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Abstract

This thesis tackles binary splitting of regression trees through the
lens of change-point detection. Consider a dataset with multidimen-
sional features and a one-dimensional response variable. A binary
split attempts to form partitions of observations with similar response
values. A typical Classification and Regression Tree (CART) lacks an
inherent stopping mechanism to avoid over-partitioning which leads
to overfitting. CART's tend to rely on cross-validation to reduce over-
fitting, but then one loses out on valuable training data. We propose
a method that succeeds at generalizing without removing any data
from the training set. We model this setup as a change point prob-
lem, where the change point is the index of an ordered dataset where
the partitions are optimal. A likelihood ratio test is used to deter-
mine the significance of each recurring optimal change point. We first
study the one-dimensional asymptotic distribution of the split location
under the null hypothesis (that there is no change point).

Using a likelihood ratio statistic we recover the argmax of a Brown-
ian bridge, which has an arcsine distribution, when the noise has finite
variance. In the case where the noise has infinite variance, a stable-
bridge limit results in an approximate Beta distribution approaching
to uniformity as tails thicken. The limiting distribution of the statistic
is approximated by a Gumbel distribution that changes by an affine
scaling as dimensionality grows. Across Gaussian and t-distributed
response variables, this method provides a solid method for parti-
tioning datasets, while avoiding overfitting, and could be useful when
regularizing regression trees.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: mabr3613@student.su.se. Supervisor: Johannes Heiny and Taariq Fahran
Nazar.



2 M. BREHMER

CONTENTS
1. Introduction 2
1.1. Notation 3
2. Decision trees with binary splitting 3
3. Decision trees as a change point detection problem 4
3.1. Quadratic forms of the test statistics 6
4. Asymptotic distribution of optimal change points 8
4.1. Arcsine and beta laws 13
5.  Multidimensional settings 16
5.1.  Set notation 16
5.2.  General expression for covariance 20
5.3. The case p=2 23
5.4. The case p — o0 24
6. Conclusions 29
Appendix A. Auxiliary results 30
Appendix B. Solving constants for standard Gumbel distribution 30
Appendix C. Multidimensional asymptotic distribution with dependent features 32
References 32

1. INTRODUCTION

Change point detection is a fundamental problem in statistics, with applications across various
fields such as time series analysis, finance, and supervised and unsupervised machine learning. The
core idea is to identify points in a sequence of data where the statistical parameters, such as the
mean, undergo a significant shift. In the univariate case, this problem has been studied extensively,
where methods based on likelihood ratios have been demonstrated to be useful. The asymptotic
properties of these methods have been rigorously analyzed, e.g. in [9, 15] for independent data
points. With the increasing prevalence and importance of multidimensional datasets in contempo-
rary data science applications, there is high demand for effective methods to detect change points
in multidimensional data. Unlike univariate data, where each observation is a scalar value, multidi-
mensional data represents features as vectors, adding complexity to the analysis. Recent progress
has been made e.g. in [4, 8, 10].

This thesis aims to extend the framework of change point detection to the multidimensional setting.
More precisely, the project focuses on adapting likelihood-based methods to handle the challenges
introduced by high-dimensional datasets. A key objective is to analyze the asymptotic behaviour
of likelihood ratio test statistics in settings where the sample size n and/or the dimensionality p
are large. Understanding the asymptotic behaviour of likelihood ratio test statistics will allow
us to apply the framework of change point detection to regularize regression trees. Engler et.
al. [7] provides some inspiration for using change point detection to regularize CART trees.
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1.1. Notation.

Convergence in distribution (resp. probability) is denoted by 4 (resp. ﬂ), equality in distribution
by g, and unless explicitly stated otherwise all limits are for n — co. We write random variables
as X,Y, vectors as x,y, and X,Y to represent matrices. Subscript X} refers to the k-th obser-
vation of X, while superscript X is used to describe the i-th feature dimension. T describes a
single partition, while 7~ describes an optimal partition. Assume ¥ ~ A and all X ~ i.i.d. unless
specified. A refers to a standard Gumbel distribution which has C.D.F. exp (—e*).

2. DECISION TREES WITH BINARY SPLITTING

In machine learning we are often interested in partitioning data into groups, where the simplest case

is a binary partition. However, we are usually interested in partitioning the data in a data driven
manner. Consider a dataset D = {(X}, Y3)}}_, where X}, € X for some p-dimensional feature space
X and Y; € Y for some 1-dimensional response space ). We are interested in splitting the data in
terms of X, into partitions which have similar values of Y. We achieve all this by minimizing some
loss L and choose the split that results in the smallest loss. Trying to compare partitions of n data
points is computationally infeasible. Instead, we can recursively split the data into two parts to
obtain a satisfactory partition. This procedure is implemented for instance on Classification and
Regression Trees (CART) [2].

A simple algorithm for obtaining binary partitions is to order the data according to the fea-
tures {X(i) }?:1. That is, for each feature i, order the data D such that XY‘) < Xéi) < ... < XT(Li).
Then construct a list 7; = {m;(1), m(2), ..., m(n)} of time-indexes m;(k) which maps the k-th small-
est observation to the index at which the observation exists in the original data.
The ordered sequence is thus

Xm(l) < Xﬂ’z'(Q) <. < Xﬂ.z(n)
Which means that
{(Xmr) Yruh)) Yo

can be modeled as a time series with respect to feature 7. The loss function with a binary split at
time index r is

r n
LT = Z(Yk — ?1;7«)2 + Z (Yk - ?T+1:n)2
k=1 k=r+1
= Sl;r - Sr+1:n7

where Y., = ﬁ > p—; Yi is the mean of the observations Y on the interval | < k < r and
the sum of squares is defined

r

T
_ 1 _
Sir =Y Y=Y, =) V- ) 1Yﬁr.
k=l k=l

An optimal splitting index with respect to feature i is then chosen as r* = arg min L,. Comparing
T

the optimal split across all features yields a global optimal split in the form of the pair (i*,r*),
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where 7* is the dimension in which the optimal split occurs. This pair is then used to form the

following binary partitions:
D1 = {(Xri): Yrith) € P | Koy € Xoo}5 - k€ {1}

and
Dy = {(Xa,t0), Yrik)) €D | Xty > Xy }» - k€ {1,...,n}.

This means only the dimension in which the change occurs is partitioned. Recursively applying
the same procedure to each subsequent partition we can obtain finer partitions across various fea-
tures and call the resulting final partitions a binary tree. Continually partitioning the data leads
to overfitting, since in many cases the data cannot reasonably be partitioned further. The algo-
rithm needs some stopping criterion to determine if the data can be partitioned or not. Without
knowing the data generating process, we can never be sure if there is a change point in the data,
however, we can use statistical tests to determine a confidence level for the partition and stop
the procedure when we are confident, to some level, that the data can’t be partitioned further.

3. DECISION TREES AS A CHANGE POINT DETECTION PROBLEM

We notice that our problem is similar to the problem of finding a change point, as explored
in [7]. That is, we are interested in finding the index k where a change in the data occurs,
we can directly use results from change point detection literature. The results from [15] pro-
vide an explicit construction for a statistical test for binary partitioning. In the case, where
the feature space X is one-dimensional, we can use these results. However, the premise of this
thesis is that we are interested in the case where the features are multidimensional. Therefore,
we need to extend the model to the multidimensional setting. More precisely, we want to com-
pute the asymptotic distribution for the loss L when the feature space X has dimension p > 1.

