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Abstract

Denoising Diffusion Probabilistic Models (DDPMs) are state-of-
the-art generative models whose training objective takes the form of
a mean squared error. Despite this apparent similarity to a regres-
sion problem, the relevance of the classical bias–variance trade-off in
DDPMs is not well understood. Unlike supervised learning, where
prediction error and generalization can be directly assessed, generative
models must be evaluated through indirect measures such as sample
quality and diversity, complicating any direct transfer of bias-variance
intuition.

This thesis examines how the bias-variance framework can be mean-
ingfully interpreted in the context of DDPM training. We analyze
the DDPM objective as a regression problem with a stochastic tar-
get and perform an empirical study on the MNIST dataset, focus-
ing on training dynamics, noise-prediction residuals across diffusion
timesteps, and the evolution of generated samples. Model behavior is
assessed using loss-based diagnostics alongside established generative
evaluation metrics, including the Inception Score and the Fr´echet
Inception Distance.

The results indicate that persistent error in the learned denoising
function is the dominant factor limiting sample fidelity, while variance-
related effects such as training instability (e.g. mode collapse) are
not observed in these experiments. Most improvements in genera-
tive quality occur early in training and then level off, with sample
diversity preserved throughout. These findings suggest that the clas-
sical bias–variance trade-off does not carry over directly to diffusion
models: bias primarily governs fidelity through persistent denoising
error, whereas variance plays a secondary role by influencing training
stability and, indirectly, diversity
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1 Introduction

Deep learning has emerged as a major area within modern machine learning,
largely due to the strong empirical performance of neural networks on a broad
range of tasks, including image recognition, speech processing, and natural
language understanding [1]. Within this broader development, generative
modeling has emerged as a particularly active area of research, driven by the
goal of learning complex data distributions from which realistic new samples
can be generated [1]. Among existing generative approaches, diffusion models
have gained significant prominence and now represent the state of the art in
image generation, owing to their strong empirical performance and training
stability [2, 9]. Beyond images, diffusion-based models have also been
successfully applied to domains such as audio and speech synthesis, video
generation, and scientific applications including molecular design and protein
structure modeling [8, 18].

Diffusion models generate data by reversing a gradual stochastic corruption
process. Starting from a simple noise distribution, samples are transformed
into structured data through a sequence of denoising steps [9]. Two closely
related formulations dominate the literature: score-based diffusion models,
which learn the score function of the data distribution via denoising score
matching [18], and Denoising Diffusion Probabilistic Models (DDPMs), which
define a discrete-time Markov chain and are trained to predict the noise added
at each diffusion step [9]. This thesis focuses on DDPMs. A defining feature of
DDPMs is that their training objective reduces to a mean squared error
regression problem, where a neural network learns to predict a stochastic noise
target conditioned on a noisy input. An equivalent regression interpretation
also arises in score-based diffusion models under appropriate
parameterizations, highlighting the close conceptual relationship between the
two frameworks [9, 18].

In classical supervised learning, regression problems are commonly
characterized by the bias–variance trade-off, which provides a principled
framework for understanding underfitting, overfitting, and generalization [1].
Bias reflects systematic error arising from model limitations, while variance
captures sensitivity to the particular training data. Extending this framework
to generative models, however, is not straightforward. In generative settings,
there is no ground-truth output (i.e. response variables) associated with a
given input, and performance cannot be assessed through prediction error
alone. Instead, model quality is evaluated using indirect criteria such as
sample fidelity and diversity, making the relationship between bias, variance,
and generalization more difficult to interpret [2, 7, 17].
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The objective of this thesis is to investigate how the bias-variance framework
can be meaningfully interpreted in the context of DDPMs. We combine a
theoretical analysis of the DDPM training objective with an empirical study
conducted on the MNIST dataset [12]. Training dynamics, noise-prediction
residuals across diffusion timesteps, and the evolution of generated samples are
examined alongside common generative evaluation metrics, including the
Inception Score and the Fréchet Inception Distance [7, 17]. Through this
analysis, we aim to clarify how bias and variance influence sample fidelity,
diversity, and stability in diffusion models, and to identify the limitations of
classical bias–variance interpretations in generative settings.

The remainder of this thesis is organized as follows. Chapter 2 introduces the
theoretical foundations of neural networks, generative models, and diffusion
models, and describes the network architecture, training configuration, and
validation methods used in this work. Chapter 3 presents the empirical results
and their analysis. Chapter 4 concludes with a discussion of the findings, their
implications, and directions for future work.

2 Theory and Methods

2.0.1 Neurons and layers

Artificial neural networks form the basic computational framework used in
modern deep learning. Their aim is to learn a parametric function fθ that
approximates an unknown target function f ,

fθ(x) ≈ f(x), (1)

where θ denotes the collection of all trainable weights and biases. Training
consists of adjusting these parameters so that the network captures salient
structure present in the data, as measured by a chosen loss function and
training objective.

At the most basic level, a neural network is built from neurons connected by
weighted edges. The mapping itself is performed by these weighted
connections together with a nonlinear activation function. Given an input
vector x ∈ Rd, a single neuron produces a scalar activation

a = σ(wTx+ b), (2)

where w ∈ Rd denotes the weight vector associated with the incoming
connections, b ∈ R is a bias term, and σ(·) is a nonlinear activation function.
The inclusion of a nonlinearity prevents the network from collapsing into a
purely linear model and allows it to represent nonlinear input–output
relationships [5].
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Neurons are arranged into layers, with multiple neurons in the same layer
operating on a shared input. Figure 1a shows two neurons within a single layer
receiving the same activation a(l) = x. Each neuron applies its own weighted
sum and activation function, producing different outputs. Although the input
is identical, differences in the learned parameters lead to different responses:
one neuron may respond strongly to a particular pattern, while another may
respond only weakly. Taken together, these parallel responses allow a layer to
encode several features of the input at once.

(a) (b)

Figure 1: Examples of neuron activations in a neural network. (a) Two neurons in the same
layer responding differently to a shared input a(l) = x. (b) Schematic illustration of neuron
responses in the first layer to local pixel configurations in a handwritten digit. The illustration
is conceptual and does not represent actual hidden-layer activations, which generally do not
resemble the original input in pixel space.

Although the neuron model introduced above is simple, it already illustrates
how neural networks extract structure from data. This can be made more
concrete by considering an example from image data. Figure 1b shows a
14× 14 grayscale image of a handwritten digit “3.” Each pixel is treated as a
numerical input, and the first layer processes these values without any explicit
knowledge of image geometry. Instead, its neurons learn to respond to simple
patterns in pixel intensities, such as local contrast changes or short stroke-like
configurations. In this way, raw pixel values are transformed into internal
representations through learned nonlinear mappings, even though these
representations generally do not resemble the input image itself.

Neurons are organized into layers, forming a sequence of transformations. The
input layer receives the raw data, which is then passed through one or more
hidden layers. Each hidden layer applies a learned transformation that
modifies and refines the representation. The final output layer produces
task-dependent outputs, such as class probabilities in classification problems
or real-valued predictions in regression.
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Two basic structural properties are commonly used to describe a neural
network:

• Width: the number of neurons within a layer, which affects how many
distinct features can be represented at that stage.

• Depth: the total number of layers, which determines how many
successive transformations the input undergoes.

In this thesis, we focus on feedforward neural networks, in which information
flows strictly from input to output without feedback or recurrent connections,
as this architecture forms the foundation for many modern deep learning
models [1, 5].

For a feedforward network with L layers, the overall mapping can be written as

fθ(x) = f (L)
(
f (L−1)(· · · f (1)(x) · · · )

)
, (3)

where each f (l) denotes a layer-specific transformation parameterized by its
own weights and biases. This layered composition allows the network to build
complex mappings by combining simpler ones, with each layer producing a
representation that serves as the input to the next.

Figure 2: A feedforward neural network for image classification, illustrating the flow of
information from the input image through multiple layers to class-specific outputs.

8



Figure 2 illustrates a feedforward neural network applied to an image
classification task. An input image x is processed sequentially by three layers
according to

fθ(x) = f (3)
(
f (2)(f (1)(x))

)
, (4)

so the network has depth three. The width is determined by the number of
neurons in each layer. Individual neurons respond differently to various
aspects of the input, and their activations are propagated forward through the
network to produce the final class-specific outputs, here corresponding to the
labels “Dog” and “Cat.”

2.0.2 Loss function, backpropagation, and optimization

Training a neural network requires specifying an objective function that
quantifies how well the model performs the task of interest. Learning is
typically formulated as the optimization problem

min
θ

1

N

N∑
i=1

L
(
y(i), fθ(x

(i))
)
+ λR(θ), (5)

where fθ denotes a neural network parameterized by θ, L(·) is a loss function,
and R(θ) is a regularization term that penalizes model complexity. The target
y(i) depends on the learning setting. In supervised learning, it corresponds to
a label, such as a class index or a real-valued response. In unsupervised,
self-supervised, or generative settings, it may instead represent a
reconstruction target, a similarity constraint, or an artificial signal such as
injected noise, as in diffusion models.

Different learning objectives arise from different choices of the conditional
output distribution. In all cases, the training loss is given by the cross-entropy
(negative log-likelihood) between the data distribution and the model. For
example, assuming Gaussian output noise in regression leads to squared or
absolute error losses, respectively, while Bernoulli or categorical output
distributions in classification give rise to binary or multiclass cross-entropy
losses. Related likelihood-based objectives include reconstruction losses for
autoencoders and noise-prediction losses for diffusion models. From the
perspective of optimization, however, these objectives play a similar role: each
defines a scalar function whose gradient with respect to the model parameters
determines how the model is updated during training [1].
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Gradients are computed efficiently using the backpropagation algorithm [5],
which applies the chain rule to the layered structure of the network. Consider
a feedforward neural network with layers indexed by l = 1, . . . , L, defined by

h(l) = W (l)a(l−1) + b(l), a(l) = σ
(
h(l)
)
, (6)

where a(0) = x is the input, h(l) denotes the pre-activations, a(l) the
activations, and σ(·) the activation function. Introducing the backpropagated
gradient with respect to the pre-activations,

δ(l) :=
∂L
∂h(l)

, (7)

the gradients of the loss with respect to the parameters of layer l are given by

∂L
∂W (l)

= δ(l)
(
a(l−1)

)⊤
,

∂L
∂b(l)

= δ(l). (8)

The backpropagated gradients propagate backward through the network
according to

δ(l) =
(
W (l+1)

)⊤
δ(l+1) ⊙ σ′

(
h(l)
)
, (9)

where σ′(·) denotes the derivative of the activation function and ⊙ indicates
elementwise multiplication. The initialization at the output layer is
determined by the choice of loss function and output parameterization.

Once gradients have been computed, the parameters are updated using
gradient-based optimization. In its simplest form, gradient descent performs
the update

θk+1 = θk − η∇θL(θk), (10)

where k ∈ N indexes the optimization iteration, η > 0 is the learning rate and
L(θ) denotes the empirical risk, defined as the average loss over the full
training dataset.

In practice, evaluating gradients over the entire dataset at each step is often
impractical, and stochastic gradient descent (SGD) is used instead. Given a
mini-batch B, the update becomes

θk+1 = θk − η∇θ

(
1

|B|
∑
i∈B

L
(
y(i), fθ(x

(i))
))

. (11)

Although SGD introduces randomness into the optimization process, it
substantially reduces computational cost and often performs well in
high-dimensional, non-convex settings. In many applications, it is combined
with adaptive methods such as Adam, which incorporate momentum and
parameter-specific learning rates [11].
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Neural networks are highly expressive models and can overfit when their
capacity is large relative to the amount of available data. Regularization is
therefore used to improve generalization by discouraging overly complex
solutions. One common approach is explicit parameter regularization through
the penalty term λR(θ). Typical choices include R(θ) = ∥θ∥22, which penalizes
large parameter values, and R(θ) = ∥θ∥1, which promotes sparsity [1].

Regularization can also be introduced through the training procedure itself.
Early stopping limits overfitting by terminating training before full
convergence. Dropout randomly deactivates units during training, reducing
reliance on specific activations. Data augmentation increases the effective size
of the training set by applying label-preserving transformations to the inputs.
While these techniques differ in implementation, they all act to constrain
effective model complexity and stabilize training [5].

2.1 Generative models

A generative model seeks to learn a probability distribution over data,
typically denoted by pθ(x), or a conditional distribution pθ(x | c) when
auxiliary information c, such as class labels or text prompts, is available. Once
trained, the model can generate new samples by drawing from this learned
distribution, rather than producing predictions for fixed inputs.

