44 -4.88 0.0199 102.33
45-49 -4.66 0.0170 76.06
50-54 -4.35 0.0152 127.94
55-59 -4.04 0.0128 155.68
60-64 -3.64 0.0116 250.30
65-69 -3.22 0.0101 271.26
70-74 -2.75 0.0092 290.69
75-79 -2.29 0.0079 273.68
80-84 -1.84 0.0065 235.34
85-90 -1.37 0.0052 177.10

The results presented in Table 4 show the estimated Lee-Carter pa-
rameters for different five-year age groups based on combined mortality
data for Swedish males and females between 1751 and 2000.

Figure 4: Female and male combined kt values from 1751-2000 with ages
20-90

Figure 4 presents the estimated kt values for the combined female
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and male data from 1751-2000. As in the separate analyses, we observe
a general downward trend, reflecting the long-term decline in mortality
risks across these age groups. However, some notable spikes appear,
most prominently around 1919. These outliers are again consistent
with the observed effects of the Spanish flu during 1918-1919, which
caused a sharp, temporary increase in mortality.

By combining both populations, we capture a more comprehensive
picture of the overall mortality trajectory. Even though analyzing men
and women individually may offer valuable insights into gender-specific
health and longevity trends. Identifying and possibly mitigating the
impact of outliers (especially those resulting from significant events
such as pandemics) remains an important step in producing reliable
mortality estimates and models.

The parameter ax represents the baseline log-mortality for each age
group. The values are more negative for younger age groups and in-
crease with age, reflecting the well-established demographic pattern
that mortality rates are lower at younger ages and rise with increasing
age. The steepest increase in ax occurs in mid-adulthood, which aligns
with known mortality trends.

The bx parameter captures the rate at which mortality changes over
time for each age group. Higher bx values indicate that mortality for
that age group is more sensitive to period effects (such as medical
advancements or economic fluctuations). The results show that bx is
highest for young adults (ages 25–39) and then declines gradually for
older age groups. The decline makes sense to us since mortality at
younger ages is more responsive to improvements in healthcare while
aging processes and long-term trends influence mortality at older ages.

The Poisson deviance (PD) quantifies the fit of the Lee-Carter
model across different age groups. Higher PD values suggest the model
has more difficulty capturing mortality patterns for specific age groups.
The largest PD values are visible for young adults (20–24 and 25–29),
possibly due to the high variability in mortality at younger ages (e.g.
accidents, infectious diseases). The older age groups (70+) also have
relatively high PD values, likely due to more significant uncertainty in
late-life mortality trends.

The patterns observed in ax, bx, and PD are consistent with pre-
vious mortality studies. Mortality rates tend to be more stable in the
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middle ages, explaining why the PD are lowest between 40–60 years.
Meanwhile, higher PD values can be seen at young and old age which
indicates that those age groups experience more mortality volatility
and period effects, making them harder to predict accurately.

These results might mean that forecasting future mortality trends
will be most reliable for middle-aged groups (40–60 years). In contrast,
special care must be taken when interpreting forecasts for young adults
and the elderly, as these groups exhibit higher uncertainty.

We evaluated the prediction ability of the Poisson Lee-Carter model
using three training windows: 1751-2000, 1850-2000, and 1950-2000.
The reasoning behind these windows is to see which model performs
best based on different training. After fitting the model in each case, we
projected mortality for the same age spans as earlier, from 2001 through
2023. Table 5 presents the mean absolute percentage error (MAPE)
between predicted and observed mortality rates in these out-of-sample
years, with lower values indicating closer alignment with reality.

For each training window we first estimate the Poisson Lee-Carter
parameters {ax, bx, kt} using maximum likelihood. The age-specific
terms ax and bx are then held fixed, while the period index kt is ex-
trapolated to 2023 using an ARIMA(0, 1, 0) with drift model.

The forecasts of age-specific central mortality rates are then ob-
tained as

m̂x,t = exp
(
ax + bx k̂t

)
, t = 2001, . . . , 2023, (22)

and compared with the observed rates mx,t from the Human Mortality
Database. We then use equation (18) to obtain the MAPE values
below.
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Table 5: Out-of-sample forecast accuracy of the Poisson Lee-Carter model:
Mean Absolute Percentage Error (MAPE,%) for ages 20-90 when the model
is trained on three historical windows (1751-2000, 1850-2000, and 1950-2000)
and projected to 2001-2023.

MAPE (%)

AgeGroup 1751-2000 1850-2000 1950-2000

20-24 20.07 38.15 16.13
25-29 12.32 43.98 14.63
30-34 14.54 39.28 16.57
35-39 10.27 31.53 26.63
40-44 11.75 22.64 31.41
45-49 11.46 11.76 28.63
50-54 11.77 9.74 21.50
55-59 10.37 9.46 17.65
60-64 9.13 12.58 13.97
65-69 15.33 18.18 10.39
70-74 22.59 24.98 7.86
75-79 29.04 27.16 6.08
80-84 26.31 21.43 2.80
85-90 15.20 9.47 3.87

These results highlight how the choice of training period influences
the accuracy of the forecast for 2001-2023. In Lee and Carters origi-
nal paper, [19] they noted that forecasts were pretty stable when the
training window was between 30 and 90 years but that shorter windows
(10-20 years) introduced instability. We therefore investigated this in
Table 11, Section 6. From Table 11 we see that we did not get better
results when following Lee-Carter’s recommendation, which is why we
went for the spans above. In the following, we consider three historical
spans to see which yields the best performance across age groups.

