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Abstract

This thesis tackles binary splitting of regression trees through the
lens of change-point detection. Consider a dataset with multidimen-
sional features and a one-dimensional response variable. A binary
split attempts to form partitions of observations with similar response
values. A typical Classification and Regression Tree (CART) lacks an
inherent stopping mechanism to avoid over-partitioning which leads
to overfitting. CARTs tend to rely on cross-validation to reduce over-
fitting, but then one loses out on valuable training data. We propose
a method that succeeds at generalizing without removing any data
from the training set. We model this setup as a change point prob-
lem, where the change point is the index of an ordered dataset where
the partitions are optimal. A likelihood ratio test is used to deter-
mine the significance of each recurring optimal change point. We first
study the one-dimensional asymptotic distribution of the split location
under the null hypothesis (that there is no change point).

Using a likelihood ratio statistic we recover the argmax of a Brown-
ian bridge, which has an arcsine distribution, when the noise has finite
variance. In the case where the noise has infinite variance, a stable-
bridge limit results in an approximate Beta distribution approaching
to uniformity as tails thicken. The limiting distribution of the statistic
is approximated by a Gumbel distribution that changes by an affine
scaling as dimensionality grows. Across Gaussian and t-distributed
response variables, this method provides a solid method for parti-
tioning datasets, while avoiding overfitting, and could be useful when
regularizing regression trees.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: mabr3613@student.su.se. Supervisor: Johannes Heiny and Taariq Fahran
Nazar.
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1. Introduction

Change point detection is a fundamental problem in statistics, with applications across various

fields such as time series analysis, finance, and supervised and unsupervised machine learning. The

core idea is to identify points in a sequence of data where the statistical parameters, such as the

mean, undergo a significant shift. In the univariate case, this problem has been studied extensively,

where methods based on likelihood ratios have been demonstrated to be useful. The asymptotic

properties of these methods have been rigorously analyzed, e.g. in [9, 15] for independent data

points. With the increasing prevalence and importance of multidimensional datasets in contempo-

rary data science applications, there is high demand for effective methods to detect change points

in multidimensional data. Unlike univariate data, where each observation is a scalar value, multidi-

mensional data represents features as vectors, adding complexity to the analysis. Recent progress

has been made e.g. in [4, 8, 10].

This thesis aims to extend the framework of change point detection to the multidimensional setting.

More precisely, the project focuses on adapting likelihood-based methods to handle the challenges

introduced by high-dimensional datasets. A key objective is to analyze the asymptotic behaviour

of likelihood ratio test statistics in settings where the sample size n and/or the dimensionality p

are large. Understanding the asymptotic behaviour of likelihood ratio test statistics will allow

us to apply the framework of change point detection to regularize regression trees. Engler et.

al. [7] provides some inspiration for using change point detection to regularize CART trees.
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1.1. Notation.

Convergence in distribution (resp. probability) is denoted by
d→ (resp.

P→), equality in distribution

by
d
=, and unless explicitly stated otherwise all limits are for n → ∞. We write random variables

as X,Y , vectors as x,y, and X,Y to represent matrices. Subscript Xk refers to the k-th obser-

vation of X, while superscript X(i) is used to describe the i-th feature dimension. T describes a

single partition, while T describes an optimal partition. Assume Y ∼ N and all X ∼ i.i.d. unless

specified. Λ refers to a standard Gumbel distribution which has C.D.F. exp (−ex).

2. Decision trees with binary splitting

In machine learning we are often interested in partitioning data into groups, where the simplest case

is a binary partition. However, we are usually interested in partitioning the data in a data driven

manner. Consider a dataset D = {(Xk, Yk)}nk=1 where Xk ∈ X for some p-dimensional feature space

X and Yk ∈ Y for some 1-dimensional response space Y. We are interested in splitting the data in

terms of X, into partitions which have similar values of Y . We achieve all this by minimizing some

loss L and choose the split that results in the smallest loss. Trying to compare partitions of n data

points is computationally infeasible. Instead, we can recursively split the data into two parts to

obtain a satisfactory partition. This procedure is implemented for instance on Classification and

Regression Trees (CART) [2].

A simple algorithm for obtaining binary partitions is to order the data according to the fea-

tures
{
X(i)

}p
i=1

. That is, for each feature i, order the data D such that X
(i)
1 ≤ X

(i)
2 ≤ ... ≤ X

(i)
n .

Then construct a list πi = {πi(1), πi(2), ..., πi(n)} of time-indexes πi(k) which maps the k-th small-

est observation to the index at which the observation exists in the original data.

The ordered sequence is thus

Xπi(1) ≤ Xπi(2) ≤ ... ≤ Xπi(n) .

Which means that {(
Xπi(k), Yπi(k)

)}n
k=1

can be modeled as a time series with respect to feature i. The loss function with a binary split at

time index r is

Lr :=

r∑
k=1

(Yk − Y 1:r)
2 +

n∑
k=r+1

(Yk − Y r+1:n)
2

= S1:r − Sr+1:n ,

where Y l:r = 1
r−l+1

∑r
k=l Yk is the mean of the observations Yk on the interval l ≤ k ≤ r and

the sum of squares is defined

Sl:r :=
r∑

k=l

(Yk − Y l:r)
2 =

r∑
k=l

Y 2
k − 1

r − l + 1
Y 2

l:r .

An optimal splitting index with respect to feature i is then chosen as r∗ = argmin
r

Lr. Comparing

the optimal split across all features yields a global optimal split in the form of the pair (i∗, r∗),
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where i∗ is the dimension in which the optimal split occurs. This pair is then used to form the

following binary partitions:

D1 =
{(

Xπi(k), Yπi(k)

)
∈ D | Xπi∗ (k) ≤ Xπi∗ (r∗)

}
, k ∈ {1, ..., n}

and

D2 =
{(

Xπi(k), Yπi(k)

)
∈ D | Xπi∗ (k) > Xπi∗ (r∗)

}
, k ∈ {1, ..., n}.

This means only the dimension in which the change occurs is partitioned. Recursively applying

the same procedure to each subsequent partition we can obtain finer partitions across various fea-

tures and call the resulting final partitions a binary tree. Continually partitioning the data leads

to overfitting, since in many cases the data cannot reasonably be partitioned further. The algo-

rithm needs some stopping criterion to determine if the data can be partitioned or not. Without

knowing the data generating process, we can never be sure if there is a change point in the data,

however, we can use statistical tests to determine a confidence level for the partition and stop

the procedure when we are confident, to some level, that the data can’t be partitioned further.

3. Decision trees as a change point detection problem

We notice that our problem is similar to the problem of finding a change point, as explored

in [7]. That is, we are interested in finding the index k where a change in the data occurs,

we can directly use results from change point detection literature. The results from [15] pro-

vide an explicit construction for a statistical test for binary partitioning. In the case, where

the feature space X is one-dimensional, we can use these results. However, the premise of this

thesis is that we are interested in the case where the features are multidimensional. Therefore,

we need to extend the model to the multidimensional setting. More precisely, we want to com-

pute the asymptotic distribution for the loss L when the feature space X has dimension p > 1.

Consider the feature space X = Rp and response space Y = R where each feature is a sequence

of n ∈ N random variables {
X

(i)
1 , ..., X(i)

n ∼ F (i)
}p

i=1
.

where F is some continuous distribution with nonzero variance. Response variables are constructed

as

Y = µ (X) + ε,

where µ(X) is a regression function of X(1), ..., X(p) and noise ε has i.i.d. Gaussian components

with mean zero and variance σ2 > 0. This means that our dataset is

D =

{(
X

(1)
k , ..., X

(p)
k

)⊤
; (Yk, ..., Yk)

⊤
}n

k=1

.