In many settings, modeling pθ(x) directly is difficult because high-dimensional
data exhibit complex, structured variability that is not easily captured by a
single distributional form. A common approach is therefore to introduce latent
variables z that represent hidden factors influencing the observations. This
yields models of the form

pθ(x) =

∫
pθ(x|z)p(z)dz (12)

where p(z) is a simple prior distribution and pθ(x|z)is a conditional model that
maps latent factors to observations. By integrating over z, the model can
represent complex data distributions as mixtures over simpler conditional
components, with the latent variable providing an intermediate representation
that accounts for variability in the observed data [1, 10].

Generative models are often categorized according to whether they define an
explicit probability density. Likelihood-based models specify a tractable or
approximate likelihood and include autoregressive models, normalizing flows,
variational autoencoders, diffusion models, and energy-based models. In
contrast, implicit generative models, such as generative adversarial networks
(GANs), do not provide an explicit likelihood and are trained using objectives
defined purely through generated samples.
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Model quality in generative settings is commonly discussed in terms of fidelity
and diversity. Fidelity refers to how realistic individual samples appear and
how well they reflect the structure of the data distribution, while diversity
describes the extent to which the model captures variability across the dataset
rather than producing a narrow range of similar outputs. These two aspects
are inherently linked: high fidelity without diversity corresponds to
memorization, whereas high diversity without sufficient structure leads to
unrealistic samples. Although fidelity and diversity do not coincide exactly
with the classical notions of bias and variance, they play an analogous role
when assessing generalization in generative models, where direct prediction
error is unavailable.

This thesis focuses on likelihood-based generative models, and in particular on
diffusion models. While diffusion models differ from classical latent-variable
models such as variational autoencoders in their architecture and sampling
procedure, they share a probabilistic foundation rooted in latent variables and
variational reasoning. As shown in later sections, the training objective of
diffusion models can be cast as a regression problem, providing a concrete
setting in which questions related to bias and variance can be examined in a
generative context.

2.2 Encoder–Decoder and Latent Variable Models

In latent-variable models, a common formulation is the encoder–decoder
framework, often discussed in the context of autoencoders. An autoencoder is
a model that learns a representation of the data by mapping inputs through
an encoder into a lower-dimensional latent variable z, commonly referred to as
the bottleneck. A decoder then maps this latent representation back to the
original data space, with the goal of reconstructing the input. Training is
driven by a reconstruction loss, which encourages the latent representation to
retain information that is most relevant for reproducing the data.

The role of the latent representation can be understood intuitively through a
simple analogy. A shadow is not the object itself, but it preserves enough
structure to convey its essential shape. In a similar way, the latent space
provides a compressed and abstract representation of the input, which the
decoder uses to reconstruct the original data. Figure 3 illustrates the basic
structure of an autoencoder.

Standard autoencoders are deterministic: each input is mapped to a single
latent vector. For the purposes of this thesis, it is more relevant to consider a
probabilistic variant, namely the variational autoencoder (VAE). In a VAE,
the latent variable is treated probabilistically, so that each data point is
associated with a distribution over latent variables rather than a fixed vector.
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Figure 3: Structure of a basic autoencoder consisting of an encoder that maps data to a
low-dimensional latent representation and a decoder that reconstructs the input from this
representation.

As shown in Figure 4, the overall encoder–decoder structure is retained, but
the bottleneck is replaced by a parametric probability distribution.

Figure 4: Structure of a variational autoencoder (VAE), where the deterministic bottleneck
is replaced by a probabilistic latent distribution parameterized by a mean and variance.

Training a VAE is framed as a variational inference problem. The model
specifies a prior distribution over latent variables, an approximate posterior,
and a divergence term that measures the discrepancy between them. The role
of this divergence is illustrated schematically in Figure 5, which shows how the
Kullback–Leibler divergence quantifies the discrepancy between two
probability distributions.

Figure 5: Illustration of the Kullback–Leibler divergence as a measure of discrepancy between
probability distributions

To make this framework concrete, specific parametric forms must be chosen
for both the prior and the approximate posterior. A common choice is

p(z) = N (0, I), qϕ(z | x) = N (µϕ(x), σ
2
ϕ(x)), (13)

where the mean and variance of the approximate posterior are parameterized
by a neural network [10].
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This choice is motivated by both modeling and computational considerations.
The standard normal prior is simple and isotropic, while the Gaussian form of
qϕ(z|x) allows the approximate posterior to flexibly adapt to the data through
its learned mean and variance.

Under these assumptions, the Kullback–Leibler divergence DKL(qϕ(z | x)||p(z))
admits a closed-form expression that depends only on µϕ(x) and σ2

ϕ(x). As a
result, this divergence can be evaluated exactly, avoiding the need for Monte
Carlo estimation of this term and yielding a stable and efficient training
objective, as originally proposed in the variational autoencoder framework [10].

As a likelihood-based generative model, a variational autoencoder aims to
learn a probability distribution over the observed data [1, 10]. This
corresponds to learning the marginal distribution

pθ(x) =

∫
pθ(x | z)p(z) dz, (14)

which is generally intractable to compute directly. The difficulty arises
because the integral requires marginalizing over all possible latent variable
configurations z, and the conditional distribution pϕ(x|z) is parameterized by
a nonlinear neural network. This combination prevents analytic evaluation of
the integral and motivates the use of variational approximations and lower
bounds, introduced in the following section.

Instead, variational autoencoders maximize a lower bound on the data
log-likelihood,

log pθ(x) ≥ LELBO(θ, ϕ), (15)

known as the Evidence Lower Bound (ELBO). This inequality follows from
introducing an approximate posterior distribution qϕ(z|x) and applying
Jensen’s inequality to the marginal likelihood log pθ(x) = log

∫
pθ(x|z)p(z)dz

[10]. Equality holds if and only if the approximate posterior matches the true
posterior, qϕ(z|x) = pθ(z|x) [1].

The ELBO takes the form

LELBO(θ, ϕ) = Eqϕ(z|x)[log pθ(x | z)]−DKL(qϕ(z | x)||p(z)). (16)

and provides a tractable objective for learning[10]. The first term is the
expected log-likelihood under the approximate posterior and encourages the
decoder pθ(x | z) to reconstruct the observed data from latent variables
sampled according to qϕ(z | x). The second term is a Kullback–Leibler
divergence that penalizes deviations of the approximate posterior from the
prior p(z), thereby regularizing the latent representation. Maximizing the
ELBO therefore balances reconstruction accuracy against adherence to the
chosen prior and jointly trains the decoder pθ(x | z) and the encoder qϕ(z | x),
requiring two neural networks.
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Hierarchical variational autoencoders extend this framework by introducing
multiple layers of latent variables rather than a single bottleneck. Diffusion
models can be viewed as a special case of such hierarchical constructions,
where each latent variable corresponds to a progressively noisier version of the
data and the inference process is fixed rather than learned. This connection
will be made precise in the following section.

2.3 Denoising Diffusion Probabilistic Models (DDPM)

So far, we have seen how generative models are formulated by introducing a
latent variable distribution p(z) and learning a mapping from this latent space
to the data space x using a neural network. While this approach has been
highly successful, a different class of generative models has gained increasing
attention in recent years: diffusion models. These models now represent the
state of the art across a broad range of applications, including image
generation, audio and speech synthesis, text-to-video generation, and scientific
domains such as protein structure modeling and molecular design [9, 18].

The underlying idea of diffusion models is straightforward. Rather than
generating data in a single step from a latent variable, diffusion models
construct a sequence of latent variables by gradually corrupting the data.
Starting from a data point x0, noise is added over a sequence of steps, known
as the forward diffusion process. At each step, the signal is both perturbed by
noise and rescaled, so that information from the original data is progressively
attenuated. After sufficiently many steps, the distribution approaches a simple
Gaussian. An example of this progressive corruption is shown in Figure 6. The
generative problem is then recast as learning the reverse of this process: a
neural network is trained to remove noise step by step, transforming an initial
Gaussian sample back into a realistic data point.

Figure 6: Example of progressive corruption of an image under the forward diffusion process,
where Gaussian noise is added over successive timesteps. Adapted from Bishop and Bishop
(2024), Chapter 20. [1].

Diffusion models are likelihood-based and are trained using a variational
objective derived from this forward–reverse construction. A fixed and
analytically tractable forward process defines how noise is added, while a
neural network is trained to model the reverse transitions.
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Unlike variational autoencoders, no learned inference network is required: the
forward noising process is fully specified in advance, and all stochasticity in
the latent variables is due to injected noise rather than learned uncertainty.
This separation leads to a comparatively simple optimization problem and
contributes to the stable training behavior observed in practice. Empirically,
diffusion models have been shown to match or surpass the sample quality of
generative adversarial networks while avoiding adversarial training instabilities
[2].

Denoising Diffusion Probabilistic Models (DDPMs), which are the focus of this
thesis, implement this idea in discrete time by defining a finite Markov chain

x0 → x1 → · · · → xT , (17)

where each transition adds a small amount of Gaussian noise [9]. The forward
diffusion process is fixed and admits closed-form expressions, while the reverse
process is learned from data. Throughout this chapter, distributions
associated with the forward process and its conditionals are denoted by q(·),
whereas the learned reverse generative model is parameterized by pθ(·). We
begin by formalizing the forward diffusion process before introducing the
parameterized reverse dynamics.

2.3.1 Forward process

We model the forward diffusion process as a Markov chain that progressively
corrupts the data by adding Gaussian noise according to a predetermined
variance schedule β1, . . . , βT . This forward process is fixed and fully specified,
and unlike the approximate posterior in variational autoencoders, it is not
learned from data. Its role is instead to define a controlled noising procedure
that yields analytically tractable transition densities. The forward transitions
are defined as

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), (18)

where I denotes the identity matrix. The mean term makes explicit that each
step rescales the previous state before noise is added, ensuring that the signal
magnitude is gradually attenuated as t increases.

Starting from an initial data point x0 ∈ Rd, the noisy sequence x1, x2, . . . , xT

is generated recursively according to

xt =
√
1− βt, xt−1 +

√
βt, ϵt, (19)

where each ϵt is an independent standard Gaussian noise variable [9].
Throughout this section, we assume xt ∈ Rd and ϵt ∼ N (0, Id), with all
Gaussian distributions being multivariate and isotropic.
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Figure 7 illustrates the effect of this process: as t increases, repeated rescaling
and Gaussian perturbations progressively suppress the structure present in the
original data. For sufficiently large t, the distribution of xt approaches a
standard multivariate Gaussian, meaning that the sample contains no
information about the original data point beyond random noise.

Figure 7: Forward diffusion (encoding) process from the original data point x0 to a highly
noisy latent variable xT through successive Gaussian perturbations.

Our goal is to express xt directly in terms of the original data point x0,
yielding a closed-form marginal distribution for the forward process. While
this could be obtained by repeatedly applying Eq. (19), doing so quickly
becomes cumbersome. To simplify the derivation, we introduce the notation

αt := 1− βt, (20)

so that Eq. (19) can be rewritten as

xt =
√
αt, xt−1 +

√
1− αt, ϵt. (21)

The first term scales down the contribution of the previous state, while the
second term injects Gaussian noise. As t increases, the contribution of the
original signal is gradually reduced and the state becomes increasingly
dominated by noise.

Using this form, we can express xt in terms of earlier states. For the previous
timestep,

xt−1 =
√
αt−1, xt−2 +

√
1− αt−1, ϵt−1. (22)

Substituting into Eq. (21) gives

xt =
√
αtxt−1 +

√
1− αtϵt (23)

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−1 +

√
1− αtϵt. (24)

Since ϵt−1 and ϵt are independent standard Gaussian variables, any linear
combination

aϵt−1 + bϵt ∼ N (0, (a2 + b2)I). (25)

Here, a =
√
αt(1− αt−1) and b =

√
1− αt, which yields

a2 + b2 = αt(1− αt−1) + (1− αt) (26)

= 1− αtαt−1. (27)
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We can therefore rewrite xt as

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt,t−2 (28)

where ϵt,t−2 ∼ N (0, I) denotes an aggregated Gaussian noise term.

Repeating this argument iteratively yields the same structure at arbitrary
depth. It can be shown by induction that for any k < t,

xt =
√
αtαt−1 . . . αk+1xk +

√
1− αtαt−1 . . . αk+1ϵt,k, (29)

with ϵt,k ∼ N (0, I). A detailed proof is given in Higham et al. (2023, Section
3) [8].