• 1751-2000. The longer historical window works best for younger
and middle-aged groups (20-69). Including data over two cen-
turies seems to smooth out anomalies and provide robust esti-
mates for these ages. However, events such as the 1918-1919
Spanish Flu, which heavily impacted certain age groups, are also
incorporated into this long history [18].

• 1850-2000. This intermediate span performs the worst for ages 20-
39, indicating higher volatility in mid-1800s mortality data. The
introduction of new medical interventions and changes in public
health during that period may have generated complex trends
that the model struggles to generalize for these age brackets.
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• 1950-2000. Although [19] argued that basing the model on more
recent decades can sharpen forecast accuracy, our results show
that using only 1950-2000 data improves predictions for older ages
(80+) but degrades them at younger ages (20-34). These results
reflect the stronger impact of modern medical advancements, such
as the 1958 invention of the pacemaker on older populations [20],
along with the reduced relevance of historical epidemics (like the
Spanish Flu) for contemporary elderly cohorts.

• Younger ages (20-39). These groups consistently exhibit higher
error rates, regardless of the training period. These findings align
with the unpredictability of mortality at young adult ages, which
accidents, unknown epidemics, or shifts in lifestyle can strongly
influence.

• Middle-aged (40-69). Forecast errors remain relatively low,
especially when using the longer historical context (1751-2000).
This suggests that mortality patterns in midlife are comparatively
stable over time.

• Older ages (70-90). The most recent window (1950-2000) gen-
erally yields better forecasts for these cohorts, presumably be-
cause modern longevity improvements (e.g. post-1950 medical
technology and increased hospital access) dominate late-life mor-
tality trends. In contrast, older historical data may dilute the
model with patterns less relevant to contemporary older-age mor-
tality.

These results confirm that the best training period depends on the
specific age group of interest. Longer spans may help younger and
middle-aged cohorts by smoothing out temporary events. At the same
time, more recent data can better capture ongoing progress in elderly
care and life-extending medical innovations.
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Figure 5: Different kt values based on different training sets

Figure 5 compares the estimated kt values obtained by fitting the
mortality model on three historical spans: 1751-2000 (red), 1850-2000
(green), and 1950-2000 (blue). All three series show the same down-
ward trend, but their levels and slopes differ because kt is jointly iden-
tified with ax and bx. Changing the training window therefore changes
ax and bx, which in turn rescales kt.

Training over the most extended interval (1751-2000) incorporates
a wide range of mortality behaviors and events (e.g. mid-19th cen-
tury epidemics), producing a more elevated k in earlier decades. The
medium-range interval (1850-2000) excludes some of the oldest data
but still captures major shifts in mortality around the turn of the 20th
century. Finally, the shorter and more recent interval (1950-2000) nat-
urally places a stronger emphasis on modern mortality patterns, result-
ing in lower overall k levels prior to 1950 and a tighter alignment with
contemporary trends in the second half of the century.

Each series still exhibits a visible spike around 1919, which aligns
with the mortality impact of the Spanish Flu pandemic. However, the
amplitude can differ depending on whether that event is included in the
fitting window. Ultimately, these variations highlight the sensitivity
of the Lee-Carter model to the training span: longer periods yield a
broader historical context at the cost of diluting recent trends, while
shorter windows capture current mortality patterns more closely but
may lose valuable historical perspective.
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Out-of-sample testing in 2001-2023 showed that the model esti-
mated in the longest historical span (1751-2000) produces the lowest
overall MAPE and shows better stability (Table 5). We therefore adopt
this specification for our long-term projections. To exploit all available
information, we now re-estimate the Poisson Lee-Carter model on the
full period 1751-2023 and use it to forecast mortality rates for 2024-
2050.

4.2.3 Forecasting Future Mortality Rates (2024–2050)

To forecast mortality rates for 2024–2050, we apply the Lee-Carter
model following the methodology outlined in Section 2.3. Specifically,
the time index kt is modeled as a stochastic process and forecasted
using a time series approach. For a detailed derivation and discussion
of the Lee-Carter model, see Section 2.3. Below, we outline the specific
forecasting steps and implementation details.

1. Fit a stochastic ARIMA(0, 1, 0) process (random walk with drift),
kt+1 = kt + c+ ϵt+1, to the kt series for 1751-2023.

2. Forecast kt for 2024–2050 while the ax and bx estimates are held
fixed.

3. Compute the predicted log-mortality rates for each age x in years
t = 2024, . . . , 2050:

log m̂x,t = âx + b̂xk̂t. (23)

4. Exponentiate to obtain the predicted mortality rates:

m̂x,t = exp(âx + b̂xk̂t). (24)

We are forecasting every age individually but want keep the age
spans from earlier. We therefore compute the average mortality rate
for the ages in that span.

The forecasted mortality rates m̂x,t for 2024–2050 provide an es-
timate of future mortality trends. These estimates will be analyzed
and compared with those from other models, such as the Age-Period-
Cohort (APC) model, to assess their accuracy and predictive power
[19].
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Figure 6: Forecasted Mortality Rates (2024–2050) using the Lee-Carter
Model. The analysis is conducted for five-year age groups, ignoring the
last group, 85-90, to avoid too many graphs.
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Figure 6 show a steady decline in projected mortality across all ages,
continuing the historical trend of improving longevity.

A closer look at Figure 6 reveals that the three lowest spans (20–24,
25–29, 30–34) almost overlap and decline heavily. Young-adult mortal-
ity has decreased considerably over the past 250+ years, so the estima-
tion assigns the largest bx coefficients to the youngest ages. When the
period index kt continues its downward drift, the product bx kt drives
a proportionally larger reduction in log(mx,t) for ages with large |bx|,
hence the steeper decline for ages 20–34.

