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Abstract

This thesis explores and compares the Cox regression model, a
classical epidemiological aaproach, and the modeling of potential out-
comes using causal survival analysis (counterfactual approach). Both
frameworks are used to estimate treatment effects in survival time
analysis.

We present a common theoretical foundation for survival analysis
and detail the methods and assumptions of the classical Cox model and
the counterfactual framework. We compare and analyze the strengths
and weaknesses of each procedure through a simulated observational
study.

A core difference between the two is the assumption of proportional
hazards: the Cox regression model requires it, whereas counterfactual
models do not.

We apply the comparison to the Cox regression model, a discrete-
time inverse probability-weighted pooled logistic regression model for
a marginal treatment effect, and a standardized conditional pooled
logistic regression outcome model. We draw results based on the es-
timated treatment effects, given a conditional or marginal estimate
target, and compare to a hybrid between the two approaches, an in-
verse probability-weighted Cox model.

Finally, a visual comparison is drawn based on an estimated treat-
ment effect derived from the chosen model parameters, regardless of
the approach. Results show that each approach outperforms the other
in its own setup for estimating a conditional or a marginal treatment
effect.

*Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: ingunnlilja26@gmail.com. Supervisor: Johannes Heiny.
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1 INTRODUCTION

1 Introduction

In statistics for epidemiology, a distinction is made between causal and classical inference in the
analysis of survival time for treatments, where both aim to draw causal conclusions about the
treatment effects. A popular approach to causal inference uses a counterfactual setting, asking:
what if for all individuals we could both observe the factual outcome and the potential or counter-
factual outcome? If there is a difference between the marginal or population-wise average of two
potential outcomes, a causal effect of treatment is assumed to be present. This would then ideally
be estimated as a function of time to show how the treatment effect evolves over time.

Classical inference compares observed survival times under study-specific treatment, which is then
compared to a selected control treatment. The Centre for Pharmacoepidemiology at Karolinska
Institutet applies classical inference when studying survival time. This is in practice done by an
observational study for survival analysis using Cox proportional hazards regression, yielding a single
fixed hazard ratio. A resulting hazard ratio of 1 is interpreted as indicating no difference between
the treated and control groups. A hazard ratio lower than one means the rate of events is slower
in the treated group, and a hazard ratio greater than 1 indicates a faster rate of events in the
treated group. Based on this, in this work we will focus on observational studies, where treatment
is observed but not assigned.

A common complication of classical and causal inference is censoring of observations. Censoring
means that the observation time ends before the event is observed. This can, for example, occur by
the end of the study or by so called competing events. A competing event is something that could
happen before the event of interest. Both classical and counterfactual approaches aim to find ways
to adjust for the censoring as if it did not exist. A related concept and another common compli-
cation is selection bias, most commonly referring to a skewed estimate by non-random selection of
participants at the start or over time, possibly caused by censoring, into the study.

In practice, it is unclear whether the difference between the two approaches is significant enough to
be of importance and whether the resulting estimates would not be approximately the same. The
counterfactual approach favors marginal estimates but in many cases, a conditional one might be
necessary, thus making the approaches closer to each other. Both approaches have their strengths
and weaknesses, and the choice of approach may depend more on the research question itself.

1.1 Research Question

The motivation of this thesis is the following question. How are the estimated relationships between
drug exposure and time to event impacted when causal inference using a counterfactual approach is
applied, compared to standard Cox regression? Both methods are based on the same foundation of
survival analysis; therefore, before discussing the specifics, the shared aspects of the two approaches
are addressed. We will demonstrate the differences between the frameworks through simulations
across various scenarios. In a simulation, the true conditions are known, allowing for the assessment

of biases in estimates and confidence intervals.
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1.2 Directed Acyclic Graphs

In causal inference, structural relationships are often described through directed acyclic graphs, but
they can also be applied in classical inference and will be used in this thesis for both approaches.
Directed acyclic graphs, or DAGs, are a straightforward way to visualize assumed relationships
between variables and will therefore be used throughout this work to illustrate referenced relation-
ships. The arrows or lack of them on a graph indicate the existence or direction of the assumed
relationship, and as the name implies, the graph is acyclic, meaning that no circles are formed. We
will write the most commonly referred to variable names as follows. Treatment is denoted by A,
defined as A € {0,1}: treatment indicators (1 = treated, 0 = untreated). The outcome of interest
is denoted by Y € {0,1}: outcome indicators (1 = event, 0 = no event). For a covariate referred
to as a confounder that affects if people get treatment A aswell as the outcome Y we denote it by
U, and for a variable called collider where treatment and outcome affect it but not vice versa we
indicate it by L. These relationships are depicted in the following DAGs.

o° @ oloo

(a) Randomized (b) Confounding (c) Collider

Figure 1: DAGs of possible setups of a study

DAG (a): A hypothetical perfect study for survival analysis. Only A affects Y, we assume a causal
relationship of treatment on outcome Y if Y differs between treated and untreated.

DAG (b): variable U, for example age, has an affect on both treatment A and outcome Y. Assump-
tions cannot be made about the relationship between treatment A and outcome Y without adjusting
for U, adjusting for a variable is then depicted by a box around it on the DAG. Otherwise a mea-
sured effect of A on Y can be the effect of U on both. In a randomized study where participants
are randomly assigned to a treatment group the goal is to eliminate confounding by design, treated
and untreated participants are then exchangeable without affecting the outcome. Confounding is
used in epidemiology but in causal inference the phrasing is rather to have exchangeability, or not,

given the existence of a confounding variable.

DAG (c): Treatment A and outcome Y both have an affect on variable L, for example income.
The treated group can, on average, have a higher income, and successful treatment can also lead

to increased income for participants.



2 METHODS

2 Methods

Most of us have at some point taken or been recommended to take the drug ibuprofen to relieve
pain or reduce swelling. It can be sold over the counter or in larger doses prescribed to patients by
a physician. We set up a simulated observational study to investigate how it performs in reducing
swelling, but first, hypothetically, we can try it ourselves on day 1 of the injury. If swelling decreases
more rapidly than we anticipated without the drug, our perception would be that the drug has
a positive effect on reducing swelling. Our intuition is then based on the causal counterfactual
estimate of the drug’s effect; we compare the observed outcome with the drug to the hypothetical
outcome we would have observed without the drug. If we observe that the swelling only went down
faster if we took the drug at a specific time after the swelling started, we might think that the drug
only works if taken in that time window. Now our estimate is conditional; we believe the drug has a
treatment effect given the time condition. We are moving closer to a classical conditional estimate
of the treatment effect. Before we could have generalized and thought that since the drug works for
us, it could be safe to recommend to others. Now we have a conditional estimate, and we do not
know how it affects other people without knowing when other people take it. Do people in general
stick to taking the drug in the right time frame? Our estimate of a positive treatment effect, given
a condition that may be rare for people to follow, can mean that the marginal or population-wise
treatment effect in the causal sense is close to none.

Building on this example, we can simulate a simple observational study with 50,000 individuals who,
we assume with a probability of 0.5, take ibuprofen and, independently, with the same probability
of 0.5, are divided into those who take other (helpful) measures or not. If we observe that people
who take ibuprofen report shorter times until swelling is gone, we could conclude that, if everyone
had been treated, the average time until swelling is reduced would be lower than if no one had
been. From this, we conclude that ibuprofen has a treatment effect on reducing swelling times in
our small population sample.

Our conclusion relies on the assumption that other factors influencing healing time are evenly
distributed between the treated and untreated groups. This is a significant assumption. For
instance, we might assume that someone likely to obtain ibuprofen is also likely to have used other
measures to speed up healing. To keep things simple, we assume people either use other helpful
measures or do not use them at all. Those who do use such measures are more likely to also take

ibuprofen.

This is now an example of the study depicted in DAG (b) earlier. Ibuprofen use (A) and healing
time (Y') are both affected by other measures (U).

In Section 2.3.3, we will describe in detail how we simulate treatment assignment, and in Section
2.4.5, we go over the simulation of survival times. In Section 2.4.6 we use the described methodology
in the first two sections to describe the simulation of the observational ibuprofen study. For now,
we continue to analyze how we estimate the treatment effect from the simulated data using both

classical and causal approaches, and compare the two approaches.
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2.1 Categorical Estimation of Treatment Effect

Many of us are used to seeing contingency tables that show total counts over a period and then
work with probabilities p = P(Y = 1), odds O = P(Y = 1|4 = 1)/P(Y = 0|4 = 1), and odds

ratios,
PY=1A=1)/P(Y =0/A=1)

Oft = PY =1A=0)/P(Y =0[A=0)

To begin, we can view the study as a binary question: who, out of the 50,000 reported cases,
experienced reduced swelling within one week of injury, ignoring any potential correlation with
other measures. Then we have a binary yes-no setup for a contingency table that allows us to
calculate these metrics from. Our study reported the following results.

Table 1: Contingency table for events by treatment group

By outcome
Treatment Event | No event Total
No ibuprofen 8156 10609 | 18765
Ibuprofen 20249 10986 | 31235

From the table, we obtain the odds ratio of 2.4, indicating that the odds of swelling decreasing
within a week are 140% higher with ibuprofen.

This could be a convenient viewpoint for a pharmacy to advertise ibuprofen as a great option that
speeds recovery. We also knew that more factors can affect recovery time, and we have not checked
how that is impacting our statement. Both from a classical and causal perspective, we are jumping
to conclusions before adjusting for this bias.

Starting by splitting the sample into two groups based on whether they received other treatments
or not, and finding the group-specific odds ratios as 1.71, 1.93 respectively. These odds ratios
support the assumption of an effect from other treatments. Notably, we cannot collapse these two
odds ratios into the marginal odds ratio from before; odds ratios are non-collapsible, as we cannot
obtain the marginal odds ratio from a weighted average of the two conditional odds ratios. The
two groups are split into 25,000 individuals each, and the weighted average of the two odds ratios
is then 1.82, which is not equal to the marginal odds ratio from before of 2.4. Even if we did not
have the bias of other measures affecting the taking of ibuprofen, the odds ratio is still, by design,

non-collapsible.

To expand from the odds ratio of swelling decreasing within a week to the ratio of the rate of

swelling healing per day, we need to move to survival time analysis.

2.2 Survival Time Analysis

Instead of the overall counts, we analyse the treatment effect by using each individual’s reported
time to event, also referred to as the survival time. Standard data exploration plots of the healing
times per treatment group and other measures are a good starting point for us to get a feel for
the data, regardless of the framework we are using. We continue with the simulated data, where
other measures affect both taking ibuprofen and healing times, and extend this analysis to examine
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survival times over the first 20 days after injury, times over that are set to 20 and considered

censored by the end of the study.

Ibuprofen No ibuprofen

4000

M 15000

3000

10000

Count

2000

Count at start of study

@
3
S
3

1000

0 5 10 15 20 ) 5 10 15 20
Survival time (days) None Other

Other measures [[] None [] Other Treatment [T No ibuprofen [T] tbuprofen

(a) Histograms of healing time per group (b) Total counts per other mea-
sures

Figure 2: Healing time by ibuprofen and taking other measures

In Figure 2 we see that people who take ibuprofen report shorter healing times, and those who take
other measures also report shorter healing times, which suggests that ibuprofen might be helpful in
this situation. To identify the sole effect of ibuprofen, it is important to clearly define the research
question and assumptions being made. For example, someone might ask their doctor how likely it
is that the swelling will go down within 5 days without ibuprofen, or if it has not gone down by 10
days while using ibuprofen. A person taking ibuprofen and on day 4 of swelling may also wonder
how probable it is for the swelling to heal overnight, since they are already on day 4. All three

questions could be asked in terms of the overall population rather than for a specific individual.

The way the questions are answered and which ones we receive answers to differs between classical
survival analysis and causal survival analysis. In this work we will refer to causal survival analysis
as the counterfactual approach to draw a clear distinction since both approaches aim to draw causal
conclusions about treatment effects. Our aim is to find out how and if the final answers will differ

between the two approaches.

The three questions are referring to the standard survival analysis estimates of risk probabilities,

survival probabilities and the hazard rate.

2.2.1 Survival, Risk and Hazard

To define these estimates we first set 7" as a random variable of the time to event and denote its
density of probability mass function by f. At time t > 0, f(t) = P(T =t).

The estimates are then defined mathematically in the following manner. The risk of event before

time ¢ is the cumulative distribution function of the event up to time ¢,
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F(t)=P(T <t). (1)

The survival probabilities of the event occurring after time ¢t > 0 are,

S(t)=P(T >1t)=1—F(t). 2)

And the hazard rate, the rate of events per time interval, is defined as,

1
= li — < >1).
At) = lim P <T <t+At|T>1) (3)

Simplified to a function of the probability density function of an event at time ¢, and the survival

function we have the relation

_ e f®)
"= TR T S0 W

In discrete time, the hazard rate is defined as the conditional probability of event occurring in the
next instant after ¢, given that it has not occurred yet. In Section 1.2 we denoted the outcome by
Y and treatment by A, therefore in discrete-time where we denote time points by t = 0,1, 2, ... and
specify an outcome at each one as Y, the hazard rate can be written as,

h(t) = P, = 1]Y, = 0,4]. (5)

The cumulative hazard function is then, H(t) = fot h(s)ds and a link to the survival function is given
by, S(t) = exp{—H(t)}. Based on this connection, the survival probabilities are often estimated
using a counting process approach, where the number of events per unit time and the number at risk
per unit time are used to approximate the metrics. Most notably, the nonparametric Kaplan-Meier
estimator for survival probabilities is based on this counting process approach (David W. Hosmer,
2011).

2.2.1.1 Kaplan-Meier Estimator of Survival The most common classical estimator of the
survival function is the nonparametric Kaplan-Meier estimator. Its goal is to estimate the survival
function S(t) as if censoring did not exist. The estimator only assumes that censoring is independent
of all measured and unmeasured covariates, ignoring this requirement is common practice though
as pointed out in (Odd Aalen, 2008) but does lead to a biased estimator if a variable is affecting

the censoring mechanism.

The Kaplan-Meier estimator, also referred to as the product-limit estimator is defined as follows
(Odd Aalen, 2008).

Since survival time is represented by the random variable T', we let T represent the survival time

10
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of time ordered individual ¢, on a fixed interval [0,¢,, 4] and T} < ... < T, are ordered observed
survival times of n individuals in the interval. Number of events, defined as d, if tied event times,
are then counted by the counting process, N(t), and each jump of N corresponds to an event
time 7T;. We can define the number of individuals at risk at each time ¢ by the total number of
individuals n as R(t) = n — N(t). As the number of events grows, the risk set shrinks. Assuming
all individuals start at the same time and experience an event, the number of individuals at risk
starts at R(0) = n and decreases to zero at the time point T,,, where R(T,,) = 0. For the interval
[0,t,,,4] we can break it down into equal distance ordered time points and denote each time point
by k, 0 =1t, <t; <..<t, =1, Each interval between time points ¢, £ + 1 has an associated

number of events d;, and risk set R(T}),.