Finally, defining

ᾱt :=

t∏
i=1

αi, (30)

we obtain the closed-form expression

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̄t, (31)

where ϵ̄t ∼ N (0, I). Equivalently, the marginal forward transition can be
written as

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I). (32)

This closed-form characterization of the forward process allows Gaussian noise
to be added to the data at any timestep directly, without simulating all
intermediate steps. This property is central to the efficiency and tractability of
diffusion models and will be used extensively in the construction of the
training objective.

2.3.2 Reverse process

In the reverse process, the objective is to characterize the distribution of the
previous state xt−1 given a noisy observation xt. For the fixed forward
diffusion process, this reverse-time transition can be expressed in closed form
only when conditioning additionally on the original data point x0. We
therefore consider the conditional distribution

q(xt−1|xt, x0), (33)

which represents the true reverse-time transition implied by the forward
diffusion process [9]. Conditioning on x0 reflects the fact that, under the
forward process, xt retains information about the original data point, and the
exact posterior over earlier states is therefore defined with respect to x0.
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Figure 8: Overview of the diffusion framework, showing the forward diffusion (encoding)
process that adds noise and the reverse diffusion (decoding) process that progressively removes
noise to generate data

Figure 8 provides an overview of this framework. Although the reverse
direction in the figure corresponds to the denoising procedure used for
generation, we begin by deriving the exact reverse conditional associated with
the forward process. This conditional assumes access to the clean data point
x0 and serves as a reference distribution that motivates the learned reverse
process introduced later.

Using Bayes’ rule together with the Markov structure of the forward process,
the reverse conditional can be written as

q(xt−1 | xt, x0) =
q(xt | xt−1, x0)q(xt−1 | x0)

q(xt | x0)
(Bayes) (34)

=
q(xt | xt−1)q(xt−1 | x0)

q(xt | x0)
(Markov). (35)

where the second equality follows from the Markov property of the forward
diffusion chain.

Substituting the Gaussian transition densities derived earlier yields

q(·) =
N
(
xt;

√
αt, xt−1, (1− αt)I

)
N (xt−1;

√
ᾱt−1, x0, (1− ᾱt−1)I)

N
(
xt;

√
ᾱt, x0, (1− ᾱt)I

) (36)

∝ N (xt;
√
αt, xt−1, (1− αt)I)N (xt−1;

√
ᾱt−1, x0, (1− ᾱt−1)I) . (37)

The denominator does not depend on xt−1 and therefore acts only as a
normalizing constant. Up to normalization, the reverse conditional is
proportional to the product of two Gaussian densities in xt−1.

The product of two Gaussian densities is itself proportional to a Gaussian.
Writing the factors abstractly as N (x;µ1, σ

2
1) and N (x;µ2, σ

2
2), their product

yields

N (µq, σ
2
q ) = N (µ1, σ

2
1)N (µ2, σ

2
2) = N

(
µ1σ

2
2 + µ2σ

2
1

σ2
2 + σ2

1

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
. (38)
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Applying this result to the present setting gives the closed-form expressions

µq(xt, x0) =

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt
, (39)

σ2
q (t) =

(1− αt)(1− ᾱt−1)

1− ᾱt
, (40)

as derived in Appendix 5.2.

The exact reverse conditional distribution is therefore

q(xt−1|xt, x0) = N (xt−1;µq(xt, x0), σ
2
q (t)I), (41)

and sampling from this distribution takes the form

xt−1 = µq(xt, x0) + σq(t)z z ∼ N (0, I). (42)

Although this expression is exact, it is not directly usable during generation,
since the clean data point x0 is unknown at sampling time. To remove the
explicit dependence on x0, we use the forward-process identity

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̄t, (43)

where ϵ̄t ∼ N (0, I) denotes the noise realization in the forward process. Since
x0 is not available at generation time, one replaces x0 using the
forward-process identity

xt =
√
ᾱtx0 +

√
1− ᾱtϵ

∗
t =⇒ x0 =

1√
ᾱt

(xt −
√
1− ᾱtϵ

∗
t ). (44)

where ϵ∗t is a Gaussian noise variable with the same distribution as the
forward-process noise.

Substituting this expression into µq(xt, x0) yields

µq =

√
αt(1− ᾱt−1)xt +

√
ᾱt−1)(1− αt)x0

1− ᾱt−1)
(45)

=
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ∗t

)
. (46)

The reverse sampling step can therefore be written as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ∗t

)
+ σq(t)z z ∼ N (0, I). (47)

This form makes explicit that reverse diffusion consists of two components: a
denoising step that subtracts an estimate of the noise present in xt, followed
by the addition of appropriately scaled Gaussian noise [9]. In the next section,
this observation will motivate the parameterization of the learned reverse
process in terms of a noise-prediction network.
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2.3.3 ELBO and loss function

In the previous section, we derived the exact reverse conditional implied by
the forward diffusion process,

q(xt−1 | xt, x0) = N
(
xt−1; µq(xt, x0), σ

2
q (t)I

)
, (48)

where

µq(xt, x0) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ∗t

)
, (49)

σ2
q (t) =

(1− αt)(1− ᾱt−1)

1− ᾱt
, (50)

and

ϵ∗t =
xt −

√
ᾱt x0√

1− ᾱt
. (51)

This describes the optimal reverse step when the clean point x0 is known.
During generation, however, x0 is unavailable, so neither ϵ∗t nor µq(xt, x0) can
be evaluated. The practical goal is therefore to build a parameterized reverse
process with the same Gaussian form, but depending only on what is observed
at sampling time, namely (xt, t). Since the reverse variance σ2

q (t) is determined
entirely by the forward schedule, learning is concentrated in the reverse mean.

DDPMs implement this idea by introducing a neural network ϵθ(xt, t) and
defining a learned reverse kernel pθ(xt−1 | xt) [9]. The forward process is fixed,
so only this single network is trained, in contrast to variational autoencoders
which require separate encoder and decoder networks.

Replacing the unknown noise ϵ∗t by the network prediction ϵθ(xt, t) gives

pθ(xt−1 | xt) = N
(
xt−1; µθ(xt, t), σ

2
t I
)
, (52)

with

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
. (53)

Thus, the denoising dynamics are governed by the network through the mean,
while the variance σq(t)

2 is fixed and determined by the forward diffusion
process. In particular, for DDPMs one commonly chooses σq(t)

2 = βt, which
corresponds to the variance of the forward transition at timestep t [9].
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As a likelihood-based generative model, a DDPM is trained by maximizing the
data log-likelihood log pθ(x0). The model defines a marginal distribution over
data by integrating out the latent diffusion variables,

pθ(x0) =

∫
pθ(x0:T ) dx1:T , (54)

where the joint distribution factorizes as

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt). (55)

Computing log pθ(x0) exactly is intractable because it requires integrating over
all diffusion trajectories x1:T that could lead to the same observation x0.

− log pθ(x0) = − log

∫
pθ(x0:T ) dx1:T . (56)

Figure 9: Schematic illustration of the target data distribution p(x): individual observations
(e.g., cat and dog images) lie on a lower-dimensional manifold within the ambient input space.

Figure 9 sketches the geometric intuition underlying this intractability. Real
data are concentrated on a small, structured subset of the ambient space,
whereas the prior distribution p(xT ) used for generation is a simple, typically
isotropic Gaussian that assigns mass broadly across the space. During
generation, the model must transform samples from this diffuse prior into
samples lying on the data manifold, so that many distinct stochastic paths can
collapse into the same high-density data region. Because the diffusion process
is stochastic, there are many possible latent trajectories x1:T that can connect
a given noise sample xT to the same data point x0, as Figure 10 shows. As the
number of diffusion steps t increases, the number of such trajectories grows
rapidly, making exact marginalization over all possible paths computationally
infeasible.
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Figure 10: Latent diffusion paths: schematic of the many possible trajectories from the prior
p(xT ) to a data point x0, motivating variational training via an ELBO.

This motivates replacing direct likelihood maximization with a variational
objective that provides a tractable bound on the data log-likelihood. Starting
from

− log pθ(x0) = − log

∫
pθ(x0:T ) dx1:T (57)

= − log

∫
q(x1:T | x0)

pθ(x0:T )

q(x1:T | x0)
dx1:T (58)

= − logEq(x1:T |x0)

[
pθ(x0:T )

q(x1:T | x0)

]
(59)

≤ −Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T | x0)

]
, (Jensen’s inequality) (60)

we obtain an upper bound on the negative log-likelihood. Equivalently, the
negative of the right-hand side is a lower bound on log pθ(x0), commonly
called the Evidence Lower Bound (ELBO).

After expanding and rearranging the ELBO (see Appendix 5.2), the bound
can be written as

Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T | x0)

]
=

= Eq(x1:T |x0)

[
DKL (q(xT | x0) || p(xT )) (61)

+
∑
t>1

DKL (q(xt−1 | xt, x0) || pθ(xt−1 | xt)) (62)

− log pθ(x0 | x1)

]
. (63)
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The first term depends only on the fixed forward process and the prior, and is
therefore independent of θ. The final term corresponds to the likelihood
contribution at the final denoising step and typically has limited influence on
learning. The main training signal comes from the sum of KL divergences that
match the learned reverse transitions to the true reverse conditionals.

When both conditionals are Gaussian, the KL divergence has a closed form. If
we fix the reverse variance so that Σθ = σ2

t I, then constant terms cancel and

DKL (q(xt−1 | xt, x0) || pθ(xt−1 | xt)) =

= DKL

(
N (µq, σ

2
q (t)I) || N (µθ, σ

2
t I)
)

(64)

=
1

2
(µθ − µq)

⊤Σ−1
θ (µθ − µq) (65)

=
1

2σ2
t

||µq − µθ||2, (66)

Consequently, the ELBO training objective reduces to minimizing a weighted
squared error between the true and learned reverse means, averaged over the
forward diffusion process,

Eq(x0:T )

[∑
t>1

1

2σ2
t

||µq(xt, x0)− µθ(xt, t)||2
]
. (67)

Here, the expectation is taken with respect to the joint distribution q(x0:T )
induced by the fixed forward process [9].

Substituting the expression for µq(xt, x0) yields a loss that can be written
directly in terms of noise prediction,

L(θ) = Eq(x0:T )

[∑
t>1

1

2σ2
t

||µq(xt, x0)− µθ(xt, t)||2
]

(68)

= Eq(x0:T )

[∑
t>1

(1− αt)
2

2σ2
t αt(1− ᾱt)

||ϵ− ϵθ(xt, t)||2
]
. (69)

Computing the full sum over all timesteps for every training example is
computationally expensive. In practice, one samples a single timestep t
(typically uniformly from {1, . . . , T} for each data point and each iteration.
Averaged over training iterations, this stochastic objective corresponds to the
full sum above, yielding

L(θ) := Eq(x0),t,ϵ

[
wt||ϵ− ϵθ(xt, t)||2

]
, wt :=

(1− αt)
2

2σ2
tαt(1− ᾱt)

. (70)
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Equivalently, the objective can be written as an average over per-timestep
losses,

L(θ) = Et[Lt(θ)], Lt(θ) := Eq(x0),ϵ[wt||ϵ− ϵ(xt, t)||2], (71)

where Lt(θ) denotes the loss associated with denoising at a fixed timestep t.

For small t, the factor 1− ᾱt = 1−
∏t

i=1(1− βi) is small, which can make the
weight wt large. This places substantially more emphasis on low-noise
denoising steps than on high-noise steps. Ho et al. report that dropping the
timestep-dependent weights wt and training with an unweighted mean squared
error often leads to better empirical sample quality [9]. From an optimization
perspective, this simplification is justified because each Lt(θ) is minimized
independently: since the network explicitly conditions on t, the minimizer of
wtLt(θ) is identical to the minimizer of Lt(θ) for each fixed t. The weights wt

therefore only affect the relative scaling of gradients across timesteps, not the
location of the optimum.

This motivates the commonly used simplified objective

Lsimple(θ) = Eq(x0),t,ϵ

[
||ϵ− ϵθ(xt, t)||2

]
, (72)

which retains the same minimizer as the weighted objective up to a
timestep-dependent scaling, but yields more stable optimization in practice.