Consider the feature space X = RP and response space Y = R where each feature is a sequence
of n € N random variables
{x, X0 ~ FOLT
where F' is some continuous distribution with nonzero Varif;nce. Response variables are constructed
as
Y =p(X)+e,

where p(X) is a regression function of X M, ..., X® and noise ¢ has i.i.d. Gaussian components
with mean zero and variance o2 > 0. This means that our dataset is

T n
D= {(Xlgl), ...,X,gp)> s (Yk, ooy Yk)T}k—l

The goal is to find the optimal change point (i*,7*) to partition at, i.e. the index r* and feature *
which minimizes the loss, then determine if it is statistically significant. For this we use a likeli-
hood ratio test as in [15].

The null hypothesis is that there is no change point, i.e.

*
Hy:r"=n,
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while the alternative hypothesis is that a change point does exist
Hy:r* <n.

If Hy is rejected, meaning (¢*,7*) is in fact a change point, then the process is repeated with the
optimal partition. We continue to repeat this algorithm until after K iterations the K:th optimal
change point (7%, 7*) g is not statistically significant. The results from [15] show that the generalized
negative log likelihood ratio of Hy in the univariate Gaussian case is proportional to:

T, := max [Sl:n — St — T+1:n] )
1<r<n-—1
where
Ui — \2
Sl:m = Z (Yk - Yl:m)
k=l

Under Hy, [15, Thm. 2.1] asserts that 7, has the asymptotic distribution of a non-standard Gumbel,

—b
lim P <n~ =< x) = exp <—27T_%6_z> , —oo<x <00,

n—00 anp,

1

where the constants are a,, = (2loglogn)~ 2 and by = a;t+27a, log(3) n. In the case where there

n
are p > 1 features, the test statistic takes the form

7, := max max T
1<i<p 1<r<n

where the loss for a particular partition (,7) is

76 . gl (i) (i

mi(1n) mi(Lir) — Mmi(r+ln)
The optimal partition is found by maximizing T" over elements r and features ¢
) := argmax TV .

1<i<p
1<r<n—1

(%, 7y
Throughout this paper we would prefer to work with statistics that converge on a standard Gumbel

rather than the non-standard Gumbel shown above. To do this we must find a, and b, such
that, under Hy:

—b
lim IP’(IE n<x>:exp(—e_’”), —00 < x < 0.
n—00 an

We call this standardized statistic 7, where

72:771—571

an,

We can derive the solution to a, and b, by using the Convergence to Types theorem from [6].

Theorem 3.1. (Convergence to types theorem). Let A, B, Ay, Ay be r.v.s. and by, > 0, B, >0
and an a,, oy € R be constants. Suppose that

Then the relation
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holds if and only if

nli_}rgobn/ﬁn:bE [0,00), lim (ay, —ay)/Bn =a € R. ()

n—oo

If (%) holds then B L bA+a and a,b are the unique constants for which this holds.

When (x) holds A is non-degenerate if and only if b > 0 and then A and B belong to the same
type.

It is immediate from (xx) that the constants a, and b, are uniquely determined only up to the

asymptotic relation (xx).

The constants from [15, Thm. 2.1] are as mentioned,

N|=

an = [2log® n]~

~ 1
by =a '+ §a” log(3) n

where log(k) n is the k-th iterated logarithm of n. Using Theorem 3.1, one finds that

1
2

an = [2log® n]
1

1
b, = — + =—an log(?’) n+ap, log(27r_%) .
an 2

are the constants for which the statistic 7, converges on a standard Gumbel. See Appendix B for
more detail.

3.1. Quadratic forms of the test statistics.

Moving forward it will be beneficial to work with the data in quadratic form. Our motivation
for doing so are primarily that matrix operations are easier to generalize and perform on a large
scale, and that the notation becomes clearer. In this section we present some useful lemmas and
definitions in regard to the quadratic forms. Consider a response vector y of observations Yy

vir = Yi, Yigr, .., Y.
Define a vector of ones by
1,:=(1,1, .., 1) eRF
and set
Jp=1;1] .

Furthermore, for 1 < k <1 < n we set 1y = 1y 3 € R", where 14,09 1) is a vector of
length n that has ones at indices {k,k + 1,...[} and zeroes elsewhere.

Lemma 3.2. For1 <k <1l <mn, one has
I, =11l = —k+ D11, = (1 — k+ 1),

where Ji.; € R™™ 4s a block matriz with ones at places where the row and column are on the
range {k,...,l} and zero elsewhere.
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Lemma 3.3. It holds that the sum of squares corresponding to yi.; is
l
Sk:l = Z}/f - (l —k+ 1)?i:l
i=k

= (Yrt) T g1 Yea — (V1) Jiokr1 Yo -

_
l—k+1
Lemma 3.4. We can write T, in quadratic form as

T, = Y10 Qryin
where Q.. is the following block matriz
(13 | 11,1007 )
\ 2 lor ()T | (5 4 55 Juer )

Proof. An application of Lemma 3.3 yields

Qr:

Tr = Sl:n - Sl:r — Or+1lin

1
= (YI:n)T In Yin — g(ylzn)TJn Yin

1
- (Y1:7‘)T Ir Yir + ;(ytr‘)TJr Yir

1
- (yr—i—l:n)T In—r Yr+1n + m()’r—&-l:n)—r’]n—r Yr+1n

T/(_%‘F%)Jr ‘ _%17'(]%77")—'— \|
\_%171—7"(17‘)T ‘ (_% + nir)Jn—r} Yim

= (YI:n)T Qryim -

= (YI:n)
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4. ASYMPTOTIC DISTRIBUTION OF OPTIMAL CHANGE POINTS

Consider the one-dimensional case. For k = 1,...,.n — 1 we want to understand the probability
Py, := P(k maximizes T,). We know that it must be symmetric around "T_l, since under Hy the
time series is exchangeable. We model the probability by setting up the system of equations

ZPk:I, P.=P, .

In the case that n is even, there is a unique mid-point 7 = § that partitions the data into equally

sized groups where the system of equations is

21

n—1
Zszl, Pn/2:1—2ZPk.
k=1 k=1

In the case that n is odd, the equation becomes

13)-1

1
PL%J: 1-2 E Pk '§:PL%+1J'
k=1
n=4 | trials=20000| Y ~ Normal n=4 | trials=20000| Y ~ t(df=1.0)
0.35 0.35
0.30 0.30
30.25— 30.25
Eo.zo Eo.zo
8 38
e . 80.15
Q o.10 Q o.10
0.05 0.05
0007 0.2 0.4 06 0.8 1.0 09%% 0.2 0.4 0.6 0.8 1.0
Normalized change-point t=r/n Normalized change-point t=r/n
(A) Distribution of P~ in the case Y ~ A (B) Distribution of P in the case Y ~ t,—1

FiGURE 1. Probability estimates for the location of optimal change points r* using
t-distributed outputs Y, based on 20000 simulation trials. A Gaussian distribution
is equivalent to the t-distribution when the degrees of freedom are v — oo, while a
Cauchy distribution is when v = 1 and thus has heavier tails. The heavier tailed
Cauchy distribution gives a higher probability to the partition occurring at the mid-

point r = |n/2].