The goal is to find the optimal change point (i∗, r∗) to partition at, i.e. the index r∗ and feature i∗

which minimizes the loss, then determine if it is statistically significant. For this we use a likeli-

hood ratio test as in [15].

The null hypothesis is that there is no change point, i.e.

H0 : r
∗ = n ,
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while the alternative hypothesis is that a change point does exist

H1 : r
∗ < n .

If H0 is rejected, meaning (i∗, r∗) is in fact a change point, then the process is repeated with the

optimal partition. We continue to repeat this algorithm until after K iterations the K:th optimal

change point (i∗, r∗)K is not statistically significant. The results from [15] show that the generalized

negative log likelihood ratio of H0 in the univariate Gaussian case is proportional to:

Tn := max
1≤r≤n−1

[S1:n − S1:r − Sr+1:n] ,

where

Sl:m =
m∑
k=l

(
Yk − Y l:m

)2
UnderH0, [15, Thm. 2.1] asserts that Tn has the asymptotic distribution of a non-standard Gumbel,

lim
n→∞

P

(
Tn − b̃n

ãn
< x

)
= exp

(
−2π− 1

2 e−x
)
, −∞ < x < ∞ ,

where the constants are ãn = (2 log log n)−
1
2 and b̃n = ã−1

n +2−1ãn log
(3) n. In the case where there

are p > 1 features, the test statistic takes the form

Tn := max
1≤i≤p

max
1≤r≤n

T (i)
r

where the loss for a particular partition (i, r) is

T (i)
r := S

(i)
πi(1:n)

− S
(i)
πi(1:r)

− S
(i)
πi(r+1:n) .

The optimal partition is found by maximizing T over elements r and features i

(i∗, r∗i ) := argmax
1≤i≤p

1≤r≤n−1

T (i)
r .

Throughout this paper we would prefer to work with statistics that converge on a standard Gumbel

rather than the non-standard Gumbel shown above. To do this we must find an and bn such

that, under H0:

lim
n→∞

P
(
Tn − bn

an
< x

)
= exp

(
−e−x

)
, −∞ < x < ∞.

We call this standardized statistic T̃n, where

T̃n =
Tn − bn

an
.

We can derive the solution to an and bn by using the Convergence to Types theorem from [6].

Theorem 3.1. (Convergence to types theorem). Let A, B, A1, A2 be r.v.s. and bn > 0, βn > 0

and an an, αn ∈ R be constants. Suppose that

b−1
n (An − an)

d→ A .

Then the relation

β−1
n (An − αn)

d→ B (∗)
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holds if and only if

lim
n→∞

bn/βn = b ∈ [0,∞), lim
n→∞

(an − αn)/βn = a ∈ R . (∗∗)

If (∗) holds then B
d
= bA+ a and a, b are the unique constants for which this holds.

When (∗) holds A is non-degenerate if and only if b > 0 and then A and B belong to the same

type.

It is immediate from (∗∗) that the constants an and bn are uniquely determined only up to the

asymptotic relation (∗∗).

The constants from [15, Thm. 2.1] are as mentioned,

ãn = [2 log(2) n]−
1
2

b̃n = ã−1 +
1

2
ãn log

(3) n

where log(k) n is the k-th iterated logarithm of n. Using Theorem 3.1, one finds that

an = [2 log(2) n]−
1
2

bn =
1

an
+

1

2
an log

(3) n+ an log(2π
− 1

2 ) .

are the constants for which the statistic T̃n converges on a standard Gumbel. See Appendix B for

more detail.

3.1. Quadratic forms of the test statistics.

Moving forward it will be beneficial to work with the data in quadratic form. Our motivation

for doing so are primarily that matrix operations are easier to generalize and perform on a large

scale, and that the notation becomes clearer. In this section we present some useful lemmas and

definitions in regard to the quadratic forms. Consider a response vector y of observations Yk:l

yk:l := (Yk, Yk+1, ..., Yl)
⊤ .

Define a vector of ones by

1k := (1, 1, ..., 1)⊤ ∈ Rk

and set

Jk := 1k1
⊤
k .

Furthermore, for 1 ≤ k ≤ l ≤ n we set 1k:l = 1{k,k+1,...,l} ∈ Rn, where 1{k,k+1,...,l} is a vector of

length n that has ones at indices {k, k + 1, ...l} and zeroes elsewhere.

Lemma 3.2. For 1 ≤ k ≤ l ≤ n, one has

J2
k:l = 1k:l1

T
k:l1k:l1

T
k:l = (l − k + 1)1k:l1

T
k:l = (l − k + 1)Jk:l ,

where Jk:l ∈ Rn×n is a block matrix with ones at places where the row and column are on the

range {k, ..., l} and zero elsewhere.
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Lemma 3.3. It holds that the sum of squares corresponding to yk:l is

Sk:l =

l∑
i=k

Y 2
i − (l − k + 1)Y 2

k:l

= (yk:l)
⊤ Il−k+1 yk:l −

1

l − k + 1
(yk:l)

⊤ Jl−k+1 yk:l .

Lemma 3.4. We can write Tr in quadratic form as

Tr = y⊤
1:nQr y1:n

where Qr is the following block matrix

Qr =

(
(− 1

n + 1
r )Jr − 1

n1r(1n−r)
⊤

− 1
n1n−r(1r)

⊤ (− 1
n + 1

n−r )Jn−r

)
.

Proof. An application of Lemma 3.3 yields

Tr = S1:n − S1:r − Sr+1:n

= (y1:n)
⊤ In y1:n − 1

n
(y1:n)

⊤Jn y1:n

− (y1:r)
⊤ Ir y1:r +

1

r
(y1:r)

⊤Jr y1:r

− (yr+1:n)
⊤ In−r yr+1:n +

1

n− r
(yr+1:n)

⊤Jn−r yr+1:n

= (y1:n)
⊤

(
(− 1

n + 1
r )Jr − 1

n1r(1n−r)
⊤

− 1
n1n−r(1r)

⊤ (− 1
n + 1

n−r )Jn−r

)
y1:n

= (y1:n)
⊤Qr y1:n .

□
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4. Asymptotic distribution of optimal change points

Consider the one-dimensional case. For k = 1, ..., n − 1 we want to understand the probability

Pk := P(k maximizes Tn). We know that it must be symmetric around n−1
2 , since under H0 the

time series is exchangeable. We model the probability by setting up the system of equations

n−1∑
k=1

Pk = 1 , Pk = Pn−k .

In the case that n is even, there is a unique mid-point r = n
2 that partitions the data into equally

sized groups where the system of equations is

n−1∑
k=1

Pk = 1 , Pn/2 = 1− 2

n
2
−1∑

k=1

Pk .

In the case that n is odd, the equation becomes

P⌊n
2
⌋ =

1− 2

⌊n
2
⌋−1∑

k=1

Pk

 · 1
2
= P⌊n

2
+1⌋ .

(a) Distribution of Pr∗ in the case Y ∼ N (b) Distribution of Pr∗ in the case Y ∼ tν=1

Figure 1. Probability estimates for the location of optimal change points r∗ using

t-distributed outputs Y , based on 20 000 simulation trials. A Gaussian distribution

is equivalent to the t-distribution when the degrees of freedom are ν → ∞, while a

Cauchy distribution is when ν = 1 and thus has heavier tails. The heavier tailed

Cauchy distribution gives a higher probability to the partition occurring at the mid-

point r = ⌊n/2⌋.