Figure 7: Forecasted k values from 2024-2050 with 95% Prediction Interval

Figure 7 shows the forecasted kt values from 2024 to 2050, along
with the corresponding prediction interval (highlighted in red), that is
given via the StMoMo package. The model is calibrated on historical
data from 1751 to 2023 and then extrapolated forward to predict the
future mortality trend. The downward trajectory of k implies a con-
tinued decrease in mortality over the forecast horizon, consistent with
longer-term improvements observed in the historical data.

The width of the prediction interval reflects the stochastic variation
generated by the time-series model for kt. While the central forecast
suggests a relatively smooth continuation of current trends, the pre-
diction span reminds us that actual outcomes may deviate from the
predicted path due to unforeseen events, shifts in healthcare practices,
or demographic changes.
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4.2.4 Parametric Bootstrap Under Reduced Exposure

We conducted a parametric bootstrap to investigate how the Lee-Carter
model behaves when exposure counts Ex,t are systematically scaled
down. We started by fitting the standard Lee-Carter model.

log(mx,t) = ax + bx kt,

to obtain baseline estimates âx, b̂x, and k̂t. Then we applied a scale
factor s to the original exposures, producing Êx,t = sEx,t. To incor-
porate the inherent Poisson variance of mortality data, we sample new
deaths from a Poisson distribution with mean µx,t = m̂x,t Êx,t, where
m̂x,t are the originally fitted rates. Because

Var(Dx,t) = µx,t, and m̂x,t =
Dx,t

Ex,t

,

this simulation step inherently captures the random fluctuations of Dx,t

Ex,t
.

Finally, we re-fitted the Poisson Lee-Carter model to each downscaled
dataset, repeating this procedure 50 times for several s values.

In practice, mortality data may be incomplete or sparse. By artifi-
cially reducing exposure and resampling deaths under the Poisson as-
sumption, we can see when Lee-Carter parameter estimates (âx, b̂x, k̂t)
become too inconsistent to be reliable. If s is moderately large (e.g.
0.1), the re-fitted parameters remain near their original values, imply-
ing that the model tolerates a 90% reduction in exposure. However,
for very small s (e.g. 0.01 or 0.005), the estimates deviate sharply,
indicating that the model breaks once the data becomes too sparse to
capture age-specific trends accurately. Reducing our data this much
makes the expected deaths in many age-year cells fall below one. The
Poisson noise overwhelms the age pattern that the Lee–Carter model
is trying to capture.

Figure 8 shows how the time-varying parameter kt evolves under
different scale factors. At s = 0.1, the bootstrapped trajectories stay
relatively close to the baseline fit, reflecting stable estimation. As s de-
creases, these lines become more erratic and diverge from the original,
illustrating the rapid loss of precision of the model under insufficient
data.
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Figure 8: Example of bootstrapped kt (ages 40-60, 1950-2000) at different
scale factors. Smaller s increases variability in kt, reflecting model break-
down.

Due to computational constraints, we focus on ages 40-60. A broader
age range might reveal instability at larger s values or further nuance in
the breakdown point, but the underlying approach remains the same.
By combining Poisson-based resampling with scaled exposure, we di-
rectly assess both the mortality rate variance and the effect of reduced
data quantity, illustrating when Lee-Carter fails to provide stable esti-
mates of k.
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4.2.5 Removing outliers

Future work may benefit from addressing data quality by detecting and
removing outliers, particularly in older historical data or age groups
with sparse observations. This could reduce the model’s sensitivity
and improve the forecast’s accuracy. However, we have chosen to keep
all observations. Rare spikes in mortality often reflect genuine events
of demographic or historical interest, and the boundary between a true
anomaly and an extreme value can be hard to tell.

4.3 Age Period Cohort

The next step in our study involves an analysis of Age–Period–Cohort
(APC), a well-established framework that disentangles the separate
contributions of age, period and cohort effects on mortality. Unlike
the Lee–Carter model, which captures a single period index kt modify-
ing an age-specific baseline ax, the APC model explicitly models age,
period, and cohort effects separately (Section 2.4).

This procedure yields both forecasts and, by simulating the future
paths, prediction intervals that reflect the uncertainty in extrapolating
the period and cohort effects.

This section will use the combined male and female dataset to en-
sure our analysis aligns well with the evaluation using Lee-Carter.
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4.3.1 Model Validation

Table 6: APC Summaries by 5-Year Age Groups. “Mean α” refers to the
average age effect αx across all ages in the bin, and “Mean PD” is the Poisson
deviance for those ages.

AgeGroup αx PD

20-24 -5.62 765
25-29 -5.54 433
30-34 -5.43 245
35-39 -5.31 198
40-44 -5.10 212
45-49 -4.91 133
50-54 -4.61 151
55-59 -4.30 155
60-64 -3.90 187
65-69 -3.47 151
70-74 -3.00 114
75-79 -2.52 126
80-84 -2.04 237
85-90 -1.54 263

Table 6 summarizes two key indicators from an Age-Period-Cohort
(APC) model fit on Swedish mortality data. The first is the average
estimated age effect, αx, across each 5-year age bin. Lower (more
negative) values typically indicate lower baseline mortality levels than
higher (less negative) values. The Poisson deviance in that age range
reflects how well the APC model’s Poisson assumption and estimated
rates capture the observed death counts. Smaller sums indicate a better
fit (less discrepancy), whereas more considerable sums can signal a
poorer fit for those ages.

We group ages in 5-year intervals (e.g. 20-24, 25-29) to provide a
concise, high-level comparison instead of listing individual ages. This
allows us to identify broad patterns, such as consistently higher or lower
PD values in particular segments of the lifespan.