The Kaplan-Meier estimator is defined as the conditional probability that an event occurs after
time point ¢;, given that it has not occurred before time ¢;,_;. Using the multiplication rule for
conditional probabilities, the Kaplan-Meier estimator is calculated as the product of the conditional
probabilities of the survival function at each time point ¢, where the last interval K ends at time
t

end>
St) =TI 5t (6)
k<K

Which in the counting process notation of number of events at time ¢, d, for the individuals at risk
in the risk set R(T;) becomes the Kaplan-Meier estimator defined as,

Sn=T] {1 R‘(ZtT)}. (7)

T,<t i

Closely related to the Kaplan-Meier estimator is the Nelson-Aalen estimator of the cumulative
hazard function, H(t). Defined in discrete time by the increments of the probability of event as
the hazard by the ratio of events at time point to the risk set at the time point. Denoted as,
h(T;) = % at each time point 7,. The Nelson-Aalen estimator is then defined as the sum of
these increments up to time ¢,

At) = TZ Rc(thi)‘ (8)

k3

2.2.1.2 Survival, Risk and Hazard Plots Regardless of whether a classical or counterfactual
approach is used, survival, risk, and hazard are defined in the same way, see equations (7) and (8)
for for survival and hazard where risk is simply one minus survival. Therefore, we can plot the
results of the ibuprofen simulation study using this counting process and examine the conditional
and marginal estimates for each metric, in this case with no censoring so all events in the first 14

days are observed.

The counterfactual survival times for each individual in the study are known to us, as this is a

11
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simulated study with no censoring. Therefore, we can eliminate the bias caused by other measures
affecting the use of ibuprofen by using both survival times per person. Creating this type of
counterfactual dataset, where counter to the fact that only some people took ibuprofen, we have
data as if everyone, or no one, took it, is a core goal of the counterfactual approach.

To further describe the three metrics of survival, risk and hazard we illustrate them in Figure 3 as
a function of time which is especially common practice to do for resulting estimates of the survival
and risk. Creating a comparison of the survival curves for treated and untreated individuals gives
a clear visual overview of a treatment effect. We plot the survival, risk, and hazards per other
measures and treatment group based on the number of participants at the start of the study, the
number of events observed each day and the subsequent changes to the risk set over the first 14 days.
By equations (7) and (8) we estimate and plot the groups by other measures and treatment, so per
metric, we have four lines. Shaded in the background are the marginal estimates per treatment

group.

00 1 12 13 14 12 3 4 5 6 8 9 10 M 12 13 14 T2 3

7 9 10 1 12 13 14
Time (Days)

6 7 8
Time (Days)

6 7 8 9
Time (Days)

Other measures = No other measures = = Other measures  lbuprofen (1= Yes) - 0 @ 1 Other measures — No other measures = = Other measures Ibuprofen (1= Yes) @ 0 4@ 1| Dther measures — No other measures = = Other measures lbuprofen (1 = Yes) - 0 @ 1

(a) Survival plot (b) Risk plot (c) Hazard plot

Figure 3: Survival, risk and hazards

The survival and risk in Figures 3 (a), (b) mirror each other since risk is simply the opposite
of survival. The fastest decline in survival probability is, as expected, among individuals who
take other measures and ibuprofen. The non-conditional estimates in the background fall right
between the two conditional estimates. The hazard plot in Figure 3 (c¢) more clearly shows how the
conditional estimates stay constant over time, while the marginal estimates per treatment vary.

2.2.1.3 Survival, Risk and Hazard Ratio Plots For the ratios, we plot the same groups,

but now show the ratios between treated and untreated for other measures, along with the marginal
estimates in the background in grey.

12
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2 3 4 7 8 9 10 3 5 6 7 8 9 10 3 4 5 6 7 8 9
Time (Days) Time (Days) Time (Days)

Other measures @ No other measures @ Other measures. Other measures -8 No other measures @ Other measures. Other measures -8 No other measures @~ Other measures

(a) Survival ratio plot (b) Risk ratio plot (c) Hazard ratio plot

Figure 4: Survival ratio, risk ratio and hazard ratio plots

Since the hazard ratio is dependent on the risk sets per day and not the start of study risk set it
is much more unstable over time. Notably, for the survival and risk ratios we see in Figure 4 the
marginal estimates fall between the conditional ratios but for the hazard ratio we see the marginal

estimate go below the two conditional estimates and drop over time.

2.2.2 C(Classical and Counterfactual Perspectives

Comparable to the contingency table where the standard estimate was the odds ratio, in classical
survival analysis the standard estimate is the ratio between hazards, the hazard ratio. A ratio
under one indicates treated individuals who have not yet had an event have a lower hazard of the
event happening at any time point. For the ibuprofen example that would mean treated individuals
are reporting slower healing times. Ratio of one would mean that there is no difference and over
one would mean that treated individuals are reporting faster healing times. The hazard ratio is
like the odds ratio non-collapsible, and we can have a marginal hazard ratio as well as conditional
hazard ratios but not collapse them into each other. This means that the classical framework aims
to be accurate for a specific individual who goes to the pharmacy and asks on day 4 how likely
it is that the swelling will heal over the coming night, given all other factors we know about that
individual. The counterfactual framework prefers to aim at the first two questions as accurately as
possible, given the population as a whole. As in for everyone who goes to the pharmacy the answers
would be the same regardless of who they are but they would also favour stating the survival ratios
and differences of the treatment regardless of the individuals framing of the question. For example
someone asks how likely it is that the swelling goes down within two weeks if I take ibuprofen? The
counterfactual framework could be the standardized analysis of the two week survivals and their
differences in the population.

Both approaches still aim to draw a population wise causal effect of treatment conclusion.
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2.2.3 Definition of a Causal Effect of Treatment

In the classical approach, the hazard ratio is the standard estimate of treatment effect; as such an
HR # 1 indicates a treatment effect.

In the counterfactual approach, a causal estimate is based on a difference of potential outcomes
under each treatment strategy denoted by Y®. Counter to the factual event in observational studies
that some individuals are not treated is the fictional event of all individuals in the population being
treated. This is the counterfactual risk of event. For an individual ¢ the causal effect of treatment
A on outcome Y is defined by the two counterfactual outcomes of Y as, Y;*=! #+ Y2=0.

In a study with n individuals i = 1,2, ...,n the causal effect of A on outcome Y is defined by the
probabilities of the counterfactual outcomes. P [Y*=! = 1] # P [Y*=0 = 1]. This is more commonly
written as E [Y%7°] for no one receiving treatment and E [Y*=!] for everyone. A causal effect is
then the difference between the two. If and only if E [Y*=9)] # E [Y*7!] is there a nonnull average
causal effect on outcome Y. Average treatment effect is then defined as E [Y*=!] — E [Y*=7].

For a causal survival effect by the counterfactual time 7T'® the estimate can be a comparison of the
survival probabilities a function of time t as P [T%"! > ¢] £ P [T%0 > ] for t = 1,2, ... toq

Survival or risk differences based on treatment as a function of time ¢ can provide an apparent
causal effect over time. The use of ratios and hazard ratios is less common in the counterfactual
framework than the classical one.

2.3 Treatment Assignment

For Swedish healthcare registers that rely solely on data without any contact with the participant,
the observed treatment assignment A is determined by pharmacy prescription dispensation. The
indicator for dispensation, and consequently the treatment group, is A (1: dispensed/treated, 0:
undispensed/untreated). A swedish observational pharmacoepidemiology study’s starting point is
then defined as the date of dispensation (Humphreys et al., 2025). For simplicity, in this work we

will assume a binary treatment assignment.

2.3.1 Probability of Treatment

For each study with just two treatment strategies, we can define an overall probability of treatment
assignment A as a random Bernoulli variable with parameter p = P(A = 1). Additionally, treatment
assignment can depend on covariates X, which influence whether individuals receive treatment or

not.

We set the confounder U as a covariate that affects treatment assignment and, in doing so, intro-
duces selection bias among participants in a study, since the treated group may not be represen-
tative of the overall population. Another random variable affecting treatment assignment is called
an instrumental variable, I, which influences treatment assignment but does not causally affect
the outcome, Y. Distance to the nearest pharmacy could serve as an example of an instrumental
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variable; people might be more likely to get treatment if they live close to a pharmacy. We illustrate

Figure 5: DAG of the described observational study

the variables we have described in the following DAG.

Arrows point toward A from [ and U, and it is necessary to estimate the treatment assignment
probabilities based on the covariates to control for confounding. Each individual’s probability of
receiving treatment is traditionally referred to as the individual’s propensity score.

2.3.2 Propensity Scores

Propensity scores are used to assess bias based on treatment assignment and are used in both
classical and counterfactual methods. The propensity scores are built on finding the conditional
probability of recieving treatment given observed covariates. The scores then make it possible to
adjust for confounding by using them as weights to equalize the treatment groups or to match
together individuals based on their propensity scores.

This work will focus on the more common way of using them as weights, which provides the

foundation for most counterfactual survival analysis work.

In 1983 Rubin and Rosenbaum published (ROSENBAUM & RUBIN, 1983) where they introduced
and formalized the propensity score. The propensity score was defined as the conditional probability
of assignment to a particular treatment given a vector of observed covariates. By this, given the
propensity score, the treatment assignment and observed covariates are conditionally independent.
They display this with the following, where x represent the covariates, a observed treatment and

e(x) the propensity score.

xLale(x)

The conditional independence was proven to hold regardless of the distribution of covariates x. If
x is sufficient to adjust for confounding and selection bias, then e(x) is sufficient too.
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In more recent counterfactually aimed work, (Herndn & Robins, 2025), the propensity score is
denoted by 7(x) and in terms of conditional probabilities as,

7(X)=P[A=1]X]

and

x L A|n(x).

An ideal randomized trial would have mw(x) = 0.5 for all participants and in observational studies
the propensity score, m(z) can balance the covariates between the treated and the untreated to

make them conditionally independent.

2.3.3 Simulated Treatment Assignment

If treatment assignment depends on covariates it can be expressed by covariates and a baseline
probability of treatment assignment via parametric logistic regression of m(X) = P(A =1 | X).
The log odds are modelled by a; as coefficients of the logistic regression (Robertson et al., 2022)

(X)) = expit (ao + Z a]-Xj> 9)

o = logit(E[A]) — Z aE [X]] (10)

with the expit function defined as expit(xz) =
p € (0,1).

The marginal probability of treatment assignment is then P(A = 1) = E[n(X)] and baseline

m and logit function as logit(p) = log (ﬁ),

probability of treatment assignment is «,. If propensity scores are used to simulate treatment
assignment, either baseline probability of treatment or the marginal probability of treatment can
be used to define the per subjects treatment assignment in a study. Unless otherwise specified this

work will specify the baseline probability of treatment assignment and the marginal will follow.

The relationship between, the baseline probability of treatment «, and the marginal E[A] is derived
from the law of total expectation. The expected value of a random variable, A, can be expressed
as the integral of its conditional expectation over the distribution of the conditioning variable,
E[4] = [ 7(z)dF x(z).

Notably, propensity scores only adjust for observed covariates so they do not help with finding
if there is unknown confounding. Rubin recommends using past knowledge to compare if results
are reasonable and secondly to run sensitivity analysis to check if unknown confounding could
drastically change estimates (Agresti, 2013).
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2.4 Classical Approach to Survival Time Analysis

Following the classical approach, we use individual healing times to determine the conditional
adjusted hazard ratio of treatment given measured confounders and the conditional hazard ratio
of the confounders.

For each measured confounding variable U, classically defined as a variable that meets the following

three conditions.
(1) The confounder is associated with the treatment.
(2) The confounder is associated with the outcome conditional on the treatment.

(3) The confounder does not lie on a causal pathway between treatment and outcome. The
classical approach estimates the hazard ratio of treatment conditionally on the confounding
variables.

2.4.1 The Proportional Hazards Cox Model

The hazard ratios are estimated using the semiparametric regression model introduced in Section
1, known as the proportional hazards Cox model. The model assumes that the hazard rates remain

proportional over time, making the hazard ratios stay constant over time.

The proportional Cox regression model uses survival event times and a set of covariates z; to
estimate the log hazard ratio 8 for each covariate, given the others as ;. It is indifferent about
the baseline hazard function of the model, hy(t), meaning the intercept is left unspecified. h(t) can

vary over time but the hazard ratios are assumed to be independent of time.

The model is defined as,

h(t | ;) = ho(t)exp (BT x;) . (11)

Traditional residuals used for validation in regression models are based on the difference between
observed and predicted values. The Cox model is semiparametric and does not assume a specific
distribution for survival times, so there are no unique predicted values for each observed survival
time. Residuals are still used in classical survival analysis to assess whether the proportional
hazards assumption holds, particularly with Schoenfeld residuals and the Schoenfeld test.

2.4.1.1 Schoenfeld Residuals Schoenfeld residuals are defined as the difference between the
observed covariate value x; for individual ¢ and the expected conditional mean of the covariate
values at each ordered time point T}, given their relative hazard from ﬁ, and the risk set R with
individuals j € R(T;). In the simplest form, it is assumed there are zero tied event times and
thus time points are unique per individual. This work will not delve into the details of handling
tied event times for the Schoenfeld residuals; unique event times are assumed throughout. The
Schoenfeld residuals r; for each individual ¢ are denoted as,
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T :xi_f(BvTi)v

where T is defined as,

o
. > e
= _ JER(T;) ™I
v (ﬁ’Ti) - o B
JER(T}) e

The above definition was first stated by David Schoenfeld (Schoenfeld, 1982) and subsequently
extended to scaled residuals by Grambsch and Therneau (Patricia M. Grambsch, 1994). The
scaled residuals, denoted by, I, were proven by Grambsch and Therneau to have greater diagnostic
power than the unscaled ones and can be easily approximated by multiplying the estimator of the
covariance matrix of estimated coefficients B by the number of uncensored events, m. The following
is the approximation of the scaled form, which most traditional software packages use, and which

will be used in this work.

£ = [Var(t;,)] ~ =mVar(B)F;.

Overview of the variance approximation can be found in, (David W. Hosmer, 2011, p. 200).

Plotting the residuals against time and visually examining the slope is a common method for
assessing the proportional hazards assumption. The residuals’ slope should be flat and centered

around zero if the assumption is valid.

The following Figure in 6 are two examples of Schoenfeld residual plots, one with the proportional
hazards assumption set to hold by simulating a constant hazard ratio and one where the assump-
tion is violated by simulating a hazard ratio that changes over time. The Schoenfeld residuals of
treatment for each of the 1000 simulated individuals are plotted against time as blue dots and a

smoothed grey line is added to visualize the slope of the residuals.

f
/

Scaled Schoenfeld residual
o
Scaled Schoenfeld residual

0 5 10 15 20 0 10 20 30 40 50
Time Time

(a) No slope and prop. hazards as- (b) Slope and broken prop. hazards
sumption holds assumption

Figure 6: Schoenfeld residuals
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For Figure 6 (b), the dots are even around zero and stay in such a straight line that the specific
dots become hard to see. For Figure 6 (a), the slope changes after time point 5, indicating that the
proportional hazards assumption is violated.

2.4.2 Adjusted and Unadjusted Cox Model Hazard Ratios

If a confounder covariate is present in a study, the Cox model is adjusted by including the covariate,
and in turn, becomes conditional on the covariate. In (Helen Bian, 2024) the authors present the
following equation to summarize the two-part differences between an adjusted, (HR,,;) and an
unadjusted hazard ratio, (H Rys,,44;)- The first part of the equation states the differences between
a conditional and a true marginal estimate, (HR,,) and the second is the confounding bias.

log (HR 44;) —log (HRy,,q; ) = [log (HRyg; ) —log (HRy,)] + [log (HRy,) —log (H Ry, )]

Non-collapsibility Confounding

The non-collapsibility part of the equation is to capture the difference between an estimate given a
covariate and the marginal estimate and the second part captures the confounding bias present in
an unadjusted estimate, if a confounder is present. When estimating differences or bias of hazard

ratios, it is like in this case common practice to work on the log scale.