We conclude that a key component of understanding the general probability of optimal change

points Pr, is to find the probability of the change point occurring at the middle-index P⌊n/2⌋. Before

we attempt to find an analytical formula to determine this probability we want to get an idea of

the distribution by simulating the time series Y1, ..., Yn ∼ DY and finding the argmax of Tn. In

this section we normalize the change points by setting t = r
n , representing a time on t ∈ [0, 1].

This makes it easier to compare the various distributions. In figure 1 we compare the outcome

of optimal change points in the smallest non-trivial case, that being n = 4, from a simulation

of 20 000 trials, with the only difference being the distribution of Y . The figure clearly shows that

the heavier tailed Cauchy distribution results in an optimal partition at the center more often than
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when output variable has a thinner tailed Normal distribution. This finding establishes that Pr

depends on the distribution DY when n is small. Next we explore what patterns emerge when the

number of observations is larger.

In figure 2, we analyze the optimal change point distribution when the number of observations n

is higher. Indeed; the difference in concavity between Normal and Cauchy distributed Y ’s persists

for moderately sized n. In the figure we have also included a discrete approximation of the arcsine

distribution for reference. This is because we observe Pr to converge on what appears to be

an arcsine distribution. Note that the arcsine distribution in turn is a special case of the Beta

distribution, Darcsin = Beta(12 ,
1
2). As we discuss further along this section, Pr is not expected to

precisely follow the discrete approximation, rather the discrete approximation itself converges to

the true arcsine distribution in the limit n → ∞, as seen in figure 3. Further, we observe that

regardless of the kurtosis (i.e. tailedness) of the distribution DY , the distribution Pr converges on

a concave distribution, meaning change points near or at the extremes are more likely than points

closer to the center. By understanding that the heavier the tail of a t-distribution, the more likely

extreme outliers are, we can deduce that when there is an extreme outlier in the dataset, i.e.

Yk∗ = max
k

Yk >> Y 1:n ,

the optimal partition is typically that Yk∗ belongs to the smaller set. This can be interpreted as the

outlier skewing the mean away from most other observations. Leaving a heavy outlier outside the

larger partition, decreases the loss, and thus ensures Tr gets maximized. Yk∗ is to be as isolated as

possible. By observation, it appears that the distribution of r
n converges to an arcsine distribution,

which has density

farcsin(u) =
1

π
√

u(1− u)
, 0 < u < 1 .

Since the change points are integers, it is useful to use a discrete probability function to compare

with. We therefore introduce a discrete approximation of the arcsine distribution. This distribution

has the probability mass function

P(r = k) =
pn(k)

Zn
,

where

pn(k) =
1√

k(n− k)
, k = 1, ..., n− 1

and

Zn =

n−1∑
j=1

pn(j) .

In the limit n → ∞, it follows that

Zn =

∫ n−1

1

1√
j(n− j)

dj = π

therefore, Zn ∼ π and one recovers the probability P(r = k) = 1

π
√

k(n−k)
.
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(a) Y ∼ N , n = 20 (b) Y ∼ t1, n = 20

(c) Y ∼ N , n = 50 (d) Y ∼ t1, n = 50

Figure 2. Empirical distribution of Pr at various levels of n and distributions

of Y . Asymptotically, Pr can be approximated by a discrete variant of the

arcsin /Beta(12 ,
1
2) function. Even for larger n, Pr is less concave when Y has a

heavy tailed distribution.

(a) n = 10 (b) n = 50

(c) n = 100 (d) n = 1000

Figure 3. Comparison of the continuous arcsine density farcsin with the discrete

arcsine PMF. The values of the PMF are scaled by a factor of one unit length 1
∆k

= n

so that the density at point k is dk = pk
∆k

= n·p. We observe that the discrete arcsine

PMF converges to the density function as n → ∞, but is also a good approximation

for relatively small n.
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(a) Y ∼ t0.1, n = 99 (b) Y ∼ t0.5, n = 99

(c) Y ∼ t1, n = 99 (d) Y ∼ t2, n = 99

Figure 4. When tailedness of Y is high, the magnitude of extreme outliers are

so great that only the location of the greatest outlier, which is uniform by inde-

pendence of Y ’s, determines the change point. So it appears Pr ≈ U = Beta(1, 1)

as ν → 0. In the case that Y has thinner tails, the magnitude of the greatest outlier

is not strong enough to dominate the partition, instead we see that Pr is closer in

distribution to farcsin = Beta(12 ,
1
2).

In figure 4 we explore the normalized distribution Pt for various cases of the t-distribution, using n =

99. The conclusion we make is that thinner tailed distributions, such as Gaussians, converge on a

limiting distribution that are close to farcsin = Beta(12 ,
1
2), while the thicker tailed t-distributions

(ν → 0) converge on distributions that approach a Uniform distribution U = Beta(1, 1).

We have alluded to the importance of extreme outliers. To get a hint of how it affects the location

of the optimal change point, we explore the distance between the largest outlier and the optimal

change point, that is [r̂ − r], where r̂ := argmax
k

(Yk) in figure 5. We observe that the average

distance is smaller when the tails are thick, meaning that the higher the kurtosis, and subsequently

the larger the expected outliers max(Y ), the impact of the greatest outlier grows. For very thick

tailed distributions, the optimal change point is almost always the same as argmax(Y ). In figure 6

we see how the probability P
(
r = argmax

k
(Yk)

)
decreases with higher degrees of freedom (thinner

tails). However if the greatest outlier is truly dominant, one would expect P(r̂ − r ∈ {0, 1}) ≈ 1.

We observe no greater than ∼ 0.5 for Y -distributions as thick-tailed as t0.05, which is almost uni-

form.



12 M. BREHMER

(a) Y ∼ N (b) Y ∼ t(ν = 1)

(c) Y ∼ t(ν = 1
2 ) (d) Y ∼ t(ν = 1

10 )

Figure 5. Distribution of r̂− r where r̂ = argmax
k

Yk and r is the optimal change

point.

Figure 6. The probability P (r̂ − r ∈ {0, 1}) (location of change point exactly same

as maximum Yk) across various degrees of freedom for t-distributed Y (Discrete

steps, Not to scale). Note that change point index is right shifted, so r = k means

that the partition occurs after observation Yk, which is why r̂− r = 1 is a partition

with argmax(Y ) as its final observation.
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4.1. Arcsine and beta laws.

In order to find a proof for why the asymptotic distribution of the location of change points is an

arcsine distribution, we begin by rewriting the expression for Tr as

Tr = S1:n − S1:r − Sr+1:n =
(S̃1:r − r

n S̃1:n)
2

r(1− r
n)

where S̃k:l =

l∑
i=k

(Yi), see [15, Eq. 2.1]. For simplicity we assume E[Yk] = 0. Theorem 4.1 provides

insight into the asymptotic distribution.

Theorem 4.1 (Asymptotic distribution of the change-point location under H0). Let (Yk)k≥1 be

i.i.d. with E[Y1] = 0 and finite Var(Y1) = σ2 > 0. Let

r̂n = argmax
1≤r≤n−1

Tr .

Then
r̂n
n

d→ Darcsin(0, 1)

which has density

f(t) =
1

π
√

t(1− t)
, 0 < t < 1 .

Proof. Step 1 (CUSUM process and scaling). Since we are working with the limit n → ∞,

and S̃m :=
∑m

i=1 Ỹi. Define the process

Bn(t) :=
S̃⌊nt⌋ − tS̃n

σ
√
n

, t ∈ [0, 1],

so that T⌊nt⌋ =

[
(S̃⌊nt⌋−t S̃n) 1√

n

]2
t(1−t) = σ2 Bn(t)2

t(1−t) .