The αx term in the APC model corresponds to a long-term baseline
mortality pattern by age after accounting for period and cohort effects.
Because both the APC and Lee-Carter models (in StMoMo) are fitted
using the same Poisson likelihood, their deviance are directly compara-
ble. This allows a fair assessment of model fit across age, period, and
cohort dimensions.

Thus, the table helps highlight how mortality behaves differently
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across age groups and how well the model explains variation in deaths
at each life stage.

Figure 9: Estimated period effects (γ̂ft ) from the APC model. These effects
capture temporal changes in mortality that affect all ages simultaneously.

Figure 10: Estimated cohort effects (δ̂ft−x) from the APC model. These
effects represent systematic differences in mortality across birth cohorts.

Figure 9 and 10 visualize the remaining components of the APC
model: the period and cohort effects. The estimated period effect, γ̂ft ,
in Figure 9, reflects broad changes in mortality over calendar years,
such as those driven by medical advancements, public health interven-
tions, or historical events like wars and pandemics. The trend shows an
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apparent long-term decline, consistent with improved living standards
and healthcare in Sweden over the past few centuries.

In contrast, the cohort effect δ̂ft−x, shown in Figure 10, captures
systematic deviations in mortality risk associated with year of birth,
after adjusting for age and period. The curve suggests that individuals
born in the late 1800s and early 1900s experienced relatively higher
mortality risk across their lifespans, while more recent cohorts exhibit
lower mortality.

Together with the age effects summarized in Table 6, these plots
offer a complete decomposition of mortality trends under the APC
framework.

Table 7: Mean Absolute Percentage Error (MAPE,%) for ages 20-90 when
the model is trained on three historical windows (1751-2000, 1850-2000, and
1950-2000) and projected to 2001-2023.

MAPE (%)

AgeGroup 1751-2000 1850-2000 1950-2000

20-24 11.60 12.50 8.62
25-29 10.30 10.20 8.27
30-34 13.30 14.50 9.89
35-39 15.50 15.70 11.40
40-44 14.80 14.60 10.30
45-49 19.10 19.00 13.00
50-54 17.70 15.50 13.60
55-59 20.30 20.40 12.70
60-64 20.80 20.90 13.40
65-69 21.90 20.20 12.70
70-74 25.80 26.60 15.30
75-79 24.50 21.60 17.00
80-84 30.20 28.30 13.00
85-90 29.50 27.60 14.80

Table 7 summarizes the out-of-sample forecast accuracy for an Age-
Period-Cohort (APC) model trained on three different historical win-
dows (1751-2000, 1850-2000, and 1950-2000). We measure performance
using the mean absolute percentage error (MAPE) for mortality fore-
casts over the 2001-2023 horizon. The table is arranged by 5-year age
groups (from 20-24 through 85-90), allowing us to see how well each
training period predicts different segments of the adult lifespan.

The 1950-2000 model yields the lowest MAPE for most age groups,
sometimes falling below 10%, especially in the 20-34 range. These
values suggest that focusing on more recent data (the last 50 years
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before 2000) can increase the predictive power of the APC model for
younger to middle-aged cohorts, likely reflecting the dominant medical
and social changes in the latter half of the 20th century. By contrast,
while more historically comprehensive, the 1751-2000 and 1850-2000
windows tend to show higher errors for most ages. Including older
mortality data brings in historical events and patterns (like pandemics
or highly high mortality in specific periods) that may no longer accu-
rately reflect modern conditions, leading to worse fits when forecasting
past 2000.

Looking at specific age groups, the 45-59 and 70-79 brackets in the
longer windows (1751-2000 or 1850-2000) typically experience MAPE
values exceeding 15- 20%, while the MAPE of the 1950-2000 model
remains closer to 10-15% for those same ages. Interestingly, for the
oldest ages (80-90), the 1950-2000 model also achieves lower MAPE
than the earlier training sets. This indicates that a more recent train-
ing window better captures advances in elderly care and life-extending
medical interventions. Thus, although older data can help smooth ran-
dom fluctuations, using an excessively long historical span may weaken
more relevant trends that emerged in modern decades.

4.3.2 Forecasting 2024-2050

To generate these forecasts, we adopt a Poisson-regression formulation
of the Age-Period-Cohort (APC) model [21]:

log(Dx,t) = log(Ex,t) + αx + γt + δt−x,

since
log(mx,t) = log

(
Dx,t

Ex,t

)
= log(Dx,t)− log(Ex,t).

In other words, one can treat log(Ex,t) as an offset in a Poisson regres-
sion for the death counts Dx,t.

We trained the model using data from 1950 to 2023 for people aged
20 to 84, which provides historical patterns of how mortality evolves
by age, calendar year, and generational cohort. To forecast the cohort

effects δt−x, we assume they follow an ARIMA(1, 1, 0) with drift:

δt−x = δt−x−1 + ϕ (δt−x−1 − δt−x−2) + c+ εt−x,

which was earlier described in Section 2.4.3.

To forecast the period effects γt, we employ a similar ARIMA(1, 1, 0)
structure. In the StMoMo package output, this is labeled as mrwd
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(mean-reverting random walk with drift), but more precisely, it means
that

∆γt = ϕ∆γt−1 + c + εt,

so that the changes ∆γt gradually revert toward zero if |ϕ| < 1. We let
∆γt = γt − γt−1 denote the first difference of the period effect. While
this lowers the constant drift, the level γt is still non-stationary rather
than reverting to a fixed mean. We obtain the forecasted values of γt
from the last observed year by projecting ∆γt forward.

Finally, to generate the complete mortality forecasts, we combine the
fitted age effects α̂x with the projected period and cohort components:

mx,t = exp
(
α̂x + γ̂t + δ̂t−x

)
for t = 2024, . . . , 2050.