2.4.3 Cumulative Hazard Function Estimation

Given an adjusted Cox model we can estimate the cumulative hazard function H (t) given the
estimated hazard ratios by weighing the risk set in the Nelson-Aalen (8) estimator by the estimated
hazard ratios. This estimate is the Breslow estimator of the cumulative hazard function (Odd Aalen,
2008, p. 141), defined for covariate vector z; as

_ d
Ht|z) =Y i . (12)

T=t 2 j<p(r,) ©XP (572;)

2.4.4 Survival Function Estimation

Recall the identity S| (tlz;) = exp {—JEI\ (t\x])} Plugging in an estimator for the cumulative hazard
function H (t|lz;) yields the survival function over time based on the estimated adjusted Cox model.

This is known as,

S(t | x;) = exp [~Hy(t) exp (87a;)]

Based on this definition of the survival function we can generate event times for simulated studies.
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2.4.5 Simulate Data for Cox Proportional Hazards Model

We use inverse transformation sampling to simulate survival times based on the estimated Cox
model parameters, as outlined in (Ralf Bender, 2005). The method is also extended to simulate time-
varying covariates (Austin, 2012). In this work, we will restrict ourselves to time-fixed covariates.

We set the hazard rate at time ¢ = 0 to hy(t) = A, the hazard function is then h(t | ) = Nexp (8 x).
We denote the uniform distribution on interval [0, 1] by, G = Unif[0, 1] to create a distinction from

confounder U and use it to generate random numbers between 0 and 1. The event times T are
simulated by, T; = Hy ! [~ log(U) exp (—3"x)| which simplifies to,

T — log(@G)

P Nexp(BTx) (13)

From equation (13), we can simulate studies with known true hazard ratios for treatment and
covariates and a guarantee that the proportional hazards assumption holds, given the model is
correctly specified.

2.4.6 Cox Model Data Simulation of Ibuprofen Data

For the simulated ibuprofen dataset, we simulate two potential survival times for each individual
based on equation (13) corresponding to being treated and untreated, we denote these by treat-
ment A = a, T#~! and T#=Y, corresponding to simulating 100.000 survival times for N = 50.000
individuals. Treatment and covariate, other measures U, affect the hazard rate by the constant
conditional hazard ratios of exp(f;) and exp(/3,) respectively. The baseline hazard rate A is set to
A = 0.1 and the parameters are set to 8, = log(1.5) and S, = log(2.5). The two simulated survival
times for each individual i are then,

o log(G)
b Xexp(Bia+ Bou)

For each individual, we only observe one of the two survival times based on their observed treatment
assignment A. In Section 2.3 we described how treatment assignment is determined by a baseline
probability of treatment assignment « and by any covariate j that has a; # 0. We set the baseline
probability of treatment assignment to «, = logit(0.5) and the coefficient of other measures to
a, = log(3) for observed U = u. The treatment assignment is then simulated for each individual 4
as a bernoulli random variable with parameter 7(z); by equation (9) as,

m(X); = expit (g + aqu;) .

2.4.7 Cox Model Results on Ibuprofen Simulated Observational Study

To interpret the results of the Cox model on the ibuprofen data we need to state our model assump-
tions. We assume that (a) no one was lost to follow-up, (b) that the requirement of proportional

20



2.5 Counterfactual Approach 2 METHODS

hazards is fulfilled given an adjusted model, the hazard ratio is therefore independent of time, and
(c) that there is no interaction between treatment and other measures.

The resulting estimate is the adjusted hazard ratio of ibuprofen given taking other measures,
exp(ﬁAl) = 1.45 (95% CI 1.42-1.48) and the hazard ratio of taking other measures, exp(ﬁ;) =
2.35 (95% CI 2.30-2.40). People who take ibuprofen report 45% higher constant instantaneous rate
of recovery times than people who do not take ibuprofen, conditional on not using other measures
to speed healing. For an individual who takes ibuprofen until day 4 of swelling and asks about the
likelihood of healing overnight, we cannot specify the exact probability, but we can say that the
instantaneous healing rate is 45% higher than if he were not taking ibuprofen. Additionally, if he
also uses other measures, the hazard increases by 3.4075 compared to not taking ibuprofen and not

using other measures.

Below in Figure 7, we plot the survival function over time per treatment group and other measures
based on the adjusted Cox model. Since the risk is the opposite of the survival, we add the risk
faintly in the background as well.

o
>

urvival probabilty
o
&

S
o

0.0

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (Days)

Treatment — No other measures = = Other measures  Ibuprofen (1= Yes) == 0 == 1

Figure 7: Survival probabilities, classical adjusted Cox. Risk faintly in background

Probability of surviving to day 10 given taking ibuprofen but not other measures is then S(10|U =
0,A=1) = P(T > 10) ~ 0.1 and without both, S(10|U = 0, A = 0) = P(T > 10) ~ 0.52.

2.5 Counterfactual Approach

For an estimate similar to the single unconditional odds ratio in Section 2.1, we can use the
individual survival times to estimate a single marginal hazard ratio H R,; and move into the causal
framework. Like in the classical approach, we first need to establish the assumptions for our study
and the general assumptions of the counterfactual approach.
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2.5.1 Counterfactual Assumptions, or Identifiability Conditions

Validity of causal inference estimates is based on the following assumptions, also referred to as
identifiability conditions (Hernan & Robins, 2025).

o Exchangeability. Y 1 A | X. The treated and untreated group are exchangeable. Adjusting
for any confounders U leads to exchangeability and no unmeasured confounding is required.

Exchangeability and no confounding are often used as interchangeable terms.
The causal definition of a confounder is based on changes to the classical definition.

(1) There exist variables X and U such that there is conditional exchangeability within their
joint levels Y* 1L A | X,U. X is then not on a causal pathway between A and Y, and
E[Y* | X =2,U = u] is identified by E[Y | X = 2,U = u, A = a.

(2) U can be decomposed into two disjoint subsets U; and U, such that (i) U; and A are not
associated within strata of X, and (ii) U, and Y are not associated within joint strata of A, X,
and U,;. The variables in U; may be associated with the variables in U,. U, can always be
chosen to be the largest subset of U that is unassociated with treatment (Robins, 1997).

o Positivity. P[A =a | X = z] > 0 for all values z with P[X = z] # 0. No study participants
can have a zero probability of receiving either treatment level, given their covariates. If a

subgroup never receives treatment, no causal effect can be estimated in the subgroup.

o Consistency. P[Y* =Y | A = a,X = z]|. Treatment is well defined. The potential outcome
Y ® is the same as the observed outcome if the treatment received is the same as the treatment
defined. Fach participant has two potential outcomes. One becomes observed and the other

counterfactual.

2.5.2 The Three Counterfactual g-methods

Causal inference has three primary methods to determine causal effects; IP-weighting of marginal
structural models, the parametric g-formula for standardization, and g-estimation of structural
nested models. The g simply stands for generalized. Their combined aim is to estimate the causal

effect of treatment A on outcome Y for a population or a subset of it.

This work will focus on the most commonly used, first two approaches within the counterfactual
framework, the MSM models and the parametric g-formula. The first part of this thesis will cover
MSM models before moving on to the g-formula in the second part. For a brief description of

g-estimation of structural nested models, see appendix.

2.5.3 Inverse Probability of Treatment Weights and Marginal Structural Models

To determine a marginal causal effect we use a regression model known as a marginal structural
model, which is used for the marginal counterfactual potential outcome means of E [Y?]. Given
a dichotomous treatment, the counterfactual potential outcomes are modeled by first reaching
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exchangeability by constructing a pseudo-population, where individuals are weighted by their mod-
elled propensity scores or probability of receiving treatment, before estimating the outcome via
an MSM model to control for confounding. The weights are referred to as inverse probability of
treatment weights, IPTW (Williamson & Ravani, 2017).

2.5.3.1 Inverse Probability of Treatment Weights The weights are defined as the inverse
probability, or propensity scores, of receiving observed treatment A = a. To stabilize the weights
their numerator is set to the marginal probability of treatment P[A = 1]. The goal of the weights is
to use them as the conditional probability of treatment given the confounding covariates P[A | U].
The weights are sensitive to extreme values and outliers, which are commonly addressed by setting
a threshold for the weights, such as truncating them at the 99th and 1st percentile (Williamson &
Ravani, 2017). In functional form, the stabilized weights are defined as,

f(A=1)

(14)
The conditional probability density function of treatment given confounders f(A | U) is estimated
by fitting a logistic regression model of treatment assignment. The predicted probabilities from the
treatment model are then used to calculate the weights for each individual in the study.

Individuals who received treatment, unlikely given their confounders are assigned a higher weight
and vice versa. This creates a pseudo-population where treatment is independent of confounders,
making treated and untreated individuals exchangeable, (Cole & Hernédn, 2008).

To illustrate the effect of weighting data by IP-weights we replot the survival time distributed by
treatment group and other measures in figure 2 but now each individual survival time is weighed
by their IP-weight.

Ibuprofen No ibuprofen

15000

3000

10000

2000

Count
Count at start of study

1000 5000

0 5 10 15 20 0 5 10 15 20
Survival time (days) None Other

Other measures [[] None [] Other Treatment [T No ibuprofen [T] tbuprofen

(a) Histograms of healing time per group (b) Total counts per other mea-

sures

Figure 8: IP-weighted healing times by ibuprofen and taking other measures
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Figure 8 (a) now shows a more even distribution of survival times across the treatment groups
compared to Figure 2 (a). IP-weights have balanced the confounding effect of other measures.
Since our data is simulated, we know the true marginal and conditional probabilities of treatment.
Therefore, for this example, we are using the true weights instead of the estimated weights from a
treatment model.

2.5.3.2 Marginal Structural Models Counterfactual estimates have the objective of
E [Y*=!] — E [Y*=°]. MSMs model this by

E[Y? = By + Bq-

This refers to the baseline probability of outcome P[Y* = 1|a = 0] = f, with a linear addition of

the marginal causal effect of treatment in the population as 5; (Robins et al., 2000).

A strength of MSMs is that given correctly specified IP-weights, they have the property of null
preservation, if the true causal effect in the population is null, the outcome model can be misspecified
and still return a null causal effect (Herndn & Robins, 2025). This is not the case for Cox models or
the parametric g-formula where misspecification of the outcome model can lead to biased estimates
even if the true causal effect is null.

2.5.3.3 Counterfactual Hazard Ratio by a Logistic MSM Now if the goal is to estimate
the causal hazard ratio we set the MSM as a logistic regression model for E [Y,*=!] /E [Y,*=9],

PlY,,=1[Y,=0,4]
P[}/;+1:0|Y;5:07A]

log =logit P[Y;;; = 1[Y; =0, 4] = By + B1a + byt (15)
The causal hazard ratio of treatment is then exp(f;), the baseline hazard rate is exp(f,) and
the hazard ratio for each unit increase in time is exp(f,). The inclusion of time is based on the
presumption that hazard ratios are time varying. Modeling the hazard ratios by a logistic regression
is based on the assumption that the odds are approximately equal to the probabilities and thus the
hazard given rare events. The time unit ¢, f.x. hours, weeks, days, is required to be short enough for
PlY,., =1]Y,=0,A] <0.1 to hold, ensuring the odds-hazard approximation (Hernan & Robins,
2025, p. 227).

To visualize the approximation required we plot the relationship of odds = 1’%}) between proba-
bilities, odds, and their respective logs. To do this we simulate a sequence of probabilities from
0 to 0.2 with 0.01 increments. For each probability we find the corresponding odds and plot the
results, since the logistic model works on the log scale we also display the logs. The cutoff for the

approximation is added as a vertical red line at p = 0.1.
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Figure 9: Probability approximation by odds

The closer to 0.1 from zero the probability gets in figure 9, the further the odds and probability

diverge.

This estimation of the hazard ratio in causal inference is not typically used or advised in classical
survival analysis. Notes on this are found in, (David W. Hosmer, 2011, p. 116).

Looking back at figure 3, we see that the hazard rates are too high for our unit time interval of
days to meet the approximation requirement. The next logical step is to shorten the time interval
to hours instead of days and recalculate the survival times accordingly. A complication is that
when that is done, we will quickly run into computational limitations since the dataset size grows
drastically. To explain this, we need to define the type of data structure used for survival analysis

within the counterfactual framework.

2.5.3.4 Choice of Data Structure for Counterfactual Survival Analysis Classically,
study data is one row per subject given one observation. When we created the counting pro-
cess, we went from one row per subject to one row per subject at each time point they are in
the study. We will refer to this as person-time. For example, if the time unit of study is days
and a participant is censored at day 10, the subject will have 10 rows in the dataset. Expansion
from this format is then each row representing a unique time point for each subject and treatment
strategy, both before and after they experience an event. If study time is 100 days and treatment is
dichotomous, all subjects will have 200 rows in the dataset. This data structure will be referred to
as person-time expanded. A similar but more simple data structure is study-time expanded. Here,
each row represents a unique time point for each treatment strategy, regardless of the number of
subjects in the study. A study over 100 days with dichotomous treatment will have 200 rows in
total.

Predictions can then be made on the expanded datasets to compare predictions as the counterfactual
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event of everyone treated versus everyone untreated.

Considering our example of an ibuprofen study with 50,000 participants observed over 20 days,
in the person-time format, each individual can have up to 20 rows, allowing us to potentially
expand to 1,000,000 rows. This is still manageable, but switching the time unit to hours instead
of days would produce a dataset with up to 24,000,000 rows. Such a large dataset can quickly
become computationally difficult due to the study size and total observation period. Therefore, it
is important to minimize data expansion while ensuring the rare event assumption for the odds-

hazard approximation is met.

In the ibuprofen example, switching to 12-hour intervals instead of daily ones is sufficient to satisfy
the rare event assumption for the odds-hazard approximation. Replotting the hazard rates per
treatment group and other measures with the new time unit shows that the marginal hazard rates
remain consistently below 0.1.
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Figure 10: Hazard rate per 12 hour intervals

According to Figure 10, the approximation stays valid as long as the marginal estimate is the target.

2.5.3.5 IP-weighted Pooled Logistic Regression Models as Marginal Structural Mod-
els Given the new data structure of person time the logistic MSM is fit as a pooled logistic
regression model. Pooled refers to the fact that the data is in the person-time format for each sub-
jects time in study, across multiple time intervals and fit as a single logistic regression model. This
introduces correlated clusters for each individual. The within subject correlation makes standard
error estimates inaccurate, to account for this cluster-robust standard errors are used when estimat-
ing the model parameters with each individual as a cluster. The resulting robust standard errors
are guaranteed to provide a asymptotically 95% confidence intervals, covering the true S at least
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95% of the time in large samples, (Hernan et al., 2000). A rigorous definition of the cluster-robust
standard errors can be found in (Li & Redden, 2015).

For the ibuprofen study we fit a IP-weighted pooled logistic regression model to estimate the
discrete-time OR =~ hazard ratio in each 12 hour interval as,

logit P[Y,,; =1|Y, =0,A,t] = By + B1a + Byt + Bsta. (16)

The resulting HR estimates are, exp(/3;) = 1.496 (95% CI 1.447-1.548) and the average change in
hazard for each increase in time is, exp(fy) = 0.989 (95% CI 0.987-0.990). The baseline hazard at
time ¢, is then, exp(8,) = 0.061 (95% CI 0.059-0.063).