Step 2 (Donsker’s invariance principle). Define the partial-sum process Wn(t) :=
S̃⌊nt⌋
σ
√
n
.

By Donsker’s invariance principle [1, Thm. 8.2],

Wn(t)
d→ W (t) as n → ∞,

where W is standard Brownian motion. Noticing that S̃n

σ
√
n

= Wn(1), we can apply the continuous

mapping theorem to (W (t),W (1)), which gives

Bn(t)
d→ B(t) := W (t)− tW (1) ,

where B is a standard Brownian bridge.

Step 3 (Argmax mapping). Define the estimated change-point fraction

t̂n := argmax
t∈{1/n, ..., (n−1)/n}

Bn(t)
2

t(1− t)
.

From Step 2, we have Bn
d→ B, where B is a standard Brownian bridge. We now view t̂n as the

image of Bn under the argmax functional

A(f) := argmax
t∈(0,1)

f(t)2

t(1− t)
.



14 M. BREHMER

For the continuous mapping theorem to apply, A must be continuous at the limit process B with

probability one. This holds because:

• B has continuous sample paths almost surely,

• B(t)2

t(1−t) almost surely attains its global maximum at a unique t ∈ (0, 1).

Under these conditions, A is a.s. continuous at B (see [13, Thm. 3.2.2]).

Therefore, by the continuous mapping theorem,

t̂n = A(Bn)
d→ A(B) =: t̂ .

That is

t̂ := argmax
t∈(0,1)

B(t)2

t(1− t)
.

The restriction of t̂n to the n−1-grid is asymptotically negligible, since the grid becomes dense in

(0, 1) as n → ∞ and B(t)2

t(1−t) is continuous a.s.

Step 4 (Change of coordinates). Consider the Brownian bridge

B(t)
d
= (1− t)W

(
t

1− t

)
, t ∈ (0, 1),

with W a standard Brownian motion. By the transformation u := t
1−t , We find that

B(t)2

t(1− t)

d
=

W (u)2

u
.

The map t 7→ u = t
1−t is strictly increasing for t ∈ (0, 1). As t̂ maximizes the bridge B, the

Brownian Motion maximizer for u is

û := argmax
u>0

|W (u)|√
u

, u ∈ (0,∞) .

The maximizer in t-space is

t̂ =
û

1 + û
.

Thus, it suffices to identify the distribution of û
1+û .

Step 5 (Lévy’s arcsine law). By the bijection u 7→ t = u
1+u , we have

t̂ =
û

1 + û
, û := argmax

u>0

|W (u)|√
u

.

Lévy’s third arcsine law implies that the location of the maximum of |W | on a finite interval is arc-

sine distributed [12, Ch. VI, Thm. 2.7.]. Using Brownian scaling and the monotone compactification

u 7→ t = u
1+u , it follows that

t̂ ∼ arcsine(0, 1), ft̂(t) =
1

π
√
t(1− t)

, 0 < t < 1.

This completes the proof. □
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Remark 4.2. For increments with infinite variance, such as for t-distributions where ν < 2, the

Donsker invariance principle does not hold [3] and is replaced by the stable invariance principle of

[11, Thm. 2], which shows that the CUSUM process, with scaling n− 1
α , converges to an α-stable

bridge Bα(t), where α is said to be the index of the stable law, related to tailedness. Doney [5]

proves that the distribution of the time of the maximum of such stable processes is concave and

symmetric about t = 1
2 . However it depends on α and is no longer arcsine. Thus, the arcsine law

holds only in the finite-variance case (α = 2), while for (0 < α < 2) one must instead work with

stable bridges, whose maximizer law lacks a closed form.

Despite the limiting distribution case being unknown in the infinite variance, we suspect that it

lies in the family of Beta distributions. More specifically, we know that for tν distributions

Tr
d→ Beta

(
1

2
,
1

2

)
, as n, ν → ∞ ,

and we expect

Tr
d→ Beta (1, 1) , as n → ∞, ν → 0 ,

however this remains unproven.

(a) n = 1000, ν ∈ (0, 2] (b) n = 1000, ν ∈ [1, 5]

Figure 7. Maximum Likelihood Estimated parameters of the asymptotic distribu-

tion Beta(γ, γ) vs degrees of freedom of the underlying t-distributed observations.

The parameter γ represents both standard parameters (α, β), since the limiting

distribution must be symmetric. 50000 trials, n = 1000.

We model the cases 0 < ν < 2 as symmetric Beta-distributions with parameter 1
2 < γ < 1.

Observing the simulated change points, we compute the MLE γ̂ for such Beta-distribution. The

results can be seen in figure 7a, which shows a somewhat linear or weak exponential relationship

between γ and ν. Figure 7b looks at cases up to ν = 5, which has infinite variance and in theory

should yield parameters γ = 1
2 . We observe a result closer to lim

ν→∞
γ = 0.37. A limitation of this

estimation is that n is finite.
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5. Multidimensional settings

5.1. Set notation.

In a multidimensional setting, it becomes difficult to follow which variables belong to which vectors,

and in which order the observations occur. Fortunately there is another approach that does not

require vectors to be re-ordered and that simplifies the notation while making many calculations

a lot more forgiving. Thus, in this section we will describe the model in the form of sets rather

than ordered sequences. Let N = {1, 2, ..., n} where n is the number of observations in the dataset.

Consider the the non-empty set Ri ⊊ N and its complement Rc
i := N \Ri. When a partition of D

is made, Ri contains the elements which belong to the partition before the change occurs, while

the elements on the other side of the change point belong to the set Rc
i . The pre-change point set

Ri may only contain elements that are ordered in terms of πi. This means that the order

πi(1), πi(2), ..., πi(n)

sets the restriction

πi(k) ∈ Ri =⇒ πi(k − 1) ∈ Ri ∀k ∈ N .

Each feature i allows Ri to select a new collection of indexes based on the order πi. The null

hypothesis that there is no change point is described as

H0 : R
∗ = N

and the alternative hypothesis that a change point does exist

H1 : R
∗ ⊊ N .

In the case that we want to compare two Ti’s, where the feature i is different, we use the notation

M = Ri

B = Rj where j ̸= i .

Many expressions in this section use the cardinality of the sets N,M,B and M ∩B, denoted as

n := |N |, m := |M |, b := |B|, s := |M ∩B| .

Further, this means for the complementary sets that

|M c| = n−m, |Rc| = n− b, |M ∩Bc| = m− s, |M c∩B| = b− s, |M c∩Bc| = n−m− b+ s .

The following definitions and lemmas are useful to describe and solve the problem using a set

approach.

Definition 5.1. The matrix JM is defined as

JM := 1M1⊤M

with vectors 1M constructed by the following

1M :=
∑
k∈M

ek ∈ Rn for M ⊂ N.

where ek is a zero-vector with 1 at position k and M is a set that represents indexes at which

observations belong to said class.
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Lemma 5.2. (a) Multiplying matrices JM and JB forms the expression

JMJB = 1M 1⊤M1B︸ ︷︷ ︸
s

1⊤B = s
(
1M1⊤B

)
for M,B ⊂ N.

(b) In the case that M = B, the square J2
M can be expressed as

J2
M = 1M1⊤M1M1⊤M = |M |

(
1M1⊤M

)
= mJM .

(c) The trace of the matrix 1M1⊤B that forms by multiplying two J-matrices is

tr
(
1M1⊤B

)
cyclic property

= tr
(
1⊤B1M

)
scalar
= 1⊤R1M = s .