We conclude that a key component of understanding the general probability of optimal change
points Py, is to find the probability of the change point occurring at the middle-index P, /. Before
we attempt to find an analytical formula to determine this probability we want to get an idea of
the distribution by simulating the time series Y7,...,Y, ~ Dy and finding the argmax of T,. In
this section we normalize the change points by setting ¢ = T, representing a time on ¢ € [0, 1].
This makes it easier to compare the various distributions. In figure 1 we compare the outcome
of optimal change points in the smallest non-trivial case, that being n = 4, from a simulation
of 20000 trials, with the only difference being the distribution of Y. The figure clearly shows that
the heavier tailed Cauchy distribution results in an optimal partition at the center more often than
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when output variable has a thinner tailed Normal distribution. This finding establishes that P,
depends on the distribution Dy when n is small. Next we explore what patterns emerge when the
number of observations is larger.

In figure 2, we analyze the optimal change point distribution when the number of observations n
is higher. Indeed; the difference in concavity between Normal and Cauchy distributed Y’s persists
for moderately sized n. In the figure we have also included a discrete approximation of the arcsine
distribution for reference. This is because we observe P, to converge on what appears to be
an arcsine distribution. Note that the arcsine distribution in turn is a special case of the Beta
distribution, Daresin = Beta(%, %) As we discuss further along this section, P, is not expected to
precisely follow the discrete approximation, rather the discrete approximation itself converges to
the true arcsine distribution in the limit n — o0, as seen in figure 3. Further, we observe that
regardless of the kurtosis (i.e. tailedness) of the distribution Dy, the distribution P, converges on
a concave distribution, meaning change points near or at the extremes are more likely than points
closer to the center. By understanding that the heavier the tail of a t-distribution, the more likely
extreme outliers are, we can deduce that when there is an extreme outlier in the dataset, i.e.

Y« = ml?x Y >> Y.,

the optimal partition is typically that Yz« belongs to the smaller set. This can be interpreted as the
outlier skewing the mean away from most other observations. Leaving a heavy outlier outside the
larger partition, decreases the loss, and thus ensures 7). gets maximized. Y« is to be as isolated as
possible. By observation, it appears that the distribution of - converges to an arcsine distribution,

which has density

1
farcsin(u) = ——=, 0<u<l.

m/u(l —u)’
Since the change points are integers, it is useful to use a discrete probability function to compare
with. We therefore introduce a discrete approximation of the arcsine distribution. This distribution
has the probability mass function

pn(k)
]:P = =
(r=k) =2,
where
1
n(k) = , k=1,..n—1
pn(k) "o b
and

n—1
Ly = an(j) .
j=1

In the limit n — oo, it follows that

n—1 1
1 j(n—3)

therefore, Z,, ~ 7 and one recovers the probability P(r = k) = 1

my/k(n—k)
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n=20 | trials=20000| Y ~ Normal

—— Discrete Beta (0.5)
= Simulated distribution of optimal change-points

Probability

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(A)Y ~N,n=20

n=50 | trials=20000| Y ~ Normal

—— Discrete Beta (0.5)
[ Simulated distribution of optimal change-points

o
o
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Probability

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

() Y ~N,n=50
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n=20 | trials=20000| Y ~ t(df=1.0)

—— Discrete Beta (0.5)
= Simulated distribution of optimal change-points

Probability

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(B) YNtl,TLZQO
n=>50 | trials=20000| Y~ t(df=1.0)

—— Discrete Beta (0.5)
[ Simulated distribution of optimal change-points

Probability

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(D) Y ~t, n =50

FiGURE 2. Empirical distribution of P, at various levels of n and distributions
of Y. Asymptotically, P. can be approximated by a discrete variant of the
arcsin /Beta(3, ) function. Even for larger n, P, is less concave when Y has a

heavy tailed distribution.

Discrete vs Continuous Arcsine Law

10 —e— Discrete arcsine density (n=10)
—— Continuous arcsine density

8
26
7}
2
8

a

2

0.0 02 04 06 038 10

Rescaled change-point t=r/n
(A) n=10
Discrete vs Continuous Arcsine Law
—e— Discrete arcsine density (n=100)
—— Continuous arcsine density
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(c) n=100

Discrete vs Continuous Arcsine Law

10 —e— Discrete arcsine density (n=50)
—— Continuous arcsine density

8
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Rescaled change-point t=r/n
(B) n =50
Discrete vs Continuous Arcsine Law
10 —e— Discrete arcsine density (n=1000)
—— Continuous arcsine density
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0.0 02 04 06 038 10
Rescaled change-point t=r/n

(D) n = 1000

FiGURE 3. Comparison of the continuous arcsine density farcsin With the discrete
arcsine PMF. The values of the PMF are scaled by a factor of one unit length A%c =n
so that the density at point & is dj, = g—’; = n-p. We observe that the discrete arcsine
PMF converges to the density function as n — oo, but is also a good approximation

for relatively small n.
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n=99 | trials=20000| Y ~ t(df=0.1)

—— Discrete Beta (0.5)

= Simulated distribution of optimal change-points

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(A) Y ~ t0.17 n =99
n=99 | trials=20000]| Y ~ t(df=1.0)

—— Discrete Beta (0.5)
[ Simulated distribution of optimal change-points

n=99 | trials=20000]| Y ~ t(df=0.5)

—— Discrete Beta (0.5)

= Simulated distribution of optimal change-points

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(B) Y ~ t0.5, n =99
n=99 | trials=20000| Y ~ t(df= 2.0)

0.05 —— Discrete Beta (0.5)
= Simulated distribution of optimal change-points

Probability
Probability

1.0 B 0.2 0.4 0.6 0.8
Normalized change-point t=r/n

0.2 0.4 0.6 0.8
Normalized change-point t=r/n

(C)thl,n:99 (D)thg,n:99

FIGURE 4. When tailedness of Y is high, the magnitude of extreme outliers are
so great that only the location of the greatest outlier, which is uniform by inde-
pendence of Y’s, determines the change point. So it appears P, ~ U = Beta(1,1)
as v — 0. In the case that Y has thinner tails, the magnitude of the greatest outlier
is not strong enough to dominate the partition, instead we see that P, is closer in
distribution to faresin = Beta(%, %)

In figure 4 we explore the normalized distribution P; for various cases of the t-distribution, using n =
99. The conclusion we make is that thinner tailed distributions, such as Gaussians, converge on a
limiting distribution that are close to farcsin = Beta(%, %), while the thicker tailed ¢-distributions
(v — 0) converge on distributions that approach a Uniform distribution U = Beta(1,1).

We have alluded to the importance of extreme outliers. To get a hint of how it affects the location
of the optimal change point, we explore the distance between the largest outlier and the optimal
change point, that is [# — r], where 7 := arg inax(Yk) in figure 5. We observe that the average

distance is smaller when the tails are thick, meaning that the higher the kurtosis, and subsequently
the larger the expected outliers max(Y'), the impact of the greatest outlier grows. For very thick
tailed distributions, the optimal change point is almost always the same as arg max(Y’). In figure 6

we see how the probability P (r = arg max(Yk)) decreases with higher degrees of freedom (thinner
k

tails). However if the greatest outlier is truly dominant, one would expect P(7 —r € {0,1}) ~ 1.
We observe no greater than ~ 0.5 for Y-distributions as thick-tailed as tg g5, which is almost uni-

form.
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FiGURE 5. Distribution of # — r where 7 = arg max Y}, and r is the optimal change
k
point.

