STOCKHOLM UNIVERSITY MT 7039 DEPT. OF MATHEMATICS EXAMINATION Div. of Mathematical statistics 17 Mar 2022

Exam in Unsupervised Learning 17 Mar 2022, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se.

Permitted aids: When writing the home exam, you may use any literature. Electronic devices are NOT allowed

NOTE: The exam consists of 4 problems with 100 points in total. Logical explanation and steps leading to the final solution must be clearly shown in order to receive full marks.

NOTE: Your answers and explanations must be to the point, **redundant writing irrelevant to the solution will result in point deduction**.

Problem 1 (Basics of unsupervised learning, total 29p)

- a) Consider the Gaussian mixture model (GMM) in the book "Pattern recognition and machine leanring", and suppose that the covariance matrices of all mixture components are given by ϵI such that the probability distribution function of the *k*-th Gaussian component is given by Eq. 9.41 in the book (Note: Eq. 9.41 has a small typo!). Under this setting, show that, in the limit $\epsilon \to 0$, maximizing the GMM log-likelihood Eq. 9.14 equals to minimizing the *K*-means objective function Eq. 9.1. **(18p)**
- b) PCA and classical metic MDS are equivalent when the Euclidean distances are used. State explicitly where in PCA **(3p)** and in classical metric MDS **(3p)** the assumption of Euclidean distance is imposed. Note: Please state ONLY the relevant parts in PCA and classical metric MDS.
- c) Show that the principal coordinates $\hat{X}_{\text{MDS}} = I_{p \times N} \Lambda_{\text{MDS}}^{1/2} U^{\top}$ is centered. **(5p)**

Problem 2 (Graph based methods, total 30p)

For graphs with a single connected componet, the commute time distances (CTD), c_{ij} , expressed in terms of the eigen-values λ_{α} and -vectors $v_{\alpha i}$ of the normalized graph Laplacian L_{sym} , $c_{ij} = \text{vol}(G) \sum_{\alpha=2}^{N} \frac{1}{\lambda_{\alpha}}$ $\left(\frac{v_{\alpha i}}{\sqrt{d_i}} - \frac{v_{\alpha j}}{\sqrt{d_j}}\right)$ $\Big)^2$, has the form of squared Euclidean distance, where $vol(G)$ is volume of the graph, *d*_{*i*} is the degree of the *i*-th node, with $i = 1, \dots, N$ and $\alpha = 2, \dots, N$. This suggests that one can embed the data points in a Euclidean space with the Cartesian coordinates $x_{\alpha i} = v_{\alpha i} \sqrt{\frac{v_{\text{ol}}(G)}{\lambda_{\alpha} d_i}}$, called the CTD embedding. Here α labels the directions and *i* labels the data point.

- a) Show that $E(x_\alpha) = 0$ for $\alpha > 1$ with the weight of each data given by $P(i) = d_i / \text{vol}(G)$. **(10p)**
- b) With the same weights in part a, find the covariance matrix $E(x_{\alpha}x_{\alpha})$ for $\alpha, \alpha' > 1$. **(10p)**
- c) Show that the CTD defined above does not change if all graph weights are rescaled by the same constant, i.e., $w_{ij} \rightarrow a \cdot w_{ij}$ with $a > 0$. (5p)
- d) Draw one example where the *k*NN graph construction with single connected component may end up with very large k (2p), then propose a solution for it **(3p)**.

Problem 3 (Local linear embedding, total 27p)

This problem follows the notation in the paper "Nonlinear dimensionality reduction by locally linear embedding".

- a) Show that the weights W_{ij}^{min} that minimize the cost function $\epsilon(W)$ = $\sum_{i} \left| \overrightarrow{X}_{i} - \sum_{j} W_{ij} \overrightarrow{X}_{j} \right|$ μ^2 (i.e., Eq. 1 in the paper) subject to the constraints $\sum_{j} W_{ij} = 1$ are invariant under orthogonal transformation **(3p)** and rescaling **(3p)** of the data coordinates \overrightarrow{X}_i , $i = 1, \dots, N$.
- b) Consider the constrained least squares problem in solving the weights for a given data point \overrightarrow{X} , one minimizes $\epsilon(W) = \left| \overrightarrow{X} - \sum_{j} W_{j} \overrightarrow{\eta}_{j} \right|$ $\begin{bmatrix} - & - & - & - & - \\ - & - & - & - \end{bmatrix}$ 2 subject to $\sum_j W_j = 1$ where $\overrightarrow{\eta}_j$ are neighbors of \overrightarrow{X} . Show that the cost function $\epsilon(W)$ can be written as the quadratic form $\epsilon(W) = \sum_{j,k} W_j C_{jk} W_k$, where the scalar product matrix is defined by $C_{jk} = (\vec{X} - \vec{\eta}_j) \cdot (\vec{X} - \vec{\eta}_k)$. (5p)
- c) Consider the eigenvector problem where the $N \times N$ weight matrix W is given, one minimizes $\phi(Y) = \sum_{T} \left| \overrightarrow{Y}_i - \sum_j W_{ij} \overrightarrow{Y}_j \right|$ 2 subject to the constraints $\sum_i \vec{Y}_i = 0$ and $\sum_i \vec{Y}_i \vec{Y}_i$ $T = NI$. Show that the cost function $\phi(Y)$ can be written as $\phi(Y) = \text{Tr}(Y^T M Y)$ where $M = (I - W)^T (I - W)$ and *Y* is the $N \times d$ data matrix in the lower dimensional space. **(10p)**
- d) If one does not have the feature vectors but only has the dissimilarity measures between any two data points $d(\vec{X}_i, \vec{X}_j)$, discuss **in words** how the locally linear embedding method can still be applied. **(6p)**

Problem 4 (Validation Methods, total 14p)

This problem refers to the lecture note on validation methods

- a) Name one limitation of the Silhouette plot and index to validate clustering results and propose a solution for it. **(6p)**
- b) Referring to P.21 of the lecture note on co-rank matrix, show that $Q_{NX}(K)$ = $\frac{1}{Kn} \sum_{i=1}^n |\Psi_K(i) \cap \Psi'_K(i)|$. (5p) What is the range of $Q_{NX}(K)$? (3p)

Good Luck!