(d) The Hadamard product between two J-matrices with observations belonging to sets M and B

takes the form

JM ◦ JB =
(
1M1⊤M

)
◦
(
1B1

⊤
B

)
=
∑

i,j∈M

∑
k,l∈B

(
eie

⊤
j

)
◦
(
eke

⊤
l

)
.

Lemma 5.3. (a) Trace of the matrix product of JM , JB

tr (JMJB) = |M ∩B|2 = s2 for M,B ⊂ N.

(b) Trace of the Hadamard product of JM , JB

tr (JM ◦ JB) = |M ∩B| = s for M,B ⊂ N.

Proof. (a) By multiplying two one-vector matrices

JMJB = 1M1⊤M1B1
⊤
B .

Using properties of scalar multiplication we obtain

1M1⊤M1B1
⊤
B = s · 1M1⊤B .

By properties of the trace and the result from 5.2 (d), it follows that

tr
(
s · 1M1⊤B

)
= s · tr

(
1M1⊤B

)
= s · s = s2 .

(b) It is established in lemma 5.2 (d) that

JM ◦ JB =
∑

i,j∈M

∑
k,l∈B

(
eie

⊤
j

)
◦
(
eke

⊤
l

)
.

By linearity of the trace, it follows that

tr

( ∑
i,j∈M

∑
k,l∈B

(
eie

⊤
j

)
◦
(
eke

⊤
l

))
=
∑

i,j∈M

∑
k,l∈B

tr
((

eie
⊤
j

)
◦
(
eke

⊤
l

))
=
∑

i,j∈M

∑
k,l∈B

δijkl

= |M ∩B|

= s

where δijkl = 1 when i = j = k = l and 0 otherwise are Kronecker deltas. Thus the trace only

depends on the number of intersected elements. □
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Using Lemma 3.4 we write the quadratic form of Ti,R as

Ti,R =

(
y
(i)
1:n

)⊤
QR

(
y
(i)
1:n

)
,

where

QR = − 1

n
JN +

1

r
JR +

1

(n− r)
JRc .

The test statistic using a set approach is

TN = max
i∈P

max
R⊊N

R ̸=∅

Ti,R .

where P = {1, 2, ..., p} is the set of input dimensions. Next, we collect some facts about QM and

QB.

Corollary 5.4. (a) Trace of the matrix QM

tr (QM ) = 1 .

(b) Trace of the matrix product of QM , QB

tr (QMQB) =
(mb− ns)2

mr(n−m)(n− b)
.

(c) Trace of the Hadamard product of QM , QB

tr (QM ◦QB) =
1

n
+

(ns−mb)(n− 2m)(n− 2b)

nmb(n−m)(n− b)
.

Proof. (a) Write QM = − 1
nJN + 1

mJM + 1
n−mJMc . We have

tr(QM ) = tr

(
− 1

n
JN +

1

m
JM +

1

n−m
JMc

)
= − 1

n
tr (JN ) +

1

m
tr (JM ) +

1

n−m
tr (JMc)

= −n

n
+

m

m
+

n−m

n−m
= 1 .

(b) Breaking the down the matrix we get

QMQB =

(
− 1

n
JN +

1

m
JM +

1

n−m
JMc

)(
− 1

n
JN +

1

b
JB +

1

n− b
JBc

)
=

1

n2
J2
N − 1

nb
JNJB − 1

n(n− b)
JNJBc − 1

nm
JMJN +

1

mb
JMJB

+
1

m(n− b)
JMJBc − 1

n(n−m)
JMcJN +

1

b(n−m)
JMcJB +

1

(n−m)(n− b)
JMcJBc .

Taking the trace we have

tr(QMQB) =
1

n2
tr(J2

N )− 1

nb
tr(JNJB)−

1

n(n− b)
tr(JNJBc)− 1

nm
tr(JMJN ) +

1

mb
tr(JMJB)

+
1

m(n− b)
tr(JMJBc)− 1

n(n−m)
tr(JMcJN ) +

1

b(n−m)
tr(JMcJB)
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+
1

(n−m)(n− b)
tr(JMcJBc)

=
n2

n2
− b2

nb
− (n− b)2

n(n− b)
− m2

nm
+

s2

mb
+

(m− s)2

m(n− b)
− (n−m)2

n(n−m)
+

(b− s)2

b(n−m)
+

(n−m− b+ s)2

(n−m)(n− b)
,

which reduces to

tr(QMQB) =
(mb− ns)2

mr(n−m)(n− b)
.

(c) Using the same simplifications as in (b), we write the expression as

tr (QM ◦QB) =
1

n2
tr(JN ◦ JN )− 1

nb
tr(JN ◦ JB)−

1

n(n− b)
tr(JN ◦ JBc)− 1

nm
tr(JM ◦ JN ) +

1

mb
tr(JM ◦ JB)

+
1

m(n− b)
tr(JM ◦ JBc)− 1

n(n−m)
tr(JMc ◦ JN ) +

1

b(n−m)
tr(JMc ◦ JB)

+
1

(n−m)(n− b)
tr(JMc ◦ JBc)

=
n

n2
− b

nb
+

(n− b)

n(n− b)
+

m

nm
+

s

mb
+

m− s

m(n− b)
+

n−m

n(n−m)
+

b− s

b(n−m)
+

n−m− b+ s

(n−m)(n− b)
,

which reduces to

tr (QM ◦QB) =
1

n
+

(ns−mb)(n− 2m)(n− 2b)

nmb(n−m)(n− b)
.

□

Lemma 5.5. (a) The covariance of the variables TM := Ti,R and TB := Tj,R takes the form

Cov(TM , TB) = f(n,m, b, s)

where f(·) is a function the intersection length s, the full lengths of observations n and the individual

set lengths m, b, which models the covariance of the test statistics. This function is

f(n,m, b, s) = 2

[
(mb− ns)2

mb(n−m)(n− b)

]
+ (ν4 − 3)

[
1

n
+

(ns−mb)(n− 2m)(n− 2b)

nmb(n−m)(n− b)

]
.

In the case the fourth moment of Y is ν4 = 3, such as when Y ∼ N (µ,Σ), the covariance is

simply

Cov(TM , TB) = 2

[
(mb− ns)2

mb(n−m)(n− b)

]
.

(b) The variance of TM can be expressed as

Var(TM ) = 2 + (ν4 − 3)

[
1

n
+

(n− 2m)2

nm(n−m)

]
.

(c) The correlation is given by

Corr(TM , TB) =
Cov(TM , TB)

σMσB
.

where σM :=
√
Var(TM ) and σB :=

√
Var(TB) are the standard deviations of the respective test

statistics.
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Proof. (a) To find this function one must compute the second moment and the product of first

moments

Cov(TM , TB) = E[TMTB]− E[TM ]E[TB] .

By Lemma A.1 it follows that

E[TMTB] = tr(QM ) tr(QB) + 2 tr(QMQB) + (ν4 − 3) tr(QM ◦QB).

We also have

E[TM ]E[TB] = tr(QM ) tr(QB) = 1.

Using Corollary 5.4, the covariance computes to

Cov(TM , TB) = 2

[
(mb− ns)2

mb(n−m)(n− b)

]
+ (ν4 − 3)

[
1

n
+

(ns−mb)(n− 2m)(n− 2b)

nmr(n−m)(n− b)

]
.

(b) One can find Var(TM ) by setting s, b = m in the expression for Cov(TM , TB)

Var(TM ) = E[(TM )2]− E[TM ]2

= tr(QM )2 + 2 tr(QMQM ) + (ν4 − 3) tr(QM ◦QM )− tr(QM )2

= 2 tr(QMQM ) + (ν4 − 3) tr(QM ◦QM )

= 2 + (ν4 − 3)

[
1

n
+

(n− 2m)2

nm(n−m)

]
.