Pr[argmax(Y) - change-point = 0 or 1] vs df | n=50, trials=20000
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°
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0.20

0.15

& > © > 3 o &

Distribution (df)

FIGURE 6. The probability P (7 —r € {0,1}) (location of change point exactly same
as maximum Y}) across various degrees of freedom for ¢-distributed Y (Discrete
steps, Not to scale). Note that change point index is right shifted, so r = k means
that the partition occurs after observation Y%, which is why # —r = 1 is a partition

with arg max(Y’) as its final observation.
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4.1. Arcsine and beta laws.
In order to find a proof for why the asymptotic distribution of the location of change points is an

arcsine distribution, we begin by rewriting the expression for 7). as

(Sll - £gl: )2
T’r‘ = S]_n - S]_;rr- — Or+l:in = T—H’rn
r(l—1)

l
where Sy, = Z (Y3), see [15, Eq. 2.1]. For simplicity we assume E[Y;] = 0. Theorem 4.1 provides
i=k
insight into the asymptotic distribution.
Theorem 4.1 (Asymptotic distribution of the change-point location under Hy). Let (Yi)r>1 be
i.i.d. with E[Y1] = 0 and finite Var(Y;) = 02 > 0. Let

7 = argmax T, .

1<r<n—1
Then .
;n % Diaresin(0,1)
which has density
f(t):;, 0<t<l.

T/t(1 —t)
Proof. Step 1 (CUSUM process and scaling). Since we are working with the limit n — oo,
and S’m = Z;il }7; Define the process

B, (t) = W teo,1],
. . 2
s0 that 7)) = (S S EL_ g2
Step 2 (Donsker’s invariance principle). Define the partial-sum process W, (t) := i%
By Donsker’s invariance principle [1, Thm. 8.2],
Wi (t) 4 W(t) asn — oo,
where W is standard Brownian motion. Noticing that o‘%ﬁ = W, (1), we can apply the continuous

mapping theorem to (W (t), W(1)), which gives
Bo(t) % B(t) := W(t) — t W(1),
where B is a standard Brownian bridge.
Step 3 (Argmax mapping). Define the estimated change-point fraction
. B, (t)?

ty = arg max

te{1/n, ooy (n—1)/myt(L — 1)

From Step 2, we have B, LA B, where B is a standard Brownian bridge. We now view %, as the

image of B, under the argmaz functional

_ (02
AU =i i
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For the continuous mapping theorem to apply, A must be continuous at the limit process B with
probability one. This holds because:

e B has continuous sample paths almost surely,
B(t)?

. ﬁ almost surely attains its global maximum at a unique t € (0,1).

Under these conditions, A is a.s. continuous at B (see [13, Thm. 3.2.2]).
Therefore, by the continuous mapping theorem,

i, = A(B,) % AB) =:1.

That is
. B(t)?

t := arg max .
te(0,1) t(l - t)

The restriction of £, to the n~'-grid is asymptotically negligible, since the grid becomes dense in
B(t)?
=)

(0,1) as n — oo and is continuous a.s.

Step 4 (Change of coordinates). Consider the Brownian bridge

t

B L1 —t)W(l_t) . te(0,1),

with W a standard Brownian motion. By the transformation u := %_t, We find that

B(t)* 4 W(u)?
t(1—1t) u

The map t — u = ﬁ is strictly increasing for ¢t € (0,1). As { maximizes the bridge B, the

Brownian Motion maximizer for w is

1 := arg max

u>0 \/a ’

The maximizer in t-space is

. 4
t= ~
144
Thus, it suffices to identify the distribution of ﬁu
Step 5 (Lévy’s arcsine law). By the bijection u — ¢t = 7, we have
t = _a U = argmaxM
1+ o’ u>0 \/’TL

Lévy’s third arcsine law implies that the location of the maximum of |W| on a finite interval is arc-
sine distributed [12, Ch. VI, Thm. 2.7.]. Using Brownian scaling and the monotone compactification

u—t= it follows that

u
14w’

~

. 1
t ~ arcsine(0, 1), i(t) = ————, 0<t< L
T/t(1 —1)

This completes the proof. ]
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Remark 4.2. For increments with infinite variance, such as for t-distributions where v < 2, the
Donsker invariance principle does not hold [3] and is replaced by the stable invariance principle of
[11, Thm. 2], which shows that the CUSUM process, with scaling n_é, converges to an «-stable
bridge By (t), where a is said to be the index of the stable law, related to tailedness. Doney [5]
proves that the distribution of the time of the maximum of such stable processes is concave and
symmetric about t = % However it depends on o and is no longer arcsine. Thus, the arcsine law
holds only in the finite-variance case (o = 2), while for (0 < o < 2) one must instead work with

stable bridges, whose maximizer law lacks a closed form.

Despite the limiting distribution case being unknown in the infinite variance, we suspect that it
lies in the family of Beta distributions. More specifically, we know that for ¢, distributions

11
TriBeta<2,2>, asn, Vv — 00,

and we expect
TriBeta(l,l)7 asn— oo, v—0,

however this remains unproven.

Estimated symmetric Beta parameter vs df Estimated symmetric Beta parameter vs df

g
o

o

o
©
o =
©

o

@
o
@

—e— y (symmetric MLE)
Arcsine: y=0.5
=== Uniform: y=1

—e— Y (symmetric MLE)
Arcsine: y=0.5
=== Uniform: y=1

o
S

o

o
o
o

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Degrees of freedom (df) Degrees of freedom (df)

n

Il
n

I o
IS

Symmetric Beta parameter y
2
Symmetric Beta parameter y

I
IS

(A) n = 1000, v € (0,2 (B) n = 1000, v € [1,5]

FiGURE 7. Maximum Likelihood Estimated parameters of the asymptotic distribu-
tion Beta(y,) vs degrees of freedom of the underlying ¢-distributed observations.
The parameter 7 represents both standard parameters («, f3), since the limiting
distribution must be symmetric. 50000 trials, n = 1000.

We model the cases 0 < v < 2 as symmetric Beta-distributions with parameter % <7 <1l
Observing the simulated change points, we compute the MLE 4 for such Beta-distribution. The
results can be seen in figure 7a, which shows a somewhat linear or weak exponential relationship
between v and v. Figure 7b looks at cases up to v = 5, which has infinite variance and in theory
should yield parameters v = % We observe a result closer to Van;O v = 0.37. A limitation of this

estimation is that n is finite.



16 M. BREHMER

5. MULTIDIMENSIONAL SETTINGS

5.1. Set notation.

In a multidimensional setting, it becomes difficult to follow which variables belong to which vectors,
and in which order the observations occur. Fortunately there is another approach that does not
require vectors to be re-ordered and that simplifies the notation while making many calculations
a lot more forgiving. Thus, in this section we will describe the model in the form of sets rather
than ordered sequences. Let N = {1,2,...,n} where n is the number of observations in the dataset.
Consider the the non-empty set R; C N and its complement R := N \ R;. When a partition of D
is made, R; contains the elements which belong to the partition before the change occurs, while
the elements on the other side of the change point belong to the set R;. The pre-change point set
R; may only contain elements that are ordered in terms of 7r;. This means that the order

77—1'(1)7 Wi(2)a "'77Ti(n)
sets the restriction
Wi(k‘)GRi - ﬂi(k—l)GRi Vk e N.