This way, the APC model’s decomposition of age, period, and cohort
effects can be used to estimate future mortality rates under modern
data-driven time-series assumptions.

Figure 11: Forecasted period effects (γt) for 2024-2050, estimated using data
from 1950-2023 with 95% Prediction Interval.
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Figure 12: Forecasted cohort effects (δt−x) for 2024-2050, estimated using
data from 1950-2023 with 95% PI.

Now that we have forecasted period and cohort effects, we use these
components to calculate the projected mortality rates. As usual, we
present the results in five-year age spans, where we average the single-
year estimates within each bin. This aggregation provides a clearer
view and improves interpretability [22].
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Figure 13: Forecasted mortality rates (2024-2050) from an Age-Period-
Cohort (APC) model trained on 1950-2023 data, grouped in five-year age
spans.
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Figure 13 shows a consistent downward trend in mortality rates
across all age groups, reflecting the overall progress in longevity. As
age increases (e.g. 70-74, 75-79, 80-84), the baseline mortality rate
is higher but gradually improves. Lower ages (20-24, 25-29, 30-34)
exhibit very low, almost identical rates. These forecasts reflect the
APC model’s assumption that recent period effects and cohort trends
continue meaning that older generations benefit from ongoing medical
and social improvements, and that new cohorts retain their historically
lower baseline mortality through the forecast horizon.

Similar to the Lee–Carter forecast, the youngest age groups (20–34)
decline fastest. Low death counts at those ages make the fitted rates
more volatile, which can exaggerate the downward slope. In addition,
Figure 11 shows that the period effect γt has a strong negative drift,
pulling every age downward year after year. Figure 12 shows that
the cohorts aged 20–34 in 2024 (birth years > 1990) have the highest
estimated δc values, giving them an especially low starting baseline and
driving the continued decline in mortality.

In summary, the APC model leverages the separate influences of age,
period, and cohort to produce age-specific mortality forecasts. Trained
on data from 1950 to 2023, it projects continued reductions in adult
mortality risk from 2024 to 2050, particularly among older cohorts,
consistent with the improvements observed throughout the latter half
of the 20th century and into the early 21st.

4.4 Comparison of Lee Carter vs APC

The Lee-Carter and Age-Period-Cohort (APC) models effectively cap-
ture long-term mortality trends but do so in fundamentally different
ways. The Lee-Carter model assumes that a single time trend kt drives
mortality changes across all ages. In contrast, the APC model decom-
poses mortality into age, period, and cohort effects, allowing for a more
flexible interpretation of generational patterns.

Out-of-sample evaluations (2001-2023) show that the Lee-Carter
model performs best in the mid-adult range (ages 30-50), where mor-
tality patterns are relatively stable. For example, when trained on
1751-2000 data, the MAPE for ages 60-64 is as low as 9.13%. However,
forecast errors increase significantly for older ages (e.g. 70+), where
the model tends to overestimate or underestimate late-life mortality.

In contrast, when trained on recent data (1950-2000), the APC
model achieves lower MAPE scores, particularly for young and mid-
adult age groups. For instance, the MAPE drops to 8.27% for the 25-
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29 age group when focusing on recent trends, outperforming the model
trained on a longer historical window. When trained on contemporary
data, the APC model yields more reliable predictions for the oldest
age groups (80-90), likely due to structural changes in elderly mortality
driven by medical progress.

A key difference between the two models lies in how their time com-
ponents are extrapolated. In our implementation, the Lee-Carter time
trend kt is modeled using a random walk with drift, corresponding
to an ARIMA(0,1,0) model. This choice reflects the original assump-
tion in the Lee-Carter framework that mortality improvements evolve
gradually and persistently over time without reverting to a fixed level.

In contrast, the APC model forecasts the period and cohort compo-
nents (γt and δt−x) using separate ARIMA models. In particular, we
model the cohort effect using an ARIMA(1,1,0) with drift, which
introduces mean-reverting behavior via the autoregressive term. This
structure allows the model to adjust flexibly to past cohort-specific
mortality fluctuations. However, it also increases the model’s sensi-
tivity to historical variation, leading to wider prediction intervals in
long-term forecasts. The use of ARIMA(1,1,0) is motivated by cohort
effects often fluctuate more erratically and exhibit generational rever-
sals, which a simple random walk may fail to capture.

The APC model’s explicit inclusion of cohort effects makes it better
suited to capture long-term generational differences in mortality risk.
However, the error in forecasting cohort effects is substantial, as re-
flected by the wide prediction intervals in later years, seen in figure 12.
This uncertainty becomes especially pronounced toward the end of the
forecast horizon (2040-2050), where projections are more sensitive to
variation in past cohort trends.

The Lee-Carter model is simpler and more interpretable, with a
straightforward decomposition into age-specific levels and a shared time
trend. Its forecasts are smoother and generally more stable, particu-
larly when a long historical series is used for training. However, it may
fail to capture nonlinear or cohort-specific changes that the APC model
can incorporate more effectively.

Lee and Carter [6] stated that their age-period model works the
best when trained on 30-90 years, so most studies restrict the training
window to a few decades. In our Swedish data, the lowest out-of-sample
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error for the Lee-Carter model occurs when we train on the entire set.
Similarly, for the Age-Period-Cohort (APC) model one might expect
the opposite, that more data is needed due to its complexity. From [23]
a researcher survey was made in which they said that APC needs ideally
at least 50 years, or long enough for multiple generations to advance
through the same life stages. It might seem a bit counterintuitive to
go against the recommendations, but this is where we found the most
success.