This shows that DDPM training can be viewed as a regression problem: the
network is trained to predict the forward-process noise from the corrupted
input (xt, t) by minimizing a mean squared error. Through the noise
prediction ϵθ(xt, t) the model implicitly specifies the reverse-process mean
µθ(xt, t), and thereby the denoising transitions that define the generative
process. Sampling is performed by iteratively applying the learned reverse
transitions, starting from a noise sample xT ∼ N (0, I) and proceeding
backwards in time until x0 is obtained. Figure 11 summarizes the full
framework, including the forward noising process used during training, the
learned reverse denoising transitions, and the resulting sampling procedure.
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Figure 11: Overview of the Denoising Diffusion Probabilistic Model (DDPM). The forward
process progressively corrupts a data sample x0 through Gaussian transitions q(xt|xt−1); the
marginal distribution q(xt|x0) is shown for a representative intermediate timestep t, with the
remaining forward steps proceeding up to the terminal noise sample xT . The reverse process
is defined by learned Gaussian transitions pθ(xt−1|xt), whose mean is parameterized via the
noise prediction network ϵθ(xt, t). Sampling corresponds to iteratively applying these reverse
transitions, starting from an initial noise sample xT and proceeding backwards in time until
a sample x0 is obtained.

2.4 Network Architecture

2.4.1 Convolutional Networks

In Section 2.0.1, we considered fully connected neural networks for image
recognition tasks, such as identifying a dog in an image. While the idea is
simple, fully connected architectures are rarely used in practice for image data.
Images are high-dimensional and structured, and a fully connected layer links
every pixel to every hidden unit. This leads to an impractically large number
of parameters, making training expensive and increasing the risk of overfitting
[5]. More importantly, treating an image as an unordered vector ignores the
spatial layout of pixels and fails to take advantage of locality and hierarchical
structure.

An image is not an arbitrary point in Rd. It is a two-dimensional grid (or
three-dimensional when channels are included) in which nearby pixels are
typically correlated. Many visual patterns are local: edges, corners, and
textures are detected in small neighborhoods and subsequently combined to
form larger structures such as shapes and objects. Ignoring this spatial
organization forces a model to relearn the same local patterns independently
at many locations, leading to inefficient use of both data and parameters.

26



Convolutional neural networks (CNNs) address this structure by introducing
architectural constraints that reflect the local and repetitive nature of visual
features. In particular, convolutional layers employ sparse connectivity,
restricting each unit to depend only on a local receptive field, and parameter
sharing, whereby the same set of weights is applied across all spatial locations.
Together, these design choices enable convolutional layers to represent visual
patterns efficiently while drastically reducing the number of free parameters
[5].

The central operation is a convolution-like mapping that applies a small filter,
or kernel, across the image to produce a feature map. Intuitively, the kernel
acts as a pattern detector that is reused at every spatial location. Formally,
for an input image I with pixel values I(j, k) and a kernel K with entries
K(l,m), the feature map C is defined by

C(j, k) =
∑
l

∑
m

I(j + l, k +m)K(l,m). (73)

Figure 12: Discrete convolution operation. A local input patch is multiplied elementwise
with a convolutional kernel and summed to produce a single feature-map activation.

Figure 12 shows how a local patch is combined with the kernel to produce one
activation in the feature map, and Figure 13 gives a numerical example of the
same computation.

The operation in Eq. (73) is the basic building block of convolutional neural
networks. Its most important property is translational equivariance: the same
kernel is applied at every spatial location, so shifting the input image leads to
a corresponding shift in the feature map. This behavior is a direct
consequence of parameter sharing, since the kernel weights are identical at all
positions. This means that convolutional layers can detect the same local
pattern regardless of where it appears in the image, without requiring separate
parameters for each possible location [5].
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Figure 13: Numerical example of a convolution operation, showing how kernel weights and
a local input patch combine to produce an output value.

Stacking convolutional layers also supports a natural feature hierarchy. Early
layers tend to respond to simple local structures such as edges, while deeper
layers combine these responses into more complex patterns, such as shapes or
object parts. This layered composition is one of the reasons CNNs work well
on images.

Two hyperparameters that strongly affect a convolutional layer are stride and
padding. The stride determines how far the kernel is shifted between
evaluations. With stride s = 1, the kernel moves one pixel at a time, producing
overlapping receptive fields and a dense output map, as shown in Figure 14.

Figure 14: Effect of stride parameter s = 1 in convolution. The filter is shifted one pixel at
a time, producing overlapping receptive fields and dense output activations.
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Padding addresses what happens at the image boundaries. Without padding,
the kernel cannot be centered near the border, so the output feature map
shrinks relative to the input. A common fix is zero-padding, where extra pixels
are added around the image before applying the kernel. With suitable
padding, the output resolution can be preserved and border regions are treated
more consistently. Figure 15 illustrates this idea.

The region of the input that influences a particular activation is called its
receptive field. As convolutional layers are stacked, receptive fields grow: an
activation in a deeper layer depends on a larger part of the original image.
Figure 16 illustrates this growth for three layers using kernel size k = 3 and
stride s = 1.

Figure 15: Zero padding in convolution. Padding extends the input at the image borders to
counteract the reduction in spatial dimensions caused by convolution, helping to preserve the
spatial size of feature maps across successive layers.

Figure 16: Growth of receptive fields across convolutional layers. Deeper-layer activations
depend on increasingly larger regions of the original input.
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More generally, for kernel sizes kl and strides sl, the receptive field size after L
layers can be computed as

r0 =

L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1. (74)

Here r0 denotes the size of the receptive field measured in the input layer
(layer 0), i.e., the number of input pixels that influence a single activation at
the last layer L.

As a simple example, consider repeated convolutions with constant kernel size
kl = 3 and stride sl = 1 applied to a 5× 5 image (like the dog image in Figure
12). In this case, (74) reduces to

r0 =

L∑
l=1

(3− 1) · 1 + 1 = 2L+ 1. (75)

To cover an entire 5× 5 input (i.e., r0 = 5), one needs 2L+ 1 = 5, which gives
L = 2 layers.

While informative, this toy example does not reflect real images, which often
contain hundreds or thousands of pixels per dimension. In practice, relying
only on depth to expand receptive fields would make networks unnecessarily
large and computationally inefficient.

To capture larger context while keeping computation manageable, CNNs have
other alternatives in downsampling to reduce the spatial resolution of feature
maps. Downsampling by a factor s > 1 maps an input of size H ×W to

H ×W −→ H

s
× W

s
. (76)

Common approaches are pooling and strided convolutions.

Pooling performs fixed downsampling by applying a predefined aggregation
over local neighborhoods, typically a maximum or an average. This reduces
spatial resolution without adding learnable parameters. Figure 17 shows
examples of max pooling and average pooling.

Strided convolutions reduce spatial resolution by evaluating the convolution
kernel at spaced locations while still performing feature extraction. For stride
s = 2, the operation takes the form

C(j, k) =
∑
l

∑
m

I(2j + l, 2k +m)K(l,m). (77)
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Figure 17: Pooling operations in convolutional networks. Max pooling selects the maximum
value and average pooling computes the mean within local neighborhoods to reduce spatial
resolution.

Instead of sliding the filter across every pixel, the kernel is shifted two pixels at
a time in each spatial direction. This effectively downsamples the feature map
by a factor of two while allowing the network to learn which local patterns
should be retained as resolution decreases. Figure 18 illustrates this case.

Figure 18: Strided convolution with stride s = 2. The filter is applied at spaced locations,
reducing spatial resolution while performing feature extraction.

To make the effect of striding concrete, we consider the numerical example
shown in Figure 18. The input image and kernel are given by

I =


I(0, 0) I(0, 1) I(0, 2) I(0, 3)
I(1, 0) I(1, 1) I(1, 2) I(1, 3)
I(2, 0) I(2, 1) I(2, 2) I(2, 3)
I(3, 0) I(3, 1) I(3, 2) I(3, 3)

 =


3 5 4 6
1 1 9 4
7 10 9 5
12 2 9 4

 , (78)

K =

[
K(0, 0) K(0, 1)
K(1, 0) K(1, 1)

]
=

[
1 0
0 1

]
. (79)
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With stride s = 2, the resulting feature map has spatial dimensions 2× 2,

C =

[
C(0, 0) C(0, 1)
C(1, 0) C(1, 1)

]
(80)

since the kernel is evaluated only at the positions (0, 0), (0, 2), (2, 0), (2, 2) in
the input.

Each output entry is computed as

C(j, k) =

1∑
l=0

1∑
m=0

I(2j + l, 2k +m)K(l,m) (81)

= I(2j, 2k)K(0, 0) + I(2j, 2k + 1)K(0, 1)

+ I(2j + 1, 2k)K(1, 0) + I(2j + 1, 2k + 1)K(1, 1), (82)

for j, k ∈ {0, 1}. We then compute each output value

C(0, 0) = I(2 · 0 + 0, 2 · 0 + 0)K(0, 0) + I(2 · 0 + 0, 2 · 0 + 1)K(0, 1) (83)

+ I(2 · 0 + 1, 2 · 0 + 0)K(1, 0) + I(2 · 0 + 1, 2 · 0 + 1)K(1, 1) (84)

= I(0, 0)K(0, 0) + I(0, 1)K(0, 1) + I(1, 0)K(1, 0) + I(1, 1)K(1, 1) (85)

= 3 · 1 + 5 · 0 + 1 · 0 + 1 · 1
= 4.

For the rest

C(0, 1) = I(0, 2)K(0, 0) + I(0, 3)K(0, 1) + I(1, 2)K(1, 0) + I(1, 3)K(1, 1) (86)

= 4 · 1 + 6 · 0 + 9 · 0 + 4 · 1
= 8,

(87)

C(1, 0) = I(2, 0)K(0, 0) + I(2, 1)K(0, 1) + I(3, 0)K(1, 0) + I(3, 1)K(1, 1)

= 7 · 1 + 10 · 0 + 12 · 0 + 2 · 1
= 9,

(88)

C(1, 1) = I(2, 2)K(0, 0) + I(2, 3)K(0, 1) + I(3, 2)K(1, 0) + I(3, 3)K(1, 1)

= 9 · 1 + 5 · 0 + 9 · 0 + 4 · 1
= 13.

The final output feature map is therefore[
4 8
9 13

]
. (89)
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This example shows how strided convolutions combine spatial downsampling
with learned feature extraction. Rather than discarding information through
fixed aggregation, as in pooling, the kernel weights determine which local
patterns are retained as resolution is reduced. This ability to jointly perform
downsampling and representation learning is central to the efficiency of
modern convolutional architectures.

After repeated downsampling, it is often necessary to recover spatial
resolution, especially in tasks where predictions are required at the pixel level.
This is typically done using transposed convolutions, sometimes referred to as
up-convolutions. While strided convolutions reduce resolution by skipping
input locations, transposed convolutions perform the reverse operation by
expanding a low-resolution feature map into a higher-resolution one using
learned filters. Rather than relying on fixed interpolation, this allows the
network to learn how coarse features should be mapped back to finer spatial
grids. Transposed convolutions are therefore commonly used in decoder
architectures to undo the effects of downsampling and are a standard
component in models for dense prediction tasks such as semantic segmentation
and image generation [21].

CNNs are widely used in image tasks because they are parameter-efficient and
are built around assumptions that match the structure of image data.
Architectures such as ResNet [6] and U-Net [15] build on these ideas through
additional design choices, which are discussed in the next subsection.

2.4.2 U-Net for noise prediction

As discussed in Section 2.3.3, training a DDPM amounts to learning a
function that predicts the noise realization ϵ(xt, t) added at each diffusion
step. This task requires a neural network that can identify noise patterns
across multiple spatial scales while being explicitly conditioned on the
diffusion timestep. In practice, this fitting task is quite often modelled by a
U-Net architecture. Its multi-resolution structure aligns well with the
progressive denoising nature of diffusion models, and its fully convolutional
design allows predictions to be made at the original image resolution without
introducing resolution-dependent fully connected layers.

The U-Net was originally proposed for image segmentation, but it can more
generally be viewed as a convolutional encoder–decoder architecture. The
encoder gradually downsamples the input, trading spatial resolution for
increasingly abstract and global representations. The decoder then upsamples
these representations back to the original resolution to produce the output. A
defining feature of the U-Net is the presence of skip connections that pass
feature maps directly from the encoder to the decoder at matching spatial
resolutions.
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Figure 19: Canonical U-Net architecture introduced by Ronneberger et al [15]. The sym-
metric encoder–decoder structure and skip connections enable multi-scale feature integration.