Each feature i allows R; to select a new collection of indexes based on the order ;. The null
hypothesis that there is no change point is described as

Hy:R*"=N
and the alternative hypothesis that a change point does exist
Hy:R"CN.
In the case that we want to compare two T;’s, where the feature ¢ is different, we use the notation
M = R;
B = R; where j # 1.
Many expressions in this section use the cardinality of the sets N, M, B and M N B, denoted as
n:=|N|, m:=|M|, b:=|B|, s:=|MnNBDB|.
Further, this means for the complementary sets that
|IM¢|=n—m, |R=n-b, |[MNB° |l=m-s, |M‘NB|=b-—s, |[M°NB°=n—m-—b+s.

The following definitions and lemmas are useful to describe and solve the problem using a set
approach.

Definition 5.1. The matriz Jy; is defined as
Jor =11},

with vectors 1pr constructed by the following

1M::Zek€R” for M C N.
keM
where e is a zero-vector with 1 at position k and M is a set that represents indexes at which

observations belong to said class.
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Lemma 5.2. (a) Multiplying matrices Jp; and Jp forms the expression

JMJB=1M1TM131£:5(1M1;) for M,B C N.
——
S

(b) In the case that M = B, the square J%; can be expressed as
32, = 110, 1m1), = |M] <1M1}4> —m .
(¢) The trace of the matriz lMlg that forms by multiplying two J-matrices is

tr (1Mlg) cuclic proverty (121M) A Ty = s

17

(d) The Hadamard product between two J-matrices with observations belonging to sets M and B

takes the form

Jyodp = <1M1}4) o (1315) - 3 (eie;r> o <eke7) .

i,jEM k,l€B
Lemma 5.3. (a) Trace of the matriz product of Iy, Jp
tr(JyJp) =|MNB|>?=s> for M,BC N.
(b) Trace of the Hadamard product of Jar, Jp
tr(Jyyodp)=|MNB|=s for M,BC N.
Proof. (a) By multiplying two one-vector matrices
JuJp =1y14,1515.
Using properties of scalar multiplication we obtain
11,1515 =s-1y15.
By properties of the trace and the result from 5.2 (d), it follows that
tr(s-lMlg> :s-tr<1M1};> =5-5=25".
(b) It is established in lemma 5.2 (d) that
Jyoldp = Z Z (eie;r) o (ekelT) .
ijEM klcB

By linearity of the trace, it follows that

tr< > (ez’ejT) ° (ekezT)> => > tr<<eiea‘T) © (e’felT))

i,j€M k,l€B i,jeM k,leB
= Z Z Oijki
i,jEM kB
= |M N B|
=s
where 6;j,; = 1 when @ = j = k = [ and 0 otherwise are Kronecker deltas. Thus the trace only

depends on the number of intersected elements.

0
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Using Lemma 3.4 we write the quadratic form of T}  as

7= (v) Qa(st).
1
(n—)

where

1 1
Qr=—"JIn+-Jr+ JRe .
n r

The test statistic using a set approach is

Ty = max max T} g .
i€P RCN 7
RAD

where P = {1,2,...,p} is the set of input dimensions. Next, we collect some facts about Q»s and

Q@B.
Corollary 5.4. (a) Trace of the matriz Qs
tr (Qu) =1.

(b) Trace of the matriz product of Qur, Qp

(mb — ns)?

tr(QuQs) = mr(n—m)(n—b) "

(c¢) Trace of the Hadamard product of Qur, Qp

tr (Qur 0 Q) — L 4 (1 bl = 2m)(n - 20)

nmb(n —m)(n — b)

Proof. (a) Write Qp = —%JN + %JM + ﬁJMc. We have

1 1 1
tI‘(QM) =tr <—JN + —Jp+ JMc>
n m n—m
——ltr(J )+itr(J )+ ! tr (Jaze)
on N m M n—m Me

n m n—m
=——+—+ =1.
n m n—m

(b) Breaking the down the matrix we get

1 1 1 1 1 1
QuQp=—"3In+—In+—Jne ——JIn+ I+ J e
n m n—m n b n—>b

1 1 1 1 1
= 2J3 - =InIp— ——InIpe — —JI\d —Jud
n2 N ppt VB n(n —b) NeB anN+mbMB

b
n(n —m)

1
+7JMJBC— JMcJN‘i‘ JMCJB+ JMCJBC.

m(n — b)

Taking the trace we have

o v
b(n —m) (n—m)(n—b)

1 1 1 1 1
t = —tr(J%) — = tr(InJg) — ——— tr(InJge) — — tr(Ipd —tr(Ipd
H(QuQp) = 5 tu(Iy) - — tr(Indp) w0 =) r(Indpe) = ——tr(Iadn) + —tr(Judp)

1 1 1
+ 7tr(JMJBC) — mtr(JMcJN) -+ m

m(n — b) tI‘(JMcJB)
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1
————tr(JpeJ e
T =g TmedE)
_f_ﬁ_(n—b)Q_mQ i (m—s)Q_(n—m)2 (b—s)? (n—m—>b+s)?
n? nb nn—->0 nm mb mn->5 nn-m) bn—m) (n—m)(n—"0) "’
which reduces to )
(mb — ns)
t = .
HQuQs) mr(n —m)(n —b)
(c) Using the same simplifications as in (b), we write the expression as
1 1 1 1 1
tr(QMOQB):ﬁtr(JNoJN)—%tr(JNOJB)—mtr(JNOJBC)—%tr(JMOJN)JF%U(JMOJB)
1 1 1
—tr(J Jpe) — ———tr(Jpe0d —tr(Jpe0J
+m(nfb) r(Jar o Jpe) n(n —m) r(Jare o N)+b(nfm) t(Jare 0 JIp)
1
——tr(Jpe 0 I e
T mym =g e e
n b (n—0b) m s m—s n—m b—s n—m-—>b+s

n2 nb nn—->b nm mb mn->b nn-m) bn-m) (n—m)n->)’

which reduces to
1 ns —mb)(n — 2m)(n — 2b
tr(QMoQB) = n—l—( )( )( )

nmb(n —m)(n —b)

Lemma 5.5. (a) The covariance of the variables Ty :=T; r and T := T} r takes the form
Cov(Tyr, Tg) = f(n,m,b,s)

where f(-) is a function the intersection length s, the full lengths of observations n and the individual
set lengths m, b, which models the covariance of the test statistics. This function is

(mb — ns)?
mb(n —m)(n —b)

a3 [i | (ns —mb)(n — 2m)(n - 2b)}

f(n7m7b78)_2|:

nmb(n —m)(n —b)
In the case the fourth moment of Y is vy = 3, such as when'Y ~ N(u,X), the covariance is
simply

Cov(TM,TB):2[ (mb — ns)” ]

mb(n —m)(n — b)
(b) The variance of Tys can be expressed as

Var(Tar) = 2+ (4 — 3) {1 + (”_W] .

n  nm(n—m)

(¢) The correlation is given by

Cov(Ty, T
Corr(Ty, Tg) = M‘
oMOB
where oy = y/Var(Th) and op = /Var(Tg) are the standard deviations of the respective test

statistics.
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Proof. (a) To find this function one must compute the second moment and the product of first

moments
COV(TM, TB) = E[TMTB] - E[TM]E[TB] .
By Lemma A.1 it follows that

E[TyTg] = tr(Qun) tr(Qp) + 2tr(QumQB) + (va — 3) tr(Qar 0 Qp).