In summary, while both models are valuable tools for mortality fore-
casting, choosing between them involves a tradeoff between simplicity
and flexibility. The Lee-Carter model is robust and interpretable but
may miss cohort-driven dynamics. In contrast, the APC model cap-
tures more complex structures at the cost of increased uncertainty in
long-term projections.

4.4.1 Comparison of different forecasting periods

Another way to compare the Lee-Carter and Age-Period-Cohort (APC)
models is to evaluate them over different forecast periods. The motiva-
tion is that, in theory, Lee-Carter tends to perform better for shorter
forecast periods because it relies on a single time-varying factor (kt),
which often suffices to model stable, gradual changes in mortality. In
contrast, the APC model is more flexible and can capture nonlinear
patterns across age, period, and cohort dimensions, features that have
become increasingly important over more extended forecast periods.

To illustrate this difference, we consider two extreme forecasting
periods: 5 and 50 years. In the 5-year forecasting span, we train the
Lee-Carter and APC models from 1751-2018 and forecast 2019-2023.
In the 50-year forecasting window, we train our models from 1751-
1973 and forecast 1974-2023. We use the mean absolute percentage
error (MAPE) as our primary metric for both APC and Lee-Carter.
In addition, we report the mean absolute error (MAE) in Section 6,
specifically in Tables 12 and 13, to offer a more detailed view of forecast
accuracy. The procedure works exactly as in Sections 4.2.3 and 4.3.2.
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Table 8: APC MAPE by Age Group for 50-Years vs. 5-Years Forecast
Age Group MAPE (50-Years) MAPE (5-Years)

20-24 15.9% 16.9%
25-29 18.3% 8.21%
30-34 22.7% 8.61%
35-39 23.1% 13.1%
40-44 28.5% 11.8%
45-49 32.8% 9.48%
50-54 37.1% 13.5%
55-59 39.7% 10.1%
60-64 41.9% 8.62%
65-69 42.9% 15.4%
70-74 42.9% 8.05%
75-79 41.7% 10.3%
80-84 39.5% 17.3%
85-90 43.3% 6.85%

Table 9: Lee-Carter Forecast MAPE by Age Group (50-Years vs. 5-Years)
Age Group MAPE (50-Years) MAPE (5-Years)

20-24 23.5% 32.9%
25-29 21.7% 7.19%
30-34 27.2% 12.7%
35-39 27.0% 31.8%
40-44 28.2% 7.04%
45-49 41.7% 9.72%
50-54 46.9% 31.3%
55-59 56.6% 5.80%
60-64 57.4% 19.3%
65-69 69.0% 23.0%
70-74 70.2% 5.95%
75-79 77.0% 25.1%
80-84 76.5% 18.1%
85-90 85.5% 9.52%

Table 8 shows the APC model’s MAPE for 50-year versus 5-year
forecasts. As anticipated, the extended forecast (50 years) yields higher
errors (e.g. surpassing 40% MAPE for ages above 60), but it remains
within a 15-43% range across all age groups. Meanwhile, the shorter
(5 year) MAPE is substantially lower for most ages, consistent with
fewer structural changes appearing in a brief forecast window.

Table 9 presents the corresponding Lee-Carter results. In the longer
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horizon, Lee-Carter often produces higher MAPE than APC (e.g. reach-
ing 85.5% in the 85-90 group), suggesting that a single kt parameter
may struggle to capture multi-decade shifts. Conversely, for the shorter
horizon, Lee-Carter does show relatively low MAPE in select age groups
(e.g. 5.80% for 55-59) and indeed outperforms APC in some instances.

According to [24], a MAPE< 10 % is “highly accurate”, 10–20 %
“good”, 20–50 % “reasonable”, and > 50 % “inaccurate”. In our 50-
year forecast, several Lee–Carter MAPE values would be judged inac-
curate, whereas the APC model remains within the “reasonable” group
throughout. However, [24] does not specify what the forecasting hori-
zon should be. This is very important to understand, since the longer
you forecast, the harder it is to forecast accurately.

4.4.2 Graphical out-of-sample comparison

In Sections 4.2.2 and 4.3.1 we compared three different training win-
dows and found that the optimal periods are 1751–2000 for Lee-Carter
and 1950–2000 for APC. To complement the mean absolute percentage
error (MAPE) tables with a visual perspective, Figure 14 contrasts the
forecasts from both models with the observed mortality rates for ages
20, 40, 60 and 80 during 2001-2023.

Figure 14: Out-of-sample mortality forecasts: Lee–Carter vs APC for ages
20, 40, 60 and 80, 2001–2023
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Figure 14 is consistent with the MAPE values in Tables 5 and 7.
We see that Lee-Carter works best for the mid-aged group (40 and 60),
which can be explained by the linear trend that kt manages to capture.
However, when it comes to younger and older ages, it cannot handle
shifts the way APC does. Due to the complexity of APC and the
inclusion of the cohort effect, the APC can handle shifts in mortality
that Lee-Carter might miss.
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5 Discussion

The Lee-Carter model, built around a single time-varying parameter kt,
offers simplicity, interpretability, and stable performance when trained
on long historical data. Our results confirm that training on an entire
historical window (1751–2000) yields the lowest out-of-sample errors
(MAPE) overall, especially for mid-aged groups (e.g. ages 40–69), with
an exceptionally low error at ages 60–64 (9.13% MAPE).