The nonparametric Kaplan-Meier estimator of survival over time has a parametric counterpart for
the IP-weighted pooled logistic regression model. Given study-time expanded data we can predict
the hazard of event in each time interval ¢ for everyone treated and everyone untreated. Since
survival at time ¢ is the product of surviving each prior time interval, we can estimate the survival
function over time as the product of one minus the predicted hazard in each unit time interval up
to time ¢, (Hernan & Robins, 2025, p. 224). In the Kaplan-Meier notation this is defined as,

Sty =[[ {1—hm)}. (17)

m<t

We can also express the survival function in terms of probabilities,

PlY,=0/=][P[Y,=0]Y,, ,=0]. (18)

m<t

Marginal survival probabilities over time can thus be estimated from the IP-weighted pooled logistic
regression model by predicting the hazard at each time interval under everyone treated and everyone
untreated and calculating the survival function by equation (17) or (18).

2.5.3.6 Effect Modification and Conditional Marginal Structural Models MSMs in-
clude parameters of treatment A, any variables that interact with treatment, and, based on the
research question at hand, variables that only affect outcome to improve model prediction. Vari-
ables that interact with treatment are called effect modifiers, as they modify the effect of the
treatment. We will refer to effect modifiers with V. The choice of V' does not worsen the accu-
racy of the marginal estimates, but it does make them conditional on V', as the numerator of the
IP-weights is conditioned on V. The numerator gets set to P[A = 1 | V], so the more variables
included, the closer the estimate gets to a classical conditional estimate. The MSM, including effect
modification by V is then denoted as, E[Y* | V] = B, + f1a + ByaV + B5V.

It is not possible to demonstrate effect modification using a DAG, as DAGs display associations,
not interactions. This is a fallback of the DAGs representation.
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2.5.3.7 Faux Marginal Structural Models Marginal structural models that condition on
all covariates X to adjust for confounding are referred to as Faux Marginal Structural Models.
As stated, examining the effect modification by covariates can be achieved by conditioning the
numerator on V, f[A | V]. Stabilized IP-weights are defined as, IPTW (V) = £ [Jj?;‘l)l(‘]/]. It is clear
that if V = X then IPTW (V') = 1. Thus, IP-weights equal 1 when the numerator and denominator
are equal, which is the case when V contains all covariates X. This is the case for Faux Marginal

Structural Models.

This helps us understand the difference between the classical approach and the counterfactual ap-
proach. The closer we get to the conditional nature of the classical approach, the less difference
there is between the two approaches. The counterfactual approach to find IP-weights for adjust-
ing confounding in a Cox model approaches the classical Cox model as the number of covariates
conditioned on by the choice of V' € X for the numerator increases.

It is common practice in causal survival analysis to condition the MSM on baseline covariates to
improve model prediction, this could be gender or nationality for example. Since this makes the
estimate conditional on these covariates and thus closer to a classical estimate we do not explore
this further in this work.

2.5.4 IP-weighted Cox Model as an MSM

IP-weights can be used with the proportional hazards Cox model to adjust for confounding by
IP-weighting the risk sets, instead of including the confounder in the outcome model.

Marginal structural models, model the marginal counterfactual potential means, which, if weighted,
the Cox model does as well. Therefore, an IP-weighted Cox model is a marginal structural model
for survival data, (Hernan et al., 2000). The marginal IP-weighted Cox model can be represented

as, h(t) = ho(t) exp (Ba).

The causal interpretation is then that exp(f;) is the ratio of the hazard rate at time ¢ if everyone
in the population were treated to the hazard rate at time ¢ if no one in the population were treated.
As with the classical Cox model, the hazard ratio is constant over time.

Similar to the pooled logistic model, standard errors for Cox models are not reliable with IP-
weights. Robust-cluster (sandwich) standard errors are used to account for the per person variability
introduced by weighting the data by IP-weights. The definition and formula for the robust standard
errors are not straightforward and in general left out of counterfactual literature. The importance
of using them is stressed in (Hernan et al., 2000) and a detailed mathematical background can be
found in (Wang et al., 2023).

We refit the Cox model, now unconditional on the IP-weighted pseudo-population, and find that
taking ibuprofen increases by, on average, = 1.38 (95% CI 1.36-1.41) the instantaneous rate of
recovery, regardless of other measures.
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2.5.5 Marginal Causal Survival and Risk Probabilities

The IP-weighted Cox model can be used to plot the marginal survival and risk probabilities over
time as we did with the adjusted Cox model.

We plot the survival and risk from the IP-weighted logistic regression model and compare them to
the IP-weighted Cox model survival estimates by illustrating their differences over time.
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Figure 11: Survival probabilities

Figures 11 tell us that given both models, the probability of surviving to day 10 is S(10) = P(T >
10) ~ 0.25 with ibuprofen and S(10) = P(T" > 10) ~ 0.35 without ibuprofen. The estimate
is slightly lower for the IP-weighted MSM pooled logistic regression model, but the difference is
minimal.

The comparison of the two models shows that they provide very similar estimates of survival
probabilities over time.

2.6 Proportional Hazards Assumptions

Returning to the assumptions we set for the study, we confirmed, in Section 2.4.5, that the pro-
portional hazards assumption was fulfilled, given the conditional model. What about the marginal
model? We jumped to the causal framework and set up the marginal Cox model without testing if
the assumption of proportional hazards was fulfilled there as well. In fact, that is rarely the case;
like the odds ratio, the hazard ratio is non-collapsible and thus if the conditional hazard ratio is
constant over time, the marginal hazard ratio is not guaranteed to be constant over time as well.
The classical test for checking if the proportional hazards assumption holds is based on the scaled
Schoenfeld residuals; if they are statistically significantly correlated with time, the assumption is
violated. That is, in fact, the case for the marginal estimate.
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2.6.1 Schoenfeld Residual Test for Proportional Hazards

The proportional hazards assumption is tested by a hypothesis test called the Schoenfeld test,
which evaluates the null hypothesis of zero slope for each covariate for significance. A rigorous
mathematical background for the Schoenfeld test of a non-zero slope can be found in (Patricia M.
Grambsch, 1994).

The Schoenfeld test assesses the null hypothesis of proportional hazards. It is based on checking
whether there is a zero-slope in the Schoenfeld residuals over time using a chi-squared test of null
hypothesis. If a significant slope is found at the 5% level, it indicates that the covariate’s effect
on the hazard rate varies over time, violating the proportional hazards assumption. The test is
performed both globally for the entire model and for each covariate.

We apply the Schoenfeld test to the three discussed Cox models: adjusted, unadjusted, and IP-
weighted marginal Cox models. Below are the plots of the Schoenfeld residuals over time for each

model and their respective p-values.

p-value of null hypothesis: 0.6411 p-value of null hypothesis: 0 p-value of null hypothesis: 0.00207
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Figure 12: Test of proportional hazard assumptions for three different Cox models on same data

Based on the Schoenfeld residual test in Figure 12, the only Cox model that meets the proportional
hazards assumption is the adjusted Cox model. Both marginal models violate the assumption.

2.6.2 Proportional Hazards Assumption under the Causal Framework

From a classical perspective, the marginal hazard ratio is now inaccurate because the assumption
is violated. However, from a causal perspective, the assumption holds too rarely in practice to be
useful or meaningful. The Schoenfeld test is stated to lack enough power to detect violations, and
for both small and large datasets, it can reject the null hypothesis too easily (Mats J. Stensrud,
2020). From a causal perspective the assumption is that the hazard ratio varies over time and
should be modelled accordingly. Authors of (Mats J. Stensrud, 2020) follow up with (Stensrud &
Hernén, 2025) where they argue that methods not requiring the proportional hazards assumption
should be used instead. One of the authors of both papers, Mats J. Stensrud, also wrote (Dumas
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& Stensrud, 2025), pointing out how the use of hazard ratios for causal inference can generally be

misleading.

In our ibuprofen example, the estimated constant marginal hazard ratio is closer to the coun-
terfactual aim of the unconditional ibuprofen treatment effect in the entire population than the
conditional estimate. However, it can be regarded as an average of a time-varying hazard ratio,
based on the causal assumption of time-varying hazard ratios.

2.6.3 Hazards, Hazard Ratios and Risk Set Over Time

For survival and risk probabilities at specific time points ¢;, we assess the probability of an event
happening within the time interval from the start of study to time ¢.

The hazard rate and hazard ratio at timepoint ¢, are on the other hand conditional on surviving

up to the timepoint.

This bias, which occurs when conditioning on survival, is known in the counterfactual framework
as survivor bias, healthy worker bias, or, in the context of the Cox model, the built-in selection

bias inherent to the Cox model.

In the ibuprofen example, to adjust for other factors influencing ibuprofen intake, we both weighted
individuals by their probability of taking the drug and conditioned on other measures, both variables
based on all individuals at the start of the study. The hazard ratio is derived from hazards, or the
rate at which events occur per day, which is conditional on the set of people still at risk on that
specific day, known as the risk set. Essentially, the risk set on day 1 can look quite different from
the risk set on day 20.

To visualize this, we plot in Figure 13 the marginal hazard ratio and risk set for each day. This
is possible because we have all the individuals observed and counterfactual healing times. By
design, we have adjusted for other factors that influence the use of ibuprofen and can determine
the marginal hazard ratio over time by examining, each day the number of individuals in the risk
set and the number of events that occur. To compare the true counting process hazard ratio, with
the classical or counterfactual framework estimates, we plot the estimates as additional lines in the

true hazard ratio graph.
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Figure 13: Changes and constants over the first 14 days

The marginal estimate in Figure 13 decreases over time as the proportion of people taking only
ibuprofen increases. The adjusted estimate remains the most technically accurate reflection of the
true constant hazard ratio at the start of the study. Since the hazard ratio varies significantly over
time as the risk sets shrink, repeated studies are needed to plot a stable line. In the appendix,
we have added a Monte Carlo simulation of the marginal hazard ratio over time, based on 100
simulated studies of the ibuprofen study.

2.6.4 HR Over Time Given Various Treatment and Confounding Effects

The ibuprofen study is simulated with a true conditional hazard ratio, dependant on, other measures
as, exp(f;) = 1.5 and the hazard ratio of the, other measures covariate is exp(3,) = 2.5. Half of
the individuals are set to take other measures and the baseline probability of taking ibuprofen is set
to oy = 0.5. The odds of taking ibuprofen, given taking other measures, are set to 3 to introduce
confounding.

This simulated study is straightforward and chosen to illustrate how the risk set changes over time.
We examined how the combined effects of non-collapsibility and built-in selection bias influence
the marginal hazard ratio estimate over time. Creating a study where we know there is a strong
positive effect of treatment and a even stronger positive effect of a confounding covariate results in

a risk set that changes significantly over time.
What about other scenarios?

To visualize the hazard ratio over time for different combinations of treatment effects and con-
founders, we create Figure 14 where we expand the previous ibuprofen example to analyze the
first 20 days after a swelling event affecting N = 50,000 people. For each individual, we eliminate
confounding using the counterfactual approach, which involves hypothetically assuming that, con-
trary to reality, everyone was observed both with and without ibuprofen. We simulate ibuprofen
as having a positive effect with HR = 1.5 (faster healing), no effect HR = 1, or a negative effect
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on healing time HR = 0.5, combined with the binary other measures under the same conditions,
positive as $HR = 2.5, no effect as HR = 1, or a negative effect as HR = 0.626.
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Figure 14: Hazard ratio over time given pos., neg. or no effect of treatment or other measures.

In Figure 14 we see that for the other combinations of treatment and confounding effects, the
marginal hazard ratio over time behaves more stably or even stays approximately constant over
time. The two-part problem of non-collapsibility and built-in selection bias of the Cox model is
most pronounced when both treatment and confounder have a strong positive effect on the hazard
rate. A Monte Carlo simulation of all six combinations of treatment and confounder effects is

presented in the appendix.

2.7 Marginal Survival Probabilities from an Adjusted Cox Model

Survival probabilities are not non-collapsible; therefore, to compare classical and counterfactual
estimates of survival probabilities, the classically or counterfactually estimated marginal survival
curves offer a good comparison of the two approaches. Especially since the counterfactual framework
stresses the use of marginal estimates and survival probabilities over adjusted hazard ratios. The
conditional adjusted Cox model can be collapsed to marginal survival probabilities since the Cox
model estimates survival for each individual. The marginal survival curves of the ibuprofen study
described in Section 2.4.6 are plotted below in Figure 15 for the adjusted Cox model and the
IP-weighted Cox model to visualize the outcomes and their comparisons.
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Figure 15: Survival probabilities over time, IP-weighted Cox model and adjusted Cox model, perfect overlap

The differences visualized by Figure 15 show that the two survival curves overlap almost perfectly.

The collapse is possible because Cox model estimated survival probabilities can be standardized by
predicting the survival probabilities for each individual in the study under everyone treated and
everyone untreated and finding the average survival probabilities over time. This method is called
standardization and is denoted in Section 2.7.1.

Using the adjusted Cox model to predict survival probabilities for each individual under both
treatment strategies is computationally intensive and proved to be infeasible for the n = 50.000
individuals in our ibuprofen study. To be able to find the marginal survival probabilities we sampled
5.000 individuals from the study and used them to predict and standardize the survival probabilities

over time.

2.7.1 Standardization of a Conditional Estimate.

Standardizing a conditional probability to find a marginal estimate is the foundation of the coun-
terfactual method called the parametric g-formula which we mentioned as one of the g-methods
in Section 2.5.2. As shown in Figure 15, standardization of the adjusted Cox model can closely
approximate the marginal survival probabilities estimated by the IP-weighted Cox model MSM.

The two methods of making a marginal model or standardizing a conditional model estimate are,
in fact, stated as theoretically equivalent in (Hernén & Robins, 2025, p. 173), given the models are
correctly specified and censoring is correctly accounted for. In Sections 2.9 and 2.10 we will further
define the parametric g-formula, the stated equivalence of methods and the common deviance from
it in observational studies, where some model misspecification is assumed unavoidable.
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The ibuprofen study example has no censoring, and we have focused on comparisons between the
classical and counterfactual frameworks with correctly specified models before, in the next Section
2.8 moving on to more complex scenarios with misspecification and censoring.

This allows us to introduce the parametric g-formula under conditions where we can explore how

and if the two counterfactual methods differ.

2.8 Censoring and Competing Events

As mentioned in Section 1, survival time analysis must take into account censoring and competing
events that block the observation of the events of interest. So far, we have defined and examined
survival times within classical and counterfactual frameworks without accounting for these factors.
Censoring and competing events are crucial in survival analysis. A participant in a study might
drop out, making it impossible to determine if they will eventually experience the event of interest.
For example, individuals may be censored due to the study ending, loss to follow-up, or death.
When death occurs, it is a competing event that prevents the event of interest from happening;
in other cases, the event may still occur, but the researcher cannot observe it, meaning they are

censored.

A perfect study scenario, like the one we examined with the simulated ibuprofen example, involves
no individuals lost to follow-up or censored. However, this is rarely the case in real life. Simulating
survival times for a study, considering possible competing events, administrative censoring, and
loss to follow-up, produces a stochastic process of random variables indexed by time ¢. The earliest
of these random variables represents the observed event times, denoted as T} for individual . For
simplicity, in this work, we treat competing events as censoring events. We refer to censoring with
the random variable C'{0, 1}, if C' = 1, the survival time is a censored time. In fact, Y and C are

now complementary events; if one occurs, the other cannot.

Although the survival time is censored, the censoring time still offers essential information about
survival up to that point.

