
STOCKHOLM UNIVERSITY MT 7039
DEPT. OF MATHEMATICS EXAMINATION
Div. of Mathematical statistics 17 Mar 2022

Exam in Unsupervised Learning
17 Mar 2022, time 14:00-19:00

Examinator: Chun-Biu Li, cbli@math.su.se.
Permitted aids: When writing the home exam, you may use any literature.
Electronic devices are NOT allowed

NOTE: The exam consists of 4 problems with 100 points in total. Logical ex-
planation and steps leading to the final solution must be clearly shown in order
to receive full marks.

NOTE: Your answers and explanations must be to the point, redundant wri-
ting irrelevant to the solution will result in point deduction.

Problem 1 (Basics of unsupervised learning, total 29p)
a) Consider the Gaussian mixture model (GMM) in the book “Pattern recog-

nition and machine leanring”, and suppose that the covariance matrices of
all mixture components are given by εI such that the probability distribu-
tion function of the k-th Gaussian component is given by Eq. 9.41 in the
book (Note: Eq. 9.41 has a small typo!). Under this setting, show that, in
the limit ε → 0, maximizing the GMM log-likelihood Eq. 9.14 equals to
minimizing the K-means objective function Eq. 9.1. (18p)

b) PCA and classical metic MDS are equivalent when the Euclidean distances
are used. State explicitly where in PCA (3p) and in classical metric MDS
(3p) the assumption of Euclidean distance is imposed. Note: Please state
ONLY the relevant parts in PCA and classical metric MDS.

c) Show that the principal coordinates X̂MDS = Ip×NΛ1/2
MDSU

> is centered.
(5p)

Problem 2 (Graph based methods, total 30p)
For graphs with a single connected componet, the commute time distances
(CTD), cij , expressed in terms of the eigen-values λα and -vectors vαi of the

normalized graph Laplacian Lsym, cij = vol(G)
∑N
α=2

1
λα

(
vαi√
di
− vαj√

dj

)2
, has

the form of squared Euclidean distance, where vol(G) is volume of the graph,
di is the degree of the i-th node, with i = 1, · · · , N and α = 2, · · · , N . This
suggests that one can embed the data points in a Euclidean space with the Car-
tesian coordinates xαi = vαi

√
vol(G)
λαdi

, called the CTD embedding. Here α labels
the directions and i labels the data point.
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a) Show that E(xα) = 0 for α > 1 with the weight of each data given by
P (i) = di/vol(G). (10p)

b) With the same weights in part a, find the covariance matrix E(xαxα′) for
α, α′ > 1. (10p)

c) Show that the CTD defined above does not change if all graph weights
are rescaled by the same constant, i.e., wij → a · wij with a > 0 . (5p)

d) Draw one example where the kNN graph construction with single con-
nected component may end up with very large k (2p), then propose a
solution for it (3p).

Problem 3 (Local linear embedding, total 27p)
This problem follows the notation in the paper “Nonlinear dimensionality re-
duction by locally linear embedding”.

a) Show that the weights Wmin
ij that minimize the cost function ε(W ) =∑

i

∣∣∣−→X i −
∑
jWij

−→
X j

∣∣∣2 (i.e., Eq. 1 in the paper) subject to the constraints∑
jWij = 1 are invariant under orthogonal transformation (3p) and re-

scaling (3p) of the data coordinates −→X i, i = 1, · · · , N .

b) Consider the constrained least squares problem in solving the weights for
a given data point −→X , one minimizes ε(W ) =

∣∣∣−→X −∑jWj
−→η j
∣∣∣2 subject

to
∑
jWj = 1 where −→η j are neighbors of −→X . Show that the cost function

ε(W ) can be written as the quadratic form ε(W ) =
∑
j,kWjCjkWk, where

the scalar product matrix is defined by Cjk = (−→X −−→η j) · (
−→
X −−→η k). (5p)

c) Consider the eigenvector problem where the N × N weight matrix W

is given, one minimizes φ(Y ) =
∑
i

∣∣∣−→Y i −
∑
jWij

−→
Y j

∣∣∣2 subject to the

constraints
∑
i
~Yi = 0 and

∑
i
~Yi ~Yi

T
= NI. Show that the cost function

φ(Y ) can be written as φ(Y ) = Tr(Y TMY ) where M = (I−W )T (I−W )
and Y is the N × d data matrix in the lower dimensional space. (10p)

d) If one does not have the feature vectors but only has the dissimilarity
measures between any two data points d(−→Xi,

−→
Xj), discuss in words how

the locally linear embedding method can still be applied. (6p)

Problem 4 (Validation Methods, total 14p)
This problem refers to the lecture note on validation methods

a) Name one limitation of the Silhouette plot and index to validate clustering
results and propose a solution for it. (6p)

b) Referring to P.21 of the lecture note on co-rank matrix, show thatQNX(K) =
1
Kn

∑n
i=1 |ΨK(i)

⋂
Ψ′K(i)|. (5p) What is the range of QNX(K)? (3p)

Good Luck!
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