□

5.2. General expression for covariance. In order to understand the relationship between two

test statistics, a key component is understanding the pairwise covariance, which may be beneficial

to finding a joint distribution for change points in higher dimensional settings. The full probabilistic

expression for the covariance between two test statistics is

Cov(T (i)
n , T (j)

n ) =
∑

M,B⊊N

wM,B · f(n,m, b, s)

where wM,B = P(M,B maximizes T (i)
n resp. T (j)

n ) is a weight describing the probability of the set

combination M and B occurring, while f(n,m, b, s) = Cov (TM , TB) is the covariance of two T ’s

with chosen sets M,B. Consider the case where the feature correlation is ρij = 0, this means that

the order π1 and π2, and subsequently the choices of M and B are independent of one another.

Define the probability that M , which has length m = |M |, maximizes Tn as

PM := P(M maximizes Tn) .

Now consider the set

M̃ = {1, 2, ...,m} where m ≤ n− 1 .

It follows that

PM̃ = PM
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since all observations are i.i.d. and thus the probability that any set of length m maximizes the

test statistic is the same. It also holds that

PM = PMc

as both sets M and M c imply that the change point occurs at the same place. Combining both

properties means that PM̃ = PM̃c and thus the probability for m = k is equivalent to the probability

for m = n−k, from which it follows that only the cases where m ≤ ⌈n−1
2 ⌉ form unique probabilities.

The number of ways to pick B is [
n−1∑
i=1

(
n

i

)]
= 2n − 2

since 1 ≤ b ≤ n− 1 and one can draw b elements from a total n.

Finding the weights wM,B seems complicated, however in Theorem 5.6 we manage to reduce the

problem to a joint distribution of m and b.

Theorem 5.6. Given i.i.d. features X(1), ..., X(p), and the set sizes m, b are known, the full co-

variance is

Cov(T (1)
n , T (2)

n ) =

(
n

b

)−1 min(m,b)∑
s=0

(
m

s

)(
n−m

b− s

)
f(n,m, b, s)

where f(n,m, b, s) is known from Lemma 5.5.

Proof. Consider π as a random permutation and write

T
(1)
M = TM , w.l.o.g. permutation is identity.

T
(2)
B = Tπ(B), (2) indicates second component of X.

Cov(T (1)
n , T (2)

n ) can be represented as E
[
TMTπ(B)

]
−E [TM ]E

[
Tπ(B)

]
, as component (1) has optimal

set M and component (2) has optimal set π(B). We understand that

E
[
TMTπ(B)

]
− E [TM ]E

[
Tπ(B)

]
=
∑
B̃

E
[
TMTB̃1{π(B)=B̃}

]
− E [TM ]E

[
TB̃1{π(B)=B̃}

]
,

where B̃ are possible permutations π(B). Set δb := {A ⊆ {1, ..., n} : |A| = b}. Note that for ev-

ery B̃ ∈ δb there are b!(n− b)! permutations q such that q(B) = B̃. It follows that

E
[
TMTπ(B)

]
− E [TM ]E

[
Tπ(B)

]
=
∑
B̃∈δb

∑
q:q(B)=B̃

P(π = q)
(
E
[
TMTB̃

]
− E [TM ]E

[
TB̃

])
=
∑
B̃∈δb

b!(n− b)!

n!

(
E
[
TMTB̃

]
− E [TM ]E

[
TB̃

])
=
∑
B̃∈δb

(
n

b

)−1 (
E
[
TMTB̃

]
− E [TM ]E

[
TB̃

])

=

(
n

b

)−1 min(m,b)∑
s=0

∑
B̃∈δb
s̃=s

f(n,m, b, s) ,
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where s̃ = |M∩B̃|. Set cs,m,b := |{ξ ∈ δb : |ξ∩{1, ...,m}|} = s|. If s > min(m, b), we have cs,m,b = 0.

For s ≤ min(m, b)

cs,m,b =

(
m

s

)(
n−m

b− s

)
.

It follows

E[TMTπ(B)]− E [TM ]E
[
TB̃

]
=

(
n

b

)−1 min(m,b)∑
s=0

(
m

s

)(
n−m

b− s

)
f(n,m, b, s) .

□



MULTIDIMENSIONAL CHANGE POINT DETECTION USING LIKELIHOOD RATIO STATISTICS 23

5.3. The case p = 2.

We use the same methodology to find optimal change points as in the one-dimensional case, with

the additional step of performing a permutation of the observations Y1, ..., Yn, which is akin to cre-

ating a new X-dimension. After finding the change points in the second dimension, a joint optimal

change point (r(1), r(2)) is established. In figure 8 we observe the distribution of two-dimensional

change points using underlying distributions (N , t1, t0.1) for Y . We observe that the density is the

greatest at the corners as one would expect for two independent arcsin-distributed variables, with

increasing uniformity as the distributions get more heavy tailed. We also compare the distance

between the largest observation r̂ and change point r in the 2-dimensional setting.

(a) n = 100, Y ∼ N (b) n = 100, Y ∼ t1 (c) n = 100, Y ∼ t0.1

(d) n = 100, Y ∼ N (e) n = 100, Y ∼ t1 (f) n = 100, Y ∼ t0.1

Figure 8. 2d histogram of optimal change point location (blue), and difference

between the largest outlier vs change point r̂ − r (red). Here we have simulated

independent outputs Y1, ..., Yn and found the optimal change point r(1), then ran-

domly permuted the Y ’s. This permutation is the order of the second dimension

and from there the optimal change point w.r.t dimension 2 is found. The graphs

show only the location of the joint optimal change point (r(1), r(2)). The number of

bins are capped at 20.
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5.4. The case p → ∞.

We have seen that the joint distribution of two variables is very similar to the product of their

marginals, next we investigate what the distributions look like when there are significantly more

features. Figure 9 shows that the distribution of the optimal change points in each feature changes

with increasing dimensionality. In figure 10 we use a 2-dimensional histogram to compare the dif-

ference between the asymptotic change point distribution and a 2-dimensional arcsine distribution.

This allows us to understand how increased dimensionality changes the distribution in relation to

arcsine probability. We observe that the corners give a higher probability to the empirical probabil-

ity. This suggests that the change point distribution is more likely to generate an extreme outcome

than the theoretical 2d-arcsine distribution. The plots in figure 11 show that the distribution of T̃n,p
loosely approximates a standard Gumbel, but we find that the standardization constants an and bn

are not sufficient for stabilization to a standard Gumbel for p > 1. The QQ-plots in figure 12

corresponding to the distributions in figure 11 show that the mean shifts significantly with p, while

the variance stays relatively stable, albeit the constant an for p = 1 may need refining as we observe

a thinner tail than expected. Figure 13 explores taking a shift dp = log p to compensate for the

rightward shift observed.

(a) p = 1, n = 100, Y ∼ N (b) p = 5, n = 100, Y ∼ N (c) p = 50, n = 100, Y ∼ N

Figure 9. Location of optimal change point within the feature in which it lies. The

figure shows how the distribution changes with dimensionality p.

Figure 10. 2-dimensional histogram comparing the observed probability of change

point location against an arcsine distribution.
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(a) p = 1, n = 5000 (b) p = 2, n = 5000 (c) p = 3, n = 5000

Figure 11. Asymptotic distribution of T̃n,p compared to a standard Gumbel.