We also have
E[Ty|E[TB] = tr(Qu) tr(Qp) = 1.
Using Corollary 5.4, the covariance computes to
(mb — ns)? ]
mb(n —m)(n — b)

+ (v4—3) [; 4 (ns —mb)(n —2m)(n — 2b)

COV(TM,TB) =2 |:

nmr(n —m)(n — b)
(b) One can find Var(Tys) by setting s,b = m in the expression for Cov(Tys, Tg)
Var(Ty) = E[(Tar)?] - E[Tn]?
= tr(Qu)® + 2tr(QuQur) + (va — 3) tr(Qar 0 Qur) — tr(Qur)”
=2tr(Qum Q) + (va — 3) tr(Qar 0 Qur)
B 1 (n—2m)?
=2+ (n-3) [nmm(n_m)} -

0

5.2. General expression for covariance. In order to understand the relationship between two
test statistics, a key component is understanding the pairwise covariance, which may be beneficial
to finding a joint distribution for change points in higher dimensional settings. The full probabilistic

expression for the covariance between two test statistics is

COV(7;1(Z)?7;L(j)) = Z wM,B . f(nama bv 5)

M,BCN

where wys p = P(M, B maximizes 771(i) resp. 7}1@ )) is a weight describing the probability of the set
combination M and B occurring, while f(n,m,b,s) = Cov (Ts,Tg) is the covariance of two T"’s
with chosen sets M, B. Consider the case where the feature correlation is p;; = 0, this means that
the order m; and w9, and subsequently the choices of M and B are independent of one another.
Define the probability that M, which has length m = | M|, maximizes 7, as

Py :=P(M maximizes Ty,) .
Now consider the set
M:{l,Q,...,m} where m <n —1.

It follows that
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since all observations are i.i.d. and thus the probability that any set of length m maximizes the
test statistic is the same. It also holds that

Py = Pue

as both sets M and M€ imply that the change point occurs at the same place. Combining both
properties means that Py, = Py;. and thus the probability for m = k is equivalent to the probability
for m = n—k, from which it follows that only the cases where m < [”T_I] form unique probabilities.

5]

since 1 < b <n —1 and one can draw b elements from a total n.

The number of ways to pick B is

Finding the weights wy p seems complicated, however in Theorem 5.6 we manage to reduce the
problem to a joint distribution of m and b.

Theorem 5.6. Given i.i.d. features XV, ..., X®), and the set sizes m,b are known, the full co-

variance 1S
—1 min(m,b)

com 7 = (7)) 3 () (527 fnmabs)

s=0
where f(n,m,b,s) is known from Lemma 5.5.

Proof. Consider 7 as a random permutation and write

T(l) Ty, w.l.o.g. permutation is identity.
Tg) = Tx(B)> (2) indicates second component of X.

Cov(Tn @) 7;(2)) can be represented as E [TMTW(B)} —E [Ty E [TW(B)], as component (1) has optimal
set M and component (2) has optimal set 7(B). We understand that

E [TnTrs)] — E[TM]E [Top)] = Y E [TMTB]I{W(B):B}} —E[Tu]E |:TB]I{71'(B) B}} ;
B

where B are possible permutations 7(B). Set & := {A C {1,...,n} : |A| = b}. Note that for ev-
ery B € 8, there are bl(n — b)! permutations ¢ such that ¢(B) = B. It follows that

E [TuTr(p)] —E[Tu]E => > P(r=gq) (E[TuTs] —E[Tn]E [T])
BeEs, q:q(B)=B

-y w (E [TnTg5] — E[Tm]E [T5])

- <Z> B (B [Tw T3] — E[Tu]E [T5])
_<Z>_1mm§b S f(n,m,b,s),

s=0 BE(S[,
5=s
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where § = [MNB|. Set ¢smp = |[{€ € : |EN{1,...;m}|} = s|. If s > min(m, b), we have ¢ . = 0.

For s < min(m, b)
m\ (n—m
()

E[TyTxp) — E[Tu]E [T5] = <Z> -1 mij:@ <m> <?Z - Tsn) F(n,m,b, ).

It follows
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5.3. The case p = 2.

We use the same methodology to find optimal change points as in the one-dimensional case, with
the additional step of performing a permutation of the observations Y7, ..., Y}, which is akin to cre-
ating a new X-dimension. After finding the change points in the second dimension, a joint optimal
change point (r(l), r(2)) is established. In figure 8 we observe the distribution of two-dimensional
change points using underlying distributions (N, t1,%p1) for Y. We observe that the density is the
greatest at the corners as one would expect for two independent arcsin-distributed variables, with
increasing uniformity as the distributions get more heavy tailed. We also compare the distance

between the largest observation 7 and change point r in the 2-dimensional setting.
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argmax(Y’) — CPz2

o=
E

-79

-98

2

&

w &8 w2 N @
2

5

- B

1

2D Histogram of optimal change points:
Y~Normal, n=100, p=0, trials=10000

10 15 28 37 46 55 64 73 82 91
Change point 1 (original ordering)

(A) n=100, Y ~ N

2D Histogram of differences A:
Y~Normal, n=100, p=0, trials=10000

298 —79 —60 -4l —22 -3 16 35 54 73 92

Ar = argmax(Y) = CP1

(D) n=100,Y ~ N

0.0010

g
8

0.0006

Probability density

g
g

0.0002

0.00014

0.00012

0.00010

ity

0.00008

0.0000¢

=
Probability densi

0.00004

0.00002

0.00000

argmax(Y’) = CPz

b =

w &8 o2 N omo©

Change point 2 (permuted ordering)

2D Histogram of optimal change points:
Y~t_1, n=100, p=0, trials=10000

|
1
0.0005
2
3
0.0008 2
4 G
2
7]
5 s
0.0003 2
3 =
3
g
7 S
0.0002 2
8
° 0.0001
o
1
1 10 19 28 37 46 55 64 73 82 91
Change point 1 (original ordering)
(B) n=100, Y ~t;
2D Histogram of differences A:
~t_1, n=100, p=0, trials=10000
0.0008
0.0007
0.0006
2
0.0005 2
g
°
. 0.0004 2
z
3
0.00038
I
0.0002
0.0001
0.0000
-98 =79 —60 —41 -22 -3 16 35 54 73 92

Ax = argmax(Y) — CPy

(E) n=100,Y ~t;

2D Histogram of optimal change points:
Y~t 0.1, =100, p=0, trials=10000

[] 0.00018
o1
E)
Ea 0.00016
]
T
2 000014 2
g4 £
3 g
Ess 0.00012 ';
1]
L6 3
~
2 0.00010 8
£37 °
3 °
) =
v
v 0.00008
519
2
O 0.00006
1
1 10 19 28 37 46 55 64 73 8 Ol

Change point 1 (original ordering)

(C) n = 100, Y ~ tO.l

2D Histogram of differences A:
Y~t_0.1, n=100, p=0, trials=10000

0.0012

54 0.0010

0.0008

0.0006

argmax(Y’) — CP2
4

0.0004

Az
1
&

0.0002

-98 0.0000
-98 -79 -60 —41 -22 -3 16 35 54 73 92

Ay = argmax(Y) — CPy

(F) n = 100, Y ~ to.1
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5.4. The case p — 0.