These connections ensure that fine-grained spatial information, which is often
degraded by repeated downsampling, remains available during reconstruction.

Figure 19 illustrates the canonical U-Net architecture introduced by
Ronneberger et al., highlighting the symmetric encoder–decoder structure and
the skip connections that link corresponding resolution levels.

In modern diffusion models, the U-Net is typically constructed from residual
blocks. Each residual block includes a residual connection that adds the block
input to the output of a learned transformation.

Using the notation of Section 2.0.2, a residual block can be written as

h(l+1) = h(l) + f
(
h(l), t

)
, (90)

where h(l) denotes the feature representation (feature map) at depth l in the
network, and f represents the transformation applied within a residual block,
consisting of a sequence of operations such as convolutions, normalization, and
nonlinearities. The diffusion timestep t enters as a conditioning variable inside
this transformation. In Figure 19, each residual block corresponds to one such
mapping from h(l) to h(l+1).
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The mapping defined by Eq. (90) constitutes a residual (skip) connection
operating locally within each block. This should be distinguished from the
long-range skip connections in the U-Net architecture, which connect encoder
and decoder layers at matching spatial resolutions and are also shown in
Figure 19. Rather than learning a completely new representation, each
residual block learns a correction to the identity mapping. If this correction is
small, the representation passes through the block largely unchanged.

This design has important implications for optimization. During
backpropagation, the gradient satisfies

δ(l) = δ(l+1)

(
I +

∂f

∂h(l)

)
, (91)

which ensures that an identity path for gradient flow is always present, even
when the derivative of f is small. Residual connections therefore mitigate
vanishing gradients and make deep networks easier to train. In diffusion
models, this added stability is particularly important, as the noise-prediction
network must be optimized consistently across many diffusion timesteps.
Intuitively, residual connections encourage each layer to refine the current
representation rather than reconstruct it from scratch [6].

The skip connections in a U-Net serve a different but complementary role.
Instead of modifying the transformation within a layer, they transfer
intermediate feature maps from the encoder to the decoder by concatenation
at the same spatial resolution. In Figure 19, these skip connections correspond
to the horizontal links between encoder and decoder blocks at matching
depths. Schematically, this can be written as

h(r) = concat
(
h
(r)
dec, h

(r)
enc

)
, (92)

where h
(r)
enc denotes the activation of the encoder at level r and h

(r)
dec denotes

the corresponding decoder activation before concatenation [15].

While the encoder and decoder features share the same spatial dimensions, the
encoder activations retain high-frequency spatial details that are often lost
during downsampling. By concatenating these features, the decoder gains
access to both global context and local structure when forming its predictions.

The distinction between residual connections and U-Net skip connections is
therefore straightforward. A residual connection combines the input of a block
with the output of a learned transformation through addition,

h(l) = [1], f(h(l), t) = [5] → h(l+1) = [6], (93)

so that the existing representation is updated by a learned correction rather
than being replaced.
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This additive structure encourages each block to refine the current features
while maintaining a direct identity path through the network.

A U-Net skip connection combines encoder and decoder representations
through concatenation [15],

h(r)
enc = [1], h

(r)
dec = [5] → h(r) = [5, 1]. (94)

making encoder features explicitly available to the decoder alongside its own
activations, rather than merging them additively. While this operation does
not prevent information loss fully caused by earlier downsampling, it allows
the decoder to reuse higher-resolution features when forming its predictions.
Subsequent layers can then learn how strongly each component should
influence the final output.

2.5 Training

2.5.1 Model and Architecture

All experiments in this thesis are conducted on the MNIST dataset [12], a
standard benchmark for image-based machine learning. The dataset consists
of 60,000 grayscale images of handwritten digits (0–9), each with spatial
resolution 28× 28. Due to its limited complexity and single-channel structure,
MNIST does not require the depth or capacity typically needed for large-scale
RGB image datasets. Since the goal of this thesis is to analyze the
bias–variance behavior of diffusion models rather than to optimize generative
performance, MNIST provides a controlled and computationally efficient
setting that is well suited to this study.

The model used throughout the experiments is a U-Net architecture. While
U-Nets are standard in diffusion models [9], the version employed here is
intentionally simplified. Training and sampling diffusion models is
computationally demanding, and MNIST does not necessitate a high-capacity
network. Accordingly, the architecture uses three resolution levels rather than
the four or more commonly found in larger-scale models. This choice reduces
computational cost while retaining sufficient expressive power for the denoising
task.

The U-Net is trained to approximate the noise-prediction function ϵθ(xt, t), at
each step of the diffusion process. What the network is expected to do changes
over time: at early timesteps the input is heavily corrupted by noise and the
model must remove large-scale noise, while at later timesteps the noise level is
lower and more fine-grained corrections are needed.
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The noisy input xt alone does not fully indicate which of these situations the
network is in, since similar-looking inputs can arise at different diffusion steps.
The network therefore needs to be explicitly informed of the current timestep
[9].

Although the timestep t is just a single scalar, using it directly is not very
helpful for learning. Instead, t is mapped to a higher-dimensional
representation using sinusoidal time embeddings, following the positional
encoding scheme introduced for Transformers [19]. This gives the network a
more useful representation of time and allows timestep information to interact
with feature activations throughout the U-Net. In particular, the time
embedding is injected into each residual block, ensuring that all stages of the
network are conditioned on the current diffusion step [9]. This enables the
model to smoothly adapt its denoising behavior as the diffusion process
progresses.

An overview of the architecture is shown in Figure 20. The input image xt is
first processed by a 3× 3 convolution that maps the single grayscale channel to
32 feature channels, defining the base width of the network. This constitutes
the first of three resolution levels, with channel widths scaled by factors 1, 2
and 4. At each resolution level, two residual blocks are applied, followed by
downsampling via a stride-2 convolution, which halves the spatial resolution
while increasing the number of channels.

At the lowest resolution, the network applies a set of bottleneck residual
blocks before transitioning to the decoder. Upsampling is performed using
transposed convolutions with kernel size 4× 4 and stride 2. This choice
provides uniform coverage of the output grid and helps mitigate checkerboard
artifacts that can arise from uneven overlap in transposed convolutions [13].

After each upsampling step, feature maps from the corresponding encoder
level are concatenated via U-Net skip connections and processed by the
residual blocks at that resolution.

The internal structure of a residual block is shown in Figure 21. Each block
begins with group normalization, which helps keep activations on a stable
scale during training. This is particularly important in diffusion models, where
batch sizes are typically small and batch normalization becomes unreliable.
[20].

Given activations a ∈ RB×C×H×W , where B is the batch size, C the number of
channels, and H ×W the spatial dimensions, group normalization divides the
channel dimension into G disjoint groups of equal size and normalizes each
group independently for each sample.
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Figure 20: Simplified U-Net architecture used for noise prediction in the diffusion model,
consisting of three resolution levels with residual blocks, downsampling and upsampling paths,
and skip connections.

For a given sample and group G, normalization is performed over all spatial
locations and channels within that group. The mean and variance are
computed as

µxt,G =
1

m

m∑
i=1

ai, σ2
xt,G =

1

m

m∑
i=1

(ai − µxt,G)
2, (95)

where m = C
GHW is the total number of activations in the group, since each

group contains C
G channels and each channel spans H ×W spatial locations.

The normalized activations are then given by

âi =
ai − µxt,G√
σ2
xt,G

+ ξ
(96)

with ξ > 0 a small constant added for numerical stability. Throughout the
network, G = 16 groups are used, except in the final layer where G = 4.

The normalized activations are then passed through a learnable per-channel
affine transformation to compensate for the possible loss of representational
capacity introduced by normalization,

yi = γC(i)âi + βC(i), (97)

where γC , βC ∈ R are trainable scale and shift parameters for channel C, and
C(i) denotes the channel index associated with activation ai [20].
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Figure 21: Structure of a residual block used throughout the U-Net, including group nor-
malization, Swish activation, convolutional layers, timestep conditioning, and a residual con-
nection.

These affine parameters allow the network to recover or suppress features after
normalization and ensure that group normalization does not restrict the
expressiveness of the model.

Following normalization, the Swish activation function is applied [14],

Swish(x) = xσ(x), σ(x) =
1

1 + e−x
. (98)

which allows small negative activations to propagate through the network.
Compared to ReLU, this results in smoother gradients and reduces the risk of
inactive units, as illustrated in Figure 22.

After the Swish activation and the first convolution, each residual block
incorporates explicit timestep conditioning through the time embedding shown
in Figure 21, [9]. The scalar timestep t is first mapped to a high-dimensional
embedding vector using the sinusoidal encoding described earlier.
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This embedding is then passed through a learned linear projection and added
to the intermediate feature maps within the block, corresponding to the ”+ =”
operation shown in the figure.

Dropout with rate 0.1 is applied within the residual blocks for regularization.
Each block concludes with a residual connection, implemented as either the
identity mapping or a 1× 1 convolution when the number of channels changes.
Together, these design choices yield a compact and stable architecture that is
well matched to the denoising task on MNIST.

Figure 22: Comparison of ReLU and Swish activation functions, illustrating the smoother
behavior of Swish for negative inputs and its non-zero gradients [14].

2.5.2 Diffusion model configuration

The diffusion model is configured according to the standard DDPM framework
introduced in Section 2.3 [9]. A finite Markov chain is defined with a fixed,
non-trainable forward process q and a trainable reverse process pθ modelled by
a U-net. The number of diffusion steps is set to T = 1000, which is sufficient
to ensure stable training on the MNISTdataset.

Noise injection in the forward process is governed by a fixed linear variance
schedule [9],

βt ∈ [10−4, 0.02], t = 1, . . . , T. (99)

This schedule determines the amount of Gaussian noise added at each
diffusion step and fully specifies the forward corruption process.

Although the forward process is formally defined as a sequence of conditional
transitions q(xt|xt−1), explicit sequential simulation of the Markov chain is
unnecessary during training. Instead, noisy samples xt are obtained directly
from the closed-form marginal distribution q(xt|x0), which can be sampled in
a single step using a draw ϵ ∼ N (0, I) [9]. This approach is mathematically
equivalent to iterating the forward process, but is significantly more efficient
and allows arbitrary diffusion timesteps to be sampled independently.
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The model is trained using the simplified mean squared error objective derived
in the previous section,

L = Ex0,t,ϵ[||ϵ− ϵθ(xt, t)||2]. (100)

which trains the network to predict the noise realization added at timestep t.

The full diffusion procedure used throughout this thesis is summarized in two
components: the training procedure for the reverse process and the sampling
algorithm used for generation. During training, the timestep t is sampled
uniformly from {1, . . . , T} to ensure that the noise-prediction network is
trained evenly across all diffusion steps, preventing bias toward particular
noise levels [9].

Algorithm 1: Training (Reverse process) [9]

1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: take gradient descent step on

∇θ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||22

until convergence;

Algorithm 2: Sampling with the backward process [9]

Require: trained noise predictor ϵθ(xt, t)
1: xT ∼ N (0, I);
2: for t = T, T − 1, . . . , 1 do

3: z ∼ N (0, I)

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σq(t) z

5: end for
return x0

2.5.3 Training configuration

Before training, the MNIST dataset was split into training and validation
subsets using an 80/20 partition, resulting in 48,000 training images and
12,000 validation images. All images are grayscale and are therefore
represented as 2-dimensional matrices. Pixel intensities are linearly rescaled to
the range [−1, 1], which is standard practice in diffusion models and improves
numerical stability when Gaussian noise is injected during the forward process.
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Training is performed using mini-batches of size 16 to avoid computing
gradients over the full dataset at each update. Each training step therefore
consists of sampling 16 independent data points x0 together with 16
independently sampled diffusion timesteps t. The model is trained for 25
epochs, where one epoch corresponds to a full pass over the 48,000 training
samples, yielding

48, 000

16
= 3000

parameter updates per epoch. Prior to each epoch, the training data are
shuffled to ensure varied mini-batch composition, while the validation set is
kept fixed and unshuffled.

Due to the stochastic nature of diffusion training and the noise present in the
objective, an exponential moving average (EMA) of the model parameters is
maintained throughout training [9]. Let θ(k) denote the parameters at

iteration k. The EMA parameters θ̂(k) are updated according to

θ̂(k) = λEMAθ̂
(k−1) + (1− λEMA)θ

(k) (101)

where λEMA controls the decay rate. EMA-smoothed parameters are used for
validation and sampling, as they typically yield more stable training behavior
and higher-quality samples.