2.8.1 Censoring Mechanisms

To draw causal conclusions from censored survival data, it is important to consider the reasons and
circumstances under which participants were censored. In addition to administrative censoring at

the end of the study or competing events, there are three main censoring mechanisms:
1. Administrative censoring.

o Censoring by the end of the study, a single date is set for all participants, marking the
end of the study. The time spent in the study can then vary between participants.

e By the end of the study, participants may have different start and end dates, but each
individual has a maximum time limit.

2. Death from age and other competing events.
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e The event of death from natural causes. For simulations, a maximum age must be set
for all participants. When subjects reach this age, they are considered to have died from

natural causes.
3. Censoring mechanisms.
e Censoring completely at random.

Censoring is independent of all other variables. This is often called loss to follow-up and can
happen for unknown reasons. When censoring is fully random, standard survival analysis
methods can be used without adjustments because censoring does not cause bias.

e Censoring at random.

Covariate X can influence censoring, which is random depending on measured covariates. For
example, death due to age is a censoring event that clearly depends on age. When censoring
is at random, it skews the risk set by removing individuals with specific covariate values more
often than others. This creates selection bias in methods that rely on the risk set at each
time point, such as the Kaplan-Meier estimator, the Cox model, and MSM models.

e Censoring not at random.

Outcome influences censoring; how effectively treatment impacts someone can determine
whether they continue treatment. This is also called informative censoring and is the hardest
type of censoring to recognize and correct for. This discussion will not go into how to ad-
just for non-random censoring; however, it is important to be aware of its presence and the

limitations it causes for both approaches.

2.8.2 Left Truncation

Left truncation, also known as delayed entry, occurs when individuals commence participation in a
study at various times. In a straightforward survival analysis example, it is often assumed that all
participants begin at ¢ = 0 and that the hazard rate is calculated by considering the lesser of their
individual right-censoring or event times, represented as the ratio of the number of events to those
at risk at each specific time point. Under conditions of left truncation, individuals may continue to
enter the study and begin contributing to the hazard rate at different times. If all individuals share
a final date of study then left truncatation causes some people to be administratively censored after
a shorter time than other and thus less likely to have an event in the time frame of the study.

The models or counting process approach we implement in this thesis are equally valid for studies
with left truncation, right-censoring or both and the adjustements made to account for both cen-
soring and delayed entry are built on the same foundation for all methods or approaches. For the
remainder of the thesis we will emphasize the bias caused by righ-censoring times but we note that
left truncation would not require a different set up (Odd Aalen, 2008. p. 6).
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2.8.3 Simulating Censoring Times

Let T be an exponentially distributed random variable representing censoring time. Hazard rate
of censoring is denoted as h,(t) = A.. Possible censoring mechanisms are categorized into three
versions: censoring completely at random (MCAR), censoring at random (MAR), or censoring not
at random (MNAR). The abbreviations refer to missing completely at random, missing at random,
and missing not at random, respectively. We therefore need to create a censoring simulation that
accounts for these mechanisms so that we can explore the different results from a classical or

counterfactual survival analysis under these scenarios.

Missing completely at random (MCAR) is independent of covariates and therefore does not bias

estimates. The baseline censoring of survival times 7 is denoted, T° ~ Exponential(),), E[T¢] =
1

Tc‘
of the baseline hazards in the treated and untreated groups, A\, =

The parameter A\, is chosen to be a function of the desired censoring level and the minimum
min(A;,Ag)(1—p,)

D where p, is the

desired censoring level.

Missing at random (MAR) can be created by an accelerated failure time (AFT) model. Tt is used to
simulate covariate conditional survival times. The AFT model is defined for a given censoring time
T¢ and a vector of covariates in X = (X, ..., X)) with assigned scale parameters w = (wy, ..., wy,) ",
on the log-scale. If a covariate has multiple levels then each level is assigned a different w;. For
each X, there then is a constant w(x;) = w;. Unless otherwise specified, all w; = 0.

The AFT model assumes that covariates have a multiplicative effect on the survival time and an
additive effect on log survival time (Majeed, 2020) and (Odd Aalen, 2008, p. 443).

Tf prar = exp(—log(A.) + wl X) =M texp (w'X)

By using an AFT model, we have guaranteed that by setting w # 0 for some x € X, the censoring
is at random but not completely.

Now each individual can have a censoring time T based on the chosen censoring mechanisms. If
we, for now, ignore survival times, and think of a study where we would only observe censoring
times we can still see that these simulated censoring times would not be observed for all individuals.
That is because it is not only the random censoring times that can occur. The random censoring
times can themselves be censored by other censoring times f.x. if a simulated censoring time is
after 20 days in a 10 day study, the censoring time is administratively censored by the end of study.
This can also come up due to death from age since we have to choose a maximum age of individuals
to prevent immortality in our study. To define the final censoring time of individual ¢ we refer
to it as the observed censoring time. The observed censoring time is now defined as a random
variable defined as the minimum of the random variables defined by the possible censoring times of
an individual in the study. Given a censoring mechanism that is completely at random we denote

this as,
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Te¢

z,administrative) .

Cc __ 3 C C
Iy = mln(Ti,MCAR? T 4ge=100

(19)

The final observed survival time of individual ¢ is then the minimum of the censoring time 77 and

uncensored survival time 7;*. If the observed survival time is T; = T}, then ¥; = 0 and C; = 1.

2.8.4 Adjustments for Censoring Bias with the Proportional Hazards Cox Model

If censoring is at random in a study, the Cox model is adjusted by including the covariate that
influences censoring in the model, just as if it were a confounder. If the covariate only affects
censoring and not the outcome or treatment assignment adjustment becomes optional since the
censoring does not induce bias on the treatment effect estimation. Censoring completely at random
does not need any adjustment since the risk sets are not biased by selection bias from censoring. If
censoring is not at random, more advanced methods are needed to adjust for the bias it introduces
and that will be outside the scope of this work for all methods.

2.8.5 MSMs with Inverse Probability of Censoring Weights (IPCW)

Just as we modeled the propensity score of treatment to generate an inverse probability of treatment
weight, we can similarly model the probability of censoring, given treatment and covariates X, to

create the inverse probability of censoring weights, (IPCW).

The joint modeling of the inverse probability of treatment weights and the inverse probability of
censoring weights can be used to meet the three assumptions of the causal inference framework:
exchangeability Y*=0 1 (A,C) | X, positivity, and consistency. The joint modeling of treat-
ment and censoring probabilities creates a pseudo-population where censoring occurs completely at
random (Hernan & Robins, 2025). Constant stabilized censoring weights are defined as,

(20)

For treatment weights we estimate the probability of treatment given confounders as a constant
given a non-time varying dichotomous treatment. For the censoring weights we estimate the prob-
ability of staying uncensored given covariates in each time interval k. The censoring weights are
therefore more complex to estimate than the constant treatment weights. Methodologically the
probability of being uncensored is estimated in the same way as estimating the hazard over time
by a logistic regression model, instead of finding the probability of event occurance we find the
probability of remaining uncensored in each time interval for each individual in person-time format.
Just as the survival probability in interval k is defined as the conditional probability of no event in
intervals [1, k — 1] up to interval k, the censoring probabilities are defined as the conditional proba-
bility of not being censored in intervals [1, k—1] up to interval k. The censoring weights, IPCW,(t),
are the inverse of the estimated probability of remaining uncensored up to time ¢, stabilized by the
marginal probability of not being censored given observed treatment a;. Defined as follows for each

individual 7 and intervals 1 < k <t < T, where C(k) is the censoring random variable in interval
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k and ¢;(k) = 0 denotes that individual 7 is uncensored in interval k, T; and t are the observed

survival time.

P(C(k) = ¢;(k) | Ck—1) = ¢(k — 1), A = a,) o)
=6 | '

int(t)
1Pewi0 =11 pem—am ct-D —ak-1,A=a, X(—1) == 1)
Since each individual has a final observed survival time of 7 the censoring weights are at most
defined at ¢t = T; which is then the censoring weight that can be used for a time-to-event analysis
by a Cox model as an IP-weighted Cox MSM for a marginal estimate. The individual model weight
is then defined as the constant, w, = IPTW, - IPCW,(T;) and for each interval in person time
the weights are w,(t) = IPTW, - IPCW,(t). The definition of the longitudinal censoring weights,
IPCW,(t) is given in (Odd Aalen, 2008, p. 381) as sw, for the time-varying treatment weights case
and used here for the censoring weights case described in (Cole & Hernén, 2008).

2.9 Standardization or the Parametric g-formula.

Now we are ready to go over the parametric g-formula which is the model that fully utilizes a
comparison of two potential outcomes rather than adjusted hazard ratios or IP-weighted hazard
ratios. Standardization or the parametric g-formula for a mean potential outcome of event for
everyone, uncensored, treated, and untreated, E[Y *¢] is denoted as,

E[Yee0 =Y E[Y |A=a,C=c¢,X =1] x P[X = 1 (22)

for a time-fixed treatment A. If the counterfactual assumptions of exchangeability, positivity, and
consistency, defined in 2.5.1, hold, the standardized mean outcome in the uncensored and untreated
group equals the mean potential outcome had everyone been uncensored and untreated. We refer
back to Section 2.5.3.5 on MSM models for the overview of pooled logistic regression models that can
be used to estimate E[Y | A = a,C = 0, X = x]. The difference is that equation (15) is now, like the
Cox model, adjusted for confounding and censoring, instead of weighted by IPTW and IPCW. The
standardization is then done by predicting for each individual in the study under each treatment
strategy over all time intervals k and averaging the predicted outcomes over all individuals using
the law of total expectation. This can be denoted as 4 sz\il E[Y |A=a,C=0,X =] for all N
individuals and chosen time intervals of the study since equation (22) can also be written as the
double expectation E[E[Y | A = a,C = 0, X = z]]. Equation (15) can be expressed in terms of the
parametric g-formula for each individual as,

(23)
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We include f ; and set the linear and quadratic time-by-treatment terms to capture changes in
the baseline hazard over time and to allow the treatment effect to vary over time.

The pooled logistic regression model in equation (23) is commonly referred to as the Q-model or
the outcome model. To distinguish it as a middle step to the parametric g-formula, we refer to it
as the Q-model.

In practice, covariates are often continuous, and in that case the standardized mean is written as
an integral with the joint cumulative distribution function of the random variables in X instead of
asum, [E[Y |A=14a,C =0,X = z|dFx(z).

The discrete-time survival is as in equation (17) the product of one minus the, in this case, condi-
tional hazards up to time £, 4,

tend

P[Y, =0|Y, ,=0C, =0,A=a,X =a]. (24)
m=1

We can standardize the discrete-time survival over the covariates in X in the same way as in
equation (22).

By first constructing a conditional model, as in Cox regression, and then applying standardization,
the parametric g-formula produces a middle stage counterfactual model, the Q-model that yields
conditional effect estimates comparable to those obtained from the Cox model. This allows us to

compare a conditional estimate obtained by both the classical and counterfactual approaches.

2.10 IP-weighted MSM and the Parametric g-formula Equivalence

The IP-weighted mean and the standardized mean of Y are theoretically the same. This means the
parametric g-formula and IP-weights are two methods within the causal framework that, in theory,
should give identical results if there is no model misspecification, no unmeasured/mismeasured
confounding or positivity violations. The proof of this (Herndn & Robins, 2025, p. 25), is as

follows.

Assume treatment A defined as a finite discrete random variable A and that positivity, consistency
and exchangeability given covariates X € {3:1, v, T j} is assumed to hold under the density function
of A given X, f(a|x) > 0 for all z such that P[X = z] > 0. The standardized mean of outcome Y
as the weighted average of the conditional means of Y for observed treatment level a is defined as,

E[Y]=) E[Y |A=a,X =2]P[X =2]. (25)

The IP-weighted mean of Y for treatment level a is defined as,
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1 ifa=A,

With the indicator function 1 4(a) :=
0 ifa+# A

In what follows, we will display the proof from (Herndn & Robins, 2025, p. 25) of the equality of
the IP-weighted and standardized mean counterfactual outcome of Y.

By the law of total of expectation we derive the standardized mean from the IP-weighted mean,

14@Y ] _ _ =a, X =1|f(a|x =2z
E[f(A,XJ—;f(amE[YlA X = a)f(a] #) PX = 1] (27)
:;E[Y|A:a,X:x]P[X:a:}. (28)
(29)

X is not constrained as discrete, if it is continuous, then the sum over X is replaced with an integral.

Conditional exchangeability in addition to the previous conditional positivity ensures that both
the IP-weighted and the standardized means are, by consistency, equal to the counterfactual mean

E[Y9].

E[Y"] =) E[Y*|X =2]P(X =x) (30)
=Y B[Y*|A=0a,X =2]P(X =) (31)
=) B[y |A=0a, X =2]P(X =2). (32)

1,(a)Y

IP-weighted mean E [ A X>] is then also equal to the counterfactual mean of E [Y?]. To show that

by conditional exchangeability this statement holds we derive the following,

s[iatn) -] o
B8 e | e ) h
=E{E[Y* [ X]} (35)
=E[Y]. (36)
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Since this is a theoretical proof of the equivalence between IP-weighting and standardization, it
does not necessarily reflect practical application in epidemiology. In reality, the equivalence does
not translate to practice when models and datasets are imperfect. Bias may not develop similarly
in effect estimates from both methods since they are using different models but close results can
suggest that the models are well specified given data, but that is not a guarantee while large
differences in results do indicate misspecification in the treatment or outcome models.

Impact from the in practice, common deviations from the positivity assumption varies between IP-
weighting and standardized estimates that depend on parametric models. Standardization, can
handle the lack of positivity by parametric extrapolation but the IP-weighted mean loses its causal
interpretation. If we fit a model for E[Y | A, X] that will smooth over X with structural zeroes
the smoothing will introduce bias into the estimation, and therefore the 95% confidence intervals
around the estimates will cover the true effect less than 95% of the time. This does not have to be
an issue of lack of data since data can have structural non positivity and thus positivity might never
be reached, no matter the amount of data collected (Chatton et al., 2020). IP-weights cannot be
estimated in the presence of non-positivity and are more susceptible to violations or near-violations
of positivity in comparison to standardization which can though give small variance estimates with

large bias.

To conclude, these are two different ways to reach the same exact goal of estimating the counter-
factual mean outcome Y?, each way has their own complications and biases that can arise. If we
assume that in practice things do generally not go perfectly we also have to assume that whichever
way we go there will be some bumps along the way that affect the final estimates.

2.11 Flow Diagram and Summary of Methods

To demonstrate the differences between the classical and counterfactual approach, the standard

pathways in each are compared in the following flow diagram.
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Figure 16: Flow diagram of methods

Figure 16 summarizes the two approaches and the different methods used to adjust for bias from
confounding and censoring that we have discussed in this work. The assumed starting point is an
observation dataset with time-to-event data, one row per individual and a dichotomous treatment
variable.

Based on the diagram the choice of approach should depend on the research question at hand,
the data available and the choice of aiming for a conditional estimate or a marginal one. Careful
consideration of the assumptions, possible biases and limitations of each approach should also
be a factor in the decision making. For example if there is doubt that the proportional hazards
assumption holds for the Cox model then the counterfactual approach should be preferred since it
does not rely on a constant hazard ratio over time.

2.12 Model Validation

For this work, where we have simulated data with known true parameters, we choose to validate
the classical and counterfactual models by a Monte Carlo simulation. The Monte Carlo confidence
intervals are found by continuously generating datasets to estimate the hazard ratios and survival
curves for each. For each dataset we estimate the parameters of interest and compare them to the
true parameters used to generate the data.