(a) p = 1, n = 5000 (b) p = 2, n = 5000 (c) p = 3, n = 5000

Figure 12. QQ-plot comparing the distributions of simulated test statistics against

a standard Gumbel. The dashed lines represent the theoretical quantiles of a stan-

dard Gumbel, while the blue data points are the simulated quantiles.

Figure 13. Distribution of T̃n,p =
Tn,p−bn

an
− log(p) under H0. The constant dp =

log(p) appears to center the mode fairly well around 0, but some additional scaling

constant cp may be needed.
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With each dimension we need to consider another Gumbel-distributed statistic Gi = T̃ (i)
n . This

means when the dimensionality of D is p one takes the maxima of p Gumbels. Fortunately, the

Gumbel distribution is max-stable [6, Thm. 3.2.2]. Max-stability means that the maximum of p

draws from the same distribution F has the same distribution as an affine scaling of F . In our case,

a Gumbel distributed r.v. G satisfies

max{G1, ..., Gp}
d
= cpG+ dp

where G1, ..., Gp are i.i.d. and cp > 0, dp ∈ R. Consider the variable Mp = max
1≤i≤p

Gi, then for i.i.d.

Gumbels G1, ..., Gp, it holds that

max{G1, ..., Gp} = P(Mp ≤ t)

=

p∏
i=1

P(Gi ≤ t)

= Λ(t)p

= exp{−e−t}p = exp{−p e−t} = exp{−e−t+log p}

= Λ(t+ log p) .

Thus the constants are found to be cp = 1 and dp = log p as shown in [6, Def. 3.2.6]. Heuristically

this suggests that

cp

(
Tn,p − bn

an

)
− dp ∼ Λ(x)

where an, bn are the 1-dimensional constants needed for Tn to become standard Gumbel, while

cp, dp are max-stable constants to compensate for growing dimensionality.

The constants an and bn inspired by [15] are approximations and not proven to hold perfectly. Not

all literature on this topic uses the same constants, so we began exploring with various similar

constants a∗n, b
∗
n. By using the squared statistic T 2

n =
(S̃1:r− r

n
S̃1:n)2

r(1− r
n
) instead of the unsquared version

used in [15], we set up the system of equations

lim
n→∞

P
(
Tn − bn

an
< x

)
= lim

n→∞
P (Tn < anx+ bn) = exp (−e−x) (⋆)

lim
n→∞

P
(
T 2
n − b∗n
a∗n

< x

)
= lim

n→∞
P
(
T 2
n < a∗nx+ b∗n

)
= exp (−e−x) (⋆⋆)

In order to express the desired constants a∗n, b
∗
n in terms of an, bn we can square the expression

in (⋆) to get

P
(
T 2
n < a2nx

2 + anbnx+ b2n
)
= P

(
T 2
n < a∗nx+ b∗n

)
and subsequentely

a2nx
2 + 2anbnx+ b2n = a∗nx+ b∗n .

Here the second order term a2nx
2 = 0 · x2 vanishes and are left with

2anbnx+ b2n = a∗nx+ b∗n .
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Thus, we find that

a∗n = 2anbn = 2an

(
1

an
+

1

2
an log

(3) n+ an log(2π
− 1

2 )

)
= 2 + a2n log

(3) n+ a2n log

(
4

π

)
= 2 +

1

2 log(2) n

(
log(3) n+ log

(
4

π

))
where the o(log(2) n)−1 term dominates the o(log(3) n) and o(1) terms as n → ∞, meaning

lim
n→∞

a∗n = 2 .

We also have

b∗n = b2n =

(
1

an
+

1

2
an log

(3) n+ an log(2π
− 1

2 )

)2

=
1

a2n
+ log(3) n+ log

(
4

π

)
+ a2n

(
1

4
(log(3) n)2 + log(3) n · log(2π− 1

2 ) + (log(2π− 1
2 ))2

)
where a2n = o(log(2) n)−1 dominates the terms inside the brackets which are

o([log(3) n]2) + o(1 · log(3) n) + o(1) .

Asymptotically, dropping the terms that → 0 as n → ∞ we get the constant

lim
n→∞

b∗n = lim
n→∞

{
2 log(2) n+ log(3) n+ log

(
4

π

)}
.

Which order terms to keep is an arbitrary decision. Keeping the linear and greater terms ap-

pears to work quite well. Using the limit constants for a∗n and b∗n we find that, when n = 5000,

the mean and standard deviation of the distribution of T ∗
n := T 2

n−b∗n
a∗n

are µobs(n = 5000) = 0.473

and σobs(n = 5000) = 1.335. The theoretical values of a standard Gumbel are µ = γ ≈ 0.577,

where γ is the Euler-Mascheroni constant, and σ = π√
6

≈ 1.283. Correcting for this dispar-

ity we introduce a variance-correction factor kσ(n = 5000) = σ
σobs

= 1
1.04 and mean-correction

term kµ(n = 5000) = µ−µobs = 0.104. This means we get a good standard Gumbel approximation

with T̃ ∗
n := kσ(n) T ∗

n + kµ(n). Figures 14− 16 demonstrate the accuracy of these constants includ-

ing the shift dp = log p. Why the constants we derived for the squared statistic appear to work

significantly better than the constants we derived for the unsquared statistic from [15] is not clear.

The final step is to find constants cp and dp such that cpT̃ ∗
n,p−dp ∼ Λ. Recall that we expect cp = 1

and dp = log p due to max-stability. Table 1 explores the effectiveness of cp = 1 and dp = log p and

finds that these constants do not deviate µobs and σobs of the empirical distribution from µ and σ

of Λ by more than 5% for p ≤ 6.
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(a) p = 1, n = 5000 (b) p = 2, n = 5000 (c) p = 3, n = 5000

Figure 14. Asymptotic distribution of the statistic cpT̃ ∗
n,p − dp, where

T̃ ∗
n,p := kσ(n)

T 2
n,p−b∗n
a∗n

+ kσ(n) and cp = 1, dp = log p.

(a) p = 1, n = 5000 (b) p = 2, n = 5000 (c) p = 3, n = 5000

Figure 15. QQ-plot of cpT̃ ∗
n,p − dp against a standard Gumbel.

Figure 16. Distribution of T̃ ∗
n,p− log(p) under H0. For small p the constants cp = 1

and dp = log p produce a distribution very close to a standard Gumbel.
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n p µobs µ− µobs
µobs
µ σobs σ − σobs

σobs
σ

5000 1 0.577 ∼ 0 ∼ 1 1.283 ∼ 0 ∼ 1

5000 2 0.574 −0.003 0.995 1.302 +0.019 1.015

5000 3 0.592 +0.015 1.026 1.332 +0.049 1.038

5000 4 0.586 +0.009 1.016 1.316 +0.033 1.026

5000 5 0.599 +0.022 1.038 1.317 +0.034 1.027

5000 6 0.601 +0.024 1.042 1.319 +0.035 1.027

Table 1. Mean and standard deviations of T̃ ∗
n,p − log(p) compared to a standard

Gumbel. The table suggests that cp < 1, ∀p ≥ 1 and dp > log p (for p ≥ 3). The

ratio of the observed and theoretical statistics is within ±5% for all observed p.