Model parameters are optimized using the Adam optimizer [11], an adaptive
variant of stochastic gradient descent that maintains exponential moving
averages of both gradients and their elementwise squares. Denoting by
∇k ∈ Rd the stochastic gradient of the loss with respect to the parameter
vector θ at iteration k, the first- and second-moment estimates are computed
as

sk = ρ1sk−1 + (1− ρ1)∇k, rk = ρ2rk−1 + (1− ρ2)∇k ⊙∇k, (102)

where sk, rk ∈ Rd are vectors of the same dimension as θ, ⊙ denotes
elementwise multiplication, and ρ1, ρ2 ∈ (0, 1) are decay rates.

Bias-corrected estimates are then given by

ŝk =
sk

1− ρ1
, r̂k =

rk
1− ρ2

, (103)

and parameters are updated according to

θk+1 = θk − η
ŝk√
r̂k + ξ

, (104)

with learning rate η and a small constant ξ > 0 included for numerical
stability.

All hyperparameter choices used throughout the experiments—including
dataset configuration, preprocessing, batching, optimization, and EMA
settings are summarized in Table 1.
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Table 1: Training configuration used for all experiments.

Category Parameter Value

Data Dataset MNIST

Training samples 48,000

Validation samples 12,000

Preprocessing Image size 28× 28

Channels 1 (grayscale)

Range [−1, 1]

Batching Batch size 16

Training shuffle Enabled

Validation shuffle Disabled

Optimization Optimizer Adam

Learning rate η 2× 10−4

Adam decay rates (ρ1, ρ2) (0.9, 0.999)

Adam stability constant ξ 10−8

Training Epochs 25

Smoothing EMA

EMA decay rate λEMA 0.9999

2.6 Validation methods

2.6.1 Inception Score

Evaluating the quality of samples produced by a generative model is inherently
challenging, as there is no ground-truth notion of a “correct” output. Unlike
supervised learning, generated samples cannot be directly compared to
reference targets, and qualitative inspection by human eyes therefore remains
common. To complement such subjective evaluation, Salimans et al. [17]
introduced the Inception Score (IS), a heuristic metric based on the behavior
of a pretrained image classifier applied to generated samples.

Let x denote a generated image and let y denote the class label predicted by
the classifier. The classifier defines a conditional distribution p(y|x) over labels
given an image, and a marginal distribution p(y) = Ex[p(y|x)] over labels
across the generated dataset. The intuition underlying the Inception Score has
two components. First, individual generated images should correspond to
recognizable objects, which is reflected in confident classifier predictions.
Formally, this corresponds to a low-entropy conditional distribution p(y|x)
(high fidelity).
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Second, the generator should produce a diverse collection of images, so that
the marginal distribution p(y) has high entropy (high diversity). A desirable
generative model therefore produces samples that are both individually sharp
and collectively diverse.

The Inception Score encodes both requirements through the Kullback–Leibler
divergence between p(y | x) and p(y). A high score is obtained only when
individual samples induce sharp label distributions while the aggregate of
generated samples covers multiple semantic classes.

Figure 23: Intuition behind the Inception Score. High values arise when per-sample label
distributions p(y | x) are sharp while the marginal distribution p(y) across samples is diverse.

Figure 23 illustrates this intuition schematically: for a fixed image x, the
conditional distribution p(y | x) produced by the classifier is typically
concentrated on a small set of labels, whereas the marginal distribution p(y),
obtained by averaging over many generated images, is more broadly spread.

Let g denote the generator and let pcl(y | x) denote the output of a pretrained
classifier, commonly taken to be the Inception network [17]. The Inception
Score is defined as

IS = exp
(
Ex∼p(g)

[
DKL

(
pcl(y | x) || p(g)cl (y)

)])
, (105)

where

p
(g)
cl (y) :=

∫
p(g)(x′) pcl(y | x′) dx′ (106)

is the marginal label distribution induced by the generator through the
classifier.
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In practice, the expectation over x ∼ pg is approximated by Monte Carlo
averaging over a finite set of generated samples. To gain analytical insight,
however, it is useful to expand the expectation in closed form. Since Y is
discrete with K possible classes, we obtain

log IS =

∫
p(g)(x)

[
K∑

y=1

pcl(y | x) log pcl(y | x)
p
(g)
cl (y)

]
dx (107)

=

∫
p(g)(x)

K∑
y=1

pcl(y | x) log pcl(y | x) dx︸ ︷︷ ︸
(A)

−
∫

p(g)(x)

K∑
y=1

pcl(y | x) log p(g)cl (y) dx︸ ︷︷ ︸
(B)

.

(108)

The first term can be rewritten as

(A) =

K∑
y=1

∫
p(g)(x) pcl(y | x) log pcl(y | x) dx (109)

=

K∑
y=1

∫
pX,Y (x, y) log pcl(y | x) dx (110)

= −H(Y | X), (111)

while the second term becomes

(B) =

K∑
y=1

(∫
p(g)(x) pcl(y | x) dx

)
log p

(g)
cl (y) (112)

=

K∑
y=1

p
(g)
cl (y) log p

(g)
cl (y) (113)

= −H(Y ). (114)

Combining these expressions yields

log IS = H(Y )−H(Y | X) = I(X;Y ), (115)

showing that the Inception Score admits a mutual information interpretation,
where X denotes generated images and Y the corresponding classifier labels.

This interpretation immediately implies bounds on the score. Since mutual
information is nonnegative and bounded above by the entropy of Y , we have

0 ≤ I(X;Y ) = H(Y )−H(Y | X) ≤ H(Y ) ≤ logK. (116)

With only K classes, the predicted label can convey at most logK bits of
information.
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Interpreting entropy as a measure of uncertainty clarifies the behavior of the
metric. A small conditional entropy H(Y | X) indicates confident predictions
for individual samples, which is often associated with visually sharp and
coherent images. A large marginal entropy H(Y ) indicates that predicted
labels are well distributed across classes, reflecting diversity rather than mode
collapse. The Inception Score therefore rewards generators that produce
images that are easy to classify on a per-sample basis while remaining diverse
overall, without explicitly measuring fidelity relative to the true data
distribution.

Finally, it is important to emphasize that the Inception Score is a heuristic
rather than a principled validation measure for generative models. As noted
by Salimans et al. [17], the score is computed solely on generated samples and
depends entirely on the behavior of a pretrained classifier. It therefore reflects
classifier confidence rather than semantic correctness, and it does not directly
compare the generated distribution to the true data distribution. Moreover,
the common use of an Inception network pretrained on the ImageNet dataset
introduces a bias toward ImageNet-like semantics, limiting the reliability of
the metric for datasets with substantially different visual characteristics or
label structures.

2.6.2 Fréchet Inception Distance (FID)

The objective of a generative model is not merely to produce visually plausible
samples, but to learn the underlying data distribution from which those
samples are drawn. For this reason, evaluating generative models is most
naturally framed as a distribution-level problem rather than as an assessment
of individual outputs.

Metrics such as the Inception Score primarily reflect image sharpness and
diversity, but they do not directly quantify how closely the generated samples
match real data.

A more informative evaluation should therefore compare the distributions of
real and generated samples directly. This motivates the use of
distribution-based measures such as the Fréchet Inception Distance (FID) [7],
which addresses some of the limitations of the Inception Score. In particular,
unlike IS, FID explicitly compares real and generated data and is sensitive to
both sample quality and mode coverage.

This comparison is not performed in the raw image space, but in a learned
feature space defined by a deep convolutional network. Specifically, both real
and generated images are passed through a pretrained Inception network, and
activations from a hidden layer close to the output are used as feature
representations.
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This representation is used because it compares images based on their visual
content rather than exact pixel values, which aligns better with human
perception.

Let Pr and Pg denote the real and generated data distributions in a learned
feature space. FID approximates these distributions by multivariate
Gaussians, Nr(µr,Σr) and Ng(µg,Σg), whose parameters are estimated from
empirical means and covariances. The FID score is defined as

FID = ||µr − µg||22 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
. (117)

This expression corresponds to the squared 2-Wasserstein distance between
two Gaussian distributions [3, 4]. Intuitively, it measures the cost of
transforming the generated feature distribution into the real one. The
availability of a closed-form expression makes FID computationally convenient,
though it is exact only when the feature distributions are themselves Gaussian.

Minimizing FID therefore enforces agreement between the first two moments
of the distributions, that is, µg ≈ µr and Σg ≈ Σr. While matching these
moments is necessary, it is not sufficient to guarantee full distributional
alignment. Differences in higher-order structure, such as multimodality or
localized density variations, may still persist.

This limitation is illustrated in Figure 24. Although the real and generated
distributions have similar means, indicated by the green line connecting µr

and µg, and comparable overall spread, they differ in shape. In particular, the
generated distribution contains an additional localized region of high density
that is absent from the real data. Despite being visually prominent, this region
carries relatively little probability mass and therefore has only a minor effect
on the mean and covariance.

Figure 25 shows the same distributions after Gaussian approximation. Since
these approximations retain only first- and second-order moments, the
localized discrepancy is largely smoothed out. As a result, the Gaussian
ellipsoids appear much more similar than the original distributions.
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Figure 24: Example illustrating a limitation of moment-based metrics: two distributions
may share identical means and covariances while differing in higher-order structure.

Figure 25: Gaussian approximations of real and generated feature distributions, highlighting
that FID compares only first- and second-order moments in feature space.
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To make the computation explicit, consider a simple two-dimensional example
with feature activations

ag =

(
9.13 0.38
6.94 0.05

)
ar =

(
0.09 0.27
0.77 0.00

)
(118)

where ag denotes generated features and ar real features. The corresponding
empirical means and covariances are

µr =

(
8.04
0.22

)
µg =

(
0.43
0.14

)
(119)

and

Σr =

(
1.21 0.18
0.18 0.03

)
Σg =

(
0.12 −0.05
−0.05 0.02

)
(120)

The mean mismatch term is

µr − µg =

(
8.04− 0.43
0.22− 0.14

)
=

(
7.61
0.08

)
(121)

giving
||µr − µg||22 = 7.612 + 0.082 = 57.9185. (122)

The remaining term involves the matrix square root of the covariance product.
Since ΣrΣg is not guaranteed to be symmetric or positive semidefinite, the
square root may be ill-defined or numerically unstable. The standard remedy
is to use the symmetric formulation

Tr
(
(ΣrΣg)

1/2
)
= Tr

(
(Σ1/2

r ΣgΣ
1/2
r )1/2

)
(123)

which is guaranteed to be symmetric and positive semidefinite.

Eigen-decomposition yields

Σ1/2
r = UΛ1/2U⊤ ≈

(
1.0891 0.1541
0.1541 0.0791

)
, (124)

and

Σ1/2
r ΣgΣ

1/2
r =

(
1.0891 0.1541
0.1541 0.0791

)(
0.12 −0.05
−0.05 0.02

)(
1.0891 0.1541
0.1541 0.0791

)
(125)

≈
(
0.1260 0.0148
0.0148 0.0017

)
. (126)

Taking the square root again gives(
Σ1/2

r ΣgΣ
1/2
r

)1/2
=

(
0.3526 0.0415
0.0415 0.0059

)
. (127)
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The resulting FID score is therefore

FID = ||µr − µg||22 +Tr

(
Σr +Σg − 2

(
Σ1/2

r ΣgΣ
1/2
r

)1/2)
(128)

= ||µr − µg||22 +Tr (Σr +Σg)− 2Tr

((
Σ1/2

r ΣgΣ
1/2
r

)1/2)
(129)

= 57.9185 + 1.38− 2(0.3585)

= 58.5815.

In this example, the FID score is dominated by the large mean mismatch,
indicating substantial bias and poor fidelity: the generated features are
centered far from the real ones. In addition, the trace of the generated
covariance is much smaller than that of the real covariance, meaning that the
generated distribution has substantially less overall spread. If the distributions
were centered at the same location, this reduction would correspond to
insufficient diversity or mode collapse.

The trace of the individual covariances captures only the total variance of each
distribution, not how that variance is distributed across directions. The
square-root interaction term accounts for this directional structure and shows
that the limited variability in the generated distribution is not only smaller in
magnitude, but also misaligned with the principal directions of real data
variability. Taken together, these effects point to a form of structural
mismatch between the generated and real distributions in this example, rather
than excessive dispersion. This interpretation relies on the Gaussian
approximation underlying FID; when this approximation is poor, important
discrepancies in higher-order structure may remain undetected.