We visualize the distribution of estimates over time using the 95% quantiles of estimates and
their corresponding 95% Monte Carlo confidence intervals. The confidence intervals are calculated

43



2.12 Model Validation 2 METHODS

by assuming that the estimates converge to a normal distribution as the number of simulations
increases, in accordance with the central limit theorem (Batyrbekova et al., 2024).

The mean and 95% Monte Carlo confidence intervals for B are then calculated for m simulations
as 0+ 1.96 - \/%, where s is the standard deviation of the m estimates.

Additionally, we assess the bias of the Monte Carlo mean estimates from the true values and the
coverage of each study’s 95% confidence intervals. This is done by calculating the proportion of
the m studies where the true parameter value lies within the per model estimated 95% confidence
interval. Since for the marginal hazard ratio over time we estimate multiple time points and
do not have a single true value to compare to, we find the bias-eliminated coverage, instead of
finding the proportion of simulations with the true value within the confidence interval we find the
proportion of simulations where the Monte Carlo mean estimate lies within the per model estimated
95% confidence interval. To estimate the power of the models we also calculate the proportion of
simulations where the null hypothesis is rejected at a significance level of o = 0.05.

The performnance measures are summarized in Table 2 and can be found in more detail in (Morris
et al., 2019).

Table 2: Monte Carlo performance measures.

Performance Definition Estimate Monte Carlo SE of estimate

~ m A , R .2
Bias B[4 — R Sy s S (3 5)
Coverage Pr ( Alow S ﬂ S Aupp ) % ZZl 1 (Blow N S ﬁ S Aupp 77,)\/ Cover .X(:,; Cover. )

= S 2 o

BapSE VarG) Vi s (h-0) Eme
Bias-eliminated Pr ( Sow < B < Aupp ) Lyl (Blow i<B< Aupp z)\/ Cover .x(1— Cover. )
coverage
Rejection % (power Pr(p; < «) nl Z:;lm 1(p; < a) \/ Power 2(.17 Power )

or type I error)
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3 Monte Carlo Simulations of Classical and Counterfactual HR

Estimates

Based on the mehods described in the previous Sections we set up a Monte Carlo simulation study
to compare the classical Cox model to the counterfactual methods of IP-weighted Cox MSM and
the parametric g-formula. We evaluate how well the models perform in estimating the hazard ratio
of treatment over time and as a constant estimate. We compare the estimates from the MSM
models to the estimates from the parametric g-formula to evaluate how close they are to each other
and report all estimates with their Monte Carlo performance measures.

As an independent continuation of the first simulation, we set up a second simulation study in
Section 3.2 to evaluate how different model parameter choices affect bias in the estimates from
a classical Cox model and the IPTW Cox marginal structural model. The second simulation
is evaluated visually by plotting the Monte Carlo mean estimates with their 95% Monte Carlo
confidence intervals over time for different combinations of covariates included in the treatment

model and outcome model.

To create an overview of the notation and variables used in both simulations we denote them in
Table 3.

Table 3: Notation and variables used in the simulation.

Symbol Name Description Purpose

Treatment and outcomes

A Treatment (0 = Untreated, 1 = Treated) Did people receive the treatment?

Y, Outcome (0 = No event, 1 = Event) Indicator of event occurrence in in-
terval k£

(O Censoring (0 = Not censored, 1 = Censored)  Indicator of censoring occurrence in
interval k

Baseline covariates

X, Gender Binary (0 = female, 1 = male) Possible confounder or effect modi-
fier

X, Age Age in years (continuous) Possible confounder

X4 Instrument Binary (0 = No, 1 = Yes) Instrumental variable

X, Neighborhood Categorical (factor) Possible confounder

X Health before Binary (0 = Healthy, 1 = Sick) Possible confounder

Xe Income Monthly income (continuous) Collider (by study design)

Time-to-event quantities

Te=0 Survival time (Un- Survival time under A =0 Counterfactual survival time
treated)

Tt Survival time  Survival time under A =1 Counterfactual survival time
(Treated)

Te Censoring time Censoring time Counterfactual censoring time
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3.1 Treatment Effect Estimation

We generate M replicates of studies, each with N individuals. For each individual i we generate
a vector of covariates X, a survival time given treatment T* and censoring time 7¢. To follow
a Cox model we need to define the survival time T as a function of the covariates X and the
treatment A. The survival time is defined as the minimum of the event time and the censoring
time, i.e. T* = min(7*, T¢). The event time is defined as a function of the covariates and treatment,
ie. T* = f(X,A). To create data for classical survival analysis and causal survival analysis we
will use the same data generation process but we simulate both 7%=! and 7%= as a function of
the covariates X and treatment A for each individual, the ratio between the two is the true hazard

ratio.

The following DAG in Figure 17 illustrates the chosen causal structure of the simulated observa-

tional study.

Censoring C
Censor time

Neighbourhood
ABC

Treatment A
Binary

Health before
Binary

Figure 17: DAG of causal relationships

Figure 17 shows how we have built the data generation process to reflect a realistic observational
study for an undisclosed drug treatment A. To indicate a hypothetical unknown relationship we

use a dashed line from gender to censoring C'.

To draw a fair comparison between methods we assume that the same covariates are confounders
to be adjusted for, regardless of approach. In Section 1.2 we discussed how a box around a variable
on a DAG indicates that it is adjusted for to eliminate bias and obtain exchangeability between

treatment groups. A DAG that reflects the chosen covariates is shown in Figure 18.
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Neighbourhood
ABC

Censoring C
Censor time

Age
Continuous

Gender
Binary

Instrument I
Binary

Treatment A
Binary

Health before
Binary

Figure 18: DAG of adjusted causal relationships

The choice of covariates in Figure 18 is based on the clear confounders of X5 as the health before
treatment and the joint confounding from X, and X, as age and neighborhood. Only adjusting for
X, since it acts as a confounder by mediating the effect of age on treatment could be enough to
adjust for confounding but to be either safe or overadjust we include both. We choose to include
the instrument X5 in all models to to allow for the possible bias that the inclusion of an instrument
can introduce and see how the methods compare under this scenario. The choice of gender X, as
a covariate that afects outcome directly and “unknownly” affects censoring is to create a realistic
scenario where researcher will not be able to know or measure all relationships in a study.

3.1.1 Set Parameters of Monte Carlo Simulation

We generate the study described in 3.1 by simulating for each random variable based on the defined
mechanisms for censoring times in Section 2.8.3, survival times in Section 2.4.5 and treatment
assignment in Section 2.3.3 based on variables denoted in Table 3. The parameter values are

summarized in Table 4.
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Table 4: Parameters of the Monte Carlo simulation.

Notation Value Description

Study design

N 5000 Number of individuals

M 500 Number of Monte Carlo iterations
Tiruay 20 Time of study (years)

Treatment assignment

o)

p
oy 3
Qg 4

0

©
153

Qg

Baseline probability of treatment, Bernoulli
Log odds ratio for health before variable
Log odds ratio for the instrumental variable
Log odds ratio for unit increase in age

Covariate distributions

Xage TN (50, 30, 20, 90)*
Phealth before p=(0.5)

Dgender p=(0.5)
Preighborhood p=(0.4, 0.4, 0.2)
Preigh|senior p = (0.4, 0.3, 0.3)

Age (years), truncated normal
Health before, Bernoulli
Gender, Bernoulli

Pr(X . = 1,2,3 | age < 70)
Pr(X,en = 1,2,3 | age > 70)

neig

Survival time simulation

Ao 1/15 Baseline hazard in untreated T°

A 1/10 Baseline hazard in treated T'!

exp (Bheattn) 2.5 HR for sick vs. healthy

exp(ﬁgender) 0.909 HR for men vs. women

exp(Bage) 1 HR per unit increase in age
exp(ﬁneighborhood) 0.833 HR for neighborhood C vs. others
Censoring model

Tase 100 Administrative censoring age (years)
Tadmin Tituay Administrative censoring time (years)
Weighborhood 0.6 Neighborhood C shift on censor hazard
Wender 0.7 Gender men shift on censor hazard
A, 0.4\, Baseline censoring hazard

3.1.2 Simulated Observational Study Overview

We take one random study out of the 500 to visualize the simulated data and display in Figure

19. The plot is colored by treatment group. Displayed survival times are simulated survival times

based on treatment assignment before cut off by censoring. The survival times are therefore the

true survial times of 7% and 7° and the event time is the observed times.

We can see how the

covariates are associated with treatment, outcome and censoring. As we defined in Table 4 health

before and the instrumental variable are the strongest predictors of treatment. Age affects both

treatment and censoring times vaguely but since age is truncated at 90 years old at the start of

study and the study is over 20 years few individuals reach this age. Age also has an effect on

'Truncated normal distribution; see [@TruncatedNormal].
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survival times indirectly through neighborhood since older individuals are defined as more likely
to live in one neighborhood. Health before is a clear confounder as it affects both treatment and
survival times.
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Figure 19: All covariates and relationships
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3.1.3 Models Used for Estimation

Based on Figure 18 we choose parameters for all models across methods. We allow for some
misspecification by including the instrument parameter in all models and assume the effect of

gender to censoring to be unknown.

3.1.3.1 Cox Model For the Cox model, based on Section 2.4.1 we define the hazard function

as,

h(t | Az, ... x5) = ho(t) exp (81 A+ Boxy + Baxg + By23 + P54 + BeTs) - (37)

All covariates that affect the outcome and treatment or censoring are included in the Cox model
to adjust for confounding. The proportional hazards assumption is assumed to hold in this model
and we will not inlude any time-varying effects or delve into testing the assumption further for the
conditional model since that would be trivial given the data simulation process.

The goal is to estimate the accuracy of the Cox models estimation of the conditional treatment
effect as f3;.

3.1.3.2 Q-model and the Parameteric g-formula The outcome model or the counterfactual
Q-model is estimated based on Section 2.9 as,

logit P[Yy, 1, =1|Y,; =0, A=a;, X =, = By + fra; + Boa;k + Bza;k?

(38)
+ By + BsTig + Beiz + Brig + Psys.

We include all covarites that affect the outcome and treatment or censoring in the Q-model to

adjust for confounding. To fully explore the time-varying marginal treatment effect we include

time intervals k and squared time intervals k? with an interaction with treatment A to allow for a

flexible time-varying treatment effect.

To standardize the estimation, we predict over person-time expanded format for all individuals their
counterfactual potential outcome at each time interval k under both treatment and no treatment.
The marginal discrete-time hazards, hazard ratio and survival curves are then estimated over each

interval over the study period.

3.1.3.3 Weighted MSM The weights are defined first in Section 3.1.3.3.1 based on the defini-
tions of inverse probability weights in Section 2.5.3.1 for the treatment weights and Section 2.8.5
for the censoring weights. The pooled logistic regression marginal structural model is defined based
on the modeled weights as described in Section 2.5.3.5.

3.1.3.3.1 IPCW and IPTW The time-varying inverse probability of censoring weights
(IPCW) are estimated as,
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T;

k) =
Cz<k) =0 (k_ 1) = 07 A; = ay, xi27xi4>'

We include age X, and neighborhood X, in the censoring model as well as treatment A and time

intervals k and squared time intervals k% to allow for time-varying censoring.

The censoring weights had a few extreme values that skewed the estimates. In 2.5.3.1 we discuss
the common practice to cut weights off at the 1st and the 99th percentile to address this issue, we
used this approach to stabilize the weights.

The constant inverse probability of treatment weights (IPTW) are estimated as,

f(A=1)

IPTW, = .
f(A=a; | z9,73,75)

(40)

We include age X,, the instrumental variable X3 and health before Xy in the treatment model.
The inverse probability of treatment weights had a stable mean around 1 and showed no sign of
needing to be stabilized.

3.1.3.3.2 Pooled Logistic Regression MISM We estimate the pooled logistic regression MSM
by,

logit P [Ykﬂﬂ» =1| Y,;=0,A=qa;,X = ZCZ] = Box + Bra; + Boak + Bsa; k> (41)

With the same time intervals & inclusion as in the Q-model. The product of the IP-weights is applied
to the model and each individual is modeled in person-time format with one row per interval k
until event or censoring. Each individual is modeled as a cluster to obtain robust standard errors.

The hazards and hazard ratios are then estimated by predicting the marginal counterfactual poten-
tial outcome under each treatment level for each time interval k in study-time expanded format.

3.1.3.3.3 Cox Regression MSM We also estimate the marginal treatment effect by an IP-
weighted Cox MSM, using the same weights as for the pooled logistic regression MSM and the same
cluster approach to get the robust standard errors. The use of the time-varying weights for the
constant Cox model is described in 2.8.5. Since the Cox model does not estimate the time-varying
effect only a constant marginal hazard ratio is estimated for ;A

3.1.4 True Marginal Hazards and Hazard Ratios

We use the counting process approach defined in 2.2.1.1 to estimate the nonparametric discrete-
time marginal hazards and the the hazard ratio over time regardless of method. To do this we
expand the simulated dataset into person-time format based on the two potential survival time of
treatment A = a for each individual so we have one row per time interval under both treatment
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and no treatment. We find the hazard in each k interval as the probability of event by the ratio of
the number of events d;, and the number of individuals at risk R(k). The subsequent ratio between
the two estimated hazards is then an estimation of the true simulated marginal hazard ratio where
there is no censoring. We chose an interval length of three months for this estimation and ran one
study for N = 1.000.000. Resulting discrete-time marginal hazard ratio in each interval k and the
marginal discrete-time hazards are visualized in Figure 20.

8

d (Counting Process)

3 \\W
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(a) Marginal hazard ratio (b) Marginal Hazards

Figure 20: Marginal hazards and hazard ratio for a large N

The hazard ratio in Figure 20 (a) is more unstable so we draw a smoothed line to visualize the
trend over time. We are simulating data based on a true conditional hazard ratio so the marginal
hazard ratio is in this case not constant over time but decreases as seen in Figure 20. The true
conditional value of the simulation is set to exp(f;) = 1.5 and visualized by a constant dashed line
but the marginal hazard ratio is not a constant or stable enough over time to reasonably estimate
it and use as a comparison value for the Monte Carlo results. Therefore, we compare the Monte
Carlo estimations of a conditional hazard ratio to the true hazard ratio and explore visually and
by model evaluation how well the marginal hazard ratio is estimated by each method. Figure 20

surves as a reference for the marginal hazard ratio estimation.

3.1.4.1 Choice of Time Intervals £ The choice of using a three month interval length for
the truth estimation is done to improve the accuracy of the counting process estimation but we
acknowledge that this choice is somewhat unhelpful since interval length should ideally be the same
across all estimations. Rather than changing all estimation to three month intervals which would
be too computationally heavy for the Monte Carlo estimation, or to change the truth estimation
to four month intervals and loose accuracy and rerunning time consuming simulations we choose
to keep the different interval lengths and acknowledge this as a limitation where now interval k
does not align perfectly across simulations. This is a notational issue not a conceptual one since
the total time is the same, we just have more intervals for the truth estimation. Unless specifically
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stated all other estimations use four month intervals for k.

3.1.5 Monte Carlo Simulation Results

We simulate the M = 500 studies with N = 5.000 individuals each and estimate the treatment
effect, for the iterations of estimated values we choose a time length of four months as the intervals
k and for the iterations of the marginal true values of the hazard ratios we use the same interval
length as in Section 3.1.4 of 3 months for improved accuracy and consistency.