We have seen that the joint distribution of two variables is very similar to the product of their
marginals, next we investigate what the distributions look like when there are significantly more
features. Figure 9 shows that the distribution of the optimal change points in each feature changes
with increasing dimensionality. In figure 10 we use a 2-dimensional histogram to compare the dif-
ference between the asymptotic change point distribution and a 2-dimensional arcsine distribution.
This allows us to understand how increased dimensionality changes the distribution in relation to
arcsine probability. We observe that the corners give a higher probability to the empirical probabil-
ity. This suggests that the change point distribution is more likely to generate an extreme outcome
than the theoretical 2d-arcsine distribution. The plots in figure 11 show that the distribution of 7~;L7p
loosely approximates a standard Gumbel, but we find that the standardization constants a, and b,
are not sufficient for stabilization to a standard Gumbel for p > 1. The QQ-plots in figure 12
corresponding to the distributions in figure 11 show that the mean shifts significantly with p, while
the variance stays relatively stable, albeit the constant a,, for p = 1 may need refining as we observe
a thinner tail than expected. Figure 13 explores taking a shift d, = logp to compensate for the
rightward shift observed.

Winning change-point location t = r/n | p=1, n=100 Winning change-point location ¢ = r/n | p=5, n=100 Winning change-point location t = r/n | p=50, n=100
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F1GURE 9. Location of optimal change point within the feature in which it lies. The
figure shows how the distribution changes with dimensionality p.

2D1r(1)istogram of Empirical cp — arcsine probability
Tl
0.06

0.8

o
o
by

0.6

r2
°
=
38

0.4

0.2

Empirical — arcsine (probability per bin)

°
°
-l
|
S
&

FiGURE 10. 2-dimensional histogram comparing the observed probability of change
point location against an arcsine distribution.
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FiGure 12. QQ-plot comparing the distributions of simulated test statistics against
a standard Gumbel. The dashed lines represent the theoretical quantiles of a stan-

dard Gumbel, while the blue data points are the simulated quantiles.

Overlayed histograms across p | n=5000, trials=50000

0.5 —— Gumbel(0,1) pdf
1 p=1
[ p=2
0.4 1 p=3
1 p=4
203
‘@
c
9]
o
0.2 4
011 \
%@%ﬁ\
0.0 I |
-1 0 1 2 3

(Tn,p —bn)la, —logp

FIGURE 13. Distribution of 7, = T"%;b" — log(p) under Hy. The constant d), =
log(p) appears to center the mode fairly well around 0, but some additional scaling
constant ¢, may be needed.
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With each dimension we need to consider another Gumbel-distributed statistic G; = ’ﬁ(i). This

means when the dimensionality of D is p one takes the maxima of p Gumbels. Fortunately, the
Gumbel distribution is max-stable [6, Thm. 3.2.2]. Max-stability means that the maximum of p
draws from the same distribution £’ has the same distribution as an affine scaling of F'. In our case,
a Gumbel distributed r.v. G satisfies

max{G1,...,Gp} g G+ d,

where G, ...,G)p are i.i.d. and ¢, > 0, d, € R. Consider the variable M, = max G, then for i.i.d.

1<i<p
Gumbels G1, ..., Gp, it holds that
max{G1,...,Gp} = P(M, < t)
p
=||P(Gi <)
=1
= A(t)P
= exp{—e "}? = exp{—pe '} = exp{—e ITIo8P}
= A(t +logp).

Thus the constants are found to be ¢, = 1 and d), = logp as shown in [6, Def. 3.2.6]. Heuristically

(20 gy

a

this suggests that
where a,,b, are the 1-dimensional constants needed for 7, to become standard Gumbel, while
cp, dp are max-stable constants to compensate for growing dimensionality.

The constants a,, and b,, inspired by [15] are approximations and not proven to hold perfectly. Not

all literature on this topic uses the same constants, so we began exploring with various similar

s
constants a, bY. By using the squared statistic 7 = % instead of the unsquared version
used in [15], we set up the system of equations
. 7;1 - bn . —x
lim P <z | = lim P(7, <apz+b,) =exp(—e¥) (%)
n— 00 G, n—00
lim P M <z )= lim P(77? <aizx+b) =exp(—e ") (%x)
n—00 a:z n—00 n n n

In order to express the desired constants a;;, by, in terms of a,, b, we can square the expression
in (%) to get
P (7;2 < a’2® + apbyz + bi) =P (7;2 <ayz+by)
and subsequentely
a2z? + 2apbpr + 02 = alx + b, .

2

222 = 0 - 22 vanishes and are left with

Here the second order term a
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Thus, we find that

1 1
ap, = 2anbn = 2ay, ( + 50n log(3) n+ ap log(27r_§)>

an

4
=2+4a2 log® n + a2 log <)
T

1 4
ot (10g® 1o ())
210g<2>n< & S\ x

where the o(log® n)~! term dominates the o(log® n) and o(1) terms as n — co, meaning
nh_)n(r)lo a, = 2.
We also have

11 ?
bh =02 = (a + 30n log® n + ay log(2ﬂ§)>
n

1 4
=+ log® n + log <>
a T

n

+a? (i(log(g’) n)? +log® n - 10g(27r_%) + (log(27r_§))2>

where a2 = o(log® n)~! dominates the terms inside the brackets which are
o([log® n]?) + o(1 - log® n) + o(1) .

Asymptotically, dropping the terms that — 0 as n — oo we get the constant

4
lim b; = lim {210g(2) n +log® n + log <> } :
n—oo T

n—o0

Which order terms to keep is an arbitrary decision. Keeping the linear and greater terms ap-

pears to work quite well. Using the limit constants for a; and b; we find that, when n = 5000,
the mean and standard deviation of the distribution of 7 := T'?a:b’*l are fops(n = 5000) = 0.473

and oys(n = 5000) = 1.335. The theoretical values of a standard Gumbel are p = v ~ 0.577,

T

where v is the Kuler-Mascheroni constant, and ¢ = vl 1.283. Correcting for this dispar-

= 2 — L and mean-correction
Oobs 1.04

term k,(n = 5000) = p — pops = 0.104. This means we get a good standard Gumbel approximation

ity we introduce a variance-correction factor k,(n = 5000)

with 7, := ko (n) T,* + k,(n). Figures 14 — 16 demonstrate the accuracy of these constants includ-
ing the shift d, = logp. Why the constants we derived for the squared statistic appear to work
significantly better than the constants we derived for the unsquared statistic from [15] is not clear.
The final step is to find constants ¢, and d, such that cp’f;;p —d, ~ A. Recall that we expect ¢, = 1
and d, = log p due to max-stability. Table 1 explores the effectiveness of ¢, = 1 and d,, = log p and
finds that these constants do not deviate pops and oyps of the empirical distribution from p and o
of A by more than 5% for p < 6.
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Histogram vs Gumbel | n=5000, p=1, trials=50000 o Histogram vs Gumbel | n=5000, p=2, trials=50000 Histogram vs Gumbel | n=5000, p=3, trials=50000
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FIGURE 14. Asymptotic distribution of the statistic cp’i;;p — dp, where
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FiGure 15. QQ-plot of cp’i:;p — d,, against a standard Gumbel.
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FIGURE 16. Distribution of ’72*’p —log(p) under Hy. For small p the constants ¢, = 1
and d, = logp produce a distribution very close to a standard Gumbel.
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N | P | Hobs | 1 — Hobs | B2 | Oops | 0 — Oops | T
5000 | 1] 0577 ~0 ~1 [1283] ~o0 ~1
5000 | 2 | 0.574 | —0.003 | 0.995 | 1.302 | +0.019 | 1.015
5000 | 3 | 0.592 | +0.015 | 1.026 | 1.332 | +0.049 | 1.038
5000 | 4 | 0.586 | +0.009 | 1.016 | 1.316 | +0.033 | 1.026
5000 | 5 | 0.599 | +0.022 | 1.038 | 1.317 | +0.034 | 1.027
5000 | 6 | 0.601 | +0.024 |1.042 | 1.319 | +0.035 | 1.027

TABLE 1. Mean and standard deviations of 7~;L*J, — log(p) compared to a standard
Gumbel. The table suggests that ¢, < 1, ¥p > 1 and d, > logp (for p > 3). The
ratio of the observed and theoretical statistics is within £5% for all observed p.