The APC model decomposes mortality into separate age, period,
and cohort effects, capturing more complex generational patterns. This
flexibility comes at the cost of more significant forecast error, especially
evident in the widening prediction interval of the cohort component
(Figure 13). Compared to the Lee-Carter method, the APC model
achieves better predictive performance when trained on more recent
data (1950–2000), particularly for younger and older age groups. For
instance, the 25–29 age group achieves a MAPE of 8.27%, and even
the 80–84 age group sees a dramatic improvement in forecast accu-
racy relative to training on the historical dataset. The success of these
smaller training sets suggests that the APC model benefits from captur-
ing modern medical and societal trends that disproportionately affect
specific cohorts.

An important methodological distinction is the choice of ARIMA
models for forecasting the time components. In the Lee-Carter model,
kt follows a random walk with drift (equivalent to ARIMA(0,1,0)),
which assumes that mortality improvements evolve smoothly over time.
Conversely, the APCmodel uses ARIMA(1,1,0) processes for the period
and cohort effects, allowing for slight mean reversion and smoother
generational transitions. This choice is motivated by the unpredictable,
nonlinear shifts in cohort-specific mortality that a pure random walk
might not capture. While this makes the APC model more flexible in
capturing historical volatility, it also increases its sensitivity to past
fluctuations.

Another key finding is that the optimal training period differs be-
tween the two models. The Lee-Carter model performs best when
leveraging a long data span, taking advantage of the stability of its
single-time index across centuries. On the other hand, the APC model
tends to benefit from being trained on more recent data that better
reflect ongoing structural changes in mortality, especially among el-
derly cohorts where rapid healthcare improvements have had profound
effects.
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In Section 4.4.1 we compared the two models over extreme hori-
zons: a short-term 5-year forecast and a long-term 50-year forecast.
Lee-Carter records its smallest errors at the 5-year horizon, even out-
performing APC in a handful of middle-age groups (25-29, 40-44, 55-59,
and 70-74). Nevertheless, APC has the lower mean error across all ages
at both horizons and is markedly more accurate over 50 years. This
behaviour is consistent with Lee-Carter’s single-factor structure, which
captures smooth near-term period trends, whereas APC’s additional
cohort term pays off as structural changes accumulate over decades.

Since we concluded that neither model outright dominates the other,
each has strengths in different age ranges and data parts. APC is more
robust overall, while Lee-Carter can more accurately capture recent
trends at certain ages. This means that forecasters or actuaries might
choose APC for very long-term projections (favoring its complexity),
but use Lee-Carter for short-to medium-term forecasts for specific age
groups.

5.1 Possible future enhancements

Working on this thesis was rewarding because of its complexity. There
were always several paths that could be taken to explore, improve, and
extend the analysis of this thesis. However, this also results in a lot of
important observations being left out. We will now discuss the most
important ones that got left out and would be interesting to work on
further.

Throughout this thesis, the mortality rates were grouped into five-
year age groups (e.g. 20-24, 25-29, . . . ) rather than modeled at indi-
vidual age levels. The reasoning behind this is to improve the clarity
of visualizations and reduce the number of plots and tables. Although
this might be nice for the reader, it introduces several trade-offs that
affect the precision of the analysis.

By grouping ages, we effectively compute the average mortality
within each interval, which can hide important differences between in-
dividual ages. For instance, the mortality pattern at age 20 may differ
substantially from that at age 24, particularly in younger or older pop-
ulations where risks can change quickly from year to year. As a result,
some of the finer age-related dynamics might go lost in this process.

Even though grouped data simplifies interpretation and aligns with
many other demographic reporting standards, future work could ex-
plore whether narrower age groups or even single-year modeling might
reveal more detailed results, especially in age intervals where mortality
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changes rapidly. On the other hand, finer modeling increases the di-
mensionality and may require regularization or smoothing techniques
to avoid overfitting, especially in sparse age ranges.

Thus, while five-year grouping provides a reasonable balance be-
tween interpretability and complexity, it is important to acknowledge
its limitations and consider whether specific age intervals might benefit
from further subdivisions depending on the application.

Another important consideration is the choice of training window.
As shown in Section 4.2.2, Lee-Carter benefits from longer historical
sequences, whereas APC performs best when trained on more recent
data. Varying the training periods and evaluating performance could
help determine more optimal horizons for different models and age
groups.

Expanding the dataset could also enhance model performance. Given
the demographic similarities between these populations, incorporat-
ing mortality data from neighboring Scandinavian countries such as
Norway, Denmark, or Finland may provide valuable additional struc-
ture. By including our Scandinavian neighbors, we could use multi-
population extensions of the Lee-Carter and APC frameworks, leading
to more precise and realistic forecasts.

As discussed in Section 4.2.5, the model performance would improve
significantly by removing outliers. While this improves forecast stabil-
ity and fit, it is important to recognize that such outliers are a part
of history. Incidents like pandemics or wars, though rare, show mean-
ingful impacts on mortality trends and should not be dismissed lightly.
A recent example is the COVID-19 pandemic, a significant outlier in
future mortality analyses. This thesis aims to provide a thoughtful
and historically grounded view of mortality development. Therefore,
we have included all available years and central events dating back to
1751, when mortality statistics in Sweden first started to be recorded
for real. Including all years allows the analysis to reflect the general
long-term trends and the extreme events shaping them.

A natural extension of the parametric bootstrap in Section 4.2.4 is
to apply the same procedure to the Age–Period–Cohort (APC) model

and to look at the raw variation of Dx,t

Ex,t
. It would be interesting to see

how well the APC model handles scaled exposures. We expect it to
“break” faster than Lee–Carter due to its added complexity and larger
parameter set (period + cohort effects).
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When comparing the variability of raw observed rates to the vari-
ability of modeled rates, we expect that raw rates appear more unsta-
ble, especially when Ex,t is small. This is because raw rates reflect all
the year-to-year random fluctuations in deaths, whereas a model like
Lee–Carter or APC are fitted to impose a smoother structure.