First we visualize in Figure 21 (c) the same metric of a true marginal hazard ratio as in Figure 20
but now as the Monte Carlo mean of the estimate with the 95% Monte Carlo confidence intervals.
Using the same counting process mechanism of events divided by the number at risk we plot in
Figure 21 (a) the discrete-time conditional hazards based on the observed survival times, this time
including censoring and only one row per individual for the observed treatment level and in Figure
21 (b) we plot the true marginal hazards. Figure 21 (a), can be used to validate the chosen time
length of four months for intervals k that allows us to stay under the required probability of event

lower than 0.1 approximation of the counterfafctual approach as discussed in Section 2.5.3.3.

i [agils
R o T e 27 v i 5 0 "

pieaetessetes

-_*.__,",', (Y ."

001 2 3 4 5 6 7
vvvvvvvvv

Treatmentsiaus 8- Treated 8- Untreated  Confounder — Healhy before == Sik before Treatmentsiatus ~+- Treated ~+- Unireated

(a) Hazards in 4 month interv. (b) True marginal hazards in 3 (c) True discrete-time marginal HR
month interv.

Figure 21: Monte Carlo mean and CI of hazards per time interval to validate using logistic regression as a hazard
approximation. Figure (c) is the estimated true marginal hazard ratio.

3.1.5.1 Classical Cox Model and the Counterfactual Parametric g-formula Q-model
The estimated adjusted hazard ratios, from the classical Cox Model and the estimation of the
approximated adjusted hazard ratio from the pooled logistic regression by the counterfactual Q-
model are compared to each other and the true value of the conditional hazard ratio.

We report the Monte Carlo mean and the performance metrics denoted in Section 2.12 by a boxplot
in Figure 22 and in Tables 5, 6.

The estimated conditional hazard ratios by the classical Cox model and the counterfactual Q-model
are displayed by a boxplot in Figure 22. The dashed line indicates the true hazard ratio of treatment
set in the simulation as HR = 1.5 and the boxplots show the 75th and 25th percentiles of the Monte
Carlo estimates.
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Figure 22: Adjusted hazard ratio - Model estimates

In Figure 22 we can see that both models are close to the true value of the conditional hazard
ratio. The Cox model appears to be more stable since the Monte Carlo CI and the Monte Carlo
percentiles are more narrow around the true value. The Cox Model appears to have close to no
bias at all, while the narrow Monte Carlo CI of the Q-model (referred to as the G-formula in the
figure) seem to land just above the true value. To further compare the estimates we report all main

numerical results as exponentiated in Table 5 and further analyze the performance in Table 6.

Table 5: Monte Carlo model estimation of conditional treatment effect

Model Parameter MC E(HR) | Bias HR | MC CI 95% MC CI width
Cox Model | age 1.000 1.000 | (1.000, 1.000) 0.000
Cox Model | drugl 1.499 0.999 | (1.493, 1.504) 0.012
Cox Model | genderMen 0.908 0.998 | (0.905, 0.911) 0.006
Cox Model | health beforeSick 2.508 1.003 | (2.499, 2.517) 0.018
Cox Model | instrument 1.001 1.001 | (0.997, 1.004) 0.007
Cox Model | neighborhoodB 0.999 0.999 | (0.995, 1.002) 0.008
Cox Model | neighborhoodC 0.835 1.002 | (0.831, 0.839) 0.008
Q-model (Intercept) 0.022 - | (0.022, 0.022) 0.000
Q-model | age 1.000 1.000 | (1.000, 1.000) 0.000
Q-model drugl 1.514 1.009 (1.502, 1.525) 0.024
Q-model drugl:time 1.000 - | (0.999, 1.001) 0.002
Q-model drugl:timesq 1.000 - | (1.000, 1.000) 0.000
Q-model genderMen 0.900 0.990 | (0.897, 0.903) 0.006
Q-model health beforeSick 2.560 1.024 | (2.551, 2.570) 0.019
Q-model instrument 1.000 1.000 | (0.997, 1.004) 0.007
Q-model neighborhoodB 0.999 0.999 | (0.995, 1.003) 0.008
Q-model neighborhoodC 0.824 0.989 | (0.820, 0.828) 0.008
Q-model time 1.000 - | (0.999, 1.001) 0.001
Q-model timesq 1.000 - | (1.000, 1.000) 0.000

The parameter drugl in Table 5 refers to the treatment effect. Both models are very close to

95



3.1 Treatment Effect Estimation 3 MONTE CARLO SIMULATIONS

the true effect, small confidence intervals and little bias. The Cox model is nearly perfect with
estimated bias only around 0.1% while the Q-model has a slightly larger bias of around 1%. The
Q-model confidence intervals falls just above the true estimate so the bias is statistically significant
but very small still.

To further compare the models we report more performance metrics in Table 6.

Table 6: Monte Carlo model estimation of conditional treatment effect - Performance and log scale

Model Parameter MC E(log(HR)) | Bias log(HR) | EmpSE log(HR) | Reject. % | MC perc 95% | Coverage
Cox Model | age 0.000 0.000 0.001 0.054 | (0.998, 1.002) 0.946
Cox Model | drugl 0.405 -0.001 0.045 1.000 | (1.376, 1.637) 0.946
Cox Model | genderMen -0.097 -0.002 0.037 0.726 | (0.845, 0.983) 0.948
Cox Model | health_beforeSick 0.920 0.003 0.041 1.000 | (2.316, 2.715) 0.956
Cox Model | instrument 0.001 0.001 0.040 0.044 | (0.927, 1.077) 0.956
Cox Model | neighborhoodB -0.001 -0.001 0.044 0.062 | (0.923, 1.094) 0.938
Cox Model | neighborhoodC -0.180 0.002 0.052 0.944 | (0.754, 0.919) 0.952
Q-model (Intercept) ~3.805 i 0.102 1.000 | (0.018, 0.027) -
Q-model age 0.000 0.000 0.001 0.052 | (0.998, 1.002) 0.948
Q-model drugl 0.414 0.009 0.090 0.992 | (1.268, 1.784) 0.944
Q-model drugl:time 0.000 - 0.010 0.044 | (0.981, 1.020) -
Q-model drugl:timesq 0.000 - 0.000 0.048 | (1.000, 1.000) -
Q-model genderMen -0.105 -0.010 0.038 0.780 | (0.838, 0.976) 0.938
Q-model health__beforeSick 0.940 0.024 0.042 1.000 | (2.364, 2.771) 0.898
Q-model instrument 0.000 0.000 0.041 0.044 | (0.925, 1.079) 0.956
Q-model neighborhoodB -0.001 -0.001 0.045 0.062 | (0.918, 1.097) 0.938
Q-model neighborhoodC -0.194 -0.011 0.053 0.956 | (0.743, 0.909) 0.934
Q-model time 0.000 - 0.008 0.042 | (0.984, 1.014) -
Q-model | timesq 0.000 5 0.000 0.042 | (1.000, 1.000) -

In Table 6 we see that the rejection % and coverage for each model is also showing very accurate and
similar results. the coverage and power (rejection %) are nearly identical between the two models
and the empirical standard deviation (EmpSE) is also similar and low, but even lower for the Cox
model. Both models estimate the log treatment effect very well but the Cox model performs slightly
better.

Since the models give such identical results creating a new simulation under more difficult to
interpret conditions, like much higher censoring and reestimating if they again give close results

would be of interest.

3.1.5.2 Comparison of Marginal Treatment Effect Estimation Now we compare the esti-
mates from the Parametric g-formula (3.1.3.2), the IP weighted pooled logistic regression marginal
structural model (3.1.3.3) (IP-MSM) and the IP weighted Cox marginal structural model (3.1.3.3.1)
(IP-Cox-MSM)to each other and the simulated true marginal hazard ratio defined in Figure 20.

The study time period of 20 years is divided into four month intervals indexed by k and the discrete-
time marginal hazard ratio is estimated in each interval by the parametric g-formula and the IP
weighted pooled logistic regression MSM model (IP-MSM) as described in 3.1.3. We report the
Monte Carlo mean and confidence intervals denoted in 2.12 by a faceted plot in Figure 23 and for
the in IP-MSM and IP-Cox-MSM marginal parameter estimates we report them in Tables 7, 8.
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Resulting discrete-time marginal hazard ratios are visualized for each four month interval &k in
Figure 23. The purple dots indicate the Monte Carlo mean estimate of the true, uncensored
marginal hazard ratio in each three month interval and the colored lines and connecting dots
are the Monte Carlo mean of the model estimates. The errorbars indicate the 95% Monte Carlo

confidence intervals. The dashed line indicates the true conditional hazard ratio.

IP-weighted MSM-model IPW Cox Model Parametric g-formula

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Time

Method -@- IP-weighted MSM-model -#- IPW Cox Model -#- Parametric g-formula

Figure 23: Monte Carlo mean of estimated marginal hazard ratios over time intervals, x axis over years

In Figure 23 the IP-MSM model and the parametric g-formula appear close to identical. The
confidence intervals are slightly wider around the 20 year mark for the IP-MSM model and the first
interval under all models does not have the true conditional hazard ratio in the confidence intervals.
The IPW Cox MSM displays a constant marginal hazard ratio around HR =& 1.45. The parametric
g-formula appears to have a curved up again at the end which indicates a stronger k2 effect, we
saw a possible hint of that in the large N simulation in Figure 20 (a) as well but in Figure 21 there

is no indication of that and this could just be random variation.

To directly compare the parametric g-formula and MSM estimates better we plot their subsequent
survival curves by (7) and visualize in Figure 24. We plot the Monte Carlo mean of the estimated
marginal survival curves under treatment and no treatment with the 95% Monte Carlo percentile

intervals.
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Figure 24: Marginal survival probabilities

The survival curves in Figure 24 are nearly identical for the IP-MSM and the parametric g-formula.
When plotting the Monte Carlo confidence intervals they overlapped completely so we chose to
display the percentiles instead for better visualization. Creating the survival curves from the IP-
Cox-MSM proved too computationally heavy so we do not include them here.

Table 7: Monte Carlo mean of model estimated discrete-time marginal treatment effect

Model Parameter MC E(HR) | MC CI width | MC CI 95%

IP-Cox-MSM | drugl 1.446 0.011 | (1.440, 1.452)
IP-MSM (Intercept) 0.036 0.000 | (0.036, 0.036)
TP-MSM drugl 1516 0.025 | (1.503, 1.529)
TP-MSM drugl-time 0.996 0.002 | (0.995, 0.997)
TP-MSM drugl-timesq 1.000 0.000 | (1.000, 1.000)
IP-MSM time 0.992 0.002 | (0.991, 0.993)
IP-MSM timesq 1.000 0.000 | (1.000, 1.000)

The results in Table 7 confirm the visual results in Figure 23 that the IP-MSM has wider confidence
intervals then the IP-Cox-MSM and and varies significantly by time interval k. The IP-Cox-MSM
gives a marginal hazard ratio estimate that is lower than the other two methods are in the first few
years but has narrow confidence intervals and appears to be stable and a reasonable estimate of an

average of the marginal hazard ratio over time.

Table 8: Monte Carlo mean of model estimated discrete-time marginal treatment effect - Perfor-
mance

Model Parameter MC E(log(HR)) | EmpSE log(HR) | Rejection % | Cover. (bias elim.) | MC perc 95%
IP-Cox-MSM | drugl 0.369 0.045 1.000 0.958 | (1.332, 1.576)
IP-MSM (Intercept) -3.324 0.079 1.000 0.962 | (0.031, 0.042)
IP-MSM drugl 0.416 0.094 0.990 0.956 | (1.248, 1.815)
IP-MSM drugl:time -0.004 0.011 0.068 0.952 | (0.974, 1.019)
IP-MSM drugl:timesq 0.000 0.000 0.056 0.952 | (1.000, 1.001)
IP-MSM time -0.008 0.009 0.124 0.966 | (0.975, 1.011)
IP-MSM timesq 0.000 0.000 0.036 0.968 | (1.000, 1.000)

In Table 8 we see that the IP-MSM and IP-Cox-MSM model have similarly high rejection % of the

o8



3.2 Covariate Combinations for Models 3 MONTE CARLO SIMULATIONS

null hypothesis of no effect and a bias eliminated coverage of approximately 95% for the treatment
effect parameter drugl. The IP-MSM model has much wider Monte Carlo percentile intervals and
a high empirical standard deviation (EmpSE) of the log hazard ratio estimate. The IP-Cox-MSM
model has a low empirical standard deviation and a narrow percentile intervals but since it estimates
a constant marginal hazard ratio over time it is not directly comparable. The variability of the
IP-MSM model over time is captured aswell by the wide percentile intervals for time parameter k
and k2.

To further explore the differences between a classical Cox model and a counterfactual IP-Cox-
MSM we explore a similar observational study in Section 3.2. We fit the models under various
combinations of model covariates and thus a range of misspecified models to see how well the
models perform under poorly chosen model parameters.

3.2 Covariate Combinations for Models

In Section 3.1.1 we chose which covariates to model on based on the causal assumption we stated
by Figure 18. The choice of parameters controls how good the subsequent estimate of the hazard
ratio can be. We allowed for some possible model misspecification and rationalized that for a fair
comparison we choose one set up and use for all models. The comparison is then between the
methods but for that specific covariate combination.

To further analyze the Cox proportional hazards model under the classical framework and the
IP weighted Cox MSM of the counterfactual framework we estimate the treatment effect for each
model under all possible combinations of covariates. This allows us to see how well the models
perform under misspecification and how forgiving they are to the choice of covariates included in
the model.

3.2.1 Binomial Theorem

The binomial theorem is used to find the number of possible combinations of covariates in the
models. The binomial coefficient is denoted as,

(2) =

And the binomial theorem is,

(z+y)" = Z (2) akyr=k  integer r > 0. or |z/y| < 1. (42)
k

When z = y = 1 we have 2" as the number of possibilities. We use this to compute the total
number of combinations for each set up (Bhavanari Satyanarayana, 2019).
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Based on Table 3, the number of possible combinations of covariates in our study is z,...,zg,
21XI = 64.

3.2.2 Data and Modeling Scenario Combinatorix

We briefly summarize below how quickly the computations can grow if the goal is to model all
covariate combinations, all simulation combinations and censoring mechanisms. The total number
of scenarios is the product of the number of data simulations, models and censoring mechanisms

where we assume one out of four mechanisms are possible.

Data simulation Models Censoring Total scenarios

20 =64 20 =64 4x4=16 64 x 64 x 16 = 65536

Exploring all combinations across simulations and models would become difficult to manage or
interpret so we choose to focus on one simulation set up, and censoring mechanism and explore all
covariate combinations for that set up only. Further research could explore more simulations and

censoring mechanisms.

3.2.3 Simulation Set Up

We use the same simulation set up as in Section 3.1.1 but we simplify the censoring mechanism
to be completely at random. We make gender a stronger predictor of outcome to increase the
possibility of collider bias when conditioning on income, defined as a collider in Figure 25. We
choose to keep the true conditional hazard ratio at 1.5 for comparable results to Section 3.1.1 but
we lower the hazards by setting the baseline hazards to Ay = 1/45 and A; = 1/30 for untreated and
treated respectively. Since we keep the time of study at 20 years this will increase administrative
censoring significantly from the previous simulation.

The causal relationships are visualized in the DAG in Figure 25.
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Figure 25: DAG of causal relationships for combinations simulation

Income becomes a collider in Figure 25 since it is affected by both treatment and gender which also
affects the outcome. Notably, income is commonly used as a confounder in observationsal studies
but in this study over 20 years we assume that treatment could have an effect on an individual’s
income rather than the other way around.