A low FID score therefore indicates agreement at the level of second-order
moments, but it does not guarantee that the full data distribution has been
captured. Despite this limitation, FID remains a widely used and practical
metric. By comparing real and generated samples in a learned feature space, it
provides a concise and computationally efficient summary of distributional
similarity, particularly when interpreted alongside qualitative inspection or
complementary evaluation measures.
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3 Results

3.1 Training Behavior and Sample Evolution

As discussed in Section 2.3.3, training a DDPM can be viewed as a regression
problem, which naturally admits a bias–variance decomposition [9]. In this
setting, bias reflects systematic error in the learned noise predictor ϵθ(xt, t),
leading to consistent under- or over-removal of noise at different diffusion
steps. Variance, by contrast, reflects sensitivity of the learned denoising
function to the particular training data and is typically associated with
unstable or noisy denoising dynamics.

Figure 26 shows the training and validation loss curves for the DDPM. Both
curves decrease rapidly at the beginning of training and then transition into a
slowly converging plateau. This pattern indicates that most error reduction
occurs early, with later epochs primarily refining an already learned denoising
rule rather than introducing qualitatively new improvements. Throughout
training, the training and validation losses remain closely aligned, with no
sustained divergence.

A small gap between training and validation loss is visible during the initial
phase, but this gap closes quickly. There is also no indication of a widening
separation at later epochs. In classical supervised learning, such divergence is
commonly associated with increasing variance and overfitting. Its absence here
suggests that variance remains well controlled and that the dominant source of
error throughout training is residual bias rather than variance.

(a) (b)

Figure 26: Training and validation loss curves for the DDPM. (a): loss per epoch showing
rapid early convergence followed by a stable plateau with minimal train–validation gap. (b):
training and validation loss during the first 1,000 iterations (log–log scale), illustrating fast
initial error reduction and increased stochastic fluctuations at later iterations.
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Figure 26b provides a closer look at the first epoch by plotting per-iteration
losses on log–log axes. Even within a single epoch, the loss decreases by
several orders of magnitude, confirming that early optimization steps account
for a substantial fraction of learning. As training progresses and the loss
becomes smaller, higher-frequency fluctuations become more pronounced.
Importantly, these fluctuations appear with comparable magnitude in both the
training and validation curves.

This within-epoch noise should not be interpreted as evidence of overfitting or
increasing model variance. Instead, it reflects stochasticity inherent to the
diffusion training objective, arising from random timestep sampling and
random noise realizations. Because the same fluctuations are present in both
training and validation losses, they are algorithmic rather than data-specific.
This suggests that the variance observed during DDPM training is primarily
driven by stochastic sampling of diffusion steps, rather than by sensitivity to
individual training examples in the classical sense.

Beyond the initial convergence phase, no secondary regimes, instabilities, or
divergences are observed. Once the loss reaches a plateau, the training and
validation curves remain nearly indistinguishable. While this behavior
supports the presence of a stable convergence region, it also limits what can be
inferred from loss curves alone, as the remaining loss may reflect irreducible
noise in the regression target or intrinsic limitations of the model.

Figure 27 shows the mean squared noise-prediction residual as a function of
the diffusion timestep t,

Residual(t) = Ex0,ϵ[||ϵ− ϵθ(xt, t)||2], (130)

which measures the expected prediction error at a fixed diffusion step.

Unlike the training loss, which averages error across all diffusion steps, this
diagnostic reveals how prediction error varies along the diffusion trajectory.
The residual curve shows that the error is large at small timesteps, followed by
a gradual decay as t increases. The error is highest for early diffusion steps,
decreases steadily for intermediate values of t, and approaches a low, nearly
constant level at large t. Prediction error is therefore not evenly distributed
across the reverse process, but is heavily concentrated in the low-noise regime.

This pattern follows directly from the structure of the forward diffusion
process. Recall that

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (131)

where ᾱt decreases monotonically with t. For large t, ᾱt ≈ 0, and xt is
dominated by Gaussian noise. In this regime, the denoising task reduces to
predicting noise from an input that already resembles noise, which is
comparatively straightforward and leads to consistently small residuals.
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Figure 27: Mean squared noise-prediction residual as a function of diffusion timestep t.
Prediction error is concentrated at small timesteps and decays toward a low-error plateau for
large t, indicating that denoising is substantially more difficult in low-noise regimes.

For small t, by contrast, ᾱt ≈ 1, and xt is close to the clean image with only a
small, sample-specific noise component. Here the model must both recognize
the underlying image structure and estimate a subtle perturbation. This
makes the regression problem substantially more demanding and leads to
larger prediction errors.

From another perspective, inputs at large t are statistically similar across
samples, which results in relatively homogeneous gradients during training. At
small t, the inputs retain strong image-dependent structure, so the required
denoising corrections vary more across samples. Accurate denoising in this
regime therefore requires fine-grained, image-specific adjustments, which
naturally produces larger and more variable residuals.

This explains why a large fraction of the total prediction error is concentrated
at small t, even though timesteps are sampled uniformly during training.
High-t denoising is learned quickly and accounts for much of the early loss
reduction, while later optimization is increasingly dominated by the more
difficult low-t regime. This observation is consistent with the findings of Ho et
al., who reported that explicitly reweighting the loss to emphasize small t does
not reliably improve sample quality.

It is worth pointing out that this diagnostic has clear limitations. Because the
residuals are averaged over samples and training iterations, the curve does not
indicate whether the large errors at small t arise uniformly across the dataset
or are driven by a subset of difficult examples. The plot therefore identifies
where error is concentrated along the diffusion trajectory, but not how that
error is distributed across data points or noise realizations.
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Figure 28 shows generated samples at several training checkpoints, illustrating
how sample quality changes as training progresses. The sequence highlights
how improvements in the noise-prediction objective translate into
progressively more structured outputs.

At epoch 1, the generated samples are almost entirely noise. The reverse
process is not yet informative enough to reconstruct meaningful structure.
This is notable because the training and validation losses decrease most
rapidly during this early phase. The lack of recognizable structure shows that
early reductions in the noise-prediction loss do not imply that the model has
learned the conditional relationships required for generation. At this stage, the
estimator ϵθ(xt, t) remains strongly biased across timesteps, especially in
low-noise regimes where structure-dependent corrections are necessary.

By epoch 5, coarse digit-like patterns begin to appear, although most samples
are still difficult to identify. Rough spatial organization emerges, such as
approximate stroke placement, but shapes remain fragmented and unstable.
This suggests that the model has started to capture broad structural
regularities while fine-scale details are still poorly estimated.

Between epochs 10 and 15, most samples become visually legible. Digit
identities are generally recognizable, and global shapes are more consistent.
Characteristic stroke layouts for digits such as “2”, “6”, and “8” appear
reliably. At the same time, local features, such as stroke thickness, curvature,
and intersections remain uneven. This indicates that variability across samples
is reduced earlier in training than systematic errors at finer spatial scales. In
other words, dispersion decreases before residual bias in detailed denoising is
fully resolved.

From epochs 20 to 25, visual changes are minor, indicating saturation in
observable sample quality. No collapse toward identical or near-identical
samples is observed at any point. Diversity is preserved throughout training,
with remaining variation appearing mainly as stylistic differences rather than
major structural defects. This suggests that variance remains controlled even
as the model continues to refine its predictions.

Despite convergence of the training and validation losses to low values,
generated samples still exhibit imperfections, including distorted strokes and
occasional ambiguous digit identities. This underscores a limitation of
loss-based diagnostics: low average prediction error does not guarantee perfect
sample fidelity. From the samples alone, it is not possible to determine
whether the remaining errors are spread evenly across diffusion steps or
concentrated in specific parts of the trajectory. The samples therefore
illustrate how structure and variability evolve during training, but they do not
fully characterize the learned data distribution.
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(a) Epoch 1 (b) Epoch 5

(c) Epoch 10 (d) Epoch 15

(e) Epoch 20 (f) Epoch 25

Figure 28: Generated MNIST samples at selected training epochs. Sample quality improves
steadily from unstructured noise to recognizable digits, with most qualitative gains occurring
early in training and only marginal refinements at later epochs.
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3.2 Evaluation of Fidelity and Diversity

In this subsection, model performance is evaluated using the Inception Score
(IS) and the Fréchet Inception Distance (FID) [7, 17]. Both metrics rely on a
pretrained neural network: IS is computed from classifier output probabilities,
while FID compares statistics of feature representations extracted from an
intermediate layer.

IS and FID are often computed using Inception v3 pretrained on ImageNet,
but this choice is inappropriate for MNIST due to the large mismatch in image
resolution, channel structure, and semantic content. Instead, both metrics are
computed using a classifier trained specifically on MNIST, based on a reduced
ResNet-18 architecture. For FID, feature vectors are extracted from the
ResNet layer corresponding to the role of the pool3 layer in Inception v3.

All evaluations use exponential moving average (EMA) parameters rather than
the raw model weights, as EMA smoothing is known to produce more stable
and higher-quality samples in diffusion models [9]. IS and FID are evaluated
every 2,000 training iterations. Because EMA estimates are unreliable early in
training due to initialization effects, the first 8,000 iterations are excluded
from evaluation. Each reported IS value is averaged over five independent runs
to reduce variability from sampling noise.

Figure 29a shows the evolution of the Inception Score over training epochs.
The score increases rapidly during the early stages of training and then levels
off. Most of the improvement occurs within the first 10 epochs, after which the
score fluctuates around a stable value with only minor changes. This pattern
aligns with the qualitative progression observed in generated samples and
suggests that further optimization yields limited gains once a stable generative
behavior has been established.

To examine this trend more closely, Figure 29b shows the trajectory of the
model in the entropy plane defined by the marginal entropy H(Y ) and
conditional entropy H(Y |X), as discussed in Section 2.6.1.

Early in training, the model occupies a region with high conditional entropy
and lower marginal entropy, indicating that individual samples are ambiguous
to the classifier and that predicted class frequencies are uneven. As training
proceeds, the trajectory moves toward lower H(Y |X) and higher H(Y ),
reflecting sharper classifier predictions for individual samples together with
more balanced class coverage.

Most of this movement occurs during the early and middle stages of training,
consistent with the steep rise in the IS curve. After roughly 10 epochs, the
trajectory concentrates in a narrow region characterized by high marginal
entropy and low conditional entropy.
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(a) (b)

Figure 29: Inception Score (IS) evaluation over training. (a): log(Inception Score) as a
function of training epochs, showing rapid early improvement followed by saturation. (b):
trajectory in the entropy plane (H(Y ), H(Y |X)), illustrating increasing class confidence and
sustained class-level diversity.

This means that we see convergence to a regime in which both sample-level
clarity and class-level diversity change little with additional training. Notably,
no drift toward low marginal entropy is observed as conditional entropy
decreases, suggesting that improvements in sample clarity are not achieved by
reducing diversity across classes.

The IS curve and entropy-plane analysis show that improvements in sample
fidelity occur early and then saturate, while class-level diversity remains stable
throughout training. Although IS does not directly measure bias or variance,
these results are consistent with earlier findings: systematic denoising error is
reduced early, and there is no evidence of instability or collapse at later stages
of training.

Figure 30 shows how the Fréchet Inception Distance (FID) evolves over
training. Figure 30a reports the total FID as a function of training epochs,
while Figure 30b breaks the score into contributions from mean matching and
covariance matching in feature space.

(a) (b)

Figure 30: Fréchet Inception Distance (FID) evaluation over training. (a): total FID as
a function of epochs, exhibiting a sharp early decrease and subsequent stabilization. (b):
decomposition of FID into mean-matching and covariance-matching terms, showing that early
improvements are dominated by reductions in feature-space covariance mismatch.
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Compared to the Inception Score, FID changes more gradually over the course
of training and does not display large relative swings. This difference follows
from how the two metrics are defined. The Inception Score depends
exponentially on entropy differences, so linear changes in its logarithm
translate into multiplicative changes in the score itself. FID, by contrast, is
based on squared distances between feature-space means and covariances, and
therefore reflects absolute reductions in distributional mismatch.

The total FID drops sharply during the early stages of training and then
settles into a narrow range. As with the IS results, most of the improvement
occurs before roughly epoch 10, with subsequent epochs producing only
modest reductions. This pattern shows that the model aligns the generated
and real feature distributions early in training, after which further
optimization yields limited additional improvement.