6. Conclusions

This thesis develops a change–point perspective on binary splitting of datasets and demonstrated

that likelihood–ratio statistics can be used to regularize regression trees. Treating each split as

a change–point problem, we use a likelihood ratio test to determine if the change is significant,

under the null that there is no change. In the one–dimensional case we find that when Y is in the

domain of a Gaussian distribution, Donsker’s invariance principle maps the partial sum process,

given by Tn, to a Brownian bridge. The location of the maximizer r∗ converges by the arcsine law

to a Beta(12 ,
1
2)-distribution. For the asymptotic distribution of the statistic itself, we used a result

from [15] to recover a standard Gumbel limit for T̃n = (Tn − bn)/an under H0. Simulations suggest

that T̃ ∗
n = kσ(n)(T 2

n − b∗n)/a
∗
n + kµ(n) is a much better fit. The constants used are

lim
n→∞

a∗n = 2

b∗n = 2 log(2) n+ log(3) n+ log

(
4

π

)
kµ(5000) = 0.104

kσ(5000) =
1

1.04
.

From there one can use critical values of a standard Gumbel to determine whether the candi-

date split is statistically significant. When the observations have infinite variance, a stable–bridge

limit replaces the classic Donsker theorem. While a closed–form result for the maximizer has

not been discovered, simulations show that the asymptotic distribution can be approximated by

a Beta(γ, γ) where γ ∈ [12 , 1]. The parameter γ grows continuously from 1
2 (arcsine) in the finite

variance case, to 1 (uniform) as the tails become thicker.

Beyond the univariate case, we investigate the pairwise covariances of single–feature statistics.

It becomes clear that the amount of overlapping features s = |M ∩ B| determines the pairwise

covariance. If features have dependence, one can plug in a weight factor for each set combination

since larger overlaps are more likely. When dimensionality is high (p → ∞) one finds that the

distribution of the change points reduces the number of extreme splits, but overall has a smaller

impact than n. Finding an analytical formula for how the asymptotic distribution behaves as p → ∞
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could be a natural extension to this thesis. The distribution of T̃n,p remains in the family of Gumbel

distributions, but the mean grows ∝ log p with p → ∞. Thus, a standardization cp ≈ 1, dp ≈ log p

is necessary. Simulations for 1 ≤ p ≤ 6 show that cp < 1 and dp > log p. Finding improved

dimensionality constants cp, dp could be further explored in another paper.

Our analysis works exclusively with i.i.d. variables within nodes and focuses on shifts in the mean.

One could extend this thesis to handle multivariate responses Y(1), ..., Y(d), different underlying

distributions, or dependent relationships between features. Theory for stable bridges in multiple

dimensions remains an open topic. Finally, as the motivation for this thesis lies primarily with

applying statistical tests and change point detection for regularizing regression trees, this would be

a natural next step to take.

Appendix A. Auxiliary results

We need the following lemma; see for example parts b) and d) of Theorem in [14].

Lemma A.1 (Moments of quadratic forms). Let z = (Z1, . . . , Zn)
⊤ be a random vector with i.i.d.

entries, with E[Z1] = 0,E[Z2
1 ] = ν2,E[Z4

1 ] = ν4 < ∞, and let A,B,C be real and symmetric n× n

nonrandom matrices. Then

E[z⊤Az · z⊤Bz] = tr(A) tr(B) + 2 tr(AB) + (ν4 − 3) tr(A ◦B) ,

where ◦ denotes the Hadamard product. As a special case we get the variance

Var(z⊤Az) = 2 tr(A2) + (ν4 − 3) tr(A ◦A) .

If additionally E[Z6
1 ] = ν6 < ∞, one has

E[z⊤Az · z⊤Bz · z⊤Cz] = trA trB trC+ 2 (trA · tr(BC) + trB · tr(AC) + trC · tr(AB))

+ (ν4 − 3) (trA · tr(B ◦C) + trB · tr(A ◦C) + trC · tr(A ◦B))

+ 4(ν4 − 3) (tr(A · (B ◦C)) + tr(B · (A ◦C)) + tr(C · (A ◦B)))

+ (ν6 − 15ν4 + 30) tr(A ◦B ◦C) + 8 tr(ABC) .

Particularly,

E[(z⊤Az− E[z⊤Az])3] = 8 tr(A3) + 12(ν4 − 3) tr(A ◦A2) + (ν6 − 15ν4 + 30) tr(A ◦A ◦A) .

Appendix B. Solving constants for standard Gumbel distribution

The test statistic Tn converges to a standard Gumbel distribution when there are standardizing

constants an and bn. We call this standardized statistic T̃n, where

T̃n =
Tn − bn

an

n→∞−−−→ Λ(x) = exp(−e−x)

an = [2 log(2) n]−
1
2

bn =
1

an
+

1

2
an log

(3) n+ an log(2π
− 1

2 ) .

Here log(k) n is the k-th iterative logarithm of n.
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To derive these constants one sets
Tn − b̃n

ãn
= x

and
Tn − bn

an
= y ,

which means

exp(−2π−1/2e−x) = exp(−e−y)

⇐⇒ 2π−1/2e−x = e−y

⇐⇒ log(2π−1/2)− x = −y

⇐⇒ y = x− log(2π−1/2)

⇐⇒ Tn − bn
an

=
Tn − b̃n

ãn
− log(2π−1/2)

⇐⇒ Tn − bn = an

[
Tn − b̃n

ãn
− log(2π−1/2)

]
.

In terms of x and constants it follows that

Tn = ãnx+ b̃n

Tn = any + bn = anx− an log(2π
−1/2) + bn .

So we have

ãnx+ b̃n = anx− an log(2π
−1/2) + bn .

Since the x-terms satisfy ãnx = anx, it holds that a = ã. We then solve for bn, where the

remaining terms are

bn = b̃n + an log(2π
−1/2)

and since we know

ãn = (2 log log n)−1/2

b̃n =
1

ãn
+

1

2
ãn log

(3) n

we find that

bn =
1

an
+

1

2
an log

(3) n+ an log(2π
−1/2)

Remark B.1. It is interesting to compare with the maximum of iid standard normal variables Zi.

In this case, the norming constants can be chosen as

ãn =
1√

2 log n
and b̃n =

√
2 log n− log log n+ log(4π)

2
√
2 log n

.

and max(Z1,...,Zn)−b̃n
ãn

converges in distribution to standard Gumbel Λ.

We notice that ãlogn = an and b̃logn ∼ bn. Even the two leading order terms of blogn and b̃n

coincide. The third order terms are slightly different.
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Appendix C. Multidimensional asymptotic distribution with dependent features

When the features X(1), X(2) are dependent, the joint distribution can no longer be modeled

as the product of two independent arcsin-distributed r.v.’s, instead the joint distribution behaves

increasingly similar to the one-dimensional case, as the location of outliers are more likely to occur

at a similar position. Figure 17 visualizes the asymptotic joint distribution of the change points, and

how much impact the largest outlier has for each underlying distribution. The setup for figure 17 is

such that observations Y1, ..., Yn
i.i.d.∼ N from feature 1 are permuted such that, with probability ρ,

the observation Yk, k ∈ {1, ..., n} is fixed to the same location as in X(1). So P
(
Y

(1)
k = Y

(2)
k

)
= ρ.

The remaining non-fixed observations are permuted randomly.

(a) n = 100, Y ∼ N (b) n = 100, Y ∼ t1, ρ = 0.2 (c) n = 100, Y ∼ t0.1, ρ = 0.2

(d) n = 100, Y ∼ N , ρ = 0.2 (e) n = 100, Y ∼ t1, ρ = 0.2 (f) n = 100, Y ∼ t0.1, ρ = 0.2

Figure 17. (a-c) 2d histogram of optimal change point location. (d-f) r̂ − r with

dependent features. I.i.d outputs Y1, ..., Yn were simulated and optimal output r(1)

was found, then Y ’s were permuted with a correlation factor ρ = 0.2 such that each

observation has probability ρ of being fixed at the same rank order as the original.

The remaining 1− ρ of observations are treated as independent.
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