The Monte Carlo simulation study parameters are summarized in Table 10.
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Table 10: Parameters of the Monte Carlo simulation study of covariate combinations

Notation Value Description

Study design

N 1000 Number of individuals
M 400 Number of Monte Carlo iterations

Treatment assignment

g p = (0.5) Baseline probability of treatment, Bernoulli
o 3 Log odds ratio for health before variable

Qs 4 Log odds ratio for the instrumental variable
Qg 0.98 Log odds ratio for unit increase in age

Covariate distributions

Xage TN (55,35,20,90) Age (years), truncated normal
Xincome N(35+ 10+ A+ 5« gender,5) x 2£(0.95,1.05) Income, normal

Dhealth before p=(0.5) Health before, Bernoulli

Dgender p = (0.5) Gender, Bernoulli

pneighborhood b= (047 047 02) Pr(Xneigh = 17 27 3 ‘ age < 70)
pncigh\senior p= (04, 037 03) Pr(chigh = 1’ 27 3 ‘ age 2 70)
Survival time simulation

Ao 1/45 Baseline hazard in untreated T° (Years)
Aq 1/30 Baseline hazard in treated T (Years)
exp(,é’gender) 0.7692 HR for men vs. women
exp(ﬁneighborhood) 0.833 HR for neighborhood C vs. others
exp (Bhealth) 2.5 HR for sick vs. healthy

exp(ﬁage) 1 HR per unit increase in age
Censoring model

Taee 100 Administrative censoring age (years)
Tadmin Tiiuay Administrative censoring time (years)
A, 0.4, Baseline censoring hazard

In Figure 26 we visualize the simulated observational study.
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Figure 26: All covariates and relationships
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3.2.4 Model Combinations and Results

We use the Cox model defined in Section 3.1.3.1 and the IP-weighted Cox MSM model defined
in Section 3.1.3.3 but now fit across all possible combinations of covariates X denoted in Table 3.
Since the censoring is now completely at random we do not need to model the censoring mechanism

for the IP weights and can rely on a logistic regression model for treatment probability.

The results are explored visually in Figures 27 and 28 for the Cox model and the IP weighted Cox
MSM respectively. The combinations numbers correspond to the combinations stated in Tables 11
and 12 below. The boxplots show the 75th and 25th percentiles of the Monte Carlo mean estimates
and the 95% Monte Carlo confidence intervals as error bars with the mean dot in the middle. The
true conditional value of the simulation is set to exp(3;) = 1.5 and displayed by a dashed red
line. The combination numbers on the x-axis appear a little further to the left of the boxplot they
correspond to, if this causes confusion please refer to the tables 11, 12 for clarity.

The estimates in Figure 27 can serve as a reference point for the marginal estimates in Figure 28

since the combination numbers correspond to the same covariate sets in both figures.
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The inclusion of neighborhood in Figure 27 appears to have little effect on the treatment effect
estimate and the effect of neighborhood itself is consistently well estimated across combinations.
Including income skewes the treatment effect estimate but that can be adjusted for by including
gender aswell. the health before variable is necessary to include for a valid estimate of the treatment
effect as expected for a strong confounder. No clear pattern appears for the inclusion of age or
more interestingly for the instrumental variable. Since Figure 27 proved hard to read down to all 64
combinations we picked two combinations to highlight the effect of including or excluding certain
covariates and plot the Monte Carlo 25th and 75th percentiles in Figure 30, this plot is included
in the appendix.
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Figure 28: IP weighted Cox MSM hazard ratio estimates

Figure 28 shows that the IP weighted Cox MSM estimates vary a lot based on what combination
of covariates is used. As for the Cox model in Figure 27 including health before is necessary for a
valid estimate of the treatment effect. Including income without gender, gives very high estimates
from combination 30 to 64 but including gender fixes that issue a bit. Even though we have added
the dashed line of the true conditional hazard ratio as a reference, the MSM model is estimating a
marginal hazard ratio. Based on the consistency of estimates close to HR =~ 1..475 we can assume
that the marginal hazard ratio is close to that value for this simulation set up. Notably the inclusion
of the instrument appears to have little if any, biasing effect on the estimates.

Overview of the fitted models can be found in the appendix in tables 11, 12 down to the combination
number per model that links back to the plots of results.
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Goal of the simulations was to compare the two theoretically equivalent methods of IP weighting
and standardization by the parametric g-formula and to also compare them to the classical Cox
model. The results show that the three methods produce very similar results for the specified
models as long as the desired estimand is clearly defined as conditional, marginal or marginal and

time-varying.

The TP-MSM model seems to be the least stable and further work on this subject could look into
how the methods compare under close to broken positivity assumptions or under scenarios with
extreme weights where more work would be needed to stabilize the weights. The ability of the
model to model the time-varying hazards is a strength but if the model is too unstable to give
precise estimates that strength is more so a weakness and a stable Cox model or the IP-Cox-MSM
could be preferred if an interpretation of an average marginal hazard ratio is enough given the
research question.

The parametric g-formula appears to be a strong estimator of both conditional and marginal hazard
ratios under our chosen set ups. The limitation it has by being very computationally demanding
does on the other hand require it to perform at least as well as the IP-MSM model since it requires

more work to implement.

We explored and discussed in Section 2.6.4 how for a study with a strong positive effect of treatment,
we expect shorter survival times for treated individuals and the same for a strong positive effect
from a confounder variable, this combination creates a clear time-varying marginal hazard ratio
as the risk set changes over time. Figure 29 gives an insight into how the discrete-time marginal
hazard ratio behaves over time given other combinations of confounder and treatment effects and
we can see that the combination we have explored is the most extreme case of this effect. Based
on these results, it could be a better estimate of the marginal treatment effect over time to use the
stable Cox model or the IP-weighted Cox model rather than to assume and model a time-varying
treatment effect where there is none.

Further work could aswell delve into the power and accuracy of the Schoenfeld residuals test which
we have mostly left out of this thesis.

4.1 Limitations

The expanded dataset framework that the counterfactual models rely on, especially the parametric
g-formula are computationally extremely heavy. Running simulations or using real world data
requires computational power and code built for speed. We had to limit this work to what could be
accomplished within reason and for more extensive research on the parametric g-formula heavier
computing power would be needed. The same was the case for the combination of covariates set

up, running on many covariates becomes infeasible quickly.

Due to the vast material we had to limit ourselves to not dive into effect modifiers in the simulations
which should have proven interesting but is left for further work. The contrasts of a marginal or
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a conditional estimate can become interestingly complicated with effect modifiers that can make a
marginal treatment effect appear as zero but with strong conditional treatment effects.

The build up of simulated covariates happened over a period of time which caused some loss of
bigger picture elements, using gender as a binary covariate with such a strong effect on income is

more outdated than the simulation study should have been set as.
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5.1 G-estimation by Structural Nested Models

The third method within the causal framework is G-estimation by structural nested mean models,
SNM for short.

Instead of estimating the marginal mean, SNM models estimate the conditional mean within levels
of A and selected covariates. SNMs are agnostic about the intercept 3, and the main effect of the
mixed effect V' € X, making them semi-parametric. This is equivalent to removing f3,, 35 from a
mixed effect MSM model resulting in, E[Y* — Y% | A = a, X] = 3,a + ByaX.

The SNM model is therefore more similar to the traditional Cox model than to other causal models.
It is conditional, non-collapsible, and not recommended when dealing with time-varying treatments
(Hernén & Robins, 2025). Since they are rarely the focus in causal inference research, they are not

discussed further in this work.

5.2 Treatment and Confounding Effects on a Marginal HR

In Section 2.6.4 we displayed Figure 14 for a single simulated study and here we extend the same
study to 100 iterations and estimate the Monte Carlo mean estimates and confidence intervals. The

confidence intervals are denoted in Section 2.12.
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Figure 29: Hazard ratio over time given pos, neg or no effect of treatment or other measures.

The Figure 29 shows a Monte Carlo simulation of the marginalm discrete-time hazard ratio for
various combinations of treatment and confounding effects, as described in Section 2.6.4. The 95%
quantile intervals are shown as shaded areas around the estimated Monte Carlo mean hazard ratios.
These are based on 100 simulated studies for each scenario and the Monte Carlo confidence intervals

are calculated over the 100 studies, the intervals became very tight so they almost dissapear.
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5.3 Good and Bad Covariate Combinations

Combinations 25 and 59 from Section 3.2.

Covariates included in model

Misspecified model for Cox proportional hazards
Collider included and confounder not included

neighborhoodC —H]—
neighborhoodB —ED—
instrument —[[{o—
income *
genderMen —H]—

factual_drug1

0 1 2 3 4
Hazard ratio

Combination number {[} 59

Red dot is theoretical truth for each term

Included covariates

Proper variable selection for Cox model
Confounders included and collider not included

health_beforeSick

genderMen ~H—

factual_drug1

age *

0 1 2 3 4
Hazard ratio

neighborhoodC

neighborhoodB

_Bj_
—A+-

Combination number -[ﬂ— 25

Red dot is theoretical truth for each term

Figure 30: Cox regression hazard ratio estimates examples
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Table 11: Used models for IP-weights and Cox-MSM models

IPW formula

Combination number

factual_drug ~ 1 1
factual__drug ~ gender 2
factual_drug ~ health_ before 3
factual__drug ~ gender + health_ before 4
factual__drug ~ age 5
factual__drug ~ gender + age 6
factual drug ~ health_ before + age 7
factual drug ~ gender + health before + age 8
factual__drug ~ neighborhood 9
factual__drug ~ gender + neighborhood 10
factual_drug ~ health_ before + neighborhood 11
factual__drug ~ gender + health_ before + neighborhood 12
factual drug ~ age + neighborhood 13
factual__drug ~ gender + age + neighborhood 14
factual_drug ~ health_ before + age + neighborhood 15
factual_drug ~ gender + health_ before 4+ age 4+ neighborhood 16
factual_drug ~ instrument 17
factual__drug ~ gender + instrument 18
factual__drug ~ health__before + instrument 19
factual drug ~ gender + health before + instrument 20
factual__drug ~ age + instrument 21
factual_drug ~ gender + age + instrument 22
factual_drug ~ health_ before + age + instrument 23
factual__drug ~ gender + health_ before + age + instrument 24
factual drug ~ neighborhood + instrument 25
factual drug ~ gender + neighborhood + instrument 26
factual__drug ~ health_ before + neighborhood + instrument 27
factual_drug ~ gender + health_ before 4+ neighborhood + instrument 28
factual__drug ~ age + neighborhood + instrument 29
factual drug ~ gender + age + neighborhood + instrument 30
factual drug ~ health before + age + neighborhood + instrument 31
factual__drug ~ gender + health_ before 4+ age + neighborhood + instrument 32
factual__drug ~ income 33
factual__drug ~ gender + income 34
factual__drug ~ health_ before + income 35
factual drug ~ gender + health before + income 36
factual drug ~ age + income 37
factual_drug ~ gender + age + income 38
factual__drug ~ health_ before + age + income 39
factual_drug ~ gender + health_ before 4+ age + income 40
factual__drug ~ neighborhood + income 41
factual__drug ~ gender + neighborhood + income 42
factual drug ~ health before + neighborhood + income 43
factual__drug ~ gender + health_ before 4+ neighborhood + income 44
factual__drug ~ age + neighborhood + income 45
factual_drug ~ gender + age + neighborhood + income 46
factual__drug ~ health_ before + age + neighborhood + income 47
factual drug ~ gender + health before + age + neighborhood + income 48
factual drug ~ instrument + income 49
factual_drug ~ gender + instrument + income 50
factual_drug ~ health_ before + instrument + income 51
factual_drug ~ gender + health_ before 4+ instrument + income 52
factual__drug ~ age + instrument + income 53
factual drug ~ gender + age + instrument + income 54
factual drug ~ health before + age + instrument + income 55
factual__drug ~ gender + health_before + age + instrument + income 56
factual_drug ~ neighborhood + instrument + income 57
factual_drug ~ gender + neighborhood + instrument + income 58
factual drug ~ health_before + neighborhood + instrument + income 59
factual drug ~ gender + health before + neighborhood + instrument + income 60
factual drug ~ age + neighborhood + instrument + income 61
factual drug ~ gender + age + neighborhood + instrupgent + income 62
factual_drug ~ health_ before + age + neighborhood + instrument + income 63
factual__drug ~ gender + health__before + age + neighborhood + instrument + income 64
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Table 12: Used models for Cox models

Cox model Combination number
~ factual drug 1
~ factual _drug + gender 2
~ factual _drug + health_ before 3
~ factual__drug + gender + health_ before 4
~ factual__drug + age 5
~ factual _drug + gender + age 6
~ factual _drug + health_before + age 7
~ factual drug + gender + health before + age 8
~ factual__drug + instrument 9
~ factual__drug + gender 4 instrument 10
~ factual__drug + health_ before + instrument 11
~ factual _drug + gender + health_ before 4 instrument 12
~ factual drug + age + instrument 13
~ factual _drug + gender 4 age + instrument 14
~ factual__drug + health_ before + age + instrument 15
~ factual__drug + gender + health_ before + age + instrument 16
~ factual__drug + neighborhood 17
~ factual _drug + gender + neighborhood 18
~ factual drug + health before 4+ neighborhood 19
~ factual drug + gender + health before 4+ neighborhood 20
~ factual__drug + age + neighborhood 21
~ factual _drug + gender + age + neighborhood 22
~ factual _drug + health_ before 4+ age + neighborhood 23
~ factual _drug + gender + health__before + age + neighborhood 24
~ factual drug + instrument + neighborhood 25
~ factual drug + gender + instrument + neighborhood 26
~ factual__drug + health_ before 4+ instrument + neighborhood 27
~ factual__drug + gender + health_ before + instrument + neighborhood 28
~ factual _drug + age + instrument + neighborhood 29
~ factual _drug + gender + age + instrument + neighborhood 30
~ factual drug + health before + age + instrument + neighborhood 31
~ factual drug + gender + health before 4+ age + instrument + neighborhood 32
~ factual__drug + income 33
~ factual__drug + gender + income 34
~ factual _drug + health__before 4 income 35
~ factual drug + gender + health before + income 36
~ factual drug + age + income 37
~ factual drug + gender + age + income 38
~ factual__drug + health_ before + age + income 39
~ factual__drug + gender + health_ before + age + income 40
~ factual _drug + instrument 4+ income 41
~ factual__drug + gender + instrument + income 42
~ factual__drug + health_ before + instrument + income 43
~ factual drug + gender + health_ before + instrument + income 44
~ factual__drug + age + instrument + income 45
~ factual _drug + gender 4+ age + instrument + income 46
~ factual _drug + health_before 4+ age + instrument + income 47
~ factual drug + gender + health before + age + instrument + income 48
~ factual drug + neighborhood + income 49
~ factual _drug + gender 4+ neighborhood + income 50
~ factual__drug + health_ before 4+ neighborhood + income 51
~ factual _drug + gender + health_ before + neighborhood + income 52
~ factual _drug + age + neighborhood + income 53
~ factual drug + gender + age + neighborhood + income 54
~ factual drug + health before 4+ age + neighborhood + income 55
~ factual _drug + gender + health_before 4+ age + neighborhood + income 56
~ factual__drug + instrument + neighborhood 4 income 57
~ factual__drug + gender + instrument + neighborhood + income 58
~ factual _drug + health_before + instrument + neighborhood + income 59
~ factual drug + gender + health before + instrument + neighborhood + income 60
~ factual drug + age + instrument + neighborhood + income 61
~ factual _drug + gender + age + instrument + neighberhood + income 62
~ factual _drug + health_before + age + instrument + neighborhood + income 63
~ factual _drug + gender + health__before 4+ age + instrument + neighborhood + income 64