Due to time and computational constraints, this analysis was not
implemented. However, it would provide valuable insights into the
robustness of APC’s period and cohort effects and the variation in our
mortality rates.
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6 Appendix

6.1 Female Lee Carter analysis

We evaluated the prediction ability of the Poisson Lee-Carter model
using three training windows: 1751-2000, 1850-2000, and 1900-2000.
After fitting the model in each case, we projected mortality for ages
20-80 from 2001 through 2023. Table 10 presents the root mean square
error (RMSE) between predicted and observed mortality rates in these
out-of-sample years, with lower values indicating closer alignment with
reality.

Table 10: RMSE of Poisson Lee-Carter forecasts (2001-2023) by training
window and age.

Age 1751-2000 1850-2000 1900-2000

20 0.000108 0.000123 0.000200
30 0.0000773 0.000149 0.000219
40 0.000112 0.000213 0.000229
50 0.000342 0.000325 0.000291
60 0.000592 0.000505 0.000407
70 0.00159 0.00140 0.00120
80 0.0131 0.0106 0.00846

RMSE Overview.

• 1751-2000: Ages 30 and 40 yield particularly low RMSE (e.g.
0.0000773 for age 30), while 80 reaches 0.0131, making it the
worst within this window.

• 1850-2000: Age 20 has the smallest RMSE (0.000123), while
age 80 is again the largest at 0.0106.

• 1900-2000: Age 20 (0.000200) outperforms the others, while age
80 (0.00846) is the most difficult to predict.
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6.2 Forecasting between 30-90 years according to Lee-Carter

Table 11: Mean Absolute Percentage Error (MAPE) over 1981-2023 when
training between 1950-1980.

Age Group MAPE (1950-1980)

20-24 18.1
25-29 18.1
30-34 29.0
35-39 48.5
40-44 68.2
45-49 49.0
50-54 41.1
55-59 27.8
60-64 22.6
65-69 22.4
70-74 21.3
75-79 19.2
80-84 6.52
85-90 5.62

Lee and Carter recommend using a training window of 30-90 years for
mortality forecasts, which prompted us to test a 30-year span. How-
ever, as shown in Table 11 (Appendix), the resulting MAPE values
are worse than those in our main analysis. One likely reason is that
a strictly 30-year window may not include enough historical variation
to stabilize the estimated trends. Furthermore, a comparatively short
training period can overemphasize recent anomalies or improvements
(e.g.
breakthroughs in medical technology) and fail to capture broader long-
term mortality patterns.
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6.3 Lee-Carter vs. APC: MAE Comparison

Table 12: APC MAE by Age Group for 50-Year vs. 5-Year Forecast
Age Group MAE (50-Year) MAE (5-Year)

20-24 0.00261 0.0000806
25-29 0.00327 0.000294
30-34 0.00249 0.00245
35-39 0.00335 0.0000818
40-44 0.00392 0.000518
45-49 0.00613 0.00570
50-54 0.00594 0.000157
55-59 0.00894 0.000734
60-64 0.00816 0.00264
65-69 0.0108 0.000208
70-74 0.00905 0.000812
75-79 0.0120 0.00359
80-84 0.0100 0.000358
85-90 0.0130 0.00342

Table 13: Lee-Carter Forecast MAE by Age Group (50-Year vs. 5-Year)
Age Group MAE (50y) MAE (5y)

20-24 0.00281 0.000200
25-29 0.00482 0.000257
30-34 0.00459 0.00514
35-39 0.00699 0.000200
40-44 0.00589 0.000329
45-49 0.00905 0.00166
50-54 0.00790 0.000248
55-59 0.0111 0.000746
60-64 0.00924 0.00423
65-69 0.0132 0.000199
70-74 0.0113 0.00147
75-79 0.0149 0.00293
80-84 0.0124 0.000196
85-90 0.0167 0.00455

Tables 12 and 13 display the mean absolute error (MAE) for the Age-
Period-Cohort (APC) and Lee-Carter (LC) models, respectively, when
forecasting over a 5-year horizon vs. a 50-year horizon. These tables
extend Section 4.4.1 discussion by showing the numerical details behind
the 5-year and 50-year forecasts.
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In both models, the 5-year horizon generally exhibits lower abso-
lute errors than the 50-year horizon across most age groups, consistent
with the idea that short-term forecasts are more reliable. However,
there are specific age groups (significantly younger or older) where the
models’ MAE patterns differ substantially, highlighting their distinct
sensitivities to different age segments.

For instance, the Lee-Carter model may yield low MAE for mid-
adult ages (e.g. 20-44) when projecting 5 years ahead. In contrast,
the APC model can excel for particular older-age cohorts if structural
changes are captured more accurately. These differences underscore
the broader conclusion that the choice of model and forecast horizon
depends on which age ranges and time frames are most relevant to the
analyst’s goals.
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[14] Sundberg, R. (2021). Lineära statistiska modeller. Ch 6.8, page
275.

[15] Blomberg, N (2022). A Comparison Between Different Stepwise
Regression Models To Predict Football Games. Page 10-11.

[16] https://www.mortality.org/Home/Index Human Mortality
Database

[17] Currie, I. D (2016). On fitting generalized linear and non-linear
models of mortality. Scandinavian Actuarial Journal, 356-383.

[18] Vries. R. D. (2011). SO-rummet. Spanska Sjukan. https://www.
so-rummet.se/kategorier/spanska-sjukan#

[19] R. D. Lee and L. R. Carter. (1992). Modeling and Forecasting U.S.
Mortality. Journal of the American Statistical Association, vol. 87,
no. 419, 1992, pp. 659–671.
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