The decomposition of FID clarifies the source of this early progress. The
covariance term decreases rapidly, while the mean term falls more slowly. This
means that generated samples quickly contract into a region of feature space
with a spread similar to that of the data, reducing excessive variability.
Matching of the average feature representation proceeds at a slower pace,
reflecting more gradual refinement of global structure.

Neither the covariance term nor the total FID rises at later epochs. This
behavior rules out a late-stage loss of diversity or a drift away from the data
distribution. Instead, training reaches a stable regime in which the overall
spread of generated samples is controlled early, and remaining discrepancies
are tied to smaller, incremental adjustments in feature alignment.

Viewed together with the Inception Score results, the FID curves reinforce a
consistent picture: the largest improvements in distribution-level agreement
occur early in training, while later epochs mainly preserve this agreement
without introducing instability or collapse.
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4 Conclusions

This thesis examined diffusion-based generative models, with a focus on
Denoising Diffusion Probabilistic Models (DDPMs), to investigate how the
classical bias–variance framework applies in a generative setting. By exploiting
the regression interpretation of DDPM training, bias and variance were
studied through their effects on sample fidelity, diversity, and stability, rather
than through prediction error alone.

Empirically, the results show that residual bias is the main factor limiting
sample quality. While fidelity improves over training, generated samples
remain slightly over-smoothed compared to the data, consistent with
incomplete noise removal. This points to systematic denoising error as the
dominant source of imperfection. In contrast, no clear signs of high variance
are observed. Generated samples remain diverse, stable across runs, and free
from memorization or collapse. This suggests that the learned denoising
function is not overly sensitive to the training data. Variance therefore does
not act as a competing force to bias in improving fidelity; instead, its role
appears to be maintaining stable and diverse sampling behavior.

More fundamentally, the absence of classical overfitting patterns may reflect a
structural difference between DDPMs and standard supervised models. In
DDPM training, the regression target is a noise realization that is resampled
independently at every iteration. Even for the same clean image and timestep,
the target changes from step to step, producing an effectively unbounded set
of labels. This stochasticity makes direct memorization unlikely and causes
training and validation objectives to remain statistically similar. As a result,
common indicators of overfitting such as a widening gap between training and
validation loss may not arise, even for expressive models.

Consistent with this interpretation, no evidence of overfitting is observed in
either the loss curves or the generated samples. One possible explanation is
that the chosen model architecture is insufficiently complex to enter a
high-variance regime, implying that training remains in an
underfitting-dominated phase. Another possibility is that the training
duration was too short for overfitting effects to emerge.

The results indicate that the way bias and variance appear in DDPMs differs
from what is typically seen in supervised regression. In the diffusion setting,
limitations in sample quality are mainly linked to systematic errors in noise
prediction, which restrict how accurately noise can be removed at certain
diffusion steps. In these experiments, this behavior appears as consistently
higher prediction error at small timesteps. In contrast, effects commonly
associated with high variance, such as unstable training or growing
discrepancies between training and validation loss, are not observed.
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Figure 26 shows that the training and validation losses remain closely aligned
throughout training, indicating stable optimization without signs of overfitting.

27 further shows that prediction error is concentrated at small timesteps
rather than increasing over time. This suggests that the dominant limitation is
persistent denoising error in low-noise regimes, rather than instability in the
learned reverse process.

This distinction matters when interpreting commonly used generative metrics
such as IS and FID. These metrics summarize multiple aspects of generative
performance in a single score, but they do not distinguish between errors
caused by systematic limitations in noise removal and those arising from
unstable training dynamics.

Future work could build on this analysis in several ways. First, additional
evaluation metrics, such as precision–recall for generative models, could be
used to better capture variance-related effects that are hard to isolate using IS
and FID alone [16]. Second, since variance-related issues do not appear to be a
major factor in the current experiments, it would be useful to explore noise
schedules other than the linear schedule used in this thesis. Different schedules
may change how difficult denoising is at different timesteps and could affect
training dynamics, convergence, and the trade-off between image quality and
diversity. Finally, the high computational cost of DDPM sampling remains a
practical challenge. Using faster or reduced sampling schedules could allow for
longer training runs and more extensive experiments, making it easier to
observe overfitting effects and study variance in diffusion models more directly.

In conclusion, this thesis shows that although DDPM training can be written
as a regression problem, the classical bias–variance picture from supervised
learning does not apply directly. Bias appears primarily as persistent
inaccuracies in noise removal that limit sample fidelity, while variance is more
closely tied to the stability of the reverse process and the preservation of
diversity. This separation helps explain why low training loss and stable
validation behavior can coexist with imperfect samples. Understanding these
differences is important for interpreting generative performance and for
reasoning about generalization in diffusion models as they are scaled and
applied to more complex settings.
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5 Appendix

5.1 Derivation of closed form expression for µq(xt, x0) and
σ2
q (t).

Starting from Eq. (37), the conditional density q(xt−1 | xt, x0) is proportional
to the product of the two Gaussian factors

q(xt−1 | xt, x0) ∝ N (xt;
√
αt xt−1, (1− αt)I) N (xt−1;

√
ᾱt−1 x0, (1− ᾱt−1)I) .

To apply Eq. (38), we rewrite the first factor as a Gaussian function of xt−1 so
that both terms are Gaussians in the same variable. We have that

N (xt;
√
αt, xt−1, (1− αt)I) ∝ exp

(
− 1

2(1− αt)
||xt −

√
αtxt−1||2

)
.

If we expand the norm we find that the exponent becomes

− 1

2(1− αt)
(αt||xt−1||2 − 2

√
αtx

⊤
t xt−1 + ||xt||2).

We can drop the ||xt||2 term since it is constant in xt−1, leaving

q(xt|xt−1) ∝ exp

(
− 1

2(1− αt)
(αt||xt−1||2 − 2

√
αtx

⊤
t xt−1)

)
∝ exp

(
− αt

2(1− αt)
(||xt−1||2 − 2

1
√
αt

x⊤
t xt−1)

)
.

We can now complete the square in xt−1

||xt−1||2 − 2
1

√
αt

x⊤
t xt−1 =

∣∣∣∣∣∣∣∣xt−1 −
1

√
αt

xt

∣∣∣∣∣∣∣∣2 − ∣∣∣∣∣∣∣∣ 1
√
αt

xt

∣∣∣∣∣∣∣∣2 .
Once again, the last term is constant in xt−1 so

q(xt|xt−1) ∝ exp

(
− αt

2(1− αt)

∣∣∣∣∣∣∣∣xt−1 −
1

√
αt

xt

∣∣∣∣∣∣∣∣2
)
.

This has the Gaussian form exp
(
− 1

2σ2 ||xt−1 − µ||2
)
up to constants

independent of xt−1. Matching coefficients yields

q(xt|xt−1) ∝ N
(
xt−1;

1
√
αt

xt,
1− αt

αt
I
)
.

The second factor is already expressed as a Gaussian density in xt−1, so its
parameters are immediate. Consequently, define

µ1 :=
1

√
αt

xt, σ2
1 :=

1− αt

αt
,

µ2 :=
√
ᾱt−1x0, σ2

2 := 1− ᾱt−1.
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Now we can apply Eq. (38). We have that

σ2
q (t) =

σ2
1σ

2
2

σ2
1 + σ2

2

=
1−αt

αt
(1− ᾱt−1)

1−αt

αt
+ (1− ᾱt−1)

. (*)

We focus on the denominator and find that

1− αt

αt
+ (1− ᾱt−1) =

1− αt

αt
+

αt(1− ᾱt−1)

αt

=
(1− αt) + αt(1− ᾱt−1)

αt

=
1− αt + αt − αtᾱt−1

αt

=
1− αtᾱt−1

αt
.

Using that ᾱt = αtᾱt−1, we find that

1− αtᾱt−1

αt
=

1− ᾱt

αt
.

Plug this into (*)

σ2
q (t) =

1−αt

αt
(1− ᾱt−1)

1−αt

αt
+ (1− ᾱt−1)

=
1−αt

αt
(1− ᾱt−1)
1−ᾱt

αt

=
(1− αt)(1− ᾱt−1)

1− ᾱt
,

which is what we have in Eq. (40). For µq(xt, x0) we have

µq =
µ1σ

2
2 + µ2σ

2
1

σ2
2 + σ2

1

=

1−ᾱt−1√
αt

xt +
√
ᾱt−1

1−αt

αt
x0

1−ᾱt

αt

=
αt

1− ᾱt

(
1− ᾱt−1√

αt
xt +

√
ᾱt−1

1− αt

αt
x0

)
.
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Factor out αt and we find Eq. (39)

µq(xt, x0) =
αt

1− ᾱt

(
1− ᾱt−1√

αt
xt +

√
ᾱt−1

1− αt

αt
x0

)
=

1

1− ᾱt
(
√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0)

=

√
αt(1− ᾱt−1)xt +

√
ᾱt−1(1− αt)x0

1− ᾱt
.
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5.2 ELBO Derivation.

We begin from the negative evidence lower bound

−Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
.

To simplify notation, we drop the expectation operator and work directly with
the log-density term. All expressions are understood to be taken under
q(x1:T |x0).

Recall that the joint distributions factorize as

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), q(x1:T |x0) =

T∏
t=1

q(xt|xt−1).

Substituting these into the log ratio yields

− log
pθ(x0:T )

q(x1:T |x0)
= − log

[
p(xT )

T∏
t=1

p(xt−1|xt)−
T∏

t=1

q(xt|xt−1)

]

= − log p(xT )−
T∑

t≥1

log pθ(xt−1|xt) +

T∑
t≥1

log q(xt|xt−1),

which can be rewritten as

− log
pθ(x0:T )

q(x1:T |x0)
= − log p(xT )−

T∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)
.

At t = 1 the variable x0 is observed rather than latent, so the corresponding
ELBO contribution reduces to the likelihood term − log pθ(x0|x1) instead of a
KL divergence. We therefore separate the t = 1 term, leaving only terms
involving latent variables xt−1 for t > 1 which can be expressed as KL
divergences:

− log
pθ(x0:T )

q(x1:T |x0)
= − log p(xT )−

T∑
t>1

log
pθ(xt−1|xt)

q(xt|xt−1)
− log

pθ(x0|x1)

q(x1|x0)

The marginal transitions q(xt|xt−1) are intractable, while the conditional
reverse distributions q(xt−1|xt, x0) admit closed-form expressions. Applying
Bayes’ rule to the forward process conditioned on x0 yields

q(xt|xt−1) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)
.
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Substituting this into the sum over t > 1 gives

− log
pθ(x0:T )

q(x1:T |x0)
= − log p(xT )−

T∑
t>1

log
pθ(xt−1|xt)(

q(xt−1|xt,x0)q(xt|x0)
q(xt−1|x0)

) − log
pθ(x0|x1)

q(x1|x0)

= − log p(xT )−
T∑

t>1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
−

T∑
t>1

log
q(xt−1|xt)

q(xt|x0)
− log

pθ(x0|x1)

q(x1|x0)
.

Now, if we focus on the second sum we can see that

T∑
t>1

log
q(xt−1|xt)

q(xt|x0)
= log

q(x1|x0)

q(x2|x0)
+ log

q(x2|x0)

q(x3|x0)
+ · · ·+ log

q(xT−1|x0)

q(xT |x0)

= log q(x1|x0)− log q(x2|x0) + log q(x2|x0)

− log q(x3|x0) + · · ·+ log q(xT−1|x0)− log q(xT |x0)

= log q(x1|x0)− log q(xT |x0)

= log
q(x1|x0)

q(xT |x0)
.

Substituting this back yields

− log
pθ(x0:T )

q(x1:T |x0)
= − log p(xT )−

T∑
t>1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
−

T∑
t>1

log
q(xt−1|xt)

q(xt|x0)
− log

pθ(x0|x1)

q(x1|x0)

= − log p(xT )−
T∑

t>1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
− log

q(x1|x0)

q(xT |x0)
− log

pθ(x0|x1)

q(x1|x0)

= − log p(xT )−
T∑

t>1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
− log q(x1|x0)

+ log q(xT |x0)− log pθ(x0|x1) + log q(x1|x0)

= − log
p(xT )

q(xT |x0)
−

T∑
t>1

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
− log pθ(x0|x1).

Taking expectations with respect to q(x1:T |x0), we obtain

Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
=

= Eq(x1:T |x0)

[
DKL(q(xT |x0)||p(xT )] +

∑
t>1

DKL[q(xt−1|xt, x0))||pθ(xt−1|xt)]− log pθ(x0|x1)

]
.
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