6. CONCLUSIONS

This thesis develops a change—point perspective on binary splitting of datasets and demonstrated
that likelihood—ratio statistics can be used to regularize regression trees. Treating each split as
a change—point problem, we use a likelihood ratio test to determine if the change is significant,
under the null that there is no change. In the one-dimensional case we find that when Y is in the
domain of a Gaussian distribution, Donsker’s invariance principle maps the partial sum process,
given by 7,, to a Brownian bridge. The location of the maximizer r* converges by the arcsine law
to a Beta(%, %)—distribution. For the asymptotic distribution of the statistic itself, we used a result
from [15] to recover a standard Gumbel limit for T, = (T — bp)/an, under Hy. Simulations suggest
that T* = k,(n)(T2 — b%)/a* + k,(n) is a much better fit. The constants used are

lim a), =2
n—oo

4
by, =2 log® n +1og® n + log <>
T

k,,(5000) = 0.104
1
1.04°

From there one can use critical values of a standard Gumbel to determine whether the candi-

ko (5000) =

date split is statistically significant. When the observations have infinite variance, a stable-bridge
limit replaces the classic Donsker theorem. While a closed—form result for the maximizer has
not been discovered, simulations show that the asymptotic distribution can be approximated by
a Beta(v,v) where v € [3,1]. The parameter v grows continuously from 3 (arcsine) in the finite
variance case, to 1 (uniform) as the tails become thicker.

Beyond the univariate case, we investigate the pairwise covariances of single—feature statistics.
It becomes clear that the amount of overlapping features s = |M N B| determines the pairwise
covariance. If features have dependence, one can plug in a weight factor for each set combination
since larger overlaps are more likely. When dimensionality is high (p — o0) one finds that the
distribution of the change points reduces the number of extreme splits, but overall has a smaller

impact than n. Finding an analytical formula for how the asymptotic distribution behaves as p — oo
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could be a natural extension to this thesis. The distribution of 7, , remains in the family of Gumbel
distributions, but the mean grows oc logp with p — co. Thus, a standardization ¢, ~ 1, d, ~ logp
is necessary. Simulations for 1 < p < 6 show that ¢, < 1 and d, > logp. Finding improved
dimensionality constants c,, d, could be further explored in another paper.

Our analysis works exclusively with i.i.d. variables within nodes and focuses on shifts in the mean.
One could extend this thesis to handle multivariate responses Y(y),...,Y(q), different underlying
distributions, or dependent relationships between features. Theory for stable bridges in multiple
dimensions remains an open topic. Finally, as the motivation for this thesis lies primarily with
applying statistical tests and change point detection for regularizing regression trees, this would be
a natural next step to take.

APPENDIX A. AUXILIARY RESULTS
We need the following lemma; see for example parts b) and d) of Theorem in [14].

Lemma A.1 (Moments of quadratic forms). Let z = (Z1,...,Z,)" be a random vector with i.i.d.
entries, with E[Z1] = 0,E[Z?] = 12, E[Z{] = v4 < 00, and let A, B, C be real and symmetric n x n

nonrandom matrices. Then
E[z' Az-z'Bz] = tr(A) tr(B) + 2tr(AB) + (v4 — 3) tr(A 0 B),
where o denotes the Hadamard product. As a special case we get the variance
Var(z' Az) = 2tr(A?) 4 (14 — 3) tr(A o A).
If additionally E[ZY] = vg < 0o, one has
Elz'"Az-2'Bz-2'Cz] = trAtrBtrC+2(tr A -tr(BC) +trB - tr(AC) + tr C - tr(AB))
+ (—3)(trA-tr(BoC)+trB-tr(AoC)+trC-tr(AoB))
+ 4y —3)(tr(A-(BoC))+tr(B-(AoC))+tr(C-(AoB)))
+ (v6— 1514+ 30)tr(AoBo C) + 8tr(ABC).
Particularly,
E[(z' Az — E[z" Az])3] = 8tr(A%) +12(v4 — 3) tr(A 0 A?) + (v5 — 1504 + 30) tr(A o Ao A).
APPENDIX B. SOLVING CONSTANTS FOR STANDARD (GUMBEL DISTRIBUTION

The test statistic T, converges to a standard Gumbel distribution when there are standardizing
constants a,, and b,,. We call this standardized statistic 72, where

T %_bn n—oo

To= 1200 2% (1) = exp(—e )
an = [2log® n]_%

1 1 (3) _1
b, = . + §anlog n+ aplog(2r™2).

Here log(k) n is the k-th iterative logarithm of n.
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To derive these constants one sets

and
7;1 - bn

which means
exp(—27~2e7?) = exp(—e7Y)

e o V2emr — o

— log(2n V) —z = —y
— y =z —log(2n1/?)

Tna_ O TP og(armir2)

n_i)n —
— T, —b,=a, TEL — log (27 1/2) .

n

In terms of z and constants it follows that
T, = anx + by,
T, = any + by = anx — ay log(27771/2) + by, .

So we have
dnm + Bn = pT — Qp, 10g(27r_1/2) + bn .

Since the z-terms satisfy a,x = anz, it holds that a = a. We then solve for b,, where the

remaining terms are
by = by, + an 10g(27r*1/2)

and since we know
an = (2loglogn)~1/?

. 1 1
b, = — + —an, log(3) n
a, 2

we find that
1 1
b, = — + 2n log(?’) n+ ay, log(27r_l/2)

n

Remark B.1. It is interesting to compare with the maximum of iid standard normal variables Z;.

In this case, the norming constants can be chosen as

. 1 ~ loglogn + log(4m)

an, = ——— and b, =+/2logn — .
" 2logn " 8 2¢/2logn

and 2x(Z1Zn)=bn converges in distribution to standard Gumbel A.

Qan N ~
We notice that aiogn = an and biggn ~ b,. Even the two leading order terms of bioe, and by,

coincide. The third order terms are slightly different.
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APPENDIX C. MULTIDIMENSIONAL ASYMPTOTIC DISTRIBUTION WITH DEPENDENT FEATURES

When the features X, X2 are dependent, the joint distribution can no longer be modeled
as the product of two independent arcsin-distributed r.v.’s, instead the joint distribution behaves
increasingly similar to the one-dimensional case, as the location of outliers are more likely to occur
at a similar position. Figure 17 visualizes the asymptotic joint distribution of the change points, and
how much impact the largest outlier has for each underlying distribution. The setup for figure 17 is

such that observations Y7, ..., Y, S

N from feature 1 are permuted such that, with probability p,

the observation Yy, k € {1,...,n} is fixed to the same location as in XM, SoP (Yk(l) = Yk(2)> =p.
The remaining non-fixed observations are permuted randomly.

2D Histogram of optimal change points:
Y~Normal, n=100, p=0.2, trials=10000
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